
Lower Bounds for Randomized k-Server and

Motion-Planning Algorithms

Howard Karloff ∗ Yuval Rabani † Yiftach Ravid †

Abstract

In this paper, we prove lower bounds on the competitive ratio of
randomized algorithms for two on-line problems: the k-server problem,
suggested by [MMS], and an on-line motion-planning problem due to
[PY]. We prove, against an oblivious adversary,

1. an Ω(log k) lower bound on the competitive ratio of any random-
ized on-line k-server algorithm in any sufficiently large metric
space;

2. an Ω(log log k) lower bound on the competitive ratio of any ran-
domized on-line k-server algorithm in any metric space with at
least k + 1 points; and

3. an Ω(log log n) lower bound on the competitive ratio of any on-
line motion-planning algorithm for a scene with n obstacles.

Previously, no superconstant lower bound on the competitive ratio of
randomized on-line algorithms was known for any of these problems.

1 Introduction

On-line algorithms handle sequences of events, each event being handled be-
fore future events are known. Among the on-line problems recently studied
are paging (Sleator and Tarjan [ST]), on-line vertex coloring (Lovász, Saks
and Trotter [LST]), metrical task systems (Borodin, Linial and Saks [BLS]),

∗Department of Computer Science, University of Chicago, Chicago, IL 60637. This
author was supported in part by NSF grant CCR 8807534.

†Computer Science Department, School of Mathematics, Tel-Aviv University, Tel-Aviv
69978, Israel.

1

the k-server problem (Manasse, McGeoch and Sleator [MMS]), layered graph
traversal (Baeza-Yates, Culberson and Rawlins [BCR] and Papadimitriou
and Yannakakis [PY]), and on-line motion-planning [PY].

Sleator and Tarjan [ST] suggested comparing on-line algorithms not to
each other, but to an optimal off-line algorithm that knows the entire se-
quence in advance. This approach is called competitive analysis. We say a
(randomized) on-line algorithm A is c-competitive if there is a constant a de-
pendent on the initial configuration, but independent of the event sequence,
so that for all event sequences σ, the (expected) cost incurred by A on σ is
at most a plus c times the optimal cost to handle σ. The infimum of all c
such that A is c-competitive is A’s competitive ratio.

In the case of a randomized algorithm it is important to accurately de-
fine the power of the adversary (see Raghavan and Snir [RS] and Ben-David
et al. [BBKTW]). The adaptive off-line adversary may adapt the sequence
of requests it produces to the random choices made to date by the on-line
algorithm, then pay for the entire sequence optimally. Ben-David et al.
show that randomization against this adversary does not improve on-line
performance compared with deterministic algorithms [BBKTW]. The adap-
tive on-line adversary adapts the request sequence to the on-line algorithm’s
random choices. However, it must serve each request before the on-line al-
gorithm serves it, and therefore the cost of this adversary might be far from
optimal. Ben-David et al. show that randomization against this adversary
cannot help much. If there exists a c-competitive randomized algorithm
against an adaptive on-line adversary, then there exists a c2-competitive
deterministic algorithm [BBKTW]. This paper deals with the oblivious ad-
versary, the weakest of the three and the “traditional” adversary. In contrast
to adaptive adversaries, the oblivious adversary must fix the sequence of re-
quests in advance, then pay for it optimally. Randomization can be used by
the on-line algorithm to “hide” its choices from the oblivious adversary.

We study the k-server and motion-planning problems. In the k-server
problem, k servers move among the points of a metric space M, serving
requests. A request is a point of M. To serve the request means to move a
server to the request site. The algorithm pays a price equal to the distance
moved. Requests are served on-line. This means that each request is served
before future requests are known. Manasse et al. proved that in every metric
space on at least k + 1 points there is a lower bound of k on the competi-
tive ratio of any deterministic on-line k-server algorithm [MMS]. This lower
bound is applicable for randomization against adaptive adversaries as well,
but not for randomization against an oblivious adversary. Manasse et al.

2

also conjectured that for every metric space and every k, there is a determin-
istic k-competitive on-line algorithm [MMS]. They proved their conjecture
for k = 2 and for k = n− 1, where n is the cardinality of the (finite) metric
space. This conjecture was proven for uniform metric spaces [ST] and for
the infinite metric space which is isomorphic to the real line by Chrobak
et al. [CKPV]. Chrobak and Larmore [CL] generalized the result to infi-
nite metric spaces which are isomorphic to trees. Deterministic competitive
algorithms for all metric spaces and all k were given by Fiat, Rabani and
Ravid [FRR]. Grove [Ge] proved that the so-called Harmonic randomized
server algorithm, suggested by Raghavan and Snir [RS], is competitive for
all k.

A searcher in the on-line motion-planning model of Papadimitriou and
Yannakakis [PY] is a point particle which starts at a point s in the Euclidean
plane and moves to a known target. In our version of the problem, the target
is a vertical line, and the searcher need only reach a point of his own choosing
on it. However, the plane is peppered with stationary open rectangular
obstacles which are disjoint from each other and from the source s and
target t. Each rectangle has integral side lengths. The searcher can “see”
only those obstacles which are connected by an obstacle-free line segment
to the searcher’s position. We compare the cost incurred by the searcher to
the length of a shortest obstacle-free source-target path, which is the cost
incurred by an optimal algorithm that sees the entire scene. Papadimitriou
and Yannakakis gave an Ω(

√
n) lower bound on the ratio between the cost of

a deterministic on-line algorithm and the optimal cost in a scene containing
n rectangles [PY].

The use of randomization against an oblivious adversary has indeed led
to superior algorithms. Fiat et al. exhibited a randomized paging algorithm
with a competitive ratio bounded by 2Hk, where Hk = 1+ 1

2 + · · ·+ 1
k ∼ ln k

[FKLMSY] (a different algorithm was subsequently proven Hk-competitive
by McGeoch and Sleator [MS]). This is to be contrasted with the lower
bound of k for a deterministic paging algorithm. Fiat et al. also proved
a lower bound of Hk for the competitive ratio of randomized paging al-
gorithms [FKLMSY]. They conjectured that Hk is an upper bound for
all metric spaces and all k. This conjecture was disproved by Karlin et al.
[KMMO], who exhibited a family of 3-point metric spaces and a lower bound
approaching e

e−1 > 1.5 = H2 for the competitive ratio of any randomized
2-server algorithm for those metric spaces.

Vishwanathan showed how to color 3-colorable graphs on-line
with only O(

√
n log n) colors [Vn], a great improvement over the

3

O((n log log log n)/ log log n) bound of [LST]. An exponential improvement
in the performance of algorithms that traverse certain layered graphs was
exhibited by Fiat et al. [FFKRRV].

No superconstant lower bound was known for the competitive ratio of
general metric spaces (with at least k+1 points). Indeed, several researchers
conjectured that constant-competitive randomized k-server algorithms exist
for certain infinite metric spaces. No superconstant lower bound for the
on-line motion-planning problem was known either.

We prove two k-server lower bounds:

1. The competitive ratio of any randomized k-server algorithm for any
sufficiently large metric space is Ω(log k).

2. The competitive ratio of any randomized k-server algorithm for any
metric space with at least k + 1 points is Ω(log log k).

In light of the [FKLMSY] algorithm, the first result is tight to within a
constant factor.

Blum, Raghavan and Schieber [BRS] used randomized k-server algo-
rithms to construct randomized on-line motion-planning algorithms. In-
stead, we adapt randomized k-server lower bounds to prove a lower bound
for the on-line motion planning problem:

3. The competitive ratio of any randomized motion-planning algorithm
is Ω(log log n), where n is the number of obstacles in the scene.

The proof of the first result goes as follows. First, we prove that for a
superincreasing metric space M(k), a metric space on {z0, z1, . . . , zk} with
the distance from zi to zi+1 much greater than that from zi−1 to zi, no
sublogarithmic competitive ratio is possible. This part of the proof general-
izes techniques of Karlin et al. [KMMO]. Next, we prove a “Ramsey-like”
theorem for metric spaces: every sufficiently large metric space M contains
a (k + 1)-point subspace resembling either the superincreasing metric space
or the uniform metric space. From the Ω(log k) lower bounds for the super-
increasing and uniform metric spaces we construct an Ω(log k) lower bound
for M.

For k + 1-point metric spaces, we will use the Ramsey-like theorem to
generate a set S of s + 1 points (where s =

⌈√
lg(k + 1)

⌉
) that resembles

either the superincreasing or uniform metric space. The k−s servers initially
on the k − s points outside of S can be fixed at their initial locations by

4

replacing a request to a point z ∈ S by a long sequence of requests to z and
all the points outside of S. Thus the on-line algorithm can be forced to use
only s servers on the specified s + 1 points. We can use the first result to
get an Ω(log s) bound, and this is Ω(log log k).

The idea for the motion-planning result is to construct an obstacle scene
in which the distance an on- or off-line server moves to reach the target is
approximately the cost a k-server algorithm incurs when serving a sequence
of requests in a metric space that resembles M(k). The lower bound for
M(k) will yield a lower bound on the competitive ratio of motion planning
algorithms.

2 The Superincreasing Metric Space

Define c1 = 1 and let

ci = ci−1

[
1 +

1
2e2ci−1 − 1

]
for i ≥ 2.

Definition. Let k ≥ 0 and let M(k) be a metric space on k + 1 points
z0, z1, z2, . . . , zk. Suppose that there are integers d1 < d2 < d3 < · · · < dk

so that d1 = 1 and that for i < j, dist(zi, zj) = dj . Then the sequence
d1, d2, d3, . . . , dk and the metric space M(k) are called superincreasing if
di ≥ (4ci−1e

2ci−1)di−1 for every i ≥ 2.
We will often use M(k) to mean any superincreasing metric space on

k + 1 points.
For metric space M(k), we prove that ck − 1 is a lower bound on the

competitive ratio of any on-line (randomized) k-server algorithm.
The following lemmas show that ck is Θ(log k).

Lemma 1 ck > 1
2 ln k for all k.

Proof. The definition of ci gives the following:

ck − ck−1 =
ck−1

2e2ck−1 − 1
,

or
(ck − ck−1)(2e2ck−1 − 1) = ck−1 ≥ 1,

5

or
(ck − ck−1)e2ck−1 ≥ 1

2
.

Now, if f is a nondecreasing continuous function and x1 < x2 < · · · < xr,
then ∫ xr

x1

f(x)dx ≥
r∑

i=2

(xi − xi−1)f(xi−1).

Thus ∫ ck

c1
e2xdx ≥

k∑
j=2

(cj − cj−1)e2cj−1 ≥ k − 1
2

.

Therefore
e2ck − e2c1

2
≥ k − 1

2
.

e2ck ≥ e2 + (k − 1) > k.

2ck > ln k.

ck >
1
2

ln k.

Lemma 2 For all k, ck ≤ 1 + 1.5 ln k.

Proof. For all y, 1 + y ≤ ey. Therefore 1 + y ≤ 2e2y for all y ≥ 0.

1 + ck−1 ≤ 2e2ck−1

ck−1 ≤ 2e2ck−1 − 1

Therefore
ck−1

2e2ck−1 − 1
≤ 1

ck − ck−1 =
ck−1

2e2ck−1 − 1
≤ 1

Therefore ck ≤ k for all k.

(ck − ck−1)2e2ck−1 = ck−1 + (ck − ck−1) = ck.

(ck − ck−1)2e2ck ≤ (ck − ck−1)2e2+2ck−1

= e2(ck − ck−1)2e2ck−1

= e2ck ≤ ke2.

6

Therefore
(ck − ck−1)2e2ck ≤ ke2.

(ck − ck−1)e2ck ≤ ke2

2
.

If f is continuous and nondecreasing and x1 < x2 < · · · < xr, then∫ xr

x1

f(x)dx ≤
r∑

i=2

(xi − xi−1)f(xi).

Hence ∫ ck

c1
e2xdx ≤

k∑
i=2

(ci − ci−1)e2ci ≤
k∑

i=2

ke2

2
≤ k2e2

2
.

e2ck − e2c1

2
≤ k2e2

2
.

e2ck ≤ e2 + k2e2 = e2(k2 + 1).

Hence
ck ≤

2 + 3 ln k

2
= 1 + 1.5 ln k.

Let us generalize the k-server problem. The multipoint k-server problem
is the problem of serving requests each of which consists of a set of at most
k points. (A request to {z} will be abbreviated as z.) To serve the request
means to move one or more servers so that all the points in the requested
set are covered. We will only study multipoint k-server problems on (k+1)-
point metric spaces. This allows us to assume without loss of generality
that the algorithm is lazy: it never moves more than one server to serve a
request, and if the requested set is already covered, it does nothing.

In M(k), let τi be the set {z1, z2, z3, . . . , zi}. Let γi be the set
{z0, z1, z2, . . . , zi−1}. Let N1, N2, N3, ... denote the integer sequence N1 = 2
and Ni = (2di)Ni−1 + 2 for i ≥ 2.

Fix k and a lazy, randomized multipoint k-server algorithm A for M(k).
If 1 ≤ i ≤ k, say a request sequence σ is i-convergent for A, or simply
i-convergent, if A covers τi with probability 1 just after σ is served.

Lemma 3 For each 1 ≤ i ≤ k, for each i-convergent request sequence σ for
M(k), there is a request sequence ∆ with the following properties:

1. ∆ consists of a request sequence for M(i− 1) preceded immediately by
a request to z0 and followed immediately by a request to τi. (Thus σ∆
is i-convergent.)

7

2. The length of ∆ is at most Ni.

3. Suppose A serves request sequence σ∆. Let s1, s2, . . . , si be the servers
that occupy {z1, z2, . . . , zi} just after σ is served, sj occupying zj. Let
t = P [z0 is vacant just after A has served σ∆]. Define the i-cost of
∆ to be the cost incurred by s1, s2, . . . , si during the time A is serving
the ∆ of σ∆. Let w ∈ {1, 2, ..., 2di} be the optimal cost of serving ∆
by an i-server algorithm whose servers start on {z1, . . . , zi}. Then the
expected i-cost of ∆ is at least ciwt.

Intuitively, the reason why such a costly sequence ∆ exists is that the
on-line algorithm does not know in advance how many requests in M(i− 1)
will be given before the request to τi. Suppose that z0 is vacant prior to the
arrival of ∆. If only few requests in M(i − 1) appear, it makes little sense
to move a server on one of the distant points {zi, . . . , zk} and pay a high
price. If there are many requests, however, a distant server must be moved,
so as to avoid indefinitely having to shuffle i− 1 servers among the i points
of M(i− 1).

To prove Lemma 3, we need a technical lemma, the proof of which ap-
pears in the appendix.

Lemma 4 Let 2 ≤ i ≤ k. Let ` be an integer, ` ≥ ci−1. Let d ≥ 4ci−1e
2ci−1`

be an integer. Let w1, w2, ..., wQ ∈ {1, 2, ..., 2`} where Q satisfies
∑Q−1

i=1 wi <

2d ≤
∑Q

i=1 wi. Let p1, p2, ..., pQ−1 ∈ [0, 1].
Then either

d + ci−1

Q−1∑
s=1

psws ≥ ci(2d)

or there is an h ∈ {1, 2, ..., Q− 1} such that

d(1− ph) + ci−1

h∑
s=1

psws ≥ ci

h∑
s=1

ws.

Proof of Lemma 3. By induction on i.
Basis: i = 1. Let ∆ = z0z1. The optimal cost w of serving ∆ by a 1-server
algorithm whose server starts on z1 is 2. Algorithm A leaves z0 vacant after
serving σ∆ with probability t, so with probability at least t server s1 must
have served both requests, incurring an expected i-cost of at least 2t = ciwt.
Inductive Step: i > 1. Let σ be an i-convergent request sequence for M(k).
It is also (i−1)-convergent. By induction, there is a request sequence ∆1 (of

8

length at most Ni−1) consisting of a request sequence for M(i−2) preceded
by a request to z0 and followed by a request to τi−1 such that the following
holds. If A serves σ∆1, the expected (i−1)-cost incurred while serving ∆1 is
at least ci−1w1t1 (where w1 ∈ {1, 2, ..., 2di−1} is the optimal cost of serving
∆1 with i− 1 servers and t1 is the probability that z0 is vacant after σ∆1 is
served).

Since σ∆1 is (i − 1)-convergent, we can apply induction again. Thus
there is a ∆2 (of length at most Ni−1) consisting of a request sequence for
M(i − 2) preceded by a request to z0 and followed by a request to τi−1

such that the following holds. If A serves σ∆1∆2, the expected (i− 1)-cost
incurred while serving ∆2 is at least ci−1w2t2 (where w2 ∈ {1, 2, ..., 2di−1}
is the optimal cost of serving ∆2 with i− 1 servers and t2 is the probability
that z0 is vacant after σ∆1∆2 is served).

Since σ∆2 is (i − 1)-convergent, we can apply induction again. Thus
there is a ∆3 (of length at most Ni−1) consisting of a request sequence for
M(i− 2) preceded by a request to z0 and followed by a request to τi−1 such
that the following holds. If A serves σ∆1∆2∆3, the expected (i − 1)-cost
incurred while serving ∆3 is at least ci−1w3t3 (where w3 ∈ {1, 2, ..., 2di−1}
is the optimal cost of serving ∆3 with i− 1 servers and t3 is the probability
that z0 is vacant after σ∆1∆2∆3 is served).

Repeat this process, getting ∆1,∆2, . . . ,∆Q and w1, w2, . . . , wQ such
that w1 +w2 + · · ·+wQ ≥ 2di, but w1 + · · ·+wQ−1 < 2di. Now change ∆Q:
replace it by ∆Qγi.

Let “time j” mean “just after σ∆1 · · ·∆j has been served.” Let tj = P [z0

is vacant at time j]. Let uj = P [zi is vacant at time j] and let rj =
tj + uj , the probability that either z0 or zi is vacant at time j. Because
rj = P [zi+1, zi+2, . . . , zk are occupied at time j] (even for j = Q), we have
r1 ≥ r2 ≥ · · · ≥ rQ. Let

qj =
{

uj/rj if rj 6= 0
1 otherwise

.

Note that rjqj = uj always. The expected (i− 1)-cost of phase j < Q is at
least

ci−1wjtj = ci−1wj(rj − uj) = ci−1wjrj(1− qj).

Clearly tQ = 0. Therefore rQ = uQ, so qQ = 1. (Of course the expected
(i− 1)-cost of phase Q is at least 0 = ci−1wQrQ(1− qQ).) ∆1∆2 · · ·∆Q is a
request sequence for M(i− 1) preceded by a request to z0.

Choose 1 ≤ h ≤ Q. The expected cost incurred by si to serve
∆1∆2 · · ·∆hτi (after A has already served σ) is at least diuh, since zi is

9

occupied just after σ is served. Thus the expected i-cost, if we have h ≤ Q
phases, is at least

diuh +
∑h

j=1 ci−1wjrj(1− qj)
≥ rh(diqh) + ci−1rh

∑h
j=1 wj(1− qj)

= rh(diqh + ci−1
∑h

j=1 wj(1− qj))

and qQ = 1. When h = Q, this last quantity is

rQ(di + ci−1

Q−1∑
j=1

wj(1− qj)).

By Lemma 4, with ` = di−1, d = di and ps = 1− qs for all s, either

di + ci−1

Q−1∑
j=1

wj(1− qj) ≥ ci(2di)

or there is an h ∈ {1, 2, . . . , Q− 1} such that

diqh + ci−1

h∑
j=1

wj(1− qj) ≥ ci

h∑
j=1

wj .

In the former case, the optimal cost incurred by an adversary having i
servers in serving ∆1∆2 · · ·∆Qτi after serving σ equals 2di. A’s expected
i-cost to serve the same sequence after serving σ is at least rQ[ci(2di)]. Let

∆ = ∆1∆2 · · ·∆Qτi.

If z0 is vacant after σ∆ is served, then either z0 or zi is vacant after
σ∆1∆2 · · ·∆Q is served. Thus the probability t that z0 is vacant after σ∆
is served is at most rQ, and therefore ∆ suffices, since ∆’s length is at most
(2di)Ni−1 + 2 = Ni. (Q ≤ 2di since wj ≥ 1 for all j.)

In the latter case, the optimal cost incurred by an i-server adversary
in serving ∆1∆2 · · ·∆hτi after serving σ is at most

∑h
j=1 wj . A’s expected

i-cost to serve the same sequence after serving σ is at least rhci
∑h

j=1 wj .
Let

∆ = ∆1∆2 · · ·∆hτi.

If z0 is vacant after σ∆ is served, then either z0 or zi is vacant after
σ∆1∆2 · · ·∆h is served. Thus the probability t that z0 is vacant after σ∆ is
served is at most rh, and therefore ∆ suffices.

10

We use the notation OPT(σ) to denote the optimal off-line multipoint
cost to serve σ, and we use A(σ) to denote the (random) cost of our on-line
multipoint algorithm A to serve σ.

Theorem 5 For all r, there is a multipoint request sequence σr of length at
most rNk and optimal cost at least r such that

E[A(σr)] ≥ ck ·OPT(σr).

Proof. Take i = k. Build request sequence σr = ∆1∆2∆3 · · ·∆r via
repeated applications of Lemma 3, by constructing ∆1, then ∆2, then ∆3,
and so on. Each ∆j has length at most Nk. The optimal cost of serving ∆j

with k servers is wj ≥ 1. Each time the lemma is applied, t = 1.

OPT(σr) = w1 + w2 + · · ·+ wr.

(We have equality because each ∆j ends with τk.) The expected value of
A(σr) is at least ckw1 + ckw2 + · · ·+ ckwr = ck ·OPT(σr).

Corollary 6 There is no c-competitive multipoint k-server algorithm for
M(k) if c < ck.

Definition. Let M be a metric space on the k + 1 points {z0, z1, ..., zk}.
Let S ⊂

6−
M, S 6= ∅. Say an S-request is a sequence of requests to all |S|

points in S, one at a time, in increasing order by index.

Definition. Let M be a metric space on the k + 1 points {z0, z1, ..., zk}.
We say a (single point) server algorithm A for M is finitely converging if it
has the following property. Let α be a request sequence and let S ⊂

6−
M,

S 6= ∅. If A serves a sequence consisting of α followed by enough S-requests,
then at the end all the points in S are occupied with probability one.

Lemma 7 Let M be a metric space on k + 1 points. If there is a lazy, c-
competitive, finitely converging algorithm for the single-point k-server prob-
lem on M, then there is a lazy, c-competitive multipoint k-server algorithm
for M.

Proof. Suppose A is a lazy, finitely converging c-competitive k-server
algorithm for M. We argue that there is a lazy, c-competitive multipoint
k-server algorithm B for M. Let σ be a multipoint request sequence for M.

11

B simulates A on a single point request sequence σ′ for M. B constructs
σ′ on the fly by replacing a request to the set S in σ by a long sequence
of S-requests. The number of these S-requests is chosen so large that A is
known to cover S with probability one after serving the S-requests. Further,
the number is chosen so large that even the adversary is known to cover S
afterward.

To serve a request to S, B flips coins for A and “watches” A’s behavior
on the long string of S-requests. At the end, B moves to A’s configuration
by moving at most one server.

Let OPT and OPT′ denote the optimal costs of a multipoint and single
point request sequence, respectively. B(σ) ≤ A(σ′) and hence

E[B(σ)] ≤ E[A(σ′)] ≤ c ·OPT′(σ′) + a

for a suitable a. But OPT(σ) = OPT′(σ′), and thus B is a lazy, c-
competitive, multipoint k-server algorithm for M.

Theorem 8 There is no lazy, finitely converging c-competitive algorithm
for the single point k-server problem on M(k) if c < ck.

Proof. Follows from Corollary 6 and Lemma 7.
Now we relate finitely converging and non-finitely converging algorithms.

Lemma 9 Suppose that A is a lazy, c-competitive k-server algorithm for
a (k + 1)-point metric space M . Then there is a lazy, finitely converging
(c + 1)-competitive k-server algorithm A′ for M .

Proof sketch. Let the points of M be ordered z0, z1, ..., zk. Without
loss of generality, suppose that the minimum nonzero distance in M equals
one and the maximum distance equals, say, D. Choose a ≥ 0 such that
E[A(σ)] ≤ c ·OPT(σ) + a for all σ.

At all times, A′ simulates either A or the deterministic, lazy, k-
competitive algorithm BAL of [MMS], initially the former. A long sequence
of S-requests will ensure that A fails to occupy all the points of S with prob-
ability approaching zero, for otherwise it could not be competitive. (Indeed,
enough S-requests will ensure that any given competitive algorithm, on-line
or off-line, occupies S with probability approaching one. The adversary
himself can be forced to occupy S in this way.)

12

At all times, A′ attempts to write the list of requests seen to date, in-
cluding the current request, as τSL, where

L = L(τ) = 1 + dk2D|τ |2(c|τ |+ 2cD + a)e.

(Here, S represents an S-request.) If it fails, it simply flips coins and serves
the request as A would have. If it succeeds—and in this case τ and S are
unique—A′ flips its coins to simulate A on the current request. If the coin
flips dictate that A move to a configuration covering S, A′ continues to
mimic A. Otherwise, A′ switches to BAL in a lazy way, never to return to
A. If the next |S| requests are an S-request, then L is so large that after
those requests are served A′ covers S. Thus A′ covers S with probability
one by the time it has served τSL+1.

It is not hard to prove that L is so large that the probability that A′

switches to BAL when the list of requests seen to date is of the form τSL

is at most 1/(k2D|τ |2). Therefore the probability that A′ ever switches to
BAL is at most

∑∞
l=1 1/(k2Dl2) ≤ 2/(k2D). Now A′(σ) = A(σ) if A′ never

switches to BAL, and A′(σ) ≤ A(σ) + (D + BAL(σ)) if A′ does switch.

D + BAL(σ) ≤ D + (k ·OPT(σ) +

(
k

2

)
D)

≤ k ·OPT(σ) + (k2/2)D.

Therefore

E[A′(σ)] ≤ E[A(σ)] + (k ·OPT(σ) +
k2

2
D) · P [A′ switches to BAL]

≤ E[A(σ)] +
2

kD
·OPT(σ) + 1

≤ E[A(σ)] + (OPT(σ) + 1)
≤ (c + 1) ·OPT(σ) + (a + 1).

Theorem 10 There is no c-competitive algorithm A for the single point
k-server problem on M(k) if c < ck − 1.

Proof. Lemma 9 proves that the existence of a c-competitive algorithm
implies the existence of a lazy, finitely converging (c + 1)-competitive algo-
rithm. Theorem 8 completes the proof.

13

3 Ramsey Theory for Metric Spaces

This section deals with the structure of metric spaces. Theorem 12 shows
that every metric space of cardinality n contains either a roughly uniform
subset of at least 1

2 lg n points, or an approximately superincreasing sequence
of Ω((lg n)/ lg lg n) points.

Lemma 11 Let M be a metric space on n points, w(e) denoting the length
of edge e, and let c > 1 be a real. M contains either

1. a subset S of size at least s = lg n such that the distances within S
differ by no more than a factor of c2, or

2. a point P and a subset T of size at least t = n/ lg n such that P 6∈ T
and

minx∈T d(x, P)
maxx,y∈T d(x, y)

≥ c

4
− 1

2
.

Proof. We may assume n ≥ 3. Label edge e with blogc w(e)c. Let j be
the largest label, and call those edges labeled j or j−1 large and the rest, if
any, small. Build a graph G on the points of M: {u, v} ∈ E(G) if and only
if {u, v} is small in M. The value of d, a nonnegative real, will be chosen
later.

If every vertex in G has degree at most d, then G has an independent
set S of size at least n/(d + 1). (The greedy independent set algorithm
generates such an S.) If u and v are distinct points of S, {u, v} is large. But
the lengths of two large edges cannot differ by more than a factor of c2.

Otherwise, some vertex v has degree exceeding d. Let {a, b} be the
longest edge in the metric space, labeled so that d(a, v) ≥ d(b, v); d(a, v) ≥
1
2d(a, b) ≥ 1

2cj . Let T be v together with its neighborhood in G. All edges
between points in T are of length less than 2cj−1. If x ∈ T ,

d(a, x) ≥ d(a, v)− d(v, x) ≥ 1
2
cj − cj−1.

Thus
minx∈T d(x, a)

maxx,y∈T d(x, y)
≥

1
2cj − cj−1

2cj−1
=

c

4
− 1

2
.

We have found either a set S of size at least n/(d + 1) whose interpoint
distances differ by at most a factor of c2, or a set T for which

minx∈T d(x, a)
maxx,y∈T d(x, y)

≥ c

4
− 1

2

14

with |T | > 1+ d. Taking d = (n/ lg n)− 1 and P = a, the proof is complete.

Theorem 12 Let M be a metric space on n points and let c > 1. M
contains either

1. a subset of size at least 1
2 lg n whose interpoint distances differ by at

most a factor of c2; or

2. a sequence of distinct vertices P1, P2, . . . , Pt for t = d1
2(lg n)/ lg lg ne−1

such that
minj>i d(Pj , Pi)

maxj>i+1 d(Pj , Pi+1)
≥ c

4
− 1

2

for i = 1, 2, . . . , t− 2.

Proof. Construct a sequence of metric spaces M = M1,M2,M3, . . . ,Mr

and a set of points P1, P2, . . . , Pr−1 (Pi in Mi), as follows. Apply Lemma 11
to Mi. If case 1 is true (where n = |M|, not |Mi|), halt. If case 2 is true but
T has fewer than

√
n points, halt without constructing Mi+1. Otherwise,

let Pi be the point P of case 2, and let Mi+1 be the metric space induced
by T .

If case 1 is ever true, we have a set of at least lg
√

n = 1
2 lg n points

within the current metric space whose interpoint distances differ by at most
c2. Otherwise, since

|Mi+1| ≥
|Mi|

lg |Mi|
≥ |Mi|

lg n
,

the number r of metric spaces we construct satisfies n/(lg n)r <
√

n, i.e.,
r > 1

2(lg n)/ lg lg n. The r − 1 P ’s satisfy Condition 2 above.

4 General Lower Bounds

Lemma 13 Let M and M′ be two metric spaces defined on the same set
of points with distance functions d and d′, respectively. Let b ≥ 1. Suppose
that for every two points x, y, d′(x, y) ≤ d(x, y) ≤ b · d′(x, y). Let c be a
lower bound on the competitive ratio for M′. Then c/b is a lower bound on
the competitive ratio for M.

15

Proof. The cost of serving σ in M is bounded above and below by b times
and one times the cost of serving it in M′, respectively.

Lemma 14 Let b ≥ 1 and let M be a metric space where

maxx,y∈M dist(x, y)
minx 6=y∈M dist(x, y)

≤ b.

Then the competitive ratio for any randomized on-line k-server algorithm
for M is at least Hk/b, where Hk = 1 + 1

2 + 1
3 + · · ·+ 1

k is the kth harmonic
number.

Proof. Scale the distances in M so that the minimum nonzero distance is
1. Apply Lemma 13 and the lower bound of Hk for a uniform metric space
[FKLMSY].

Lemma 15 Let M be a metric space defined on the k+1 points {x0, . . . , xk}
by the distance function d, which satisfies

1. d(x0, x1) = 1, and

2. for every i, 1 < i ≤ k,

minj<i d(xj , xi)
maxj<i−1 d(xj , xi−1)

≥ 8ci−1e
2ci−1 .

Then (ck − 1)/4 is a lower bound on the competitive ratio of any on-line
randomized k-server algorithm serving requests in M.

Proof. For all i, 1 ≤ i ≤ k, define ai = dmin0≤j<i d(xj , xi)e. Conditions 1
and 2 imply that the sequence a1, a2, . . . is superincreasing. Let M′ be the
superincreasing metric space defined on {x0, . . . , xk} by setting dist(xj , xi) =
ai for j < i. It is not hard to prove that 1

2ai ≤ dist(xj , xi) ≤ a1 + a2 + · · ·+
ai ≤ 2ai for all j < i. Theorem 10 and Lemma 13 complete the proof.

Lemma 16 Let t > 2 and let P0, P1, . . . , Pt−1 be a sequence of points in
a metric space such that dist(P0, P1) = 1 and for every i, 1 < i ≤ t − 1,
(minj<i dist(Pj , Pi))/(maxj<i−1 dist(Pj , Pi−1)) ≥ 2. If r > 1, then there is
a subset {Q0, Q1, . . . , Qu−1} of size u ≥ t/(1 + lg r) so that for every i,
1 < i ≤ u,

minj<i dist(Qj , Qi)
maxj<i−1 dist(Qj , Qi−1)

≥ r.

16

Proof sketch. Take every dlg reth point of the P ’s.

Theorem 17 If n = |M| is sufficiently large, then there is a lower bound
of Ω(log k) on the competitive ratio of any randomized on-line k-server al-
gorithm for M.

Proof. Apply Theorem 12 to M with c = 10. If case 1 holds and 1
2 lg n ≥

k + 1, we apply Lemma 14 to obtain a lower bound of Hk/100. So suppose
case 2 holds. Lemma 2 implies that ci ≤ 1 + 1.5 ln i, so that 8cie

2ci ≤
8(1 + 1.5 ln i)e2i3. Define r = 8(1 + 1.5 ln k)e2k3. If

d1
2(lg n)/ lg lg ne − 1

1 + lg r
≥ k + 1,

then Theorem 12, Lemma 15, and Lemma 16 give us a lower bound of
1
4(ck − 1) ≥ 1

8 ln k − 1
4 . It is clear that there is a polynomial p(k) so that if

n ≥ 2p(k), then
d1

2(lg n)/ lg lg ne − 1
1 + lg r

≥ k + 1.

Theorem 18 For any metric space with at least k+1 points, there is a lower
bound of Ω(log log k) on the competitive ratio of every randomized on-line
k-server algorithm.

Proof. Let M be a metric space on exactly k + 1 points. (Ignore any
others.) Let s =

⌈√
lg(k + 1)

⌉
. The technique of Theorem 17 can be used

to construct an (s + 1)-point metric space S within M whose interpoint
distances either differ by at most a factor of 100, or which “grow” by at least
a factor of s4. (This holds for sufficiently large k.) In either case we have
a lower bound of f(s) on the competitive ratio of any randomized s-server
algorithm for S, where f(s) is Ω(log s) and hence Ω(log log k). However, the
algorithm has k servers, not s.

Suppose there is a lazy, finitely converging c-competitive k-server algo-
rithm for M. Then by Lemma 7 we infer that there is a lazy, c-competitive
multipoint k-server algorithm A for M. Then there is a c-competitive s-
server algorithm A′ for S: A′ simply replaces a request to z ∈ S by a request
to the set {z} ∪ (M−S) and feeds the request to A. Neither A nor the ad-
versary will ever move any server initially outside of S. It follows easily that
A′ is a c-competitive s-server algorithm for S. However, for c < f(s), this
cannot be. Now Lemma 9 tells us that no (f(s) − 1)-competitive k-server
algorithm for M can exist, finitely converging or not.

17

5 On-Line Motion-Planning

In this section we study the on-line motion-planning problem of Papadim-
itriou and Yannakakis, as described in the introduction. [PY] proved that
no deterministic search strategy achieves a constant ratio. In this section
we prove that even a randomized searcher cannot achieve a constant ratio.
Rather, the ratio must grow with the number of obstacles.

Let d1, d2, d3, ..., dk be a superincreasing sequence of integers. Set d0 = 0.
Define a new metric space M′(k) on {z0, z1, ..., zk} by identifying zi with the
point di on the real line: dist(zi, zj) = |di − dj |.

Theorem 19 For all multipoint k-server algorithms A for M′(k), for all
r, there is a request sequence σr of optimal cost at least r and of length at
most rNk such that

E[A(σr)] ≥
ck

2
·OPT(σr).

Proof. Let A be a multipoint k-server algorithm for M′(k). Let A′ be
the algorithm for M(k) which mimics the behavior of A on M′(k). Each
distance in M′(k) is between one half and one times the corresponding
distance in M(k). It follows that

E[A(σ)] ≥ 1
2
E[A′(σ)]

for all σ. By Theorem 5, for each r there is a request sequence σ′r for M(k)
of optimal cost at least r and of length at most rNk such that

E[A′(σr)] ≥ ck ·OPT(σ′r).

The optimal cost of σ′r in M(k) is at least its optimal cost in M′(k). We
may set σr = σ′r.

Let N = Nk. Fix a randomized searching algorithm. For scenes with at
most (k + 2)N + 2 obstacles, we will prove a lower bound of Ω(log k) on the
performance ratio.

Choose k. Let h = N +1. We first build a collection of (k+2)N +2 open
rectangles as follows. For each i = 1, 2, . . . , N , place k rectangles of width
one in the region {(x, y)|i−1 ≤ x < i} known as column i. The jth rectangle
Cij (1 ≤ j ≤ k) runs from y = dj−1h to y = djh. These k rectangles cover
the region {(x, y)|i − 1 < x < i, 0 < y < hdk}. Now add a rectangle Ci0 of
width one and infinite height just below Ci1, and add a rectangle Ci,k+1 of

18

the same size as Ci0 just above Cik. Now add one infinite open rectangle L
covering all of the plane to the left of these (k + 2)N rectangles. To their
right add an infinite rectangle R covering everything to the right. Now we
need to shift the rectangles slightly. Define εi = 2−i and slide upward by εi

all k + 2 rectangles in column i, 1 ≤ i ≤ N .
To summarize, the final positions of the rectangles are as follows:

For 1 ≤ j ≤ k,

Cij = {(x, y)|i− 1 < x < i, dj−1h + εi < y < djh + εi},

Ci0 = {(x, y)|i− 1 < x < i, y < εi}, and

Ci,k+1 = {(x, y)|i− 1 < x < i, y > hdk + εi}.

These rectangles together with L and R cover all but a set of measure 0
of the entire plane.

The input consists of a sequence σ1, σ2, . . . , σN , chosen in advance, with
σi ⊂

6−
{0, 1, . . . , k} and σi 6= ∅ for all i. In column i, 1 ≤ i ≤ N , the adversary

“fuses” rectangles Cij and Ci,j+1 for all j ∈ σi. The searcher’s origin s is
(0, ε1), and his target, the vertical line x = N .

As soon as the searcher first reaches column i, i.e., his x-coordinate first
reaches i − 1, the adversary tells him σi. The slight vertical displacement
between columns i − 1 and i prevents the searcher from learning anything
about σi before he enters column i.

Against these possible inputs, we can convert any searching algorithm
to an algorithm A of no greater cost with this property:

• As soon as the searcher’s x-coordinate reaches i − 1 (and he learns
σi), he chooses a column-i rectangle Cij with 0 ≤ j ≤ k and j 6∈ σ(i).
(The choice of j ∈ {0, 1, . . . , k} is random and probably not uniform.)
Because j 6∈ σ(i), rectangle Cij has not been fused with its neighbor
above. The searcher then moves vertically to the upper-left corner of
Cij and then one unit rightward.

Let ai 6∈ σi be the searcher’s random choice of j in column i and let
a0 = 0. His cost of moving from the upper-right corner (i− 1, dai−1h + εi−1)
of Ci−1,ai−1 to the upper-right corner (i, daih + εi) of Ci,ai is at least h|dai −

19

dai−1 |. His total cost is therefore at least

h
N∑

i=1

|dai − dai−1 |.

The random choice of ai 6∈ σi depends only on σ1, σ2, . . . , σi. This is precisely
the situation of a randomized multipoint k-server algorithm which serves N
multipoint requests in M′(k) and starts with its “hole” at d0: dai is the
location of the algorithm’s “hole” after serving the ith request σi. We will
view A as a multipoint k-server algorithm for M′(k).

Given σ1, . . . , σN , set b0 = 0 and let b1, b2, . . . , bN be the optimal way to
serve requests σ1, . . . , σN in M′

k. In other words, b1, b2, . . . , bN minimizes∑N
i=1 |dbi

− dbi−1
| subject to the constraint bi 6∈ σi for all i. Then the length

of the shortest obstacle-free s− t path is at most

N∑
i=1

[1 + 2−i + h|dbi
− dbi−1

|]

< N + 1 + h
N∑

i=1

|dbi
− dbi−1

|.

By Theorem 19 applied to A with r = 1, there is a request sequence σ
of length at most N such that

E[A(σ)] ≥ ck

2
·OPT(σ).

(Theorem 19 goes through even if A knows the length of the request sequence
in advance.) For that sequence,

E[
∑N

i=1 |dai − dai−1 |]∑N
i=1 |dbi

− dbi−1
|

≥ ck

2
.

Thus

E[h
∑N

i=1 |dai − dai−1 |]
N + 1 + h(

∑N
i=1 |dbi

− dbi−1
|)

=
hE[

∑N
i=1 |dai − dai−1 |]

h(1 +
∑N

i=1 |dbi
− dbi−1

|)

≥
E[
∑N

i=1 |dai − dai−1 |]
2
∑N

i=1 |dbi
− dbi−1

|

=
ck

4
.

20

With at most 2 + (k + 2)N rectangles, we have proven a lower bound of
ck/4, which is Ω(log k). If desired, each of the rectangles with an infinite side
length can be replaced by a rectangle with finite but very large dimensions.

We choose
dk = d4ck−1e

2ck−1edk−1

for all k ≥ 2 and d1 = 1. A simple calculation yields Nk ≤ 4k(d1d2 · · · dk),
dk ≤ k10dk−1, and Nk ≤ 4k(k!)10k. This means that we have a lower bound
of (ln lnn)/24, n being the number of rectangles, for infinitely many n.

6 Acknowledgments

We are grateful to Prabhakar Raghavan for inspiring us to seek a general
k-server lower bound, to Lyle McGeoch for his help in fixing a mistake, to
Mario Szegedy for simplifying the proof of Lemma 11, and to Dean Foster
and Amos Fiat for their helpful remarks.

7 Appendix

Let β ≥ 1 be a real and let ` ≥ β be a positive integer. Let d ≥ 4βe2β` be
an integer. Let w1, w2, ..., wQ ∈ {1, 2, ..., 2`} where Q satisfies

∑Q−1
i=1 wi <

2d ≤
∑Q

i=1 wi.
We prove a lower bound on the solution of the following linear program

LP1:
Find p1, p2, ..., pQ−1, γ so as to minimize γ subject to

d(1− pt) + β ·
t∑

s=1

psws ≤ γ ·
t∑

s=1

ws, for t = 1, . . . , Q− 1,

d + β ·
Q−1∑
s=1

psws ≤ γ · 2d,

and
0 ≤ ps ≤ 1, for s = 1, . . . , Q− 1.

We first prove that the solution of linear program LP2:
Find r1, r2, ..., r2d−2`, γ so as to minimize γ subject to

d(1− rj) + β ·
j∑

i=1

ri ≤ γ · (j + 2`), for j = 1, . . . , 2d− 2`,

21

d + β ·
2d−2`∑
i=1

ri ≤ γ · 2d

is a lower bound on the solution of LP1. Then we prove that the solution of
linear program LP3:

Find t1, t2, ..., t2d−2`, γ so as to minimize γ subject to

d(1− tj) + β ·
j∑

i=1

ti = γ · (j + 2`), for j = 1, . . . , 2d− 2`,

d + β ·
2d−2`∑
i=1

ti ≤ γ · 2d,

is a lower bound on the solution of LP2. LP2 and LP3 are identical, except
that the first 2d− 2` inequalities in LP2 are equalities in LP3.

Lemma 20 The solution of LP2 is a lower bound on the solution of LP1.

Proof. Suppose p1, . . . , pQ−1, γ is a feasible solution to LP1. Then the
assignment

r1 = p1

r2 = p1
...

rw1 = p1

rw1+1 = p2

rw1+2 = p2
...

rw1+w2 = p2
...

rw1+···+wQ−2+1 = pQ−1

rw1+···+wQ−2+2 = pQ−1
...

rw1+···+wQ−1 = pQ−1

and γ is a solution to LP2. (Because w1 + w2 + · · · + wQ−1 ≥ 2d − 2`, we
have constructed at least as many r’s as we need, maybe more.)

Lemma 21 The solution of LP3 is a lower bound on the solution of LP2.

22

Proof. Suppose r1, r2, . . . , r2d−2`, γ is a feasible solution to LP2. Define
R0 = 0 and Rj = r1 + r2 + · · ·+ rj , 1 ≤ j ≤ 2d− 2`. Then

d(1−Rj + Rj−1) + βRj ≤ γ(j + 2`)

for 1 ≤ j ≤ 2d− 2`, and

d + βR2d−2` ≤ γ · 2d.

Therefore
d−Rj(d− β) + dRj−1 ≤ γ(j + 2`),

which is equivalent to

Rj ≥
d

d− β
Rj−1 +

d− γ(j + 2`)
d− β

.

Also
R2d−2` ≤

d(2γ − 1)
β

.

Now define T0 = 0 and

Tj =
d

d− β
Tj−1 +

d− γ(j + 2`)
d− β

if 1 ≤ j ≤ 2d− 2`, so that

d(1− Tj + Tj−1) + βTj = γ(j + 2`)

for 1 ≤ j ≤ 2d − 2`. An easy inductive proof shows that Tj ≤ Rj for all j.
Thus

T2d−2` ≤ R2d−2` ≤
d(2γ − 1)

β
.

Define tj = Tj − Tj−1 for j = 1, 2, . . . , 2d− 2`.
For 1 ≤ j ≤ 2d− 2`,

d(1− tj) + β(t1 + t2 + · · ·+ tj)

= d(1− Tj + Tj−1) + βTj

= γ(j + 2`).

Also
T2d−2` = t1 + t2 + · · ·+ t2d−2` ≤

d(2γ − 1)
β

.

This means that t1, t2, ..., t2d−2`, γ is a feasible solution to LP3.

23

Lemma 22 If t1, t2, ..., t2d−2`, γ is a solution to LP3, then

γ ≥ β

[
1 +

1
2e2β − 1

]
.

Proof. We have
d(1− t1) + βt1 = γ(1 + 2`),

i.e.,

t1 =
d− γ(1 + 2`)

d− β
.

For j = 2, 3, . . . , 2d− 2`,

d(1− tj) + β ·
j∑

i=1

ti = γ · (j + 2`)

d(1− tj−1) + β ·
j−1∑
i=1

ti = γ · (j − 1 + 2`).

Subtracting,
d(tj−1 − tj) + βtj = γ,

or
tj =

d

d− β
tj−1 −

γ

d− β
,

j = 2, 3, . . . , 2d− 2`. An easy proof verifies that

tj =
γ

β
−
(

γ

β
+ 2γ

`

d
− 1

)(
d

d− β

)j

for j = 1, 2, . . . , 2d− 2`. We now use this assignment in the last constraint
of LP3 to get

d + γ(2d− 2`) + β

(
1− γ

β
− 2γ

`

d

) 2d−2`∑
i=1

(
d

d− β

)i

≤ γ · 2d.

But
2d−2`∑
i=1

(
d

d− β

)i

=
d

β
·
[(

d

d− β

)2d−2`

− 1

]

=
d

β
(D − 1)

24

where

D =
(

d

d− β

)2d−2`

.

Therefore

d + γ(2d− 2`) + β

(
1− γ

β
− 2`

γ

d

)[
d

β
(D − 1)

]
≤ γ(2d)

d + γ(2d− 2`) + d

(
1− γ

β
− 2`

γ

d

)
(D − 1) ≤ γ(2d)

d(1 + D − 1) + γ(−2`−
(

d

β
+ 2`

)
(D − 1)) ≤ 0

dD ≤ γ

(
2` + (D − 1)

(
d

β
+ 2`

))
γ ≥ Dd

2` + (D − 1)(d
β + 2`)

=
Ddβ

2`β + (D − 1)(d + 2`β)

=
Ddβ

2`β + Dd− d + D2`β − 2`β

γ ≥ β

[
Dd

Dd− d + D(2`β)

]

= β

[
Dd− d + D(2`β) + [d−D(2`β)]

Dd− d + D(2`β)

]

= β

[
1 +

d−D(2`β)
Dd− d + D(2`β)

]

= β

[
1 +

1− 2β `
dD

D(1 + 2β `
d)− 1

]
Now

D =
(

d

d− β

)2d−2`

=
(

1 +
β

d− β

)2d−2`

≤ e
β

d−β
(2d−2`)

Because (2d− 2`)/(d− β) ≤ 2, D ≤ e2β . But

γ ≥ β

[
1 +

1− 2β `
dD

D(1 + 2β `
d)− 1

]

25

As D increases, the bracketed quantity decreases. Therefore

γ ≥ β

[
1 +

1− 2β `
de2β

e2β − 1 + e2β(2β `
d)

]
.

Because d ≥ 4βe2β`, 2β `
de2β ≤ 1/2. Thus

γ ≥ β

[
1 +

1− 1
2

e2β − 1 + 1
2

]
= β

[
1 +

1
2e2β − 1

]
.

Lemma 23 The optimal value of LP1 is at least

β

[
1 +

1
2e2β − 1

]
.

Proof. The lemma follows from Lemmas 20, 21, and 22.
Proof of Lemma 4. If Lemma 4 is not true, then

d + ci−1

Q−1∑
s=1

psws < ci(2d)

and

d(1− ph) + ci−1

h∑
s=1

psws < ci

h∑
s=1

ws

for all h, 1 ≤ h ≤ Q− 1. In this case, there is a C < ci such that

d + ci−1

Q−1∑
s=1

psws ≤ C(2d)

and

d(1− ph) + ci−1

h∑
s=1

psws ≤ C
h∑

s=1

ws

for all h, 1 ≤ h ≤ Q− 1. This contradicts Lemma 23 if we set β = ci−1 and
γ = C, since then

β

[
1 +

1
2e2β − 1

]
= ci.

26

References

[BBKTW] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and
A. Wigderson. On the Power of Randomization in Online Al-
gorithms. In Proc. of the 22nd Ann. ACM Symp. on Theory of
Computing, pages 379–386, May 1990.

[BCR] R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins.
Searching with Uncertainty. Technical report, University of Water-
loo, October 1987.

[BLS] A. Borodin, N. Linial, and M. Saks. An Optimal On-Line
Algorithm for Metrical Task Systems. In Proc. of the 19th Ann.
ACM Symp on Theory of Computing, pages 373–382, May 1987.

[BRS] A. Blum, P. Raghavan, and B. Schieber. Navigating in Unfa-
miliar Geometric Terrain. In Proc. of the 23rd Ann. ACM Symp. on
Theory of Computing, May 1991. Also submitted for publication.

[CKPV] M. Chrobak, H.J. Karloff, T. Payne, and S. Vish-
wanathan. New Results on Server Problems. SIAM Journal on
Discrete Mathematics 4(2):172–181, 1991.

[CL] M. Chrobak and L. Larmore. An Optimal On-line Algorithm
for the Server Problem on Trees. SIAM Journal of Computing
20:144–148, 1991.

[FFKRRV] A. Fiat, D.P. Foster, H.J. Karloff, Y. Rabani,
Y. Ravid, and S. Vishwanathan. Competitive Algorithms for
Layered Graph Traversal. In Proc. of the 32nd Ann. Symp. on
Foundations of Comp. Sci., pages 288–297, October 1991.

[FKLMSY] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch,
D.D. Sleator, and N.E. Young. Competitive Paging Algo-
rithms. Journal of Algorithms 12:685–699, 1991.

[FRR] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-Server Algo-
rithms. In Proc. of the 31st Ann. IEEE Symp. on Foundations of
Computer Science, pages 454–463, October 1990. Also to appear
in Journal of Computer and System Sciences.

27

[Ge] E. Grove. The Harmonic k-Server Algorithm is Competitive. In
Proc. of the 23nd Ann. ACM Symp. on Theory of Computing, pages
260–266, May 1991.

[KMMO] A.R. Karlin, M.S. Manasse, L.A. McGeoch, and S. Ow-
icki. Competitive Randomized Algorithms for Non-Uniform Prob-
lems. In Proc. of the 1st Ann. ACM-SIAM Symp. on Discrete Al-
gorithms, pages 301–309, January 1990. Also submitted for publi-
cation.

[LST] L. Lovász, M. Saks, and W.T. Trotter. An Online Graph
Coloring Algorithm with Sublinear Performance Ratio. Discrete
Mathematics, pages 319–325, 1989.

[MMS] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Com-
petitive Algorithms for On-Line Problems. Journal of Algorithms
11:208–230, 1990.

[MS] L.A. McGeoch and D.D. Sleator. A Strongly Competitive
Randomized Paging Algorithm. Algorithmica 6:816–825, 1991.

[PY] C.H. Papadimitriou and M. Yannakakis. Shortest Paths
Without a Map. Springer-Verlag Lecture Notes in Computer Sci-
ence, volume 372, pages 610–620, July 1989.

[RS] P. Raghavan and M. Snir. Memory versus Randomization in
On-Line Algorithms. Springer-Verlag Lecture Notes in Computer
Science, volume 372, pages 687–703, July 1989.

[ST] D.D. Sleator and R.E. Tarjan. Amortized Efficiency of List
Update and Paging Rules. Communication of the ACM, 28(2) pages
202–208, 1985.

[Vn] S. Vishwanathan. Randomized Online Graph Coloring. In Proc.
of the 31st Ann. IEEE Symp. on Foundations of Computer Science,
October 1990. Also to appear in Journal of Algorithms.

28

