
Error-Correcting Codes for Automatic Control

Rafail Ostrovsky∗ Yuval Rabani† Leonard J. Schulman‡

July 18, 2005

Abstract

In many control-theory applications one can classify all possible states of the de-
vice by an infinite state graph with polynomially-growing expansion. In order for a
controller to control or estimate the state of such a device, it must receive reliable com-
munications from its sensors; if there is channel noise, the encoding task is subject to
a stringent real-time constraint. We show a constructive on-line error correcting code
that works for this class of applications. Our code is is computationally efficient and
enables on-line estimation and control in the presence of channel noise. It establishes
a constructive (and optimal-within-constants) analog, for control applications, of the
Shannon coding theorem.

∗Computer Science Department, University of California at Los Angeles, 90095, USA. Part of this work
was done while at the Institute for Pure and Applied Mathematics (IPAM). Supported in part by a gift
from Teradata, Intel equipment grant, NSF Cybertrust grant, OKAWA research award and B. John Garrick
Foundation. Email: rafail@cs.ucla.edu

†Computer Science Department, Technion — Israel Institute of Technology, Haifa 32000, Israel. Work
supported by Israel Science Foundation grant number 52/03 and by United States-Israel Binational Science
Foundation grant number 2002282. Part of this work was done while visiting the Institute for Pure and
Applied Mathematics in the University of California at Los Angeles. Email: rabani@cs.technion.ac.il

‡California Institute of Technology. Supported in part by an NSF ITR and the Okawa Foundation. Email:
schulman@caltech.edu

1

1 Introduction

Motivation. In many automatic control applications, a device (an engine, a terrestrial
or aerial mobile robot, etc.) communicates with a base station that controls its actions.
The communication may be wireless or wired, synchronous or packet-based. Typically the
devices have a limited set of commands/ controls/ actions/ moves that they can execute.
Actions by the devices combine with environmental disturbances, to cause a change in the
parameters describing the state of the system (such as location, orientation, or temperature).
Such devices need to communicate with the base station regarding their current state and
get further instructions. Examples are numerous, and include remote mobility issues (such
as space or submarine exploration) and web-based on-line control (such as camera and sensor
distributed control) [9, 5].

If the controller is physically remote from the sensors or actuators, information flow
between them can be subject to noise; if so, system performance depends upon encoding the
transmissions against channel noise. In control applications, the encoding of communications
against channel noise faces a special difficulty due to the need for real-time response to
transmissions. The objective of the base station is to learn as precisely as possible the
current state of each device in its parameter space. Naturally, there is a tradeoff between
the amount of communication (and hence delay) and the accuracy and reliability of the
information known at the base station. It is therefore a challenge to perform the channel
coding subject to a channel capacity constraint.

The problem can be considered within a very general framework of interactive commu-
nication problems [11]; however, the best results in that literature remain nonconstructive.
Fortunately, there is a feature of the control application that makes it easier than general
interactive-communication problems, since the controlled devices can typically be described
with a finite-dimensional parameter space. (Example: the location, orientation and engine
RPM of an aerial drone.) What characterizes a typical parameter space is that the growth
rate of the state space around any point is polynomially bounded.

At each step in its state-space the remote device wishes to send one (or a constant
number) of bits to the base station to indicate its position/configuration. Despite channel-
noise, the objective of the base-station is to determine, as accurately as possible, the location
of the device in its state-space. Of course, one cannot ask that the base station already have
high certainty about the real value of any measured bit, before a significant number of
subsequent message bits have been received. More specifically, if the channel has a constant
rate of stochastic noise, then the best one can hope for (on non-degenerate noisy channels)
is that the base station have probability exp(−Ω(n)) of estimating incorrectly a particular
state of a device, if all histories leading to that state diverge from the true history at least
n steps previously. The meaningful question is: Can we achieve such a bound? Doing so
demands that encoded characters convey information across all time scales. This is exactly
what we achieve in this paper in a constructive fashion, as we explain below.

Problem statement and results. In this paper, we initiate the study of error-correcting
codes for remote control of devices that move in a finite-dimensional parameter space. All

2

of the communication systems we discuss share the following features. There is at least one
transmitter and one receiver. The state of the transmitter at any time t is identified with a
vertex (which we denote xt) of a state graph (which we denote G); the graph (which may
be directed or undirected and will typically have self-loops) is known to both parties, as is
the initial state x0 of the transmitter. In each round, the state of the transmitter shifts to
an out-neighbor of the previous state. The transmitter can then use the channel once; the
communicated character can depend upon the entire history of the transmitter. Our concern
is the design of an efficient code for these communications.

For nodes x, x′ ∈ G let dG be the length of a shortest path from x to x′ in G. Let
B(x, `) = {x′ : dG(x, x′) ≤ `}. The growth of G as a function of ` is the supremum over all x
of |B(x, `)|. If this is bounded above by a polynomial in ` we say G has polynomial growth.
Finite-dimensional grids have polynomial growth. We suppose that the alphabet of the
channel is a finite set S. S∗ denotes the set of finite words over S. If the greatest out-degree
or in-degree of G is ∆, we say that the rate of the code is ρ = (log ∆)/(log |S|). (We assume
below that ∆ ≥ 2.) We expressly avoid tailoring our results to particular kinds of noisy
channels. Our results are aimed at noisy but non-adversarial channels, in particular discrete
memoryless channels, for which we assume only that the capacity is proportional to log |S|.
(We remark that, using cryptography, we can extend our results to polynomially-bounded
adversarial channels [8].)

Based upon the code and upon the history of communications, the receiver has at time
t a guess x̂t of the current state of the transmitter. (We understand the code to include the
estimation procedure used by the receiver.) We say that the code has error exponent κ if
P (dG(xt, x̂t) ≥ `) ≤ exp(−κ`) ∀t, `. We say that the code is time-efficient if the encoding and
expected decoding times are (log t)O(1). It is time-and-space-efficient if the space required
for encoding, and the expected space required for decoding, are also (log t)O(1).

We show the existence of asymptotically good error-correcting codes for every state graph
G. Our main result is the construction of a code for communication in finite-dimensional
grid graphs that has positive rate, positive error exponent, and is time-and-space-efficient.
The method extends to other graphs with polynomial growth and simply-represented global
structure, but we do not formalize this in this extended abstract.

Previous work. Standard error-correcting block codes are not satisfactory for remote
control applications because low probabilities of error (necessary in order to maintain system
performance over extended periods of time) can be achieved only using long blocks, and this
introduces a time lag that degrades the effectiveness of controller response.

Two forms of affirmative answer to our problem are known. One is to use convolutional
codes [18, 10, 3] or other randomized protocols [11]. This has a significant drawback: these
“codes” are not strictly speaking codes, but probability distributions over codes, and require
the encoder and decoder to use shared random bits. (Certain kinds of deterministic convo-
lution codes are currently in wide use but these have only bounded support, i.e. fixed-time
memory. They therefore cannot provide error-bounded performance for extended time peri-
ods.) The second answer is to use tree codes [12, 13]. These are true error correcting codes,

3

but they too cannot presently be used in long protocols because no efficient algorithm is
known for constructing them. (A similar situation reigned for block codes after Shannon’s
existence proof for asymptotically-good block codes [14] until explicit constructions were
provided [6, 4].) There has recently been substantial progress in information-theoretic and
rate-distortion bounds for control applications [17, 2, 15, 16, 7]; these works solve different
problems than the one considered here. There does not appear to be a prior code for our
problem that is efficient in both computation and communication.

2 Trajectory codes

Throughout, G is a graph with vertex set V , initial vertex x0 ∈ V , and edge set E ⊆ V ×V .
A trajectory γ of length |γ| = t and which begins at time t0 is a mapping from {t0, . . . , t0+t}
to V for which all (γ(i), γ(i + 1)) ∈ E. If two trajectories γ, γ′ are of equal length, start at
the same time t0, and share the same start vertex (i.e., γ(t0) = γ′(t0)), we write γ ∼ γ′. The
distance τ between trajectories γ ∼ γ′ of length t is τ(γ, γ′) = |{t0 < i ≤ t0+t : γ(i) 6= γ′(i)}|.

A trajectory code is a mapping χ : V × {1, 2, . . .} → S, extended to a mapping from
trajectories to S∗ by concatenation: χ(γ) = (χ(γ(t0 + 1)), . . . , χ(γ(t0 + t))). Hamming
distance between equal-length words in S∗ is denoted h. The relative distance of the code
is defined to be δ = infγ∼γ′{h(χ(γ), χ(γ′))/τ(γ, γ′)}. A finite-time trajectory code is defined
similarly by a mapping χ : V × {1, 2, . . . , T} → S.

We say that the code is asymptotically good if it has both positive rate ρ and positive
relative distance δ.

Lemma 1. If the t’th character of an asymptotically good code with alphabet S can be com-
puted in time and space (log t)O(1) then the code can be converted into another asymptotically
good code that has positive error exponent and is time-and-space-efficient.

Proof. The conversion is by simple repetition (the alphabet of the new code is Sk for con-
stant k), and serves only to improve the error exponent. For sufficiently high error exponent,
decoding by max-likelihood matching is exponentially unlikely to need to examine trajecto-
ries far away from that decoded in the previous round. Hence the expected time and space
of the computation is (log t)O(1).

Our task therefore is to construct an asymptotically good trajectory code. The first
problem is to show that such codes exist (Section 3). Interestingly, the only proof we know
is non-constructive; however, with the aid of this proof we provide a constructive and time-
and-space-efficient finite-time code for grids. (Section 4).

Comparison with tree-codes It is instructive to compare the present work with that on
tree codes. In the terminology of the present paper, [12, 13] used the protocol tree of a given
noiseless communication protocol in the role of our graph G; the tree code used in that work
for a noisy-communication protocol is what we call the trajectory code on V ×{1, 2, . . .}. The
existence proof provided in that work relies on the tree structure of the graph, and does not

4

apply to the more general case considered here. However, the purpose of the generalization
is not just handling more difficult communication problems; the case that G is a tree is, in
fact, the most difficult one. (Using tree codes enables eventual reconstruction of the entire
history of the transmitter, not only reconstruction of a good estimate of the current state.)
Instead, the purpose in our paper is to obtain a computationally effective solution using the
special assumption that G has polynomial growth. This assumption is motivated by control
applications, with G being a discretization of the finite-dimensional parameter space of the
system. Thus, we circumvent the need to construct an explicit tree code and show that a
different code which that works for the entire class of polynomial-growth graphs is sufficient.

3 Existence of asymptotically good trajectory codes

Theorem 2. Every graph G possesses an asymptotically good trajectory code. Furthermore,
every δ < 1 is feasible as the relative distance of an asymptotically good code.

Proof. To achieve positive rate we must label V ×{1, 2, . . .} with an alphabet S of size ∆O(1).
Consider choosing each label independently and uniformly. A code obtained in this way is
almost-surely not asymptotically good. Nonetheless this probability space can be used for
an existence proof.

Consider at first the finite-graph, finite-time restriction of the problem to B(x0, T) ×
{1, 2, . . . , T}. Fix any desired relative distance bound δ. If γ = (γ1, γ2) consists of two tra-
jectories such that γ1 ∼ γ2 and which share only their common start vertex (i.e., τ(γ1, γ2) =
|γ1|), then we refer to γ as a pair of “twins” and write |γ| = |γ1| and hχ(γ) = h(χ(γ1), χ(γ2)).
Note that infγ1∼γ2(h(χ(γ1), χ(γ2))/τ(γ1, γ2)) = inftwins γ(hχ(γ)/|γ|). For a pair of twins γ let
Aγ be the event that hχ(γ)/|γ| < δ. There is a positive c for which P (Aγ) ≤ |S|−c|γ|.

For twins γ = (γ1, γ2) let Nγ = {twins β = (β1, β2) : ∃ε1, ε2 ∈ {1, 2}, j1, j2 > 0 such that
γε1(j1) = βε2(j2)}.

Observe that Aγ is independent of the random variable (Aβ)β /∈Nγ .

The Lovász local lemma [1] ensures that
⋂

Aγ 6= ∅ provided that there exist nonnegative
reals 0 ≤ xγ < 1 for which

xγ

∏

β∈Nγ

(1− xβ) ≥ P (Aγ).

Observe that |{β : β ∈ Nγ, |β| = `}| ≤ 4|γ|`∆2`. For c′ to be determined set xγ = ∆−c′|γ|.
Now,

xγ

∏

β∈Nγ

(1− xβ) ≥ ∆−c′|γ|
∞∏

`=1

(1−∆−c′`)4|γ|`∆2`

.

A sufficiently large c′ ensures that for ∆ ≥ 2, 1−∆−c′` ≥ e−2∆−c′`
. So

. . . ≥ ∆−c′|γ|
∞∏

`=1

e−8∆−c′`|γ|`∆2`

= ∆−c′|γ|e−8|γ|P∞
`=1 `∆(2−c′)`

.

5

A sufficiently large c′ ensures that for ∆ ≥ 2,
∑∞

`=1 `∆(2−c′)` ≤ 2. So

. . . ≥ ∆−c′|γ|e−16|γ|.

Since P (Aγ) ≤ |S|−c|γ|, the hypotheses of the local lemma are met with an alphabet of size
∆O(1).

To extend the proof to the general case we apply a standard compactness argument
(see [1]). For any T , the trajectory codes on B(x0, T) × {1, 2, . . . , T} ensured by the above
argument form a finite nonempty set. Let CT denote the set of codes on V × {1, 2, . . .} which
restrict to one of the trajectory codes on B(x0, T)×{1, 2, . . . , T}. CT is a nonempty set that
is closed in the product topology on SV×{1,2,...}. Note that CT ⊆ CT−1; the intersection of
the sets CT for any finite number of indices T is therefore nonempty. The set

⋂
t∈NCT is the

desired set of trajectory codes with relative distance δ. By Tychonoff’s Theorem, SV×{1,2,...}

is compact. Therefore
⋂

t∈NCT 6= ∅.

4 Construction of trajectory codes for grids

We now construct an asymptotically good and time-and-space-efficient finite-time trajectory
code, of any desired relative distance δ < 1, for a grid graph of arbitrary finite dimension d.

Let Pn denote the path of length n, with vertices labeled {−n/2 + 1, . . . , n/2}. Let G
be the graph on vertex set Vn,d = {−n/2 + 1, . . . , n/2}d with an edge from (u1, . . . , ud) to
(v1, . . . , vd) if |ui−vi| ≤ 1∀i. For simplicity we describe the construction for a time bound of
n/2. So our task is to construct for a trajectory code χ : Vn,d×{1, . . . , n/2} → S of relative
distance δ.

The idea is to combine recursion with use of an explicit block code. Set n1 ∈ Θ(log n).
Let k ∼ 1/(1− δ). For simplicity assume that kn1 divides n.

4.1 Recursive construction

The block code: Let η : Vn,d → Rn1
1 (for a finite alphabet R1) be an asymptotically good

block code of relative distance (1 + δ)/2, in which encoding and decoding can be performed

in time n
O(1)
1 . Rewrite η as a mapping η1 : Vn,d × {1, . . . , n1/2} → R1, so that for x ∈ Vn,d,

η(x) = (η1(x, 1), . . . , η1(x, n1/2)).
The recursive code: Let χ1 : Vkn1,d × {1, . . . , kn1/2} → S1 (for a finite alphabet S1) be a

trajectory code of relative distance (1 + δ)/2.
The basic idea is to cover Vn,d × {1, . . . , n/2} by overlapping “shingles”. Each shingle is

“placed” at a specified x ∈ Vn,d × {0, . . . , n/2− 1}, and is the following mapping:

σx :

(
d∏

i=1

{xi − kn1/2 + 1, . . . , xi + kn1/2}
)
× (xd+1 + 1, . . . , xd+1 + kn1/2) → S1 ×R1

σx(y) = (χ1(y − x), η1(x1, . . . , xd, (yd+1 − xd+1 mod n1)))

6

The cover of Vn,d × {1, . . . , n/2} by overlapping shingles will be described by a union of
several covers, each of which is a tiling (a cover by nonoverlapping shingles). Each tiling is
associated with a vector (a1, . . . , ad+1) ∈ {−k/2 + 1, . . . , k/2}d × {0, . . . , k − 1}. (Strictly
speaking each tiling may fail to be a cover but only due to edge effects which we gloss over.)
The collection of shingles associated with the label (a1, . . . , ad+1) consists of those placed at
x of the form

x = n1(kz1 + a1, . . . , kzd+1 + ad+1),

for all (z1, . . . , zd+1) of the form

(z1, . . . , zd+1) ∈ {−n/(2kn1) + 1, . . . , n/(2kn1)}d × {1, . . . , n/(kn1)}

The tiling labeled (a1, . . . , ad+1) therefore defines a mapping

χa1,...,ad+1
: Vn,d × {1, . . . , n/2} → S1 ×R1

by restriction (except possibly near the boundaries due to fencepost errors).
The trajectory code χ is the concatenation of the codes associated with each of the tilings:

χ(y) =
(
χa1,...,ad+1

(y)
)

a1,...,ad+1

Observe that the number of labels concatenated at each vertex is kd+1.

Lemma 3. χ achieves relative distance δ.

Proof. Consider any twins (γ, γ′). Let t = |γ| and let t0 be the starting time of the pair of
trajectories.

If t ≤ (k−2)n1/2 then the pair (γ, γ′) is contained entirely within a shingle. This implies
relative distance at least (1 + δ)/2.

Otherwise, round t0+t down to the preceding multiple of n1: specifically, set t̃ = n1b(t0+
t)/n1c − t0. Partition the time period from t0 to t0 + t̃ into r epochs (for some r) using
boundaries at times t1, . . . , tr, defined inductively: if the set {t′ : t′ ≥ ti−1 +(k−2)n1, |γ(t′)−
γ′(t′)| ≤ 2n1} is nonempty, ti is its least element, otherwise ti = t0 + t̃ and r = i. For i =
1, . . . , r define words χγ,i = χ(γ(ti−1 + 1)) · · ·χ(γ(ti)) and χγ′,i = χ(γ′(ti−1 + 1)) · · ·χ(γ′(ti)).

In the first epoch (just as in the case t ≤ (k − 2)n1/2), the relative distance is at least
(1+ δ)/2. Hence h(χγ,1, χγ′,1) ≥ δ(t1− t0)+n1. This excess is applied against the last epoch
and against the rounding-down of t to t̃.

Next we show that in epochs 2, . . . , r − 1 the relative distance is at least δ, while in the
last epoch, the distance bound is h(χγ,r, χγ′,r) ≥ ((1 + δ)/2)(tr − tr−1)− n1.

First consider the case i ∈ {2, . . . , r − 1}, or the case that i = r and tr − tr−1 ≥
(k − 2)n1. Let si = ti−1 + (k − 2)ni. Partition χγ,i into two words χγ,i,1 and χγ,i,2 by
χγ,i,1 = χ(γ(ti−1 + 1)) · · ·χ(γ(si)) and χγ,i,2 = χ(γ(si)) · · ·χ(γ(ti)). (The latter may be
empty.) Partition χγ′,i into χγ′,i,1 and χγ′,i,2 similarly.

First we claim that h(χγ,i,1, χγ′,i,1) ≥ ((1+δ)/2)(k−3)n1 by the following “virtual trajec-
tory” argument. Choose a vertex y = (y1, . . . , yd) ∈ Vn,d such that both dG(y, γ(ti−1)) ≤ n1

7

and dG(y, γ′(ti−1)) ≤ n1. Define ỹ ∈ Vn,d × {1, . . . , n/2} by ỹ = (y1, . . . , yd, ti−1 − n1). Con-
struct a trajectory γ̃ with start time ti−1 − n1 and length n1 + si − ti−1 by having it start
at γ̃(ti−1 − n1) = ỹ, reach γ̃(ti−1) = γ(ti−1), and thereafter be identical to γ until time si.
Similarly construct a trajectory γ̃′ with start time ti−1 − n1 and length n1 + si − ti−1 by
having it start at γ̃′(ti−1−n1) = ỹ, reach γ̃′(ti−1) = γ′(ti−1), and thereafter be identical to γ′

until time si. Observe that γ̃ ∼ γ̃′ and |γ̃| = n1 + si − ti−1 ≤ (k − 2)n1, so there is a shingle
entirely containing the pair (γ̃, γ̃′). Hence the claim.

Second we claim that h(χγ,i,2, χγ′,i,2) ≥ ((1 + δ)/2)(ti − si)− n1. This is because in each
complete segment of length n1 these two trajectories pass through distinct codewords of η.

Combining the two claims and using the fact that k ∼ 1/(1 − δ) we conclude that
h(χγ,i, χγ′,i) ≥ δ(ti − ti−1).

The remaining case is that i = r and tr − tr−1 < (k − 2)n1. Then again by a virtual
trajectory argument, h(χγ,r, χγ′,r) ≥ ((1 + δ)/2)(tr − tr−1)− n1.

4.2 The code

What is left unstated by the above construction, is how the code χ1 on the shingles is
constructed. The two extreme options are to pursue the whole construction recursively, or
to construct χ1 by exhaustive search. The former option is unsatisfactory because of the
alphabet blow-up at each level of recursion. The latter option requires a one-time nO(1)-time
computation. Once χ1 has been constructed, local look-up can be performed in time logO(1) n,
hence achieving time-efficiency. In order to also achieve space-efficiency, we implement just
one more level of recursion, constructing χ1 out of a code χ2 for shingles of size log log n,
which is itself constructed by exhaustive search in time logO(1) n. Recall that by time-and-
space efficient construction we mean that for any vertex in the state-space graph, we can
compute χ in time and space polynomial in the length of the vertex label. Thus, we have:

Theorem 4. The above construction of χ using χ2 is time-and-space efficient, and achieves
any required relative distance δ < 1.

Proof. The relative distance guarantee follows from section 4.1; the construction efficiency
follows by combining the construction of section 4.1 with the double-recursion of section
4.2.

5 Trajectory codes have an efficient verification proce-

dure

In this section we show how to explicitly verify the distance property of any trajectory
code using dynamic programming. This is in sharp contrast to tree codes, for which no
such efficient verification procedure is known. Existence of an efficient verification procedure
is important because our construction in the previous section has large constants. Using
branch-and-bound methods, and the verification procedure, we can improve our constants

8

further and bring the communication rate closer to the true but unknown optimum. (We
suppress the optimization from this extended abstract.)

Let G = (V, E) be a graph with polynomial growth rate p. We show an algorithm that
verifies that a finite time trajectory code χ : V × {1, 2, . . . , T} → S has relative distance at
least δ. The running time of the algorithm is polynomial in T .

The algorithm is a simple dynamic program. The dynamic programming table D is
indexed by quintuples. Valid quintuples (x, y, z, t0, t) are those for which x, y, z ∈ V , t0 + t ≤
T , and there exists a pair of twin trajectories (γ, γ′) which begin at time t0 at x, and such
that at time t0 + t, γ ends at y while γ′ ends at z. (In other words: |γ| = |γ′| = t,
γ(t0) = γ′(t0) = x, γ(t0 + t) = y, γ′(t0 + t) = z, and for every i > t0, γ(i) 6= γ′(i).) We
compute

D(x, y, z, t0, t) = min
twins γ,γ′

h(χ(γ), χ(γ′)).

Notice that the size of D can be loosely upper bounded by (p(T))3T 2 which is polynomial
in T . Clearly, upon completion of the computation of D, the relative distance of the code
can be verified by checking if

D(x, y, z, t0, t) ≥ δt,

for all valid quintuples (x, y, z, t0, t).
The table D is computed by induction over t. For t = 0 the valid quintuples are

(x, x, x, t0, 0) such that t0 ≤ T and there is a length t0 trajectory starting at x0 and ending
at x. For such valid quintuples we set D(x, x, x, t0, 0) = 0. For t > 0, suppose we already
computed all the valid entries of the form (x, y, z, t0, t−1). For every t0 ≤ T−t and for every
three distinct nodes x, y, z ∈ B(x0, T) we compute the following. Let ε ∈ {0, 1} be the indi-
cator of χ(y, t0+t) 6= χ(z, t0+t). Consider all pairs of nodes y′, z′ such that (y′, y), (z′, z) ∈ E
and (x, y′, z′, t0, t− 1) is a valid quintuple. If no such pair exists, then (x, y, z, t0, t) is not a
valid quintuple. Otherwise, put

D(x, y, z, t0, t) = ε + min
y′,z′

{D(x, y′, z′, t0, t− 1)}.

This completes the description of the dynamic program.

Theorem 5. The dynamic program takes poly(T) time to execute, and it correctly computes
D(x, y, z, t0, t) for all valid quintuples (x, y, z, t0, t).

Proof. The number of quintuples (x, y, z, t0, t) (valid or not) that are checked is at most
|B(x0, T)|3T 2 ≤ (p(T))3T 2. The number of pairs y′, z′ that need to be examined in order to
compute D(x, y, z, t0, t) is at most twice the maximum in-degree in the subgraph induced by
B(x0, T). The proof of correctness is a trivial induction on t.

References

[1] N. Alon and J. H. Spencer. The probabilistic method. Wiley, 2nd edition, 2000.

9

[2] N. Elia and S. K. Mitter. Stabilization of linear system with limited information. IEEE
Transactions on Automatic Control, 46(7):1384–1400, 2001.

[3] R. M. Fano. A heuristic discussion of probabilistic decoding. IEEE Transactions on
Information Theory, pages 64–74, 1963.

[4] G. D. Forney. Concatenated Codes. MIT Press, 1966.

[5] K. Goldberg and R. Siegwart (editors). Beyond webcams: an introduction to online
robots. MIT Press, Cambridge, MA, USA, 2002.

[6] J. Justesen. A class of constructive, asymptotically good algebraic codes. IEEE Trans-
actions on Information Theory, IT-18:652–656, September 1972.

[7] N. C. Martins and M. A. Dahleh. Feedback control in the presence of noisy channels:
“Bode-like” fundamental limitations of performance. Draft, 2004.

[8] S. Micali, C. Peikert, M. Sudan, and D. Wilson. Optimal error correction against
computationally bounded noise. In Second Theory of Cryptography Conference, TCC
2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2005.

[9] R. M. Murray, editor. Control in an information rich world: report of the panel on
future directions in control, dynamics and systems. AFOSR, 2002.

[10] B. Reiffen. Sequential encoding and decoding for the discrete memoryless channel. Res.
Lab. of Electronics, M.I.T. Technical Report, 374, 1960.

[11] L. J. Schulman. Communication on noisy channels: A coding theorem for computation.
In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science,
pages 724–733, 1992.

[12] L. J. Schulman. Deterministic coding for interactive communication. In Proceedings of
the 25th Annual Symposium on Theory of Computing, pages 747–756, 1993.

[13] L. J. Schulman. Coding for interactive communication. Special Issue on Codes and Com-
plexity of the IEEE Transactions on Information Theory, 42(6):1745–1756, November
1996.

[14] C. E. Shannon. A mathematical theory of communication. Bell System Tech. J., 27:379–
423; 623–656, 1948.

[15] S. Tatikonda and S. Mitter. Control over noisy channels. IEEE Transactions on Auto-
matic Control, 49(7):1196–1201, 2004.

[16] S. Tatikonda, A. Sahai, and S. Mitter. Stochastic linear control over a communication
channel. IEEE Transactions on Automatic Control, 49(9):1549–1561, 2004.

10

[17] S. C. Tatikonda. Control under communication constraints. PhD thesis, Massachusetts
Institute of Technology, September 2000.

[18] J. M. Wozencraft. Sequential decoding for reliable communications. Res. Lab. of Elec-
tronics, M.I.T. Technical Report, 325, 1957.

11

