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Abstract

In 1988, Leighton, Maggs and Rao proved a much celebrated
result: that for any network, given any collection of packets
with a specified route for each packet, there exists an “op-
timal” schedule for all these packets. That is, there exists
a schedule of the motion of the packets such that at each
step, every edge is crossed by at most one packet, and all
the packets are delivered to their destinations in O(C + D)
steps, where C is the “congestion” (i.e., the maximum num-
ber of paths that share the same edge), and D is the “dila-
tion” (i.e., the length of the longest path). The proof was
non-constructive and relied on Lovász Local Lemma. In a
followup paper, Leighton, Maggs, and Richa gave a central-
ized algorithm for finding the schedule. The original paper
left open the question whether there exists a constructive dis-
tributed “on-line” algorithm with the same optimal perfor-
mance. Last year, Rabani and Tardos presented a random-
ized local-control algorithm which with high probability de-
livers all packets in time O

(
C + D ·

(
(log∗ N)O(log∗ N)

)
+

+ (log N)6
)
.

In this paper, we show a nearly optimal local control algo-
rithm for this long-standing open problem. That is, we show
a randomized local control algorithm which for any network
topology delivers all the packets to their destinations in time
O(C + D +log1+ε N) with high probability, where N is the
size of the problem, and ε > 0 is arbitrary. Our result has
implications to ATM (Asynchronous Transfer Mode) packet
switching algorithms and other applications.
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1 Introduction

Problem statement and motivation. With the tremendous
growth of large-scale networks, and the ever-increasing de-
mand for multimedia and other high-bandwidth applications,
efficient packet-routing algorithms play an increasing role in
current and future network performance [8]. An accepted in-
ternational standard for packet routing is the so-called Asyn-
chronous Transfer Mode (ATM) standard, where all messages
are divided into “cells” (which we call packets1) and routed
using a virtual circuit model, consisting of two steps: path
selection and packet movement. During path selection, every
connection request is assigned a fixed routing path (a “vir-
tual circuit”), and then the stream of packets moves along
this path. As any packet-routing algorithm can be viewed as
a combination of path selection and packet movement deci-
sions, both topics received considerable attention in the lit-
erature (e.g., see the survey by Leighton [9]).

In this paper, we concentrate on the second task, namely
packet scheduling when routes are fixed. (For information
on path selection algorithms, see, e.g., the survey by Plotkin
[16].) Both specific and general network topologies were con-
sidered in the literature. In this paper, we consider arbitrary
network topologies, modeled as arbitrary directed graphs,
where the vertices are switches and the edges are communi-
cation links with incoming and out-going queues for packets.
Every packet needs to traverse a pre-specified path. Rout-
ing is done in a synchronous “store-and-forward” manner,
where at each step any edge can be crossed by at most one
packet and packets traverse their pre-specified routes. In the
simplest setting, all packets start at the same time, and we
measure the number of steps it takes for all packets to reach
their destinations. In this setting, two parameters seem to
be crucial to the performance: the congestion, i.e., the maxi-
mum number of paths that go over the same edge (we denote
this by C); and, the dilation, i.e., the length of the longest
path any packet must travel (which we denote by D).

Related work. Considerable effort has been devoted to packet
routing, including packet movement, in specific network topolo-

1Asynchronous Transfer Mode (ATM) international standard makes

a distinction between “packets” and “cells”, where packets may have

different sizes, but they are further decomposed into cells of 53 bytes

each [3], where these “cells” are then treated as indivisible units. In

this paper, we ignore this distinction and assume that packets and cells

are equivalent and indivisible.



gies. We refer the reader to Leighton’s survey [9] for more
detail. In general topologies, two approaches to packet move-
ment are prevalent in the literature. One approach, intro-
duced by Leighton, Maggs, Ranade, and Rao [11], is based on
assigning random ranks to the packets and using these ranks
to resolve conflicts. For the special case of bounded degree
leveled networks, Leighton, Maggs, Ranade, and Rao [11] give
a randomized algorithm which with probability 1−1/poly(N)
delivers all packets in O(C +depth+ log N) steps. Meyer auf
der Heide and Vöcking [13] modify this algorithm to get for
arbitrary networks an O(C + diameter + log N) guarantee
when routing only along shortest paths.

A different approach, that of inserting random delays, was
first considered in the ground-breaking paper of Leighton,
Maggs, and Rao [10]. They show using the Lovász Local
Lemma that there exists a schedule which delivers all the
packets to their destinations in time O(C + D). (More-
over, they show that the schedule can be implemented with
constant-size queues. We do not address the issue of queue
sizes in this extended abstract.) Their non-constructive re-
sult was very significant for two reasons: (1) if all the packets
start at the same time, and if at most one packet can cross an
edge at a time, then clearly max{C, D} is a lower bound on
the delivery time and hence O(C + D) is optimal up to con-
stant factors; (2) it establishes that path-selection (so as to
minimize C and D) and scheduling of the packet movement
can be done independently. (Indeed, very recently Srinivasan
and Teo [18] announced a path selection algorithm that gets
within a constant factor of the best C + D value.)

In a followup paper, Leighton, Maggs, and Richa [12]
show how to use Beck’s constructive version of the Local
Lemma [4] in order to construct a centralized algorithm. The
algorithm, given a specification of the graph and the packet
routes, searches through a polynomial number of alternative
schedules and in polynomial time finds one which works in
O(C + D) time. While the schedule found is asymptotically
optimal, to find such a schedule requires a centralized algo-
rithm. On the other hand, we are interested in the distributed
setting, where processors can only talk to their neighbors in
the communication network. A special case of distributed
routing algorithms are “local control” algorithms (also called
“on-line” algorithms in the original terminology of [10], and
“distributed” algorithms elsewhere), where at each step the
switches make decisions on which packets to move forward
along their paths based only on the routing information that
the packets carry and on the local history of execution. (I.e.,
no additional communication is necessary to execute the rout-
ing algorithm.) An even more restrictive case are the local
control algorithms where the switches need not know what
the underlying topology of the network is, and in fact all
execute identical code, where their state depends only on
their local “view” so far. Such algorithms are sometimes
called “universal local control” switching algorithms. The
algorithms in [11, 13] essentially use local control.

For general-topology networks, the original paper of
Leighton, Maggs, and Rao [10] gives an O(C + D · log N)
steps randomized local-control algorithm. It leaves as a ma-
jor open problem the task of finding a local-control O(C +D)
algorithm. In fact, the authors even say: “We suspect that
finding such an algorithm (if one exists) will be a challeng-

ing task” [10]. We note that an O(C + D + log N) guar-
antee would match the centralized algorithm guarantee in
almost all proposed applications. Recently, Rabani and Tar-
dos [17] made significant progress towards resolving this ques-
tion: They show a randomized local-control algorithm which
with probability 1 − 1/poly(N) delivers all packets in time
O
(
C + D ·

(
(log∗ N)O(log∗ N)

)
+ (log N)6

)
. Cypher, Meyer

auf der Heide, Scheideler, and Vöcking [7] give a distributed
bufferless algorithm that delivers all packets to their desti-
nations in O(C + D log log N + log N log log N/ log log(CD))
steps w.h.p., provided that each edge can transfer
Θ(log(CD)/ log log(CD)) packets in a single step.

In addition to the simplest “one packet per stream” model,
several dynamic models of packet routing have been consid-
ered. Perhaps the simplest is the following periodic traffic
model: We are given a collection of packet streams. Packets
are injected into stream i at a regular rate Ri (that is, every
1/Ri steps a packet is injected). The packets in a stream all
follow the same path. On any edge, the rates of streams that
use that edge sum up to less than 1. Other models considered
in the literature include stochastic traffic models (most no-
tably, Poisson arrivals), and various adversarial traffic models
(see below).

For the periodic model, Parekh and Gallager [14, 15] pro-
vide a simple distributed algorithm that delivers streams of
packets injected at regular intervals, guaranteeing at delay
of O(Di/Ri) for a packet in stream i, where Di is the path
length for this stream, and Ri is the rate of injection. Ra-
bani and Tardos [17] provide generic reductions from the case
of streams of packets to the batch delivery model discussed
above. These reductions hold both for the periodic model,
as well as for the adversarial models suggested by Borodin,
Kleinberg, Raghavan, Sudan, and Williamson [5], and fur-
ther developed by Andrews, Awerbuch, Fernández, Klein-
berg, Leighton, and Liu [1]. (These papers consider an issue
of related interest, namely the stability of various queuing dis-
ciplines under adversarial packet injection strategies. How-
ever, they are not concerned with worst-case bounds on the
delivery delays.) Under some technical conditions, the reduc-
tions of [17] give the same guarantee for streams as for batch
delivery, with the congestion C replaced by max{1/Ri} in the
periodic model, and by the maximum overload period in the
adversarial models. (See also Broder, Frieze, and Upfal [6] for
related work.) Very recently, Andrews, Fernández, Harchol-
Balter, Leighton, and Zhang [2] announced an O(Di + 1/Ri)
centralized algorithm for the periodic traffic model.

Our results. The main result of this paper is to show a ran-
domized local control algorithm that for any ε > 0 with prob-
ability 1− 1/poly(N) delivers packets in time

O
(
C + D + (log1+ε N)

)
where the hidden constant depends on ε. It happens to be
the case that all known “universal local control” randomized
routing algorithms (i.e. the O(C +D log N) algorithm of [10]
and that of [17]) can be phrased as a complicated backoff
protocol, where a packet tries to cross an edge, and if that is
impossible, it goes to sleep for a while, then tries again. This
is also the case for our protocol. The details are excluded
from this extended abstract. Our result “beats” the [10] lower



bound for a simple randomized strategy: Legithon, Maggs,
and Rao have shown that a strategy of assigning to packets

random priorities may yield an Ω
((

log N
log log N

)3/2
)

schedule for

C = D = O
(

log N
log log N

)
. Moreover, we also address the issue

of handling “streams” of packets using the reductions in [17]
which in turn has applications to ATM and other routing
problems. The details are deferred to the full version of the
paper.

Packet loss. So far, we have stated all randomized results
in terms of a low probability of failure (at most 1/poly(N),
where N is the size of the problem). Sometimes, in particu-
lar when routing streams of packets, it makes sense to drop
some of them in order to speed up the delivery of the rest.
In [17] this issue is addressed, and the results generalize to
loss probability p, as long as p ≤ D−1 (simply replace N by
p−1). Similar claims hold for the results in this paper. The
details are deferred to the full version of the paper.

Methods and approaches to the problem. The basic idea
underlying our algorithm is the notion of refinement of an
infeasible schedule. This follows the Leighton, Maggs, and
Rao results [10]. An infeasible schedule, where several pack-
ets are allowed to cross an edge simultaneously, is divided up
into time frames (i.e. intervals of time), where the conges-
tion in each time frame is roughly proportional to the frame
length. The schedule in each frame is then refined by in-
serting a random delay for each packet in the beginning of
the frame. The idea is that if one considers the packets that
cross an edge during the frame, their crossing times would
be spread throughout the frame, so that the congestion re-
striction would now hold for much smaller time frames. The
initial step of the [10] refinement procedure takes the trivial
schedule, where all packets move without interruption, and
inserts random initial delays distributed uniformly in [0, λC],
for some constant λ. Leighton, Maggs, and Rao prove the
following lemma using the Chernoff bound:

Lemma 1 (Leighton, Maggs, and Rao [10]) For every
constant ν1 there is a constant ν2 such that with probability at
least 1−N−ν1 , the resulting schedule has the property that in
every frame of length ` ≥ ν2 log N the congestion is at most
`.

This lemma guarantees the high-probability success of the
first refinement step. However, similar claims about further
refinement steps do not hold w.h.p. In [10], this is overcome
by using the Local Lemma. In the local control algorithm of
Rabani and Tardos [17], they use the following large devia-
tion bound to estimate the number of packets that fail the
refinement step:

Lemma 2 (Rabani and Tardos [17]) Let X1, X2, . . ., XN

be 0-1 random variables, such that each is independent of any
combination of the rest excluding a fixed set of size at most
k. Further suppose that for all i, Pr[Xi = 1] ≤ p. Let δ ≥ 1.
Then, Pr[

∑
Xi > 4eδpN ] < 4ek2−δpN/k.

The small number of packets that fail in a refinement step
are moved into a “catch-up track”. The catch-up track gets
scheduled in parallel with the regular track (by alternating

moves), and is refined recursively. The purpose of the catch-
up track is to enable packets to catch up on their intended
schedule, and to boost their success probability. This is pos-
sible because the congestion in the catch-up track is small
compared with its length.

In our algorithm, we use catch-up tracks too. We over-
come the inherent slowdown due to the recursive refinement
procedure of [17] by collecting packets into much larger catch-
up tracks, which have very small congestion relative to their
length. Thus we are able to pack all the catch-up tracks to-
gether, and avoid recursion. The large catch-up tracks would
introduce an additive term which is even larger than the one
in [17]. To avoid it, we introduce an initial refinement pro-
cess that is invoked a constant number of times, and avoids
the large additive term. The idea follows the first step in
Beck’s algorithmic version of the Local Lemma [4]. The col-
lection of failed packets is composed of small connected com-
ponents (with respect to correlations), w.h.p. The small size
of each component makes it behave, in some sense, like a
single edge. Thus we are able to schedule each component
separately by simply repeatedly trying to schedule them in-
dependently from each other until all packets succeed.

2 The Algorithm

First, let us present the overview of the local control algo-
rithm. Our overall strategy builds on the work of [10, 12, 17],
namely we have regular time-frames, which we refine itera-
tively (as introduced by [10]), as well as “catch-up” frames
(introduced in [17]). We differ substantially from previous
work in the way we move packets to catch-up frames, in the
way we refine those frames, and in the way we schedule to-
gether the regular and catch-up frames. Also, we introduce
an “initial refinement process” which allows us to improve
the additive term in the delay guarantee through a different
refinement process applied prior to the main one.

Time is divided (mod 3) into two modes, the “regular”
mode, and the “catch-up” mode, where the protocol executes
one step of a “regular” mode, followed by two steps of the
“catch-up” mode, then repeats. Packets are “active” in either
one of these two modes (but not both). Packets remember
what mode they are currently in. All packets start in a “reg-
ular” mode, and then sometimes switch to “catch-up” mode
or back to “regular” mode. If a packet is in a “regular” mode,
it only moves (and counts steps) in “regular” steps and goes
to sleep (i.e. stays put in the network) during “catch-up”
steps. If a packet is in the “catch-up” mode it goes to sleep
during “regular” time. Since by design there are two “catch-
up” steps for every “regular” step, we talk about “catch-up
time” going “twice as fast” as regular time.

Whenever packets cross edges along their route, they in-
form the edges (i.e. both vertices) what state they are in
(and some other information concerning the specifics of their
state). Edges keep counts as to how many packets they have
seen so far path through them in various states. This in-
formation is used in order to determine when packets switch
from “regular” mode to “catch-up” mode and back, as well
as specifics of the main refinement process of both regular
and catch-up modes.

In both modes, there are O(log∗ N) “levels” of refinement,



where each level of refinement requires certain random delays
at regular intervals of time. Each packet keeps track of all
these levels, and goes to sleep at appropriate times. Now we
describe (in a top-down fashion) the main refinement process,
both of the regular track and of the catch-up track.

We start with some notation. A path π is a pair (p, L),
where p is a packet id and L an ordered list of pairs (t0, q0),
(t1, q1), . . ., (t`, q`). In the pair (ti, qi), ti is a time slot and qi

is a queue (edge). The pairs satisfy the following conditions:
For all i, ti+1 > ti, and qi+1 is adjacent to qi (i.e., there is a
vertex v such that qi is an edge incoming to v and qi+1 is an
edge outgoing from v).

A frame S is a pair (T, P ), where T is a segment of time
slots and P is a set of paths. For T = [t, t′], π ∈ P , π =
(p, {(t0, q0), . . . , (t`, q`)}), we have t0 = t and t` ≤ t′. For
two frames S = (T, P ), S′ = (T, P ′), we denote S ∪ S′ =
(T, P ∪ P ′). For two frames S = (T, P ), S′ = (T ′, P ′), such
that T = [t, t′], T ′ = [t′ + 1, t′′], we denote S ◦ S′ = (T ∪
T ′, P ◦ P ′), where P ◦ P ′ is the set of paths derived from
P ∪P ′ by replacing pairs of paths of the same packet by their
concatenation.

Our starting point for the regular track is the schedule
derived by inserting random initial delays as in Lemma 1.
Let the initial “time-frame” length be T0 = O(log2 N) and
let the initial “relative congestion” be r0 = 1. Then the
guarantee of Lemma 1 can be restated as follows: W.h.p., in
every frame of length ` ≥

√
T0, every edge is crossed by at

most r0 · ` packets. In our main refinement process of the
regular track we “refine” this schedule while we guarantee
that for every

√
Tj time-frame, the congestion during this

time-frame is going to be at most rj ·
√

Tj , for Tj and rj as
defined below. We proceed with this refinement until every
constant number of steps only a constant number of packets
need to cross a constant number of edges. At this point, we
can just make the schedule feasible by simulating every step
of the schedule by a constant number of actual steps.

We now define Tj and rj . Let α, β be absolute constants
whose value will be implicit in the proofs. We define two
sequences {Tj} and {rj}, j = 0, 1, . . . , jmax, by:

Tj = log6 Tj−1, (1)

rj =

(
1 +

α

log Tj−1

)
rj−1, (2)

with the initial conditions T0 = O(log2 n) and r0 = 1, and
with the stopping condition Tjmax ≤ β.

Regular track refinement step. In the regular track refine-
ment step j, the schedule is divided up into frames of length
Tj . Each of those is refined separately. We insert for each
path in each Tj frame a random initial delay uniformly dis-
tributed between 0 and

√
Tj . Now consider frames of size√

Tj+1 after the random initial delays of step j have been

fixed. We say that a packet fails in a
√

Tj+1 frame if it crosses
an over-congested edge, where an edge is over-congested if
more than rj ·

√
Tj+1 packets cross it during this

√
Tj+1-

frame. We remark that if a path fails any
√

Tj+1 frame,

then we fail the entire Tj path which contains this
√

Tj+1

frame (in fact, we fail a longer path, of length 2T k
j as dis-

cussed below). We move the failed path to the “catch-up
track”also discussed below.

We pick k as a sufficiently large constant (to be fixed
later) and “group” together T k−1

j frames of length Tj each.
Let RTFj(i, j) denote the ith level j frame in the regular
track. This is a frame of length T k

j . Let RTFj+1(i, j) de-
note the same frame after the level j initial delays of length
[0..
√

Tj ] have been inserted. We further denote, for k ∈
{j, j + 1}, RTFk(i, j) = RTF1

k(1, i, j) ◦ · · · ◦RTF1
k(T k−1

j , i, j),

where {RTF1
j (f, i, j)} are frames of length Tj , and

{RTF1
j+1(f, i, j)} are the same frames after insertion of the

level j initial delays. Thus, the refinement step of the regular
track has the following from:

insert
delay∈U [0..

√
Tj ]︷ ︸︸ ︷

RTF1
j (1, i, j) ◦ · · · ◦ · · · ◦ · · · ◦

insert
delay∈U [0..

√
Tj ]︷ ︸︸ ︷

RTF1
j (T

k−1
j , i, j)︸ ︷︷ ︸

RT Fj(i,j)

contains T k−1
j

frames of length Tj each

⇓ level j regular tack refinement ⇓

fixed
delays∈[0..

√
Tj ]︷ ︸︸ ︷

RTF1
j+1(1, i, j) ◦ · · · ◦ · · · ◦ · · · ◦

fixed
delays∈[0..

√
Tj ]︷ ︸︸ ︷

RTF1
j (T

k−1
j+1 , i, j)︸ ︷︷ ︸

RTFj+1(i,j)

Notice that some of the paths in RTFj+1(i, j) are dis-
carded when the frame is partitioned to create the level j +
1 frames {RTFj+1(i

′, j + 1)}i′ , namely the paths that use
over-congested edges. If a packet happens to cross the over-
congested edge, we fail its entire path in RTFj(i, j)◦RTFj(i+
1, j). This is a path of length at most 2T k

j .
Now we are ready to describe the catch-up track. Let

CTFj(i, j) denote the ith level j frame in the catch-up track.
This frame has length 2T k

j . Before we explain how our catch-
up schedule is designed and refined, let us first explain the
structural and temporal correspondence between the regular
track frames and the catch-up track frames of the same level:

SIMULATION VIEW:

· · · ◦

CTFj(ab,j)︷ ︸︸ ︷
RTFj(a, j) ◦ RTFj(b, j) ◦

CTFj(cd,j)︷ ︸︸ ︷
RTFj(c, j) ◦ RTFj(d, j)◦RTFj(e, j)◦

· · ·◦RTFj(a, j)◦RTFj(b, j) ◦ RTFj(c, j)︸ ︷︷ ︸
CTFj(bc,j)

◦RTFj(d, j) ◦ RTFj(e, j)◦︸ ︷︷ ︸
CTFj(de,j)

· · ·

Recall, however, that the catch-up track goes twice as fast.
Therefore we have the following

TEMPORAL VIEW:

· · · ◦ RTFj(a, j) ◦

CTFj(ab,j)︷ ︸︸ ︷
RTFj(b, j) ◦RTFj(c, j) ◦

CTFj(cd,j)︷ ︸︸ ︷
RTFj(d, j)◦RTFj(e, j)◦

· · ·◦RTFj(a, j)◦RTFj(b, j)◦RTFj(c, j)︸ ︷︷ ︸
CTFj(bc,j)

◦RTFj(d, j)◦RTFj(e, j)◦︸ ︷︷ ︸
CTFj(de,j)

· · ·



We now specify what gets into the catch-up track (we
shall see that there are three different ways a packet can land
in the level j catch-up track) and how the catch-up track
is refined. Recall that we partitioned the regular track into
frames RTFj(i, j) of length T k

j each. Every adjacent pair will
have a catch-up track frame of length 2T k

j . If a packet fails
in the refinement step of a regular frame RTFj(i, j) then its
entire path in this frame and the next T k

j frame moves to
the corresponding catch-up frame. We denote the frame of
packets which go from regular frame RTFj(i, j)◦RTFj(i+1, j)
to the same level catch-up track by CTF→(i, j). Informally,
notice that if a packet manages to “catch-up” in the catch-up
track then it is back “on schedule” and can go back to the
“regular” track.

We will shortly specify an iterative refinement process for
the catch-up track. However, before we proceed, we must
specify what happens when in the iterative process, some
path at level j of a catch-up track frame fails (which we will
show will happen only with exponentially small probability
in the length of the catch-up track). In this case, we dump
the entire 2T k

j−1 path which contains the current 2T k
j path

to the future (i.e. temporal following the current one) level
j − 1 catch-up track frame CTFj−1(i, j − 1). We denote the
frame of packets dumped this way by CTF↑(i, j − 1).

Finally, since we are talking about the iterative refinement
process of the catch-up track, it means that packets get into
the level j catch-up track not only from the level j regular
track, but also as a result of a refinement of the catch-up
track itself, i.e., from the level j − 1 catch-up track. We
denote the frame of packets which go to the catch-up track
frame CTFj(i, j) from this source by CTF↓(i, j).

Note that CTFj(i, j) = CTF→(i, j) ∪ CTF↓(i, j)∪
∪CTF↑(i, j), where CTF→(i, j) includes those paths in
CTFj(i, j) which were dumped from the level j regular track,
CTF↓(i, j) includes the paths that were refined from the level
j − 1 catch-up track, and CTF↑(i, j) includes the paths that
were dumped from the level j + 1 catch-up track (we will
explain how this is done, after we explain how the catch-up
track is refined).

Catch-up track refinement step. In the catch-up track re-
finement step j, we will be guaranteed that the congestion
in every 2T k

j time frame is no more than 3T 6
j . (We allow

each of CTF→(i, j), CTF↓(i, j), CTF↑(i, j) to contribute T 6
j

to the congestion. Excess congestion is dumped to a higher
level track.) We partition every path into segments of length
T k−3

j . Notice that there are exactly 2T 3
j such segments, and

in order for a packet to travel its entire path, it must tra-
verse (in order) each of these 2T 3

j segments of length T k−3
j

each. Let γ be a constant (to be defined later; γ determines
the expansion of the catch-up track time during the main
refinement process). We schedule the frame in 2T 3

j + γT 2
j

frames of length T k−3
j each. (That is, we allow γT 2

j addi-

tional frames.) Now, in every 2T k
j catch-up frame there is

a collection of sub-frames to be refined (where the first sub-
frame contains the first T k−3

j -segment of each 2T k
j path). We

schedule all these segments by inserting random initial delays
distributed uniformly between 0 and T k−4

j . Then, we proceed
to the next sub-frame which contains (for each packet) the

next segment that has not succeeded yet. (A segment fails
in the refinement at level j + 1 if there is a frame F of size
2T k

j+1 = 2 log6k Tj such that the segment crosses an edge with
congestion greater than κ log Tj during F , for some constant
κ to be defined later.) We say that a packet succeeds in the
2T k

j catch-up frame if all 2T 3
j segments of length T k−3

j have

been scheduled (in 2T 3
j + γt2j tries).

We shall need some more notation in the analysis of the
algorithm. Let PATH(p, k, i, j) denote the path of packet
p in CTFj(i, j) between time t0 + (k − 1)T k−3

j and t0 +

kT k−3
j − 1, where t0 is the time when the frame begins. Let

CTF1
j (s, i, j), 1 ≤ s ≤ 2T 3

j + γT 2
j , denote the step s frame

in the refinement process of CTFj(i, j). I.e., CTF1
j (s, i, j)

has length T k−3
j and contains a shift of PATH(p, k, i, j) for

all p that appear in CTFj(i, j) and do not use an over-
congested edge. Let CTF1

j+1(s, i, j) denote the same frame
after insertion of the level j initial delays. Finally, denote
CTFj(i, j) = CTF1

j (1, i, j) ◦ · · · ◦ CTF1
j (2T 3

j + γT 2
j , i, j), and

denote CTFj+1(i, j) = CTF1
j+1(1, i, j) ◦ · · · ◦ CTF1

j+1(2T 3
j +

γT 2
j , i, j).
Finally we must specify how packets move between the

catch-up track and the regular track. If a packet enters a
catch-up track at level j and succeeds, put it back onto the
next level j regular track frame, and if it fails, dump it to the
next level j − 1 catch-up track frame.

We call the algorithm we have just described the “main
refinement algorithm”. The following theorem states its de-
livery guarantees:

Theorem 3 There is a constant k such that the following
holds: Let T = T (N) be a positive integer, and let r > 0
be an absolute constant. Suppose that the input to the main
refinement algorithm is a schedule of the motion of the pack-
ets of length L, such that for every time interval I = [t, t′]
with |I| = t′ − t + 1 ≥

√
T , for every edge e, the number of

packets that cross e during I is at most r|I|. Then, the main
refinement algorithm produces a (random) feasible schedule of
length O(L+T k). Furthermore, for any packet, the probability
that it is excluded from the schedule is at most L · exp(−T ).

We conclude from this

Corollary 4 The main refinement algorithm can be used to
guarantee w.h.p. the delivery of all packets within O(C +D+
poly(log N)) steps.

Proof. Using Lemma 1, we can generate w.h.p. a schedule
satisfying the conditions of Theorem 3 with T = O(log2 N),
r = 1, and L = O(C + D). We apply our main refinement
algorithm to this schedule. The theorem asserts that the
main refinement algorithm provides the desired delay bounds
w.h.p. (as C, D ≤ N).

The proof of theorem 3 appears in Section 3.
The drawback of the main refinement algorithm is the

poly(log N) additive term in the delivery guarantee. The rea-
son for this term is that at the top level, we schedule frames
of length T k

0 , and by using Lemma 1 to initiate the sched-
ule, we begin with T0 = O(log2 N). The secret to improving
the additive term is to take the schedule of Lemma 1 and
refine it differently so that we end up with a schedule on
which the main refinement algorithm can be invoked with a



much smaller T0. Our task is further complicated because
the packet success guarantee of Theorem 3 depends on T0, so
we will have to boost it up.

Initial refinement process. The initial refinement algorithm,
works as follows. After invoking Lemma 1, we divide the
schedule into frames of length log1+ε N , for a constant ε as
small as we wish. In the initial schedule, every frame of length
ν2 log N has congestion at most its length. We refine each
log1+ε N frame to get that in every frame of size log1/2k N
the congestion is at most its length. Then we invoke the main
refinement algorithm on this schedule.

The initial refinement process has a regular track and a
catch-up track too. (We shall refer to them as the regular
i-track and the catch-up i-track.) The regular i-track refine-
ment is simple: we insert random initial delays (distributed
uniformly between 0 and λ log1+ε N), remove paths that cross
over-congested edges (i.e., where in a single log1/2k N frame
the congestion exceeds the length), then call the main refine-
ment algorithm, and finally remove paths that failed in the
main refinement algorithm. The removed paths end up in the
catch-up i-track.

We introduce some additional notation: Let RIF0(i, 0)
denote the ith regular i-frame prior to its refinement. This
is a frame of length log1+ε N . Let RIF1(i, 0) denote the ith
regular i-frame after the insertion of the random initial delays.
Let RIF1(i, 1) denote the frame derived from RIF1(i, 0) by
removing packets that cross over-congested edges. Let G(i)
denote the interference graph among the paths of packets
in RIF0(i, 0) but not in the schedule produced by the main
refinement algorithm with input RIF1(i, 1). These are the
paths that are dumped onto the catch-up i-track.

There will be a catch-up i-frame for each regular i-frame,
and of the same initial length. There is an important dif-
ference between the role of the catch-up track in the initial
refinement process, and its role in the main refinement algo-
rithm: In the main refinement algorithm, the catch-up track
serves its purpose because the congestion there is consider-
ably reduced. Here, we cannot guarantee a reduction in the
congestion (dependencies are too big). On the other hand,
we are guaranteed that w.h.p. G(i) is composed of small
connected components. The advantage of a small connected
component is that it behaves, in some sense, like a single edge,
so we can succeed in refining it by simply trying several times.
We will refine each connected component of G(i) separately
(that is, the frames of different components do not necessarily
coincide in time). We refine the frame gradually, in a con-
stant number of steps. (The constant depends on ε.) In the
jth step, the log1+ε N frame is divided into frames of length
log1−jε N , where the congestion in each such frame is at most
its length. We refine the frame by inserting random initial
delays distributed uniformly between 0 and λ log1−jε N , and
then check if the conditions for the next step hold. We re-
peatedly try this, till the entire connected component of G(i)
succeeds. Then we move on to the next log1−jε N frame.
The idea is that though a single frame may fail repeatedly,
the total number of failures is not too high w.h.p. The last
step is special. We divide the log1+ε N frame into frames of
length logkε/(k−1) N , and run the main refinement algorithm
on each. Again, we repeat unless the entire connected com-

ponent succeeds. The motivation is similar to that of the
previous steps.

In the following definitions, C is a connected component
of G(i). Let CIF0(C, 0) denote the catch-up i-frame con-
taining the paths in C. This is a frame of length log1+ε N .
Let jmax = ε−1 − (2k − 2)−1 and let δ = ε/(2k − 2). For
0 ≤ j ≤ jmax, let CIFj(C, 0) be the level j refinement of
CIF0(C, 0). We further denote CIFj(C, 0) = CIF1

j (1, C, j) ◦
· · ·◦CIF1

j (smax, C, j), where the following conditions hold: (a)
If j < jmax, each CIF1

j (s, C, j) is a frame of length log1−jε N ;
(b) Each CIF1

jmax(s, C, jmax) is a frame of length log2kδ N ;
(c) smax = smax(C, j) is a random variable. Finally, let
CIF1

j+1(q, s, C, j) denote the qth attempt at refining
CIF1

j (s, C, j), and let qmax = qmax(s, C, j) denote the random
variable whose value is the number of times we attempt to
refine CIF1

j (s, C, j).
The main idea of the analysis is to show a high probability

bound on the
∑

s
qmax(s, C, j). The following theorem is the

main result of this paper. It states the guarantee provided by
the initial refinement algorithm invoking the main refinement
algorithm:

Theorem 5 Let ε > 0 be an absolute constant. Suppose
that the input to the initial refinement algorithm is a packet
switching problem with congestion C and dilation D. Then,
w.h.p. the switching algorithm delivers all packets to their
destinations within O(C + D + log1+ε N) steps.

The proof of this theorem appears in Section 4.

3 Analysis of the Main Refinement Process

In this section we prove that our main refinement algorithm
guarantees w.h.p. the delivery of each packet within O(C +
D + poly(log N)) steps. In the next section we analyze the
initial refinement process, improving the additive term.

We now proceed to lay the ground for the proof of Theo-
rem 3. We shall use the notation for frames from the previous
section. Notice that all these frames are random variables.
Throughout the proof, when we say that such a frame is fixed,
we mean the following:

1. All the random delays which determine the value of this
frame are fixed;

2. The properties of events discussed in that context are
the conditional properties, conditioned on the choice of
those random delays;

3. The claims regarding these properties hold no matter
what the choice of those random delays is.

Let A(e, f, i, j) denote the following event: In RTF1
j+1(f, i, j)

there exists a frame F of size ` ≥
√

Tj+1 = log3 Tj such that
the congestion on e during F is greater than rj`.

Lemma 6 For all e, f, i, j, Pr[A(e, f, i, j) | RTFj(i, j)] ≤
T−c1 , where c1 is an absolute constant which can be taken
arbitrarily large by increasing α appropriately.

Proof. It is sufficient to check frames of size between
log3 Tj and 2 log3 Tj . Consider such a frame F of size `. In
RTF1

j+1(f, i, j) the packets that cross e during F are a subset



of the packets that in RTF1
j (f, i, j) crossed e during a frame of

size at most
√

Tj + `. The number of such packets is at most

rj−1(
√

Tj + `). Each has a probability of `/
√

Tj of falling
into F . Thus the expected number of packets that cross e
during F is at most rj−1(` + `2/

√
Tj), and the probability

that this number exceeds rj−1(`+α log2 Tj) ≤ rj` is bounded
using Chernoff bounds by T−c

j , where c is a constant that de-

pends on α. There are at most Tj +
√

Tj frames of size ` in

RTF1
j+1(f, i, j), and log3 Tj + 1 different sizes. Summing up

the probabilities for all these frames gives the total of T−c1
J ,

where c1 ≥ c− 2.

Let B(p, f, i, j) denote the event that during
RTF1

j+1(f, i, j) packet p crosses an edge e for which A(e, f, i, j)
occurs.

Corollary 7 For all p, f, i, j, Pr[B(p, f, i, j) | RTFj(i, j)] ≤
T−c1+1

j .

Proof. Sum up the bound in Lemma 6 over at most Tj

edges that p crosses during RTF1
j+1(f, i, j).

Lemma 8 Fix i, j and RTFj(i, j). For all p, f , B(p, f, i, j)
is independent of any combination of similar events which
excludes a fixed subset of events of cardinality at most r2

j−1T
4
j .

Proof. Consider the interference graph among the paths in
RTF1

j (f, i, j). We claim that any event B(p, f, i, j) is inde-
pendent of any combination of similar events corresponding
to packets whose paths are at distance at least three from p’s
path in this graph. The lemma follows immediately from this
claim.

To prove the claim, consider the set of edges used by p’s
path. Let e be such an edge. A(e, f, i, j) is independent of
any combination of similar events, unless this combination
contains an event A(e′, f, i, j) such that there is a packet p′′

which uses both e, e′ during RTF1
j (f, i, j).

Let C(e, i, j) denote the following event: In CTF→(i, j)
the number of packets that cross e is more than T 6

j .

Lemma 9 Pr[C(e, i, j) | RTFj(i, j)] ≤ 2−εT2
j , for some con-

stant ε < 1.

Proof. Let k be the number of packets that cross e in
RTFj(i, j) or RTFj(i + 1, j). k ≤ 2rj−1T

k
j . Let p1, p2, . . . , pk

denote these packets. The events that determine which pack-
ets get dumped are B(pt, f, i, j), t = 1, 2, . . . , k,
f = 1, 2, . . . , T k−1

j . Instead of counting how many packets
get dumped, we count how many such events occur. This
is clearly an over-estimate, since a packet may fail for more
than one value of f . The total number of B-events to con-
sider is kT k−1

j ≤ 2rj−1T
2k−1
j . By Corollary 7, the probability

that a B-event occurs is at most T−c1+1
j . B(pt, f, i, j) is in-

dependent of all B(pt′ , f
′, i, j) for f 6= f ′. By Lemma 8,

B(pt, f, i, j) depends on at most r2
j−1T

4
j events B(pt′ , f, i, j).

Let Xt,i be the indicator variable for the event B(pt, f, i, j).
Using Lemma 2, we have

Pr[C(e, i, j)] ≤ Pr[
∑

Xt,i > T 6
j ]

< 4er2
j−1T

4
j 2−T6

j /4er2
j−1T4

j

≤ 2−εT2
j .

Let D(p, i, j) denote the event that packet p appears in
CTF→(i, j), and that during this frame it crosses an edge e
for which C(e, i, j) occurs.

Corollary 10 Pr[D(p, i, j) | RTFj(i, j)] ≤ 2−Tj .

Proof. Sum up the bound in Lemma 9 for at most 2T k
j

edges that p crosses during CTF→(i, j). This upper bounds
the probability that p crosses an edge for which C(e, i, j)
occurs, and therefore it also upper bounds D(p, i, j) (which
further requires that p is dumped).

Let E(e, s, i, j), 1 ≤ s ≤ 2T 3
j + γT 2

j , denote the follow-
ing event: In CTF1

j+1(s, i, j) there exists a frame F of size
2 log6k Tj = 2T k

j+1, such that the number of packets that
cross e during F is greater than κ log Tj . Let Hs denote the
history of the refinement process for CTFj(i, j) up to step s.

Lemma 11 Pr[E(e, s, i, j) | Hs−1] ≤ T−c2 , where c2 is an
absolute constant which can be taken arbitrarily large by in-
creasing κ appropriately.

Proof. Consider a particular frame F . The number of
packets which may cross e during this frame is at most 3T 6

j .
Consider one of these packets. Of the T k−4

j choices for initial

delay in step s of the process, at most 2 log6k Tj would cause
the packet to cross e during F . Thus, the expected number
of packets that end up crossing e during this frame is at most
6 log6k Tj/T k−10

j � 1. Using Chernoff bounds we get that
the probability that the number of such packets is more than
κ log Tj is less than T−c

j for some constant c which depends
on κ. Summing this probability over all the relevant frames
F completes the proof.

Let F (p, s, i, j) denote the event that packet p appears in
CTF1

j+1(s, i, j), and during that frame it crosses an edge e
for which E(e, s, i, j) occurs.

Corollary 12 Pr[F (p, s, i, j) | Hs−1] ≤ T−c2+k−3
j .

Proof. There is at most one k such that PATH(p, k, i, j)
uses e. This path has length at most T k−3

j . Summing up the
bound in Lemma 11 over all the edges used by this path gives
an upper bound on the desired probability.

Let G(p, i, j) denote the event that packet p appears in
CTFj(i, j) but does not appear in the final schedule for this
interval.

Lemma 13 Pr[G(p, i, j) | CTFj(i, j)] ≤ e−Tj .

Proof. The proof is by induction on j′ = jmax−j. For j′ = 0
the claim is trivial, since Pr[G(p, i, jmax)] = 0. So, assume the
claim is true for j + 1. Consider a frame CTF1

j (s, i, j) and
some path PATH(p, k, i, j) that is scheduled during CTF1

j (s, i, j).
PATH(p, k, i, j) fails in step s of the refinement process if ei-
ther F (p, s, i, j) occurs, or G(p, i′, j + 1) occurs for some i′

such that CTF↓(i
′, j +1) ⊂ CTF1

j+1(s, i, j). By Corollary 12,

Pr[F (p, s, i, j) | Hs−1] ≤ T−c2+k−3
j . (3)

By the induction hypothesis, Pr[G(p, i′, j+1) | CTFj+1(i
′, j+

1)] ≤ e−Tj+1 = e− log6 Tj � T−c
j , where the constant c can be

taken arbitrarily large by increasing β appropriately. Thus,
averaging over all possible values of CTFj+1(i

′, j + 1) gives



that Pr[G(p, i′, j + 1) | CTFj(i, j)] � T−c
j . Summing up this

bound for at most T k−3
j relevant values of i′ gives

Pr[∃i′, G(p, i′, j + 1) | CTFj(i, j)] ≤ T−c
j . (4)

The constant c is determined by β and k. Summing up the
two bounds 3 and 4 gives that the probability that
PATH(p, k, i, j) fails in step s of the refinement process is

upper bounded by T−c′

j for some constant c′ which depends
on β, k, c2.

Recall that p advances in step s of the refinement pro-
cess if there exists k such that p advanced exactly k − 1
times in the previous steps, and PATH(p, k, i, j) does not
fail in step s. Thus, p’s fate in the refinement process gives
rise to the following Doob martingale: Let Xs, s = 0, 1, . . .,
be the random variable whose value is the expected num-
ber of steps in which p succeeds, the expectation taken after
the first s steps of the process. We count as success steps
where p did not fail as well as steps where p did not ap-
pear (because it succeeded sufficiently many times). Notice

that X0 =
(
1− T−c′

j

)(
2T 3

j + γT 2
j

)
> 2T 3

j + γ′T 2
j , for some

γ′ < γ. We are interested in Pr[X2T3
j
+γT2

j
< 2T 3

j ]. Since

Xs−1 = E[Xs | Hs−1], the sequence {Xs} is a martingale,
and since |Xs−Xs−1| ≤ 1 we may use Azuma’s inequality to
conclude that

Pr[X2T3
j
+γT2

j
< 2T 3

j ] ≤ Pr[X2T3
j
+γT2

j
−X0 < −γ′T 2

j ]

< e−(γ′)2T4
j /(4T3

j +2γT2
j )

≤ e−Tj .

Let H(p, i, j) denote the event that packet p appears in
CTF↑(i, j). Let I(e, i, j) denote the event that in CTF↑(i, j)
the number of packets that cross e is more than T 6

j . Let
J(p, i, j) denote the event that packet p appears in CTF↑(i, j),
and that during this frame it crosses an edge e for which
I(e, i, j) occurs.

Lemma 14 (i) Pr[H(p, i, j) | RTFj(i, j)] ≤ T−c3
j , where c3

is an absolute constant which can be taken arbitrarily large by
increasing β appropriately.

(ii) Pr[I(e, i, j) | RTFj(i, j)] ≤ 2−T2
j .

(iii) Pr[J(p, i, j) | RTFj(i, j)] ≤ 2−Tj .

Proof. By induction over j′ = jmax− j. For j′ = 0 all three
claims are obvious since CTF↑(i, jmax) is empty. So, assume
the claims hold for j′ + 1.

We begin by proving the first claim. H(p, i, j) occurs if
there is i′ such that CTF↓(i

′, j + 1) ⊂ CTFj+1(i− 1, j), and
one of the following holds: Either D(p, i′, j + 1) occurs, or
G(p, i′, j+1) occurs, or J(p, i′, j+1) occurs. By Corollary 10,

Pr[D(p, i′, j + 1) | RTFj+1(i
′, j + 1)] ≤ 2−Tj+1 = T

− log5 Tj

j .
Averaging over all possible values of RTFj+1(i

′, j +1), we get

Pr[D(p, i′, j + 1) | RTFj(i, j)] ≤ T
− log5 Tj

j . By Lemma 13,

Pr[G(p, i′, j + 1) | CTFj+1(i
′, j + 1)] ≤ e−Tj+1 ≤ T

− log5 Tj

j .

Again, by averaging, Pr[G(p, i′, j+1) | RTFj(i, j)] ≤ T
− log5 Tj

j .
By the induction hypothesis (third claim), Pr[J(p, i′, j + 1) |
RTFj+1(i

′, j + 1)] ≤ 2−Tj+1 = T
− log5 Tj

j . Once again, by av-

eraging, Pr[J(p, i′, j + 1) | RTFj(i, j)] ≤ T
− log5 Tj

j . The first

claim follows by summing up the bounds on these probabili-
ties for all the relevant values of i′.

To prove the second claim, consider an edge e. A packet
might cross e during CTF↑(i, j) only if it crosses e during
RTFj(i, j) or RTFj(i + 1, j). Given these two frames, the
number of such packets is at most 2rj−1T

k
j . The fate of

each such packet p is determined by occurance of the events
D(p, i′, j + 1), G(p, i′, j + 1), J(p, i′, j + 1), for at most T k

j

values of i′. The total number of relevant events is there-
fore at most 6rj−1T

2k
j . Instead of counting the number of

packets which cross e and end up in CTF↑(i, j), we shall
count the number of such events that occur. This is clearly
an upper bound on the number of packets, since the dump-
ing of a packet onto CTF↑(i, j) may be triggered by more
than one such event. The conditional probabilities of these
events are given in the above analysis. We now analyze the
dependencies among them. To do that, we fix the frames
RTFj+1(i

′, j + 1) and CTF↓(i
′, j + 1) for the relevant val-

ues of i′. (We prove the desired large deviation bound un-
der these conditions, and the claim in the lemma follows
from averaging over the values of the fixed frames.) Notice
that once these frames are fixed, the events for i′ and for
i′′ where i′ 6= i′′ are independent. So consider a particular
i′. The events D(p, i′, j + 1), G(p, i′, j + 1), J(p, i′, j + 1)
are determined by the congestion on the edges of p’s path in
RTFj+1(i

′, j + 1) during the refinement process. Therefore,
each such event E(p, i′, j + 1) is independent of any other
event E ′(p′, i′, j +1), unless p crosses an edge e and p′ crosses
an edge e′, such that the congestion on e depends on the con-
gestion on e′ (at some stage of the refinement process). In
fact, E(p, i′, j + 1) is independent of any combination of such
events, unless the condition holds for at least one of them.
Now, at any stage in the refinement process, the conges-
tions on e and e′ are independent unless there is a path that
crosses both. Such a path may exist only if it exists in either
RTFj+1(i

′, j+1) or CTF↓(i
′, j+1). Therefore, the number of

packets p′ such that an event E(p, i′, j +1) may depend on an

event E ′(p′, i′, j + 1) is bounded by r2
j T 4k

j+1 + 2κrjT
2k+1/4
j+1 ≤

2r2
j T 4k

j+1. Therefore, each event E(p, i′, j + 1) is independent
of any combination of similar events which does not inter-
sect a fixed subset of at most 6r2

j T 4k
j+1 events. Notice that

the expected number of these events that occurs is � 1.
Therefore, using Lemma 2, we have that the probability that
among at most 6rj−1T

2k
j relevant events more than T 6

j occur

is ≤ 24er2
j T 4k

j+12
−T6

j /24er2
j T4k

j+1 � 2−T2
j .

The third claim follows from the second claim by summing
up the bound for at most 2T k

j edges crossed by p during
CTF↑(i, j).

We are now ready for the
Proof (of Theorem 3). The probability that a packet p
is lost is bounded by∑

i

(
Pr[J(p, i, 0) | RTF0(i, 0)] + Pr[G(p, i, 0) | CTF0(i, 0)]

)
� L(2−T0 + e−T0),

as there are dL/T k
0 e values that i can take.

So we turn to the length of the schedule. This length is de-
termined by the number of regular track frames



RTFjmax(i, jmax) and by the number of catchup track frames
CTFjmax(i, jmax). Denote the former by n1(jmax) and the
latter by n2(jmax). The length of the resulting schedule
is at most rjmaxβk(n1(jmax) + 2n2(jmax)) = O(n1(jmax) +
n2(jmax)). n1(jmax) and n2(jmax) are given by the following
recurrence:

n1(j) =

⌈
`1(j)

T k
j

⌉
,

n2(j) =

⌈
`2(j)

2T k
j

⌉
,

`1(j + 1) =

(
1 +

1√
Tj

)
n1(j)T

k
j ,

`2(j + 1) =

(
1 +

1

Tj

)(
1 +

γ

2Tj

)
n2(j)2T k

j ,

with the initial conditions `1(0) = L, `2(0) = 2L. The theo-
rem easily follows.

4 Analysis of the Initial Refinement Process

In this section we show how to obtain a feasible schedule of
length O(C + D + log1+ε N). Here ε is a constant. It can be
made as small as we wish by increasing the constant hidden
by the big-Oh notation (in a rather nasty way). The rest of
this section is devoted to the proof of Theorem 5.

Let K(e, i) denote the following event: In RIF1(i, 0) there
exists a frame F of size ` ≥ log1/2k N such that the number
of packets that cross e during F is more than `.

Lemma 15 For all e, i, Pr[K(e, i) | RIF0(i, 0)] ≤ 2−3 log1/2k N .

Proof. It is sufficient to check frames of size between
log1/2k N and 2 log1/2k N . Let F be such a frame. The
number of packets that cross e during RIF0(i, 0) is at most
log1+ε N . the probability that after the insertion of the initial
delays such a packet crosses e during F is at most
2 log1/2k N/λ log1+ε N . Therefore, the expected number of
packets that cross e during F is at most 2

λ
log1/2k N . By the

Chernoff bound, the probability that more than log1/2k N

packets end up crossing e during F is less than (λ/2e)− log1/2k N .
Summing this probability over 1+log1/2k N possible sizes and
over at most (λ + 1) log1+ε N frames of any given size, com-
pletes the proof.

Let L(p, i) denote the event that during RIF1(i, 0) packet
p crosses an edge e for which K(e, i) occurs.

Corollary 16 For all p, i, Pr[L(p, i) | RIF0(i, 0)] ≤ 2−2 log1/2k N .

Proof. Sum up the bound in Lemma 15 over at most
log1+ε N edges that p crosses during RIF0(i, 0).

Lemma 17 Fix i, RIF0(i, 0). W.h.p., every connected com-
ponent of G(i) has size at most log6 N .

Proof. A packet p appears in G(i) either because L(p, i)
occurs or because p did not get scheduled by the main refine-
ment algorithm (given RIF1(i, 1) as input). Denote the event

that p ends up in G(i) by E(p). By Corollary 16 and Theo-

rem 3, Pr[E(p) | RIF0(i, 0)] ≤ 2−2 log1/2k N+

(λ + 1)(log1+ε N)2− log1/k N ≤ 2− log1/2k N

Furthermore, E(p) and E(p′) are clearly independent if p
and p′ are at distance 3 or more in the interference graph
among the paths of RIF0(i, 0). So, consider the dependency
graph Dep among the events E(p). The nodes of Dep are the
events, and every independent set in Dep is a set of mutually
independent events. Clearly, the maximum degree in Dep is
at most log4(1+ε) N .

Define a (2, 3)-tree to be an independent set Ind of Dep
with the following property: If we connect the nodes of Ind
whose distance in Dep is 2 or 3, we get a connected graph
over Ind. The number of different size-s (2, 3)-trees of Dep is
easily upper bounded at N(e log12(1+ε) N)s. Given a (2, 3)-
tree, the probability that all its nodes end up in G(i) is at

most 2−s log1/2k N . Thus, if s � log N , then the probability
that any (2, 3)-tree of size s has all its nodes in G(i) is smaller
than any inverse polynomial in N . The lemma follows from
the observation that every connected subgraph of Dep of size
at least log6 N contains a (2, 3)-tree of size � log N . (The
greedy algorithm for maximal independent set finds one.)

Let C be a connected component of G(i) of size at most
log6 N . Let Hq denote the event that the first q tries at
refining CIF1

j (s, C, j) failed.

Lemma 18 (i) For all j < jmax, for all C, s, q, Pr[Hq |
Hq−1] ≤ 2− log1−(j+1)ε N ; and

(ii) For j = jmax, for all C, s, q, Pr[Hq | Hq−1] ≤ 2− log2δ N .

Proof. Claim i: Consider an edge e. In CIF1
j (s, C, j) there

are at most log1−jε N paths that cross e. The expected num-
ber of paths that cross e during any particular frame of length
log1−(j+1)ε N in CIF1

j+1(q, s, C, j) is at most 1
λ

log1−(j+1)ε N .

The probability that this number exceeds log1−(j+1)ε N is at
most exp(− log1−(j+1)ε N) by the Chernoff bound. Summing
this bound over at most (λ + 1) log1−jε N relevant frames,
and over at most log7 N edges affected by C completes the
proof for this case.
Claim ii: Theorem 3 guarantees that any individual packet is
excluded from the final schedule of CIF1

jmax(s, C, jmax) with
probability at most exp(− log2δ N). Summing over at most
log6 N packets that appear in C completes the proof.

Assuming C is as above, we now have

Lemma 19 (i) For all j < jmax, for all C,
∑

s
qmax(s, C, j) <

c4 log(j+1)ε N w.h.p., where c4 is an absolute constant whose
increase raises the high probability guarantee.
(ii) For j = jmax, for all C,

∑
s
qmax(s, C, jmax) < c4 log1−2δ N

w.h.p.

Proof. The proof of both claims is similar, so we show in
detail only the first claim.

Notice that qmax > 0 only for values of s such that
CIF1

j (s, C, j) is not empty. The number of such paths is at

most w = (λ + 1)j log(j+1)ε N . The process of refinement
of these frames can be represented as a time homogeneous
Markov chain M over a state space with w + 1 states. We
denote the states by 1, 2, . . . , w,fin. The possible transitions



are: In each state 1, 2, . . . , w the chain stays there with proba-

bility Pr[Hq | Hq−1] ≤ 2− log1−(j+1)ε N ; otherwise it moves on
to the next state (the state following w is fin). In fin, there is
a self-loop with probability 1. Now

∑
s
qmax(s, C, j) is exactly

the number of steps it takes to get from the initial state 1 to
the final state fin. It is not hard to show that the number of
steps needed is at most c4 log(j+1)ε N w.h.p., for a sufficiently
large constant c4. Here’s a simple argument that proves this
claim: w.h.p., we do not remain in any individual state (ex-
cluding fin) for more than O(log(j+1)ε N) steps. Therefore,
excluding runs whose total probability is negligible, there are

at most wO(log(j+1)ε N) � N different runs. Now w.h.p. a run
does not use more than O(log(j+1)ε N) stationary transitions
in all states.

We conclude that

Lemma 20 For all C of size at most log6 N , the length of
the final schedule for the packets in C is O(log1+ε N) w.h.p.

Proof. The length of CIFjmax(C, 0) is at most∑
j
c4(log(j+1)ε N)(λ + 1)(log1−jε N) = O(log1+ε N) w.h.p.,

following to Lemma 19. In applying the main refinement
algorithm to CIFjmax(C, 0), according to Theorem 3, each
non-empty frame of size log2kδ N is expanded by a constant
factor. Following Lemma 19 again, this happens at most
c4 log1−2δ N times w.h.p. Therefore, the total addition to
the final schedule due to the use of the main refinement algo-
rithm is O(log2kδ N log1−2δ N) = O(log1+ε N) w.h.p., so the
lemma follows.

Now we may have the
Proof (of Thereom 5). The first step of the switch-
ing algorithm (inserting initial delays as in Lemma 1) ex-
pands the trivial max{C, D} schedule by a constant factor
at most. Let `0 denote the length of this (infeasible) sched-
ule. Now, if n0 denotes the number of frames RIF0(i, 0),
then the length of the resulting feasible schedule is at most
n0

(
(λ + 1) log1+ε N + O(log1+ε N)

)
w.h.p., where the sec-

ond term comes from Lemma 20. As n0 =
⌈
`0/ log1+ε N

⌉
,

the theorem follows.
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