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But EU < ¢v/T for some universal constant ¢. Hence by Markov’s inequality

[7/2]d"1(c +1/VT)

a

Pr[Tl’j/Q] > aﬁ] <
which is bounded above by C'/a for some constant C' as required. O

Remarks: (a) The above proof actually demonstrates the stronger conclusion that s;(¢) > 0 for
all 7" in the range ¢ <4’ < [£], for a similar majority of the interval.

(b) It is interesting to note that the only properties of the sequence s(t) we have used in the above
proof are properties A and B of Proposition 4. Thus Lemma 10 actually applies to any sequence of
vector random variables satisfying these rather natural properties. We believe that this fact may
be of independent interest.

We are finally in a position to complete the proof of Theorem 1, following our earlier sketch.

Proof of Theorem 1. Recall from the discussion immediately following the statement of Lemma 6
that it suffices to establish condition 3 of the lemma for the function ®(s) = Zmﬂ 18; + k—1, with
suitable choices of T', B and e. We shall specify the constant T shortly, and define the set B C S as

B={seS:Vi,s <T}.

Assume that s = s(tp) € S\ B, i.e., at some time #, we have s;(to) > T for some coordinate i;
necessarily ¢ < [%] Consider the time interval [to, 1o + T]. We will show that the expected drift
of ® over this interval is less than —e for some € > 0, thus establishing condition 3. Since we are
analyzing drift, we may equivalently work with the function f of Proposition 5, which differs from &
only by a constant.

By Lemma 10, with probability at least 1 — C'/a we have sp;/21 > 0 at all but at most avT
time instants in the interval [tg,to + T']. Now consider the change Af in [ after one step. By
Proposition 5, if spj/21 > 0 then EAf < —1/j. In all other situations, there is the trivial bound
EAf < j. Putting these facts together, and conditioning on the event A that sf;/5) > 0 at all but

at most av/T time instants in the interval, we see that the drift of f over the entire interval is

E[f(to+1T) — f(to) | s(to)]
< E[f(to+T) — f(to) | s(to) N A
+ (1 = Pr[A) E[f(to + T) — f(to) | s(to) A=A

{_;( —a\/_)+Ja\/_}+—T

IA

By taking a = 2C'j? large enough, and then T large enough, we can make this expression less than
some negative constant —e.
This completes the verification of condition 3, and hence the proof of the theorem. 0

Acknowledgments

We thank David Aldous and Ashwin Nayak for helpful comments on an earlier draft of this paper.

12



Proof. We will prove the claim for « = 1; as will become apparent, the proof for general ¢ is exactly
the same. Moreover, by shifting time we may assume without loss of generality that ¢{5 = 0, and
that s(0) is any reachable state with s1(0) > T'. For each ¢, let the random variable T; denote the
time spent at 0 by token ¢ during the interval [0, T]. Clearly T} = 0 with probability 1.

Next let us consider the behavior of the sequence s,. Consider a modified process s}, which is
defined as follows. First, run sy for 7" steps. Then, have the token s/, follow a symmetric random
walk with a holding time at 0 distributed according to D. Finally, delete from s/ all stationary
steps at 0. Let T, be the number of hits on 0 of s} during the time interval [0,7]. Then we have

TI4+1
T2 S Dr’v (2)

1

(SIS
+

r

where the D, are i.i.d. with the same distribution as D, and T} is independent of all of the D,.
(Here < denotes stochastic domination between the random variables.)

To analyze T3, we compare it with U/, the number of hits on 0 of the symmetric random walk with
no holding probabilities and a perfectly reflecting barrier at 0. By Proposition 9, T} is stochastically
dominated by U. Taking expectations in (2) and using this observation, we get

T;+1

> Dl
r=1
oo t+1

= SN D, | T =] Pu{1y = 1]

t=0r=1

< (BU+1)ED
= d(EU+1), (3)

ET, < E

where the constant d is the expectation of D from Proposition 4.
Now consider token s;, where 3 </{ < [£]. Define a modified process s; and a random variable
T/ in exactly similar fashion to s} and Tj. By analogy with (2) we may write

7, <Y D,. (4)

Now our adversary argument, Lemma 7, implies that 7} is stochastically dominated by U + Tj_;.
To see this, note that

Pr[T} = m | Ty = y] < p(se(0),T,y,m)
Q(SZ(O)7 T7 Y, m)

PrlU > m —y].

IA N IA

Taking expectations in equation (4), and using this fact, we get
ET, <(EU+ET;—1 + 1)ED = d(EU + ETy—; + 1).

[terating this bound, and using the base case (3), gives
(-2
T, < (Z df“) (EU + 1) + d“2ET, < (d(EU + 1).
r=1
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does force a down step, by induction the best strategy to continue is DY~ R, so the strategy for the
entire walk is DYR. If the adversary does not intervene, using induction again, the best strategy
to continue is DY R, so the strategy for the entire walk is RDYR = RDY. Inequality (1) shows that
the strategy DY R is better than RDY.

To prove (1), we also use induction on n. If i = 0, both strategies start the same way and we
are done by induction. If ¢+ > y 4+ 1, both strategies give the same distribution of positions after
y + 1 steps, and neither has hit 0 yet, so the two quantities are equal. The interesting case is for
1 <i<y. Then,letn’ =n— 2y —it+2) and m’" =m — (y — i+ 1). It is easy to see that

Q(lv n,y, m) = %po(ov nlv m/) + %p0(27 nlv m/)
and

r(i,n,y,m) = %po((),n’,m’) + %po(l,n' +1,m" +1).

Thus the difference is
qg—r = %(po(Z,n’,m') —po(l,n" +1,m' + 1)),

which is non-negative by Proposition 8. 0

Recall that we simplified our adversary argument by considering a symmetric random walk
rather than the more general random walk with non-negative drift and holding probabilities that
is actually executed by the tokens according to Property A of Proposition 4. However, it should
be intuitively clear that this simplification can only increase the number of hits on 0. To make
this precise, consider an arbitrary stochastic process over the non-negative integers. Assume it has
arbitrary holding probabilities except at 0, where the holding probability is zero, and non-negative
drift everywhere. Let Z denote the number of hits on 0 during the first T' steps of this process.
Let U be the similar quantity for the symmetric random walk with zero holding probabilities and
perfectly reflecting barrier at 0, starting at the same point. The following fact can be proved by a
simple coupling argument.

Proposition 9 7 is stochastically dominated by U.

Proof. We construct a coupling between the two random walks (call them z and u) that preserves
the property that z is never to the left of u, assuming that both start at the same place. This is
simple to arrange whenever « is not at 0, since then it always has at least as high a probability as z
of moving left. In fact, the only situation in which we can’t prevent the walks from crossing over
is when w is at 0 and z is at 1. In this case, we allow z to make several moves, while u just makes
one: we run z till it makes the first non-stationary move, then allow it one additional move. This
is fine since increasing the number of moves of z cannot decrease its number of hits. But after this
“super-move”, u is certainly at 1, and z cannot be at 0. Hence our property is preserved. Moreover,
u has scored a hit, so we can use this to cancel a possible hit scored by z. O

We are now in a position to proceed with the proof of our main result, following the sketch
given after Lemma 6. As observed there, the main difficulty lies in step (iii): assuming that s; > 0
throughout some interval, we want to conclude that sp;/57 > 0 during most of that interval. This is
the subject of the next lemma, which makes essential use of our adversary result, Lemma 7.

Lemma 10 Let T' and a be positive constants, and suppose that s;(to) > T for some 1 < [%] and
to > 0. With probability at least 1 — C'/a, where C' is a constant that depends only on j, sy (1) is
strictly positive at all but at most a/T time instants t within the interval [to,to + T).
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such an adversary can have on the amount of time s;1; spends at 0. This we now do. Actually, for
simplicity we will analyze the effect of such an adversary on a symmetric random walk: since s;14
has non-negative drift, it is clear that the time it spends at 0 will be stochastically dominated by
the symmetric walk (see Proposition 9 below for a precise statement).

So, consider a symmetric random walk of a given length on Z ., started at some specified position,
and an adversary whose goal is to maximize the number of times the walk hits 0.! The adversary
is allowed to intervene at some specified number of steps, selected according to any strategy: on
these steps, the adversary may specify any desired probability distribution on the legal moves of
the process from the current state; on all other steps, the process behaves as a symmetric random
walk with a perfectly reflecting barrier at 0. (Note that, since the only legal move from 0 is to 1,
the adversary is not able to intervene at 0.)

It is perhaps not surprising that the optimal strategy for the adversary is always to intervene
by driving the process deterministically towards the origin, and to use up all these interventions as
early as possible. However, this claim requires some justification, which we now provide.

Lemma 7 Let p(i,n,y,m) be the probability that a symmetric random walk of n steps, starting at
and with y adversary steps, hits the origin at least m times. Let q(i,n,y,m) be the same quantity
for the particular adversary strategy in which downward steps are used as early as possible. Then
p(i,n,y,m) < q(i,n,y,m) for all i,n,y,m.

To prove Lemma 7, we need a simple technical observation about the symmetric random walk.

Proposition 8 Let po(i,n,m) = p(i,n,0,m) denote the probability that a symmetric random walk
of length n started at 1 hits 0 at least m times. Then po(2,n,m — 1) > po(1,n + 1,m).

Proof. Let W; be the random walk started from 2 and W; the random walk started from 1. Consider
the first time T" when W, reaches 1, and the first time 7" when Wj reaches 1 by a 0 — 1 transition.
Then it is easy to see that T” is equal to T' 4+ 1 in distribution. The remainder of W, after T is a
random walk started at 1 which must have at least m — 1 hits. The remainder of W, after 7" is also
a random walk started at 1 which must have at least m — 1 hits. Thus if m > 1, the probabilities
are the same for both walks (conditioning on the event T'=T"—1 <n), and if m = 1, we trivially
have po(2,n,0) =1 > po(l,n +1,1). 0

We now prove Lemma 7. We will consider only deterministic strategies: the randomized case
follows by averaging.

Proof of Lemma 7. We use induction on n. Let DY R denote the strategy which uses the y forced
down steps as soon as possible, and then follows the symmetric random walk. Let RDY denote
the strategy which starts with a truly random step as soon as possible, and then uses the y forced
down steps as soon as possible. Notice that a transition from 0 to 1 is neither a forced down
step (obviously) nor a truly random step, since it has probability 1. Let ¢(i,n,y, m) denote the
probability that the walk of length n defined by the strategy DYR, started at ¢ and with y forced
down steps has at least m hits; let r(i,n,y,m) be defined similarly for the strategy RDY. We claim
that

Q(i7n7 y7 m) 2 r(l7n7 y7 m) (1)
Note that the lemma will then follow by induction on n: consider the first time the adversary may
intervene. Either way, after this step we are left to deal with fewer than n steps. If the adversary

TThroughout, for convenience, we shall take “hits 0” to mean “makes the transition 0 — 1.”



1. There are constants Cy, > 0 such that ®(s) > Cy||s||* for all s € S.
2. There is a constant Cq > 0 such that pL,, = 0 whenever |®(s) — ®(s")| > Cy, for all s,5' € S.

3. There is a finite set B C S and a constant ¢ > 0 such that 3" ycs pL/(®(s') — ®(s)) < —¢ for
all s € S\ B.

Then M is ergodic with stationary distribution © satisfying 7(s) < Ce™%®®) for all s € S, where C
and & are positive constants. |

To interpret this lemma, view ® as a potential function that maps the state space to the non-
negative reals, so that the image of the Markov chain under ® becomes a dynamical system on
the real line. Condition 1 requires that ® grows polynomially with ||s|| = >_; s;, while condition 2
requires that the process is well-behaved in the sense that it has bounded variation. The key is
condition 3, which says that, except for a finite set of states, ® has negative drift over an interval of
some constant length T'. This implies that M is ergodic with a stationary distribution that decays
at least exponentially with ®.

In our application, M will be the Markov chain that governs the movements of the tokens,
whose state space is the subset S of Z’j__l defined by Proposition 2, and ® will be the function
P(s) = Zz[i/ﬁ] 15; + k — 1. Note that ® is just f+ k — 1, where f is the waste function appearing in
Proposition 5. Since k — 1 is an upper bound on the waste due to the large and middle tokens, ®(s)
is an upper bound on the total waste in any state s. It is easy to check that conditions 1 and 2 hold
for this @, with any choice of constant T' (taking ¢ = Cy =1 and Cy = [j/2]T). All our work will
be devoted to proving the negative drift condition 3, for suitably chosen T', B and e. Theorem 1 will
then follow immediately, since asymptotically the expected waste is at most 3,5 7(s)®(s), which
by Lemma 6 is bounded.

The following is an informal sketch of our strategy for proving condition 3:

(i) We consider an interval of length 7', and show that ® has negative drift over this interval
provided it is large enough at the start of the interval: i.e., we will take B to be the finite
set of points on which @ is “small.” Thus for s € S\ B, we can be sure that, for some small
token 7, s; is large at the start of the interval, and hence positive throughout the interval.

(ii) Since s; > 0 throughout the interval, by Proposition 4 the motion of s;1; is a random walk
with non-negative drift: hence the time that s;;; spends at 0 during the interval is dominated
by the time spent at 0 by a symmetric random walk, which is small (about const x \/T)

(iii) Iterating this argument, appealing to Proposition 4 each time, we can conclude that each of
the tokens siy9,...,sp;/21 spends little time at 0.

(iv) Finally, since we have established that sp;/21 > 0 during most of the interval, Proposition 5
tells us that f (and hence ®) has negative drift on most steps, and hence an overall negative
drift over the entire interval.

The tricky part of the above argument is step (iii): at each stage we need to use the fact that
sy > 0 to deduce from Proposition 4 that s;;; has non-negative drift. However, occasionally s;
will be at 0, and at these times we have no control over the motion of s;,1. We therefore assume
that s;y1 has non-negative drift most of the time, but that an adversary is able to bias its motion
on a small number of steps. Accordingly, we need to prove a lemma that quantifies the effect that



where N is the number of insertions until the first pair of consecutive insertions of k—1 has occurred.
Notice that the events that item k — ¢ is inserted at time ¢ are mutually independent for all ¢, and
all have probability % Hence it is easy to see that the tail of D has the form Pr[D > n] < " for
some constant 3 < 1 that depends only on j. This in turn implies that the expectation of D is
bounded above by a constant that depends only on j. O

2.5 Behavior of the waste

Next we investigate what happens to the waste, again under the assumption that sp;/57 > 0. Define

ft) = Zz[i/ﬁ] i8;(t), which is just the waste due to the small tokens at time t. By Proposition 2,
the total waste is bounded above by f(¢) + & — 1. The following proposition shows that f(¢) has
negative drift under our assumption about sg;/9).

Proposition 5 Suppose that spj5(1) > 0. Then E[f(1 4+ 1) — f(t) | s(1)] = —1/7.

Proof. We consider the change in f under the insertion of each possible item i. There are two
cases.

Case 1: 1 <1 < [%] Suppose first that s; > 0. Then the item is inserted into a bin of capacity 1,
so s; decreases by 1 and the change in f is —i. Suppose on the other hand that s; = 0. Then the
item is inserted into a bin of capacity ¢ for some 1 < £ < [%L so sy decreases by 1 and s,_; increases
by 1, and the net change in f is again —1.
Case 2: 1 =k —" with 2 < < [%] In this case, since Sray > 0, Proposition 2 implies that there
can be no open bin large enough to accommodate the item, so it must be inserted into an empty
bin. As a result s; increases by 1, and the change in f is 44'.

Note that cases 1 and 2 together cover all items since we are assuming that j is odd. Putting
together the above cases, we see that the average change in f over all item insertions is

| [4] .
(XX ) =
J Ni=1 =2 J

as claimed. O

3 Analysis of the Markov chain

This section is devoted to proving our main result, Theorem 1 stated in the Introduction. Our
proof makes use of the following result of [5], which establishes a general condition, in terms of the
existence of a suitable Lyapunov function, for a multi-dimensional Markov chain to be ergodic. For
more specialized variations on this theme, see [7, 11, 8, 4].

Lemma 6 [5, page 150, Corollary 7.1.3] Let M be an irreducible, aperiodic Markov chain with
state space S C Z*, and T a positive integer. Denote by pl, the transition probability from s to
s"in ML, the T-step version of M. Let ® : S — R be a non-negative real-valued function on S
which satisfies the following conditions:



Proof. The first claim is immediate from condition 1 of Proposition 2. As for the second claim,
observe that the middle token exists only if j is even. Because all larger tokens are at 0, insertions
of item £ + 1 are placed alternately in an empty bin (thus creating a bin with capacity 2 4 1) and
in this newly opened bin. No other insertions can affect token  + 1, which therefore oscillates
between 0 and 1 as claimed. 0

In view of the second claim of Proposition 3, we will assume from now on that j is odd, so that
there is no middle token to worry about. This assumption is justified because our analysis will hinge
on the behavior of the system when sp;/97 > 0; but Proposition 3 then tells us that the behavior of
the middle token under this condition is degenerate. With this observation, the argument we will
give for j odd trivially extends to the case when j is even.

2.4 Behavior of small tokens

Most of this paper is concerned with the detailed behavior of the small tokens: since the other
tokens remain very severely bounded, it is really only the small tokens that are interesting from the
point of view of the asymptotic behavior of the algorithm. In the next proposition, we isolate an
essential feature of the motion of the small tokens under a certain condition that will again arise
naturally from our analysis in the next section.

Proposition 4 The motion of a small token i has the following properties:

Property A Whenever s;_y > 0, the motion of s; at all positions other than 0 is a (non-time-

homogeneous) random walk on Zy with non-negative driftV and holding probability at most
1 -2
J

Property B The time spent by s; on each visit to 0 is stochastically dominated! by a random
variable D with constant expectation (that depends only on j).

Proof. Consider first the case when s; > 0, and assume also that s;_; > 0. Since s;,_; > 0, the only
way in which s; can decrease is through the insertion of item 7. On the other hand, s; will certainly
increase on insertion of item k — 7; to see this, note from condition 1 of Proposition 2 that s;; = 0
for all ¢/ > k —1, so the algorithm must insert item & — ¢ into an empty bin. Hence s; decreases with
probability % and increases with probability at least %, which is exactly equivalent to Property A.

Now consider what happens when s; = 0. If s; = 0 for all ¢/ > k — ¢, then as above we
can conclude that s; moves to 1 with probability at least X by insertion of an item of size k — 1.
However, now we cannot exclude the other possibility, namely that s;; = 1 for some ' > k — 7, in
which case item k — ¢ will be inserted into the bin with capacity ¢’ so s; cannot leave 0. On the
other hand, in this situation we see that two consecutive insertions of item k& — ¢ will certainly have
the effect of moving s; to 1. This crude argument indicates that the time spent by token ¢ at 0
is stochastically dominated by the random variable D defined as follows over the sequence of item
insertions immediately following the arrival of s; at 0:

D— { 1 if the first insertion is k — ¢;
~ | N otherwise,

fle., the expected change in s; at each time step is non-negative.
IRecall that a random variable X is stochastically dominated by a random variable Y if Pr[X > 7] < Pr[Y > 7]
for all r.



2. ¥ s < 1. (Le., the large and middle tokens cannot move beyond position 1; moreover,

1 not small

at most one of them can be away from 0 at any time.)

Proof. We use induction on time. Plainly both conditions are satisfied by the initial state. As-
suming they are satisfied by s(t), we show that no legal move of the system can cause them to be
violated.

Suppose an insertion, of item / say, causes s; to increase by one. Then the conditions could
become violated only if one or other of the following holds:

(i) For some i’ >k — 1, si(t) > 0 and s; does not become zero as a result of the insertion.

(ii) Token ¢ is not small, and for some other non-small token 7', s;/(¢) > 0 and s;; does not become
zZero.

To see that (i) cannot happen, assume first that 7 is small. Then ¢’ is not small, and so (by
condition 1) must be the only non-small token not at zero. But the inserted item ¢ < k — ¢ would
then be placed by the algorithm in a bin with capacity ¢/, thus reducing s; to zero. Conversely,
assume that ¢ is not small. Then either ¢« + ¢ < k, or £ was inserted into an empty bin. In the first
case, condition 1 implies that s;(¢) = 0 for all ¢ > k — (i + (), and hence certainly for all ¢/ > k — .
In the second case, ¢ did not fit into any open bins, so s;(¢) =0 for i/ > { =k — .

To see that (ii) cannot happen, note that item ¢ must be inserted either into a bin ¢ with
capacity greater than 7, or into an empty bin. In the first case, token ¢ must by condition 1 be the
unique non-zero large token, and it becomes zero as a result of the insertion. In the second case,
the inserted item ¢ satisfies { =k —1 < j+2 — [%L and 1t is easy to check that such an item would
fit into any bin corresponding to a large token ¢’, so we must have s;(¢) = 0 for all such tokens ¢'.
O

It is not hard to see that (provided k& > 4) all states satisfying the conditions of Proposition 2 are in
fact reachable from the initial state. From now on, we shall therefore assume that the state space
of our Markov chain is precisely this set S of reachable states.

The above proposition expresses general constraints on the motions of the tokens. In the fol-
lowing three subsections, we establish further properties of the behavior of tokens under certain
assumptions about the distribution of other tokens. These properties will be used in our analysis
in the next section.

2.3 Behavior of large and middle tokens

We have already seen that the large and middle tokens behave in an extremely restricted fashion:
namely, they can take on values only 0 and 1, and at most one of them can be non-zero at any time.
Their behavior becomes even more restricted under the condition that sp;/5) > 0. This condition
will arise naturally in our analysis in the next section.

Proposition 3 Suppose that spjjy remains strictly positive throughout some time interval. Then
during this interval:

o all large tokens remain at 0; and

o the middle token (if it exists) oscillates between 0 and 1 independently of the positions of all
other tokens.



non-negative integer points under the influence of item insertions, as follows. The tokens are
labeled 1,2,...,k — 1. At any time instant ¢, the position of token ¢ is the number of open bins
at time t with residual capacity exactly . We shall denote the state of the system at time ¢ by
s(t) = (s1(t),. .., sk-1(t)), a vector random variable taking values in Z%~!. Initially, the state of the
system is s(0) = (0,...,0), reflecting the fact that there are no open bins.

Now suppose the state of the system at time ¢ is s(¢) and the next item to be inserted is ¢, where
¢ has been chosen uniformly from the set {1,...,7}. Let ¢ be the smallest index such that ¢ > ¢
and s;(t) > 0, if such exists: in this case, the algorithm inserts item £ into a bin with capacity 7, so
we have s;(t + 1) = s;(t) — 1 and, if i > €, s;—¢(t + 1) = s;_¢(¢) + 1; all other components of s(¢)
are unchanged. If no such ¢ exists, then the algorithm inserts item ¢ into an empty bin, so we
have sp_¢(t + 1) = s,_¢(t) + 1 and all other components of s are unchanged. This completes the
description of the dynamical system.

Note that the above system is nothing other than a convenient pictorial representation of a
multi-dimensional Markov chain, with state space Z’j__l, in which token 7 executes a random walk
in dimension . The motions of individual tokens are, of course, not independent. However, the
transition probabilities of any given token at any time depend only on which of the tokens are at
zero at that time, i.e., on the set {i : s;, = 0}. This is an important property which makes analysis
of the chain feasible.

Our goal is to investigate the behavior of the waste in the algorithm after packing ¢ items, which
is just the quantity 57! is;(t). (The weights ¢ appear in this sum because we have scaled the
bin sizes from 1 to k.) In particular, we will be concerned with determining, for given pairs (J, k),
whether or not the expected waste remains bounded for an infinite stream of items, i.e., as t — oco.
As explained in the Introduction, we will focus on the case where j = k — 2, and we assume this
relationship from now on.

In the next subsection, we partition the tokens into three equivalence classes. Then, in Sec-
tion 2.3, we show that the behaviors of two of these classes are rather simple; and in Section 2.4 we
describe the stochastic behavior of tokens of the remaining class. Finally, in Section 2.5 we prove
that the waste has negative drift in certain situations. These preliminary results will pave the way
for our proof of Theorem 1 in Section 3.

2.2 Classification of tokens

It will be convenient for us to partition the tokens into two classes, which we will call “large” and
“small.” This idea is motivated by the fact that tokens behave in two distinct ways, as we shall see
in a moment. The small tokens are tokens ¢ with 1 < < [%] The large tokens are tokens k —1
with 1 < < [%] Note that the numbers of small and large tokens are equal. In the case that j is
even there is actually an additional token, namely % + 1, which is neither small nor large: we call
this the middle token.

We first establish a fundamental constraint on the states that are reachable from the initial
state s(0). This fact is implicit in [4], but we prove it here for the sake of completeness and as a
useful warm-up exercise for the reader.

Proposition 2 State s is reachable from the initial state s(0) only if

1. For distinct indices 1 and i" with i +1" > k, either s; =0 or sy = 0. (Le., no two tokens whose
index sum is k or greater can simultaneously be at non-zero positions.)



Note the dramatic contrast with the apparently very similar case 7 = k£ — 1, in which the expected
waste grows unboundedly with n. Large-scale simulations suggest that the waste grows linearly
even when j = k — 3 (for k > 11), so our result seems to confirm that j = k — 2 is a very special
case indeed.®

Of at least as much interest as this result itself, in our view, are the techniques we use to prove
it. Our starting point is again the multi-dimensional Markov chain of Coffman et al. However,
we develop an alternative view of the chain that seems rather easier to visualize: in this view, the
state s of the chain at any time is represented by k — 1 tokens placed on the non-negative integers,
with token ¢ at position s;. The tokens move around as a dynamical system under the influence
of item insertions. With the aid of this view, and the intuition that comes with it, we are able to
design an explicit Lyapunov function that proves bounded expected waste for all pairs (7, k) with
J =k — 2. The Lyapunov function is essentially just the waste in the algorithm.

The analysis of the Lyapunov function is somewhat subtle, which perhaps explains why it had
not been done before. In order to establish the drift in the Lyapunov function, we have to consider
T(j) steps of the Markov chain, where T'(j) is an exponential function of j; the drift is proved
by a detailed comparison of the time evolution of the Lyapunov function with a random walk on
the non-negative integers. More specifically, the Lyapunov function is a linear combination of the
coordinate values of the multi-dimensional chain, and we are able to relate the behavior of the
individual coordinates to one-dimensional symmetric random walks that are biased by a limited
adversary. This adversary model corresponds to a worst case assumption on the effect of other
coordinates, and we believe it to be of independent interest. It is similar in flavor to, but differs
essentially from, the biased random walk model considered by Azar et al [1] in a different context.
The model in [1] is allowed to bias the transition probabilities slightly on every step, whereas our
adversary may intervene overwhelmingly but only on a limited number of steps.

In addition to settling an open problem posed in [4], our result, more significantly, is the first
proof that exploits the detailed structure of the multi-dimensional Markov chain, and thus the first
that provides an understanding of its behavior. Our analysis of the Markov chain using an explicit
Lyapunov function is rather unusual: typically, this kind of complex chain arising from a natural
application does not yield to such a general tool. It is conceivable that our techniques might be
extended to analyze the Best Fit Markov chain for other pairs of values (j,k), and perhaps also
to other situations in the analysis of algorithms in which homogeneous multi-dimensional Markov
chains of this kind arise.

The remainder of the paper is structured as follows. In Section 2 we introduce the token model
as a convenient representation of the Markov chain underlying the algorithm, and establish various
fundamental properties of it. In Section 3 we define our Lyapunov function and analyze its behavior
using comparisons with biased random walks, concluding with the proof of Theorem 1.

2 The token model

2.1 Definitions

As advertised in the Introduction, we describe the behavior of the Best Fit algorithm over time
in terms of the evolution of a dynamical system. In this system, k — 1 tokens move among the

§ A plausible conjecture based on large simulations is that, along the line j = k — r for each fixed r > 3, the waste
grows linearly with n, with the constant of proportionality approaching a limit a,, > 0 as 5,k — oo.



waste we need not concern ourselves with bins that have already been filled. It is a simple matter
to write down the new vector s that results from the arrival of any item ¢ € {1,...,5}; since
each item arrives with probability 1/7, this immediately gives the transition probabilities of the
chain. (See Section 2.1 below for a more formal definition.) Thus we have a Markov chain on the
infinite (k — 1)-dimensional space Z’j__l. The expected waste of Best Fit is intimately related to the
asymptotic behavior of this chain.

We note in passing that similar Markov chains have been an object of study in queueing theory for
over four decades (see, e.g., [13]); in computer science they have also received attention, for example
in the stochastic analysis of packet routing [10]. Despite this extensive body of research few general
analytical tools exist, and even the simplest questions, such as whether such a chain is ergodic,
seem hard to answer. One exception is the method of constructive use of Lyapunov functions',
a standard tool in the theory of Markov chains. This method is particularly relevant to so-called
“jump-bounded space-homogeneous” Markov chains*. Such chains were the focus of a recent book
by Malyshev, Menshikov and Fayolle [5]. However, the range of situations in which they are able to
apply their method appears to be very limited: the highlights are a complete classification of two-
and three-dimensional jump-bounded space-homogeneous Markov chains. The Markov chains that
arise in the analysis of Best Fit are clearly space-homogeneous and jump-bounded, but of much
higher dimension.

This was the starting point for Coffman et al, who proceeded to analyze the Best Fit Markov
chain for small values of j and k, using a novel approach. In the absence of analytical tools for
high dimensional Markov chains, they used a computer program to search in an appropriate class of
functions for a Lyapunov function. The existence of a suitable Lyapunov function for a given pair
(7, k) implies bounded or linear expected waste. Coffman et al were able to classify the expected
waste as bounded or linear for values of k up to 14 and most corresponding values 7 < k — 1.

This approach, while interesting, suffers from several obvious drawbacks, as observed by the
authors themselves. Evidently, there is no prospect that it can lead to proofs for infinite sequences
of (j,k) pairs; in fact, the time and space resources consumed by the search make it infeasible to
extend the study beyond a very small finite range of values for j and k. Perhaps most importantly,
the technique seems to yield almost no useful insight into why the algorithm performs as it does:
for example, the Lyapunov function that proves bounded expected waste for j = 5, £ = 7 is a linear
function based on 23 steps of the Markov chain, while that for j = 7, £ = 10 is a 15-step quadratic
function, neither of which has any intuitive basis.

In this paper, we aim at analytical results on the behavior of Best Fit for an infinite sequence of
values (7, k). Specifically, we explore the line j = k — 2; this is the “largest” interesting case below
J = k—1, which is the discrete analog of the continuous uniform distribution. Coffman et al exhibit
computer proofs that the expected waste is bounded in this case for £ < 10, and also conjecture on
the basis of simulations that it remains bounded for larger values of k. Our main result proves this
conjecture for all k:

Theorem 1 The expected waste of the Best Fit algorithm under the discrete uniform distribution
U{k — 2,k} is bounded for all k.

TA Lyapunov function is a potential function over the state space which obeys certain properties, notably a
systematic drift over some bounded number of steps of the chain.

If we represent a transition in a Markov chain over ZT as the vector of shifts in each coordinate, then the chain
1s jump-bounded if the transitions are limited to shifts of bounded size. It is space-homogeneous if the transition
distribution in each state depends only on which of the state’s coordinates are non-zero.



1 Introduction

In the one-dimensional bin packing problem, one is given a sequence ay, . .., a, € (0, 1] of items and
asked to pack them into bins of unit capacity in such a way as to minimize the number of bins used.
This problem is well known to be NP-hard, and a vast literature has developed around the design
and analysis of efficient approximation algorithms for it. The most widely studied among these is
the Best Fit algorithm, in which the items are packed on-line, with each successive item going into
a partially filled bin with the smallest residual capacity large enough to accommodate it; if no such
bin exists, a new bin is started.

Best Fit was first analyzed in the worst case by Johnson et al [9], who proved that the number of
bins used is always within a factor 1.7 of that used by an optimal algorithm. When items are drawn
from the uniform distribution on (0, 1], the expected waste of Best Fit was shown by Shor [12] to
be O(n'/? log®/* n). (The waste is the difference between the number of bins used and the sum of
the sizes of all the items, and is the standard measure of performance of bin packing algorithms in
the average case.) Thus among on-line algorithms Best Fit is currently the best available, in the
sense that no algorithm is known which beats it both in the worst case and in the uniform average
case. This, together with its intuitive appeal and ease of implementation, makes it the algorithm
of choice in most applications.

With the goal of achieving a better understanding of the Best Fit algorithm, researchers have
turned their attention to its behavior under various other input distributions, notably the class
of discrete distributions U{j, k} for integers ;7 < k. Here the item sizes, instead of being chosen
from the continuous real interval (0, 1], are selected uniformly from the finite set of equally spaced
values i/k, for 1 <1 < j. Equivalently, we may think of the bins as having capacity k and the
item sizes being uniformly distributed on the integers {1,...,j}. This family of distributions is of
interest for two reasons. Firstly, it is an important step towards exploring the robustness of Best
Fit under non-uniform distributions (because the distribution is biased towards smaller items); and
secondly, it applies to the more realistic case of discrete rather than continuous item sizes. (For
more extensive background, the reader is referred to [4] and the upcoming survey [3].)

Very little is known in rigorous terms about the performance of Best Fit under this distribution,
with the exception of a few extreme cases: when 5 = k& — 1, the behavior can be related to that for
the continuous uniform distribution on (0,1], yielding expected waste ©(n'/?) [2]; and if j is very
small compared to k (specifically, if j < /2k 4 2.25 — 1.5) then the expected waste is known to be
bounded by a constant as n — oo [2]. The expected waste is also easily seen to be bounded when
7 <2forall k> 3.

Nonetheless, there is much experimental evidence to suggest that the behavior of Best Fit for
various pairs (7,k) is complex and interesting. For example, it appears that the expected waste
remains bounded when j is sufficiently close to & or to 1, but that it grows unboundedly with n
in other cases, the growth rate reaching a peak when the ratio j/k is close to a “critical value”
around 0.80. Moreover, in all cases (except j = k — 1) where the expected waste is unbounded it
appears to grow linearly with n. Some large scale simulation results, together with some conjectures,
are described in [4, 2].

In an attempt to explain this behavior, Coffman et al introduced an interesting approach based
on a view of the algorithm as a multi-dimensional Markov chain [4]. The states of the chain are
non-negative integer vectors (sy,...,s,_1), where s; represents the current number of open bins of
residual capacity 7. Note that such a vector contains all relevant information about the state of the
algorithm: in Best Fit, the ordering on the open bins is insignificant, and since we are measuring
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Abstract

We study the average case performance of the Best Fit algorithm for on-line bin packing
under the distribution U{j, k}, in which the item sizes are uniformly distributed in the discrete
range {1/k,2/k,...,j/k}. Our main result is that, in the case j = k — 2, the expected waste
for an infinite stream of items remains bounded. This settles an open problem posed by
Coffman et al [4]. It is also the first result which involves a detailed analysis of the infinite
multi-dimensional Markov chain underlying the algorithm.
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