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Abstract

We show that {0, 1}d endowed with edit distance embeds into `1 with distortion
2O(
√

log d log log d). We further show efficient implementations of the embedding that
yield solutions to various computational problems involving edit distance. These in-
clude sketching, communication complexity, nearest neighbor search. For all these
problems, we improve upon previous bounds.

1 Introduction

Given two metric spaces (X1, d1) and (X2, d2), an embedding ϕ : (X1, d1) ↪→ (X2, d2) has
distortion c if and only if distances are preserved up to a factor of c (and uniform scaling).
Easy to compute low distortion embeddings are extremely useful in computer science. Simply
put, in many applications, if we can embed with small distortion a metric space which we do
not understand well into some other metric space for which we do have efficient algorithms,
then such an embedding provides an efficient algorithm for the original metric space. On
a more fundamental level, studying embeddings of different metric spaces is a way to learn
about the structure of these metric spaces and it has numerous implications in combinatorial
optimization, discrete mathematics, functional analysis, and other areas.

In this paper we study the edit distance metric: Given two strings over a finite character
alphabet, the edit distance (also known as Levenshtein distance [12]) measures the minimum
number of character insertions, deletions, and substitutions needed to transform one string
into the other. Edit distance plays a central role in genomics, text processing, web appli-
cations, and other areas. In particular, fast estimation of edit distance and efficient search
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according to the edit distance and its variants are the most investigated and used algorithms
in computational biology. In this paper, we show that edit distance embeds in `1 with rel-
atively small distortion. More specifically we show that {0, 1}d endowed with edit distance

embeds into `1 with distortion 2O(
√

log d log log d). Note that edit distance is well-defined even
on strings over a larger alphabet, as well as on strings of varying length. Our results trivially
extend to larger alphabet, and they can be applied to variable length strings using standard
padding arguments. We omit the discussion on these extensions from this paper.

Furthermore, we show that our embedding can in fact be made efficient, thus implying
improved algorithms for a number of problems, including sketching and approximate nearest
neighbor search.

Given two d-bit strings, the best known running time to compute the exact edit distance,
due to Masek and Paterson [13], is O(d2/ log d) (there is an easy quadratic-time dynamic
programming algorithm). For approximating the edit distance, Batu et al. [3] show an
algorithm that runs in time O(dmax(α/2,2α−1)) and can distinguish between edit distance O(dα)
and edit distance Ω(d). The best approximation achieved by a (nearly) linear time algorithm
is the d3/7 result of Bar-Yossef et al. [2]. If the edit distance metric is modified to allow “block
operations” (i.e., swapping arbitrarily large blocks as a single operation), then the resulting
block edit metric can be embedded into `1 with distortion O(log d log∗ d) [6, 14, 5]). Andoni
et al. [1] showed that edit distance can not be embedded into `1 with distortion less than 3/2.
This was the only lower bound known prior to the publication of the preliminary version
of our paper. Recently, Khot and Naor [9] showed a lower bound of nearly

√
log d on the

distortion of embedding edit distance into `1. Their lower bound was improved to Ω(log d)
by Krauthgamer and Rabani [10].

As mentioned above, we show an embedding into `1 with distortion 2O(
√

log d log log d).
(Notice that distortion d is trivial.) It is also worth pointing out that our paper provides a
theoretical foundation to the experimentally successful idea of Broder et al. [4] of estimating
similarity between documents or web pages by looking at sets of “shingles” (substrings)
covering the document. Our methods (as well as other constructions and results in [3, 7, 2])
can be considered as a refinement of the original approach of [4].

A notion related to embedding is the sketching model. In this model a probabilistic
algorithm s computes, for any string x, a sketch (i.e., a small “fingerprint”) s(x) which is far
shorter than x. Given two strings x and y, comparing their sketches s(x) and s(y) (computed
using the same coin tosses) estimates their distance with high probability. Sketching is related
to multi-scale dimension reduction methods and approximate nearest neighbor search [11, 8],
to streaming algorithms, and to communication complexity of document exchange [6]. The
sketching model is well understood for Hamming distance (and implicitly for `1), see [11].
For edit distance, Bar-Yossef et al. [2] show how to compute a constant size sketch that can
distinguish between edit distance at most k and edit distance at least (kd)2/3 for any k ≤

√
d.

Our embedding results can be used to produce constant size sketches that can distinguish

between edit distance at most k and edit distance at least 2O(
√

log d log log d) · k for all feasible
values of k.

Another important problem is that of approximate nearest neighbor search algorithms.
Given a database of n points in an underlying metric space, we want to pre-process the
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database and provide a search algorithm which, given a query point, finds a database point
which is close to the query point. There is a vast literature on this subject. We restrict
our attention to some of the theoretical work where the pre-processing cost is polynomial
in the input size (even for high dimensional data; for d-bit strings the input size is nd) and
the search cost is polynomial in the size of the query and in log n. Kushilevitz et al. [11]
and Indyk and Motwani [8] consider databases in `1, `2, and the Hamming cube. Their
search algorithms retrieve a database point at distance at most 1 + ε times the minimum.
Muthukrishnan and Sahinalp [14] show how to extend this result to block edit distance.
Indyk [7] gives a solution for edit distance where the search can return a point at distance
at most dε times the minimum, for any ε > 0. The Bar-Yossef et al. paper [2] gives similar
bounds with a better pre-processing performance. Our embedding results imply a solution

where the search returns a point at distance at most 2O(
√

log d log log d) times the minimum.

2 Preliminaries

We denote by [i, j] the set {i, i+ 1, . . . , j} and we denote by [j] the set [1, j]. (If j < i then
[i, j] is the empty set.) Let x ∈ {0, 1}∗. We denote by |x| the length of x. Notice that a string
x corresponds to a 0-1 vector in R|x|. We use x to denote both the string and the vector. For
i ∈ [|x|] we denote by xi the i-th character in x (or, alternatively, the i-th coordinate of x).
For i, j ∈ [|x|] we define x[i, j] = xixi+1xi+2 . . . xj. (If j < i then x[i, j] is the empty string.)
Let k ∈ [|x|]. For I = (i1, i2, . . . , ik) ∈ [|x|]k we define xI = xi1xi2 · · ·xik . We abuse notation
and use {·} to denote a multiset of strings, i.e., multiple copies of the same string in the
listed elements are counted as different elements of the set. Thus, the simplified notation
{x1, x2, . . . , xn} is used for the set{(

xj, k
)

: j ∈ [n] ∧ k =
∣∣{i ∈ [j − 1] : xi = xj

}∣∣} .
For s ∈ N, we put

shifts(x, s) = {x[1, |x| − s+ 1], x[2, |x| − s+ 2], . . . , x[s, |x|]}

Notice that this is a multiset containing exactly s elements. Let x, y ∈ {0, 1}∗. We denote
by xy the concatenation of x followed by y. We denote by ed(x, y) the edit distance between
x and y, which is the minimum number of insert, delete, and substitute operations needed
to convert x to y (or vice versa). For x, y with |x| = |y|, we denote by H(x, y) the Hamming
distance between x and y (i.e., the number positions i such that xi 6= yi). For a set X and
s ∈ N, we denote by

(
X
s

)
the set of subsets of X of cardinality s. Let x, y ∈ {0, 1}∗. Consider

an optimal sequence of edit operations converting x into y. Any such sequence is equivalent
to a function fx,y : [0, |x|+ 1]→ [0, |y|+ 1] ∪ {ε} with the following properties.

1. fx,y(0) = 0 and fx,y(|x|+ 1) = |y|+ 1.

2. ∀i ∈ [|x|], fx,y(i) ∈ [|y|] ∪ {ε}.

3. ∀i, j ∈ [|x|] such that i < j and fx,y(i), fx,y(j) 6= ε, it holds that fx,y(i) < fx,y(j).
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The interpretation of fx,y as a sequence of edit operations is as follows. Having fx,y(i) = ε
corresponds to deleting xi. If there is no i such that fx,y(i) = j that corresponds to inserting
yj. If j = fx,y(i) ∈ [|y|] and xi 6= yj then that corresponds to substituting yj for xi. The
extension of fx,y to 0 and |x|+ 1 is useful in some of the calculations below. Notice that for
j ∈ [0, |y|+ 1] we may put

fy,x(j) = f−1
x,y(j) =

{
i ∃i ∈ [0, |x|+ 1], fx,y(i) = j;
ε otherwise.

The following facts are trivial.

Fact 1. ed(x, y) ≥ ||x| − |y||.

Fact 2. ed(x, y) ≥ |{j : fx,y(j) = ε}|+
∣∣{j : f−1

x,y(j) = ε
}∣∣.

Fact 3. |{j : fx,y(j) = ε}| ≥ |x| − |y|.

Fact 4. Let i, i′ ∈ [|x|] and j, j′ ∈ [|y|] satisfy the following conditions: i ≤ i′; j ≤ j′;
fx,y(i) = j; ∀i′′ ∈ [i+ 1, i′], fx,y(i

′′) = ε; and ∀j′′ ∈ [j + 1, j′], f−1
x,y(j′′) = ε. Then,

ed(x, y) = ed(x[1, i′], y[1, j′]) + ed(x[i′ + 1, |x|], y[j′ + 1, |y|]).

For x, y ∈ {0, 1}∗, ed(x, y) can be estimated roughly by comparing substrings of x and
y, as the following two lemmas quantify. Lemma 5 states that the strings in shifts(x, b) and
shifts(y, b) can be matched so that no more than ed(x, y) matched pairs have edit distance
greater than 2 ed(x, y). Lemma 6 applies this matching to a partition of x and y into equal
length substrings.

Lemma 5. Let x, y ∈ {0, 1}∗ such that |x| ≤ |y|, and let b ∈ N, b < |x|. Then, there exists
an injection

f : [|x| − b+ 1]→ [|y| − b+ 1]

such that

|{i ∈ [|x| − b+ 1] : ed(x[i, i+ b− 1], y[f(i), f(i) + b− 1]) > 2 ed(x, y)}| ≤ ed(x, y).

Proof: Let I = {i ∈ [|x| − b+ 1] : fx,y(i) ∈ [|y| − b+ 1]}. Put

imax = max{i ∈ [|x| − b+ 1] : ∀j ∈ [i], fx,y(j) ∈ [|y| − b+ 1] ∨ fx,y(j) = ε}.

By Fact 4,

ed(x, y) = ed(x[1, imax], y[1, |y| − b+ 1]) + ed(x[imax + 1, |x|], y[|y| − b+ 2, |y|]).

We have that

|{i ∈ [|x| − b+ 1] : fx,y(i) ∈ [|y| − b+ 2, |y|]}| = |{i ∈ [imax + 1, |x| − b+ 1] : fx,y(i) 6= ε}|
≤ |x| − b+ 1− imax

≤ |y| − b+ 1− imax

≤
∣∣{j ∈ [|y| − b+ 1] : f−1

x,y(j) = ε
}∣∣ ,
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where the last inequality follows from Fact 3. Using Fact 2,

|I| = |{i ∈ [|x| − b+ 1] : fx,y(i) 6= ε}| − |{i ∈ [|x| − b+ 1] : fx,y(i) ∈ [|y| − b+ 2, |y|]}|
= |x| − b+ 1− |{i ∈ [|x| − b+ 1] : fx,y(i) = ε}| − |{i ∈ [|x| − b+ 1] : fx,y(i) ∈ [|y| − b+ 2, |y|]}|
≥ |x| − b+ 1− |{i ∈ [|x| − b+ 1] : fx,y(i) = ε}| −

∣∣{j ∈ [|y| − b+ 1] : f−1
x,y(j) = ε

}∣∣
≥ |x| − b+ 1− ed(x[1, imax], y[1, |y| − b+ 1])

≥ |x| − b+ 1− ed(x, y).

For every i ∈ I, put f(i) = fx,y(i) and extend f arbitrarily to [|x| − b+ 1]. We show that for
every i ∈ I, ed(x[i, i+ b− 1], y[f(i), f(i) + b− 1]) ≤ 2 ed(x, y). Let

g(i) = max{i+ b− 1,max{i′ ∈ [i, |x|] : ∃j ∈ [f(i), f(i) + b− 1], fx,y(i
′) = j}},

and let

h(i) = max{f(i) + b− 1,max{j ∈ [f(i), |y|] : ∃i′ ∈ [i, i+ b− 1], fx,y(i
′) = j}}.

Notice that either g(i) = i+b−1 or h(i) = f(i)+b−1. Moreover, g(i)−(i+b−1) ≤ ed(x, y)
and h(i)− (f(i) + b− 1) ≤ ed(x, y). Clearly, ed(x[i, g(i)], y[f(i), h(i)]) ≤ ed(x, y). Therefore,

ed(x[i, i+ b− 1], y[f(i), f(i) + b− 1])

≤ ed(x[i, g(i)], y[f(i), h(i)]) + g(i)− (i+ b− 1) + h(i)− (f(i) + b− 1)

≤ 2 ed(x, y),

as required. 2

Lemma 6. Let b, d, s ∈ N with d
b
∈ N and s < b. For every x, y ∈ {0, 1}d there exists a

sequence k1, k2, . . . , kd/b satisfying

d/b∑
i=1

ki ≤ 2 ed(x, y),

such that for every i ∈ [d/b] there exists a bijection

τi : shifts (x[(i− 1)b+ 1, ib], s)→ shifts (y[(i− 1)b+ 1, ib], s)

such that

|{z ∈ shifts (x[(i− 1)b+ 1, ib], s) : ed(z, τi(z)) > ki}| ≤ ed(x, y).

Proof: Let i ∈ [d/b]. Put

axi = max{(i− 1)b+ 1,max{j ∈ [d+ 1] : fx,y(j − 1) ∈ [0, (i− 1)b]}},

bxi = min{ib,min{j ∈ [d] : fx,y(j + 1) > ib}},

ayi = max{(i− 1)b+ 1,max{j ∈ [d+ 1] : f−1
x,y(j − 1) ∈ [0, (i− 1)b]}},
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and
byi = min

{
ib,min

{
j ∈ [d] : f−1

x,y(j + 1) > ib
}}

.

By Fact 4,

ed(x, y) = ed(x[1, axi − 1], y[1, ayi − 1]) + ed(x[axi , b
x
i ], y[ayi , b

y
i ]) + ed(x[bxi + 1, d], y[byi + 1, d]).

Moreover, by Fact 1,
ed(x[1, axi − 1], y[1, ayi − 1]) ≥ |axi − a

y
i |

and
ed(x[bxi + 1, d], y[byi + 1, d]) ≥ |bxi − b

y
i | .

We assume without loss of generality that bxi − axi ≤ byi − a
y
i . Notice that if z ∈ shifts(x[(i−

1)b + 1, ib], s) (or z ∈ shifts(y[(i − 1)b + 1, ib], s)) then |z| = b − s + 1. By Lemma 5, there
exists an injection f : [bxi − axi − b + s + 1]→ [byi − a

y
i − b + s + 1] such that the number of

indices j ∈ [bxi − axi − b+ s+ 1] for which

ed(x[axi +j−1, axi +j+b−s−1], y[ayi +f(j)−1, ayi +f(j)+b−s−1]) > 2 ed(x[axi , b
x
i ], y[ayi , b

y
i ])

is at most ed(x[axi , b
x
i ], y[ayi , b

y
i ]). For every j ∈ [bxi − axi − b+ s+ 1] set

τi(x[axi + j − 1, axi + j + b− s− 1]) = y[ayi + f(j)− 1, ayi + f(j) + b− s− 1]

and extend τi to the rest of shifts (x[(i− 1)b+ 1, ib], s) arbitrarily, and set ki = 2 ed(x[axi , b
x
i ], y[ayi , b

y
i ]).

Now,

|{z ∈ shifts (x[(i− 1)b+ 1, ib], s) : ed(z, τi(z)) > ki}|
≤ ed(x[axi , b

x
i ], y[ayi , b

y
i ]) + max{axi , a

y
i } − ((i− 1)b+ 1) + ib−min{bxi , b

y
i }

≤ ed(x[axi , b
x
i ], y[ayi , b

y
i ]) + ed(x[1, axi − 1], y[1, ayi − 1]) + ed(x[bxi + 1, d], y[byi + 1, d])

= ed(x, y).

Moreover,

d/b∑
i=1

ki ≤ 2

d/b∑
i=1

ed(x[axi , b
x
i ], y[ayi , b

y
i ])

≤ 2 ed(x, y).

This completes the proof. 2

3 The Embedding

In this section we prove our main result, the following upper bound on the distortion of
embedding edit distance into `1. The embedding given in this section ignores computational
efficiency. In the next section we present an efficient implementation of the embedding.
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Theorem 7. There exists a universal constant c > 0 such that for every d ∈ N there exists
an embedding ϕ :

(
{0, 1}d, ed

)
↪→ `1 with distortion at most 2c

√
log d log log d.

We first present an informal description of the embedding. Let x ∈ {0, 1}d be any string.
We partition x into 2

√
log d log log d disjoint substrings of (approximately) the same length.

We refer to these substrings as blocks. Let x1, x2, . . . denote the blocks. We consider the
multisets shifts(xi, s) for s ranging over the non-negative integer powers of log d that are
below the block length. Given x, y ∈ {0, 1}d, define the distance between shifts(xi, s) and
shifts(yi, s) to be the minimum cost perfect matching between the two multisets, where the
cost of an edge between two elements is the minimum of their edit distance and s. This is
a metric on multisets of strings that are much shorter than x. (In fact, it can be viewed
as a transportation metric on distributions of strings, where the frequency of a string is
proportional to the number of times it appears in the multiset.) Ideally, we would like to
embed this metric into `1. The edit distance-preserving embedding into `1 would then consist
of concatenating the scaled embeddings of shifts(xi, s) for all blocks i and all values of s.
However, a good embedding of shifts(xi, s) seems to be too strong an inductive hypothesis.
Therefore, we inductively embed the strings in shifts(xi, s) into `1 and redefine the edge costs
for the matching to be the minimum of the `1 distance between the embedded strings and
s. We embed this metric over sets of strings into `1. This embedding is not necessarily low
distortion. The following lemma, which may be of independent interest, states the properties
of this embedding.

Lemma 8. For every ε > 0 and for every d, s, t ∈ N that satisfy ln(s/ε) ≤ t ≤ d there is a
mapping ψ :

(
{0, 1}d

)s → `1 such that for every two s-element multisets A,B ∈
(
{0, 1}d

)s
,

‖ψ(A)− ψ(B)‖1 ≤
1

s
·min

σ

{∑
x∈A

min{t, 2H(x, σ(x)) ln(s/ε)}

}

(where the first minimum is taken over all bijections σ : A→ B), and furthermore if for all
x ∈ A and y ∈ B, H(x, y) ≥ t, then

‖ψ(A)− ψ(B)‖1 ≥ (1− ε)t.

Proof: Put b = d·ln(s/ε)
t

. Consider the function χ :
(
{0, 1}d

)s → N(2d)b , which is defined

as follows. Let A = {x1, x2, . . . , xs} ∈
(
{0, 1}d

)s
. To set χ(A), we generate a coordinate for

every sequence I ∈ [d]b and for every string z ∈ {0, 1}b. Recall that xI = xi1xi2 · · ·xib , where
I = (i1, i2, . . . , ib). We set

χ(A)I,z =
∣∣{j ∈ {1, 2, . . . , s} : z = xjI}

∣∣ .
For all A ∈

(
{0, 1}d

)s
put ψ(A) = t

2sdb
χ(A). (Notice that ψ(A) is invariant to permuting

the elements of A.)
Let A,B ∈

(
{0, 1}d

)s
. Let σ : A→ B be a bijection that minimizes∑

x∈A

min{t, 2H(x, σ(x)) ln(s/ε)}.
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Let Pr denote the uniform distribution on I ∈ [d]b. We have that

‖ψ(A)− ψ(B)‖1 =
t

2sdb

∑
I=(i1,i2,...,ib)∈[d]b

∑
z∈{0,1}b

|χ(A)I,z − χ(B)I,z|

≤ t

s
·
∑
x∈A

Pr [xI 6= σ(x)I ]

=
t

s
·
∑
x∈A

(
1− Pr

[
b∧

j=1

{
xij = σ(x)ij

}])

=
t

s
·
∑
x∈A

(
1−

(
1− H(x, σ(x))

d

)b)
≤ t

s
·
∑
x∈A

(
1− e−

2bH(x,σ(x))
d

)
=

t

s
·
∑
x∈A

(
1− e−

2H(x,σ(x)) ln(s/ε)
t

)
≤ t

s
·
∑
x∈A

min

{
1,

2H(x, σ(x)) ln(s/ε)

t

}
=

1

s
·
∑
x∈A

min{t, 2H(x, σ(x)) ln(s/ε)}.

Now assume that min{H(x, y) : x ∈ A∧ y ∈ B} ≥ t. Consider any x ∈ A. We have that

Pr [χ(B)I,xI > 0] ≤ s ·
(

1− t

d

)b
= s ·

(
1− t

d

) d ln(s/ε)
t

≤ s · e− ln(s/ε)

= ε.
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Therefore,

‖ψ(A)− ψ(B)‖1 =
t

2sdb

∑
I∈[d]b

∑
z∈{0,1}b

|χ(A)I,z − χ(B)I,z|

≥ t

2s
·
∑
x∈A

Pr [χ(B)I,z = 0 : z = xI ]

+
t

2s
·
∑
x∈B

Pr [χ(A)I,z = 0 : z = xI ]

=
t

2s
·
∑
x∈A

(1− Pr [χ(B)I,z > 0 : z = xI ])

+
t

2s
·
∑
x∈B

(1− Pr [χ(A)I,z > 0 : z = xI ])

≥ t

2s
· 2(1− ε)s

= (1− ε)t,

completing the proof. 2

For given values d, s and for t = s, ε = 1
2
, we denote by ψd,s the embedding ψ of Lemma 8.

Proof of Theorem 7. Let ϕd : ({0, 1}d, ed) ↪→ `1 denote the mapping (constructed below) for
strings of length d. Let ϕ−1

d denote the inverse mapping of the image of {0, 1}d under ϕd.
We show by induction on d a construction of ϕd such that ‖ϕd‖Lip and ‖ϕ−1

d ‖Lip are both at
most 2c

√
log d log log d, for some absolute constant c. Here ‖f‖Lip denotes the Lipschitz constant

of a mapping f : (X,D) ↪→ (X ′, D′); i.e.

‖f‖Lip = sup
x,y∈X, x6=y

D′(f(x), f(y))

D(x, y)
.

As the distortion of ϕd is given by ‖ϕd‖Lip · ‖ϕ−1
d ‖Lip, this proves the theorem.

Clearly, the inductive hypothesis is true for d sufficiently small, using the identity map.
We therefore assume that the inductive hypothesis holds for all strings of length less than
d. Let x ∈ {0, 1}d. For j ∈ N let sj = (log d)j. Put imax = 2

√
log d log log d and put jmax =

min
{
j ∈ N : sj ≥ d

imax·log d

}
. For j ∈ [0, jmax], put dj = d

imax
− sj + 1. For i ∈ [imax] and

j ∈ [0, jmax], put Ai,j(x) = shifts(x[(i− 1)d/imax + 1, id/imax], sj), and put

Bi,j(x) =
{
ϕdj(y) : y ∈ Ai,j(x)

}
.

Finally, define the vector ϕd(x) whose coordinates are indexed by I, z, i, j as follows.

(ϕd(x))I,z,i,j =
(
ψdj ,sj(Bi,j)

)
I,z
.

(Notice that for simplicity we assume that imax divides d, and we partition x into imax blocks
of length d/imax each. The assumption can be removed by increasing the length of some of
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the blocks by 1. The proof can be amended easily to handle blocks of two lengths varying
by 1.)

Consider two strings x, y ∈ {0, 1}d, x 6= y. By Lemma 6, there is a sequence k1, k2, . . . , kimax

satisfying
imax∑
i=1

ki ≤ 2 ed(x, y), (1)

such that for every i ∈ [imax] and for every j ∈ [0, jmax] there exists a bijection τ : Ai,j(x)→
Ai,j(y) such that

|{z ∈ Ai,j(x) : ed(z, τ(z)) > ki}| ≤ ed(x, y). (2)

Now, if sj < ed(x, y) then, trivially, by Lemma 8,

‖ψdj ,sj(Bi,j(x))− ψdj ,sj(Bi,j(y))‖1 ≤ sj. (3)

Otherwise, if sj ≥ ed(x, y), then by Equation (2) and the induction hypothesis,∣∣{z ∈ Bi,j(x) : H(z, τ(z)) > ‖ϕdj‖Lip · ki
}∣∣ ≤ ed(x, y).

Therefore, by Lemma 8,

‖ψdj ,sj(Bi,j(x))− ψdj ,sj(Bi,j(y))‖1 ≤
1

sj
·min

σ

 ∑
z∈Bi,j(x)

min{sj, 2H(z, σ(z)) · ln(2sj)}


≤ 1

sj
·
∑

z∈Bi,j(x)

min{sj, 2H(z, τ(z)) · ln(2sj)}

≤ 1

sj
·
(
ed(x, y) · sj + sj · 2‖ϕdj‖Lip · ki · ln(2sj)

)
≤ ed(x, y) + 2‖ϕdj‖Lip · ki · ln(2sj). (4)

Summing Equations (3) and (4), over i, j, and using Condition (1), we get

‖ϕd(x)− ϕd(y)‖1 =
imax∑
i=1

jmax∑
j=0

∥∥ψdj ,sj(Bi,j(x))− ψdj ,sj(Bi,j(y))
∥∥

1

≤ imax ·
∑

j: sj<ed(x,y)

sj + imax · (jmax + 1) · ed(x, y) +

+(jmax + 1) · 2‖ϕd0‖Lip ·
imax∑
i=1

ki · ln(2d)

≤
(

2imax ·
log d

log log d
+ 4‖ϕd0‖Lip ·

log2 d

log log d

)
· ed(x, y).

Thus, we obtain the recurrence relation

‖ϕd‖Lip ≤ 4‖ϕd0‖Lip ·
log2 d

log log d
+ 2imax ·

log d

log log d
,

10



so ‖ϕd‖Lip (as a function of d) satisfies the conditions of Lemma 14 (in the appendix), and
therefore the recurrence solves to ‖ϕd‖Lip = 2O(

√
log d log log d).

We now proceed to bound ‖ϕ−1
d ‖Lip. Define a sequence j1, j2, . . . , jimax as follows. For

i ∈ [1, imax], if x[(i− 1)d/imax + 1, id/imax] = y[(i− 1)d/imax + 1, id/imax] then put ji = −1,
otherwise put

ji = max{j ∈ [0, jmax] : ∀z ∈ Ai,j(x)∀z′ ∈ Ai,j(y), ed(z, z′) ≥ ‖ϕ−1
dj
‖Lip · sj}.

Put sjmax+1 = d
imax

. Let I = {i ∈ [1, imax] : ji ≥ 0}. Clearly,

ed(x, y) ≤
∑
i∈I

(
‖ϕ−1

dji+1
‖Lip + 2

)
· sji+1.

On the other hand, consider z ∈ Ai,j(x) and z′ ∈ Ai,j(y). If ed(z, z′) ≥ ‖ϕ−1
dj
‖Lip · sj, then by

the induction hypothesis H(ϕ(z), ϕ(z′)) ≥ sj. Therefore, by Lemma 8,

‖ϕd(x)− ϕd(y)‖1 ≥
∑
i∈I

∥∥ψdji ,sji (Bi,ji(x))− ψdji ,sji (Bi,ji(y))
∥∥

1

≥ 1

2

∑
i∈I

sji

≥ 1

2 log d
·
∑
i∈I

sji+1

≥ 1

2
(
‖ϕ−1

dji+1
‖Lip + 2

)
log d

· ed(x, y).

Thus we get the recurrence

‖ϕ−1
d ‖Lip ≤ 2‖ϕ−1

d/imax
‖Lip · log d+ 4 log d,

which solves to ‖ϕ−1
d ‖Lip = 2O(

√
log d log log d), by Lemma 14. 2

4 Implementation and Applications

The embedding described in the previous section is computationally inefficient. An effi-
cient implementation of the embedding is derived from the following algorithmic version of
Lemma 8.

Lemma 9. There exists a probabilistic polynomial time algorithm ψ that satisfies the
following properties.

1. For every δ > 0, for every d, s ∈ N that satisfy ln(2s) ≤ s ≤ d, and for every A ∈(
{0, 1}d

)s
, ψ(A) = ψ(A, d, s, δ) ∈ `O(s log(s/δ))

1 always.
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2. For A,B ∈
(
{0, 1}d

)s
, let ψ(A) and ψ(B) be computed using the same random choices

for ψ. Then, with probability at least 1 − δ (over the coin tosses of ψ), the following
two inequalities hold:

(a) ‖ψ(A) − ψ(B)‖1 ≤ 1
s
·minσ

{∑
x∈A min{2s, 4H(x, σ(x)) ln(4s)}

}
(where the first

minimum is taken over all bijections σ : A→ B);

(b) if for all x ∈ A and y ∈ B, H(x, y) ≥ s, then ‖ψ(A)− ψ(B)‖1 ≥ s
4
.

Proof: Put b = d ln(4s)
s

. Let r be a positive integer to be specified later. Let I1, I2, . . . , Ir
be samples from the uniform distribution on [d]b. Also, let H̃ be a distribution over
hash functions h : {0, 1}b → {1, 2, . . . , 4s} such that for every z, z′ ∈ {0, 1}b satisfy-
ing z 6= z′, Pr[h(z) = h(z′)] = 1

4s
. Let h1, h2, . . . , hr be samples from H̃. We require

that I1, I2, . . . , Ir, h1, h2, . . . , hr are mutually independent. The embedding ψ has one co-
ordinate for every u, v such that u ∈ [r] and v ∈ [4s]. Let Iu = (i1, i2, . . . , ib), and let
A = (x1, x2, . . . , xs). Then, the coordinate indexed by u, v is given by

ψ(A)u,v =
1

2r
·
∣∣{j ∈ {1, 2, . . . , s} : v = hu(x

j
Iu

)}
∣∣ .

Let A,B ∈
(
{0, 1}d

)s
. Let σ : A→ B be a bijection that minimizes∑

x∈A

min {s, 2H(x, σ(x)) ln(4s)} .

Let Pr denote the product distribution of the uniform distribution on [d]b and H̃. Let x ∈ A.
Then,

Pr [h(xI) 6= h(σ(x)I)] ≤ Pr [xI 6= σ(x)I ]

=

(
1−

(
1− H(x, σ(x))

d

)b)
≤

(
1− e−

2bH(x,σ(x))
d

)
=

(
1− e−

2H(x,σ(x)) ln(4s)
s

)
≤ min

{
1,

2H(x, σ(x)) ln(4s)

s

}
=

1

s
·min {s, 2H(x, σ(x)) ln(4s)} .

Let px denote the last expression. Clearly, px ≥ 1
s
. Let Nx denote the number of u ∈ [r]

such that hu(xIu) 6= hu(σ(x)Iu). If Pr [h(xI) 6= h(σ(x)I)] = 0 then clearly Pr[Nx > 2pxr] = 0.
Otherwise, notice that E[Nx] ≤ pxr. Using standard Chernoff bounds,

Pr[Nx > 2pxr] < e−
2
27
pxr ≤ e−

2r
27s .
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Notice that ‖ψ(A)− ψ(B)‖1 ≤ 1
r

∑
x∈ANx. Therefore,

Pr

[
‖ψ(A)− ψ(B)‖1 > 2

∑
x∈A

px

]
< se−

2r
27s .

On the other hand, consider any x ∈ A. Assuming that min{H(x, y) : x ∈ A∧y ∈ B} ≥
s, we have that

Pr [∃y ∈ B : h(yI) = h(xI)] ≤
1

4
+
∑
y∈B

Pr [yI = xI ]

≤ 1

4
+ s

(
1− s

d

)b
≤ 1

2
.

Let Nx denote the number of u ∈ [r] such that for all y ∈ B, hu(yIu) 6= hu(xIu). As
E[Nx] ≥ r

2
, standard Chernoff bounds give

Pr
[
Nx <

r

4

]
< e−

r
16 .

The same bound holds for Ny, for every y ∈ B, which is the number of u ∈ [r] such that
for all x ∈ A, hu(xIu) 6= hu(yIu). Obviously, ‖ψ(A) − ψ(B)‖1 ≥ 1

2r

∑
x∈ANx + 1

2r

∑
y∈B Ny.

Therefore,

Pr
[
‖ψ(A)− ψ(B)‖1 <

s

4

]
< 2se−

r
16 .

To complete the proof, choose r = O(s log(s/δ)). 2

Lemma 9 implies the following algorithmic version of Theorem 7.

Theorem 10. There exists a polynomial time algorithm ϕ that for every δ > 0, for every
d ∈ N, and for every x ∈ {0, 1}d computes ϕ(x) = ϕ(x, d, δ) ∈ `

O(d log(d/δ))
1 , such that for

every x, y ∈ {0, 1}d, with probability at least 1− δ,

2−O(
√

log d log log d) · ed(x, y) ≤ ‖ϕ(x)− ϕ(y)‖1 ≤ 2O(
√

log d log log d) · ed(x, y).

The proof of Theorem 10 follows closely the proof of Theorem 7, and is therefore omitted
from the paper. Notice that at the top level of the recursion we take a total of o(d) shingles
from both strings, each of length at most d/2

√
log d log log d. Each scale s uses uniform length

shingles. There are o(logd) scales. For each scale, we use Theorem 10 inductively with
failure probability δ/2d2. (In the base case we can afford complete enumeration and testing,
so the probability of failure is 0.) The shingles are embedded in dimension o(d log d), and the
probability that the embedding fails on any pair of shingles is at most δ/2. Next we construct
for each scale s a mapping ψ as per Lemma 9. We need to apply ψ to 2

√
log d log log d pairs of

sets of shingles, one pair for each block. Thus, the total number of pairs of sets of shingles
from all scales is do(1). We use Lemma 9 with failure probability δ/2d. The probability
that the construction fails on any pair of sets is at most δ/2. For each scale s, each block
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generates O(s log(ds/δ) coordinates. There are 2
√

log d log log d blocks, and s ≤ d/2
√

log d log log d

is a power of log d, hence the O(d log(d/δ)) bound on the dimension in Theorem 10.
Theorem 10 can be used to solve many data processing problems that involve edit dis-

tance, by first embedding the data into `1, and then applying previous results for `1 data. It
is important in many applications that we can fix ϕ without knowing in advance the input
points that it will be applied to. We discuss several examples to illustrate the issue. Our
first example is a sketching algorithm, which is a basic building block for other tasks.

Theorem 11. There are universal constants c, α, β > 0, α < β, such that the following
holds. There is a probabilistic polynomial time algorithm s that for every δ > 0, for every
d, t ∈ N, and for every x ∈ {0, 1}d computes a sketch s(x) = s(x, d, t, δ) ∈ {0, 1}O(log(1/δ)) such
that for every x, y ∈ {0, 1}d with probability at least 1−δ the following holds. If ed(x, y) ≤ t
then H(s(x), s(y)) ≤ α log(1/δ), and if ed(x, y) ≥ 2c

√
log d log log d · t then H(s(x), s(y)) ≥

β log(1/δ).1

Proof: To compute s(x), use Theorem 10 to embed x in `1, then use the `1 sketching
algorithm implied in [11]. 2

Corollary 12. There is c > 0 such that for every δ > 0, for every n, t ∈ N, there is
a a one-round public-coin probabilistic two-party communication protocol that on input
x, y ∈ {0, 1}n exchanges O(log(1/δ)) bits and with probability at least 1 − δ outputs 1 if
ed(x, y) ≤ t and 0 if ed(x, y) ≥ 2c

√
logn log logn · t.

Proof: Suppose Alice gets x and Bob gets y. Alice computes s(x), Bob computes s(y)
(on the same random string), then they exchange these bits. They output 1 if and only if
H(s(x), s(y)) ≤ α log(1/δ). By Theorem 11, the protocol succeeds with probability at least
1− δ. 2

Another obvious application is approximate nearest neighbor search. This is a data
structure problem that is defined as follows. The data setX consists of n points in an ambient
distance space. A pre-processing algorithm can be used to generate a data structure D that
represents in the input data set. The data structure D is then used by a search algorithm
to answer nearest neighbor queries. (The query sequence is unknown to the pre-processing
algorithm.) A nearest neighbor query q is just another point in the ambient space. A search
algorithm gets D and q, and must return a point in X that closest to q. In the approximation
version, the search algorithm may return a point in X at distance somewhat larger than the
minimum. Using approximate nearest neighbor algorithms for points in `1 [11, 8], we get
the following theorem.

Theorem 13. There is a probabilistic pre-processing algorithm D and a search algorithm
N that satisfy the following conditions with high probability. On any input X ⊂ {0, 1}d,
the pre-processing algorithm D computes in time polynomial in |X| and d a pre-processed
database D(X). Using D(X), on any input q ∈ {0, 1}d, the search algorithm N finds in

1The comparison of s(x) and s(y) is done using the same outcome of the algorithm’s coin tosses in both
cases.
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time polynomial in d and log |X| a database point N(q) ∈ X such that for every x ∈ X,
ed(q,N(q)) ≤ 2O(

√
log d log log d) ·ed(q, x). (Notice that with high probability the pre-processing

algorithm D outputs a database D(X) such that the search algorithm succeeds on all possible
queries.)

Proof: Let ϕ be the algorithm from Theorem 10, taking δ � 2−2d. (So, ϕ embeds(
{0, 1}d, ed

)
into `

O(d2)
1 .) To pre-process the database X, apply the `1 pre-processing algo-

rithm of [11] to the database {ϕ(x) : x ∈ X}. To search a query q, apply the `1 search
algorithm of [11] to ϕ(q). 2
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Appendix

Lemma 14. Consider a non-negative function f : N → R that satisfies the following.
There exist n0 ∈ N and constants α, β > 0 such that for every n > n0

f(n) ≤ f
( n

2
√

logn log logn

)
· (log n)α + 2β

√
logn log logn.

Then, there exists a constant c > 0 such that for every n ∈ N, f(n) ≤ 2c
√

logn log logn.

Proof: The proof is by induction on n. For the base case, if we take a sufficiently large
constants c and n1 ≥ n0, then for all n ≤ n1, f(n) ≤ 2c

√
logn log logn, and for all n > n1,

2c
√

(logn−
√

logn log logn) log logn · (log n)α ≥ 2β
√

logn log logn.

So, let n > n1 and assume that the claim holds for all n′ < n. We have

log f(n)

≤ log
(
f
( n

2
√

logn log logn

)
· (log n)α + 2β

√
logn log logn

)
≤ log

(
2c
√

(logn−
√

logn log logn) log logn · (log n)α + 2β
√

logn log logn
)

≤ log
(

2 · 2c
√

(logn−
√

logn log logn) log logn · (log n)α
)

= c

√
(log n−

√
log n log log n) log log n+ α log log n+ 1

= c
√

log n log log n ·


√√√√1−

√
log log n

log n
+
α

c

√
log log n

log n
+

1

c
√

log n log log n


≤ c

√
log n log log n ·

(
1− 1

2

√
log log n

log n
+
α

c

√
log log n

log n
+

1

c
√

log n log log n

)
≤ c

√
log n log log n,

provided that c and n1 are sufficiently large. 2
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