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Abstract

We study the fundamental classification problems 0-Extension and Metric Labeling. A gener-
alization of Multiway Cut, 0-Extension is closely related to partitioning problems in graph theory
and to Lipschitz extensions in Banach spaces; its generalization Metric Labeling is motivated by ap-
plications in computer vision. Researchers had proposed using earthmover metrics to get polynomial
time-solvable relaxations for these problems. A conjecture that has attracted much attention recently is
that the integrality ratio for these relaxations is constant. We prove

1. that the integrality ratio of the earthmover relaxation for Metric Labeling is Ω(log k) (which is
asymptotically tight), k being the number of labels, whereas the best previous lower bound on the
integrality ratio was only constant;

2. that the integrality ratio of the earthmover relaxation for 0-Extension is Ω(
√

log k), k being the
number of terminals (it was known to be O((log k)/ log log k)), whereas the best previous lower
bound was only constant;

3. that for no ε > 0 is there a polynomial-time O((log n)1/4−ε)-approximation algorithm for 0-
Extension, n being the number of vertices, unless NP⊆DTIME(npoly(log n)), whereas the strongest
inapproximability result known before was only MAX SNP-hardness; and

4. that there is a polynomial-time approximation algorithm for 0-Extension with performance ratio
O(

p
diam(d)), where diam(d) is the ratio of the largest to smallest nonzero distances in the terminal

metric.

1 Introduction

Originally suggested by Karzanov [14], 0-Extension takes as input an undirected graph G with a non-
negative weight function w on the edges, a subset T of the node set V (G) (the elements of T being called
terminals), and a metric d on T . The goal is to assign each node v ∈ V (G) to a terminal t(v) ∈ T
(with t(v) = v for every v ∈ T ), minimizing the total cost of the assignment, which is defined to be∑

{u,v}∈E(G) w(u, v)d(t(u), t(v)). We are partitioning the graph into |T | pieces, the ith piece containing ter-
minal i, where the cost of sending endpoints u and v of an edge to different terminals depends on the
terminals to which u and v are assigned. It is the fact that the cost associated with edge {u, v} depends
on the terminals to which u and v are assigned, and not just on whether t(u) = t(v) or not, that makes
it more challenging than easier problems like Multiway Cut. Multiway Cut asks for the minimum
cost of partitioning a graph into |T | parts, the ith part including the ith terminal. In other words, Mul-
tiway Cut asks for the minimum cost of an assignment of V (G) to T , with t(v) = v for all v ∈ T , of∑

{u,v}∈E(G) w(u, v) · [1 if t(u) 6= t(v), 0 otherwise]. Thus Multiway Cut is precisely 0-Extension when
the metric d is the uniform metric.

0-Extension takes its (unfortunate) name from the fact that we wish to extend the metric d on T to a
semimetric on all of V (G) subject to the restriction that every nonterminal must be at distance 0 from some
terminal; such extensions are called 0-extensions.

∗A preliminary version of this paper appeared in the 2006 ACM Symposium on the Theory of Computing.
†AT&T Labs—Research, 180 Park Ave., Florham Park, NJ 07932, howard@research.att.com.
‡College of Computing, Georgia Institute of Technology, Atlanta, GA 30332–0280, khot@cc.gatech.edu.
§IBM Almaden Research Center, San Jose, CA 95120. aranyak@cc.gatech.edu. This work was done while this author was

at the Georgia Institute of Technology.
¶Computer Science Department, Technion—Israel Institute of Technology, Haifa 32000, Israel, rabani@cs.technion.ac.il.

Part of this work was done while this author was on sabbatical leave at Cornell University. Work supported by Israel Science
Foundation grant number 52/03 and by United States-Israel Binational Science Foundation grant number 2002282.

1



Calinescu et al. [6] gave a O(log |T |)-approximation algorithm for 0-Extension. The better analysis of
Fakcharoenphol et al. [10] improved the guarantee to O(log |T |/ log log |T |). The underlying idea in [6, 10]
is to solve a linear programming relaxation that optimizes over all metric extensions (rather than just 0-
extensions), and then to “round” the solution using a new partitioning procedure. Lee and Naor [18] later
showed that this partitioning procedure can be used to improve the bounds on Lipschitz extensions in Banach
spaces. Krauthgamer, Lee, Mendel, and Naor [15] used the 0-Extension partitioning techniques of [6, 10]
in their measured descent embedding method.

Metric Labeling takes as input an undirected graph G with a nonnegative weight function w on the
edges, a metric space (T, d) (the elements of T are called labels), and a nonnegative cost function c on
node-label pairs. The goal is to assign, for every node v ∈ V (G), a label t(v) ∈ T , minimizing the total cost
of the assignment, which is

∑
v∈V (G) c(v, t(v)) +

∑
{u,v}∈E(G) w(u, v)d(t(u), t(v)). (Notice that this problem

generalizes 0-Extension by allowing an arbitrary assignment cost function c.) Motivated by applications
to segmentation problems in computer vision, this problem was introduced by Kleinberg and Tardos [17],
who proposed an approximation algorithm based on the approximate representation, due to Bartal [3], of
(T, d) as a combination of dominating tree metrics. Using the recent improved representation of metrics as
combinations of dominating tree metrics due to Fakcharoenphol et al. [11], the Kleinberg-Tardos algorithm
guarantees a O(log |T |) approximation factor, which is the best general result to date. Constant-factor
approximations are known for some special cases [17, 12, 8, 1]. (Indeed, the result of [11] was also achieved
by modifying the 0-Extension partitioning procedure of [6, 10].)

An obvious question emerges from the above discussion: Can the upper bounds of O(log |T |) and
O(log |T |/ log log |T |) for Metric Labeling and 0-Extension, respectively, be improved? As shown above,
past experience indicates that pursuing this question may produce results whose impact goes beyond solv-
ing the specific optimization problems. Unfortunately, improving the approximation guarantees for these
problems is impossible using the methods that were used by the above-mentioned algorithms. Specifically,
the bound on embedding a metric into a combination of dominating tree metrics is asymptotically tight
(a lower bound follows from [2, 19]), and the diameter-times-boundary volume bound of the partitioning
is also tight (proof omitted). The metric relaxation of 0-Extension was shown to have integrality ratio
Ω

(√
log |T |

)
[6]. (A different earlier construction of Johnson et al. [13] done in the context of Lipschitz

extensions implies a somewhat weaker bound.)

A promising direction was suggested independently by Charikar [7] and by Chekuri et al. [8]. They suggested
a new linear programming relaxation, motivated by a successful relaxation for the special case Multiway
Cut of 0-Extension. The same relaxation, with different objective functions, can be used for 0-Extension
and for Metric Labeling. The idea is to find an optimal transportation metric extending d (instead of
an arbitrary metric extending d). It is often called the earthmover relaxation. (Transportation metrics are
called earthmover distance in the computer vision literature, where they are used as a standard metric to
compare histograms. In other fields where they are applied, including analysis and information theory, they
are often called by other names.) Chekuri et al. [8] showed that the earthmover relaxation for Metric
Labeling has integrality ratio at least as good as the performance ratio of the Kleinberg-Tardos algorithm;
see [8] for details. Archer et al. [1] gave an earthmover relaxation-based Metric Labeling algorithm
whose performance depends on the decomposability of the metric d. Furthermore, the previously known
bad examples for the metric relaxation for 0-Extension actually have only constant integrality ratio in
the earthmover relaxation (proofs omitted). Despite these positive indications and significant attention, no
progress has been reported on improving the upper bounds in the general case for either 0-Extension or
Metric Labeling. In fact, Chuzhoy and Naor [9] recently published a disturbing result. They proved
that unless NP ⊆ DTIME

(
npoly(log n)

)
, there is no polynomial-time algorithm that approximates Metric

Labeling within a factor of O
(
(log |T |) 1

2−ε
)
, for any ε > 0. Their result does not apply to 0-Extension.

In this paper we resolve many of the questions mentioned above. In Section 3 we prove an Ω(log |T |)
integrality ratio for the earthmover relaxation for Metric Labeling, in contrast to the previous constant
lower bound. In view of the known upper bounds [8], this result is asymptotically tight. In Section 4 we
prove an Ω

(√
log |T |

)
integrality ratio for the earthmover relaxation for 0-Extension. This matches the
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lower bound known for the metric relaxation. We also provide in the appendix, an alternate construction to
prove both these integrality ratios.

(A result of Bourgain [4] implies that the transportation metric over a Hamming cube cannot be embedded
into a convex combination of 0-extensions of the Hamming cube with distortion which is bounded by an
absolute constant as the cube dimension increases. The bound was improved significantly (and stated
explicitly) in a very recent paper of Khot and Naor [16]. However, this does not imply an integrality ratio,
as we are interested in the Lipschitz constant of the embedding rather than the product of the Lipschitz
constants of the embedding and its inverse. In fact, when d is a Hamming cube metric, the earthmover
relaxation gives an optimal integral solution value (proof omitted)!)

In Section 5 we prove that unless NP ⊆ DTIME
(
npoly(log n)

)
, there is no polynomial-time algorithm that

approximates 0-Extension within a factor of O
(
(log n)

1
4−ε

)
, n = |V |, for any ε > 0. On a more optimistic

note, in Section 6 we give an algorithm for rounding the earthmover solution for 0-Extension that guarantees
a O

(√
diam(d)

)
approximation. Such a bound is not known for the metric relaxation. In the appendix

we give alternative constructions, based on linear codes, of Metric Labeling and 0-Extension instances
with large integrality ratios. These constructions were inspired by the results in [16].

Through this work we develop new techniques for analyzing transportation metrics, which we hope will find
further use in the numerous areas in which earthmover metrics are applied.

2 Preliminaries

We often use k to denote |T |. For v ∈ V (G) let N(v) denote the set of neighbors of v. Informally, the
earthmover relaxation for 0-Extension assigns to each v ∈ V (G) a probability distribution xv over the set
of terminals. In other words, xv ∈ Rk is a nonnegative vector with ‖xv‖1 = 1. An edge {u, v} ∈ E(G) gets
stretched by the minimum cost of transporting mass to convert xu into xv (or vice versa), where the cost of
transporting a unit of mass from terminal i to terminal j is d(i, j). This is simply a flow computation, the
vector fuv ∈ Rk×k denoting this flow. Formally, the relaxation is the following linear program.

Minimize 1
2

∑
u∈V

∑
v∈N(u) w(u, v) · [

∑
i∈T

∑
j∈T d(i, j)(fuv)ij ]

such that (xu
j − xv

j ) +
∑

i∈T ((fuv)ij − (fuv)ji) = 0 ∀u ∈ V,∀v ∈ N(u),∀j ∈ T∑
j∈T xu

j = 1 ∀u ∈ V

x, f ≥ 0,

where we put xj
j = 1 for all j ∈ T . The earthmover relaxation for Metric Labeling is identical, except

the objective function has an additional term of
∑

v∈V

∑
i∈T c(v, i)xv

i and we don’t put xj
j = 1.

3 Integrality Ratio for Metric Labeling

Consider an infinite family of (bounded-degree) expanders. Let H be a member of this family and let k be
the number of nodes in H. We define the following instance of Metric Labeling:

The label set T is the set V (H) of vertices of H. The metric on the label set is the shortest path metric of
H. The input graph G has V (G) = {{i, j} : i, j ∈ T, i 6= j} and E(G) = {{{i, j}, {i, j′}} : {j, j′} ∈ E(H)}.
All edges have weight 1. The cost of assigning a label t to a node {i, j} is 0 if t ∈ {i, j} and ∞ otherwise.

Consider the fractional solution that assigns to every node {i, j} a vector x{i,j} where x
{i,j}
i = x

{i,j}
j = 1

2 ,
and the other entries are 0. Notice that the length of every edge in E(G) is exactly 1

2 , so the cost of this
feasible solution is |E(G)|/2 = k|E(H)|/2.

To bound the cost of an integral solution we need the following lemma.
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Lemma 1 Consider a tournament over k nodes. At least half the nodes have both their indegree and their
outdegree between k/8 and 7k/8.

Proof: Suppose there are m nodes with indegree exceeding 7k/8. In the subtournament on these m nodes
there must be a node with indegree at most m/2, since the sum of the indegrees is

(
m
2

)
. This node’s total

indegree, which exceeds 7k/8, is at most k −m + m/2 = k −m/2. Thus m/2 < k/8 and hence m < k/4.

The same argument can be applied to outdegree. 2

Theorem 2 Any integral solution to the above instance has cost Ω(|E(G)| log k). Thus, the integrality ratio
for Metric Labeling is Ω(log k).

Proof: An integral solution must assign to a node {i, j} either label i or label j. Consider the tournament
on the label set T where there is an arc (i, j) if {i, j} is assigned to j and the reverse arc otherwise. Call
a label balanced if and only if both its indegree and its outdegree in the tournament are between k/8 and
7k/8. By Lemma 1, at least half the labels are balanced.

Let t be a balanced label. Put I = {i : {t, i} is assigned t} and J = {j : {t, j} is assigned j}. By definition
we have k/8 ≤ |I|, |J | ≤ 7k/8. Therefore, there are at least ck expander edges {i, j} for which i ∈ I and
j ∈ J , where 8c is the expansion constant. Let Gt denote the subgraph of G that is induced by the set of
nodes {{t, i} : i ∈ T}. Clearly, E(G) is the disjoint union of all Gt’s. Every Gt is just a copy of H. For some
constant a, the number of terminals j at distance at most a lg k from t is o(k). Thus, Ω(k) edges in Gt are
stretched to Ω(log k). Summing over all balanced labels, we get that the total cost is Ω(k2 log k). 2

4 Integrality Ratio for 0-Extension

If the metric d on the terminals is the shortest-path metric of a high-girth expander, the earthmover relaxation
guarantees a constant integrality ratio for 0-Extension (proof omitted). Therefore, the Metric Labeling
construction does not work for 0-Extension. An obvious suggestion is to insist on a small girth expander,
for example, by taking the Cartesian product of an expander with itself. We don’t know if this works;
however, the following modification does work.

Consider an infinite family of (bounded-degree) expanders. Let H be a member of this family. The terminal
set T is V (H)× V (H). Let k = |V (H)|2 denote the number of terminals. The metric d on the terminals is
given by

d ((u, v), (u′, v′)) =
√

lg k · emdH ({u, v}, {u′, v′}) + dH(u, u′);

here dH is the shortest path metric on H, “{u, v}” denotes the probability distribution on vertices which
assigns mass 1/2 to each of u and v (likewise for “{u′, v′}”), and emdH({u, v}, {u′, v′}) is the earthmover
distance between the two probability distributions, the underlying metric being dH .

The set V ′ of nonterminals is V ′ =
(
V (H)

2

)
. Notice that |V ′| is approximately k

2 . The input graph G has
node set V = V (G) = T ∪ V ′. To define the edge set, put

E1 = {{{u, v}, {u, v′}} : u, v, v′ ∈ V (H) and {v, v′} ∈ E(H)} ,

E2 = {{(u, v), {u, v}} : u, v ∈ V (H)} ,

and put E = E(G) = E1 ∪ E2. Edges in E1 join pairs of nonterminals and have weight
√

lg k. Edges in E2

join terminals to nonterminals and have weight 1.

Lemma 3 The cost of the fractional solution for this instance is O(k log k).

Proof: Consider the fractional solution that puts, for every {u, v} ∈ V ′,

x
{u,v}
(u,v) = x

{u,v}
(v,u) =

1
2
.
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By definition of d, the cost of an edge {(u, v), {u, v}} ∈ E2 (which has weight 1) is 1
2dH(u, v), which is O(log k).

There are O(k) such edges. The cost of an edge {{u, v}, {u, v′}} ∈ E1, not including its weight
√

lg k, is the
earthmover distance over d (not over dH) between the configuration which splits its mass uniformly between
(u, v) and (v, u) and the configuration which splits its mass uniformly between (u, v′) and (v′, u). This is
at most (1/2)d((u, v), (u, v′)) + (1/2)d((v, u), (v′, u)) ≤ (1/2)[

√
lg k · 1 + 0] + (1/2)[

√
lg k + 1] =

√
lg k + 1/2.

Hence its cost, including its weight, is O(log k). There are O(k) such edges as well. 2

Theorem 4 The integrality ratio for this instance is Ω
(√

log k
)
.

Proof: We will show that every integral solution must cost Ω
(
k(log k)3/2

)
. Together with Lemma 3, this

implies the lower bound.

Consider an arbitrary integral solution, where every {u, v} ∈ V ′ is assigned to ϕ ({u, v}) ∈ V (H) × V (H).
Let γ > 0 be a sufficiently small constant, and let

V1 = {{u, v} ∈ V ′ : emdH ({u, v}, {u′, v′}) ≥ γ lg k,

where (u′, v′) := ϕ(u, v)}. For every {u, v} ∈ V1, the edges in E2 incident to {u, v} (one or two such edges)
cost vertices at least

√
lg k · (γ lg k), by definition of the metric d on the terminals. If V1 ≥ k

64 then the total
cost is Ω

(
k(log k)3/2

)
.

Otherwise, define a directed graph on V (H) with no loops, parallel or antiparallel arcs as follows. Every
node e = {u, v} ∈ V ′ \ V1 contributes an arc. Let (u′, v′) = ϕ({u, v}). If

emdH ({u, v}, {u′, v′}) =
1
2
dH(u, u′) +

1
2
dH(v, v′),

then add the arc (u, v). Otherwise,

emdH ({u, v}, {u′, v′}) =
1
2
dH(u, v′) +

1
2
dH(v, u′)

(this is not obvious, but true); add the arc (v, u). (In other words, given e = {u, v}, choose y, z such that
{y, z} = {u, v} and

emdH(e, {u′, v′}} = (1/2)dH(y, u′) + (1/2)dH(z, v′)

and then add arc (y, z).) Unless V1 = ∅, the resulting graph is not a tournament. Hence add arbitrary
dummy arcs to make a tournament. The number of arcs that need to be added is |V1| < k

64 . By Lemma 1, at
least V (H)

2 = 1
2

√
k tournament nodes have both indegree and outdegree between 1

8

√
k and 7

8

√
k. If we now

remove the dummy arcs, at least 1
4

√
k tournament nodes have both indegree and outdegree between 1

16

√
k

and 7
8

√
k. (One has to remove (1/16)

√
k arcs to “ruin” two vertices.) Consider such a node u ∈ V (H). Let

Ou = {v ∈ V (H) : (u, v) is in the partial tournament} ,

and
Iu = {v ∈ V (H) : (v, u) is in the partial tournament} .

As |Iu| ≥ 1
16

√
k, there is a constant ε > 0 such that I ′u = {v ∈ Iu : dH(u, v) ≥ ε lg k} satisfies |I ′u| ≥ 1

32

√
k.

We need γ ≤ ε
4 . As H is a bounded degree expander, there are Θ(

√
k) constant-length, edge-disjoint paths

between Ou and I ′u. Consider any such path, and let v1 ∈ Ou and v2 ∈ I ′u be its endpoints. Notice
that ϕ({u, v1}) = (u′, v′1), where dH(u, u′) < γ lg k. Similarly, ϕ({u, v2}) = (v′2, u

′′), where dH(v2, v
′
2) <

γ lg k. So, dH(u′, v′2) > (ε − 2γ) lg k ≥ ε
2 lg k. Therefore, d (ϕ({u, v1}), ϕ({u, v2})) is Ω(log k). By the

triangle inequality, there must be an edge {v, v′} ∈ E(H) along the path (which has constant length) such
that d (ϕ({u, v}), ϕ({u, v′})) is Ω(log k). Recall that every edge {{u, v}, {u, v′}} ∈ E1 has weight

√
lg k.

Therefore, the total cost of such edges, fixing u ∈ V (H) with both indegree and outdegree at least 1
16

√
k,

is Ω
(√

k log k · log k
)
. Summing over all such u (each edge is counted at most twice), we get a total cost of

Ω
(
k(log k)3/2

)
. 2
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5 Hardness of 0-Extension

To prove the hardness of 0-Extension we start with the construction of [9] for the hardness of Metric
Labeling and modify this construction so that it works for 0-Extension. We achieve this by applying a
technique similar to the one applied in Section 4 to the Metric Labeling instance of Section 3.

Let us first recall the k-prover protocol of [9]. We start with a Gap-3SAT(5) formula φ. There are k provers
P1, ..., Pk (k will be chosen later to be poly(log n), where n is the size of φ).

• For each (i, j), 1 ≤ i < j ≤ k, the verifier chooses, randomly and independently, a clause Cij and a
distinguished variable xij from the clause. Pi is sent Cij (and is expected to return an assignment to
all variables of the clause), Pj is sent xij (and is expected to return an assignment to this variable), and
every other prover is sent both Cij and xij (and is expected to return an assignment to all variables of
the clause). Thus the query sent to each prover has

(
k
2

)
coordinates.

• The verifier checks, for each pair (i, j), that the answers of all the provers are consistent.

We denote the set of random strings used by the verifier by R. Given r ∈ R, and 1 ≤ i ≤ k, let qi(r) be the
query sent to Pi when the verifier chooses the random string r. Let Qi = ∪r{qi(r)} be the set of all possible
queries to Pi. For q ∈ Qi, let Ai(q) be the set of all possible answers of the ith prover to q which satisfy all
the clauses appearing in the query.

Consider any pair Pi and Pj of provers. Let qi ∈ Qi and qj ∈ Qj be a pair of queries such that for some
r ∈ R, qi = qi(r) and qj = qj(r). Let Ai and Aj denote the answers of provers Pi and Pj , respectively, to
the queries. We say that the answers are weakly consistent if the assignments to Cij in Ai and to xij in
Aj are consistent. The answers are called strongly consistent if they are also consistent in every coordinate
(a, b) 6= (i, j).

We use the following theorem of Chuzhoy and Naor [9].

Theorem 5 (Theorem 4.2 in [9]). There is a constant 0 < ε < 1 such that if φ is a Yes instance, then there
is a strategy of the k provers such that the verifier always accepts, and if φ is a No instance, then for any
strategy of the provers, for every pair Pi, Pj of provers, i < j, the probability that their answers are weakly
consistent is at most 1− ε

3 .

We now construct a 0-Extension instance from an instance of Gap-3SAT(5) based on the k-prover system
described above. Recall that an instance of 0-Extension consists of a graph G(V ′∪̇T,E), where the set of
vertices consists of two parts, the terminals T and the nonterminals V ′. Each edge is between a terminal
and a nonterminal or between two nonterminals. Every edge has a weight, which is the factor by which it
contributes to the cost. Also provided is a metric on the set of terminals.

Our 0-Extension instance is based on the Metric Labeling instance in [9], with additional edges between
nonterminals and terminals, and a special distance metric on the terminals. To define our instance, we
proceed thus. We first define the set V ′ of nonterminals and the set T of terminals. The set of nonterminals
(resp., terminals) is precisely the set of vertices (resp., labels) in the construction of [9]. We also define a
graph GV ′ on V ′ and a graph GT on T . Finally we define the weighted graph G(V ′∪̇T,E) of the input
instance.

Nonterminals: V ′ consists of two types of nonterminals.

• For each i, 1 ≤ i ≤ k, and each query q ∈ Qi there is a query nonterminal v(i, q).

• For each random string r, there is a constraint nonterminal v(r).

The graph GV ′ on V ′ is defined by placing, for each i and r, an edge between constraint nonterminal v(r)
and query nonterminal v(i, qi(r)).1 Each edge in GV ′ has length 1

2 .
1We assume without loss of generality that GV ′ is connected. In general it may be disconnected if the SAT formula we start

with itself has disconnected components of variables, where the connectivity is via common clauses. But we can add dummy
clauses to connect all variables, and this will yield a connected GV ′ .
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Terminals: T also consists of two types of terminals.

• For each i such that 1 ≤ i ≤ k, each query q ∈ Qi, and each answer Ai ∈ Ai(q) to the query q, there
is a query terminal (v(i, q), Ai).

• For every random string r of the verifier, for every k-tuple (A1, A2, ..., Ak) of pairwise strongly consistent
answers satisfying Ai ∈ Ai(qi(r)) for 1 ≤ i ≤ k, there is a constraint terminal (v(r), (A1, A2, ..., Ak)).

Note that for every nonterminal x, there is a set of terminals of the form (x, ·) derived from x. In what follows
we will represent a generic terminal by (x, y). The graph GT on T , defined only for the purpose of defining the
metric on T , is defined by the following edges: incident on every constraint terminal (v(r), (A1, A2, ..., Ak))
is, for each i, an edge of length 1

2 to query terminal (v(i, qi(r)), Ai).

Metric on terminals: We now use the graphs GT and GV ′ to define the metric dT on T . To do so, we
first define two different metrics, ∆ on T and M∆ on V ′.

For t, t′ ∈ T , let ∆(t, t′) equal the minimum of k and the distance between t and t′ in GT . Note that this
is indeed a metric. For x, x′ ∈ V ′, let M(x, x′) be the minimum of k and the distance between x and x′ in
GV ′ . Now we can define the metric on the set T of terminals. For two terminals (x, y) and (x′, y′), define
dT ((x, y), (x′, y′)) =

√
k ·M(x, x′) + ∆((x, y), (x′, y′)).

Input graph: The input graph consists of the set of nonterminals and terminals. There are two kinds of
edges. The first kind consists of edges between two nonterminals. These are precisely the edges of the graph
GV ′ and have weight

√
k. The second kind consists of those between a nonterminal and a terminal, and are

defined as follows: for every r ∈ R, and for every k-tuple (A1, A2, ..., Ak) of strongly consistent answers, with
Ai ∈ Ai(qi(r)) for 1 ≤ i ≤ k, there is an edge between constraint nonterminal v(r) and constraint terminal
(v(r), (A1, ..., Ak)). Similarly, for every r ∈ R, i = 1, ..., k, and every possible answer Ai of prover Pi to
qi(r), there is an edge between query nonterminal v(i, qi(r)) and query terminal (v(i, qi(r)), Ai). To define
the weight of an edge of the second kind, we define the following. For a nonterminal v, let dv be the number
of nonterminal-nonterminal edges incident on v, and let zv be the number of nonterminal-terminal edges
incident on v. Then the weight of every nonterminal-terminal edge incident on v is wv = dv/zv. (If zv = 0
there are no edges awaiting weights.) Define y = 1

2

∑
v∈V ′ dv, the total number of nonterminal-nonterminal

edges. Note that y is also equal to k|R|.

5.1 Yes Instance

We assume now that the SAT formula is a Yes instance. Then there is a strategy of the provers so that the
verifier accepts with probability 1. For i = 1, ..., k and query qi ∈ Qi, let fi(qi) ∈ Ai(qi) be the answer of
prover Pi to query qi under this strategy. Note that for each random string r, f1(q1(r)), f2(q2(r)), ..., fk(qk(r))
are pairwise strongly consistent. From this strategy, we can define the following assignment of nonterminals
to terminals.

For every random string r, assign constraint nonterminal v(r) to constraint terminal
(v(r), (f1(q1(r)), f2(q2(r)), ..., fk(qk(r)))). For every random string r and i = 1, ..., k, assign query
nonterminal v(i, qi(r)) to query terminal (v(i, qi(r)), fi(qi(r))).

Consider an edge between two nonterminals, say, constraint nonterminal v(r) and query nonterminal
v(i, qi(r)). Let a = (v(r), (f1(q1(r)), f2(q2(r)), ..., fk(qk(r)))) and b = (v(i, qi(r)), fi(qi(r))). Since v(r) is
assigned to terminal a and v(i, qi(r)) is assigned to terminal b, the distance to which this edge is stretched is

dT (a, b) =
√

k ·M(v(r), v(i, qi(r))) + ∆(a, b) ≤
√

k/2 + 1/2.

This is because v(r) and v(i, qi(r)) are neighbors in GV ′ and a and b are neighbors in GT . The weight of
the edge between the nonterminals v(r) and v(i, qi(r)) is

√
k; hence the contribution to the cost is at most√

k((1/2)
√

k + 1/2). Since there are a total of y number of edges of this type, the total contribution of such
edges to the cost is at most yk.
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Consider an edge between a nonterminal, say, a constraint nonterminal v(r), and a constraint terminal
b = (v(r), (A1, A2, ..., Ak)). (The case of an edge between a query nonterminal and a query terminal is
identical.) Let a = (v(r), (f1(q1(r)), f2(q2(r)), ..., fk(qk(r)))). Since v(r) is assigned to a, the distance to
which this edge is stretched is

dT (a, b) =
√

k ·M(v(r), v(r)) + ∆(a, b) ≤
√

k · 0 + k.

The inequality follows because the distances under ∆ are at most k. This is true for all the zv(r) nonterminal-
terminal edges incident on v(r). Since the weight of each such edge is wv(r) = dv(r)/zv(r), the contribution
to the cost of all these edges is at most wv(r)zv(r)k = dv(r)k. Summing over all nonterminals v, we get that
the total contribution to the cost of all nonterminal-terminal edges is

∑
v∈V ′ dvk = 2yk. Thus the total cost

in the Yes case is at most yk + 2yk = 3yk.

5.2 No Instance

Let f : V ′ → T be any assignment of nonterminals to terminals. For v ∈ V ′, define g(v), h(v) by
f(v) = (g(v), h(v)). Let V1 = {v ∈ V ′ : M(v, g(v)) ≥ γk} for some small constant 0 < γ < 1 to be chosen
later. We also pick a constant α > 0, to be fixed later. We consider two cases.

Case 1:
∑

v∈V1
dv > α

∑
v∈V ′ dv = α(2y). Take any nonterminal in V1, say, a constraint nonterminal v(r)

(the case of a query nonterminal is identical), and consider any terminal a = (v(r), (A1, A2, ..., Ak)) such
that there is an edge between v(r) and a. Then the distance to which this edge is stretched is

dT (f(v(r)), a) =
√

k ·M(g(v(r)), v(r)) + ∆(f(v(r)), a) ≥
√

k · (γk) + 0 = γk3/2.

The inequality follows from the fact that v(r) ∈ V1. This is true for all the zv(r) nonterminal-terminal edges
incident on v(r). Each such edge has a weight of wv(r) = dv(r)/zv(r). Hence the contribution to the cost
incurred by the nonterminal-terminal edges incident on nonterminals in V1 is at least∑

v∈V1

zvwv(γk3/2) = γk3/2
∑
v∈V1

dv

> γk3/2[α(2y)]
= 2γαyk3/2.

The inequality follows because we are in Case 1. Hence the total cost in this case is at least 2γαyk3/2.

Case 2:
∑

v∈V1
dv ≤ α

∑
v∈V ′ dv = α(2y). We will first change the assignment f = (g, h) to an assignment

f ′ = (g′, h′) such that for all v ∈ V ′, g′(v) = v. (Such a “natural” assignment corresponds to the Metric
Labeling, not 0-Extension, work of Chuzhoy and Naor [9]. Once we have such an assignment we will be
able to invoke the main lemma of [9].) Furthermore, we will not change f much in going to f ′: we will have
∆(f(v), f ′(v)) < γk for all v ∈ V ′\V1. We get the “natural” assignment simply by changing the assignment
of the nonterminal v from f(v) to that terminal of the form (v, ·) which is closest, according to distance ∆
on T , to f(v).

But have we changed the assignments too much? Recall that by definition, for every v ∈ V ′\V1, M(v, g(v)) <
γk. That is, it takes fewer than 2γk steps in the graph GV ′ on nonterminals to move from g(v) to v (the
factor of 2 appears because every edge in GV ′ is of length 1

2 ). But this implies that it takes fewer than 2γk
steps in the graph GT on terminals to move from (g(v), h(v)) to some terminal of the form (v, ·); that is,
∆(f(v), f ′(v)) ≤ M(v, g(v)) < γk. (This follows from the structure of the graph. If x and x′ are adjacent
nonterminals and (x, y) is any terminal, then there is a terminal (x′, y′) adjacent to (x, y); y′ “gives the same
answer to the question” as y.)

Now, because g′(v) = v for all v ∈ V ′, we have a valid assignment in the sense of the Metric Labeling,
not 0-Extension, instance of [9]. An edge between two nonterminals, say v(r) and v(i, qi(r)), is stretched
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to

dT (f ′(v(r)), f ′(v(i, qi(r)))) =
√

k ·M (g′(v(r)), g′(v(i, qi(r)))) + ∆ (f ′(v(r)), f ′(v(i, qi(r)))) . (1)

By summing over all nonterminal-nonterminal edges, and ignoring the first term on the right-hand side of
(1), we get ∑

r,i

dT (f ′(v(r)), f ′(v(i, qi(r)))) ≥
∑
r,i

∆ (f ′(v(r)), f ′(v(i, qi(r)))) . (2)

Here is the key point. By Proposition 4.4 and Lemma 4.5 in [9], we know that the right-hand side of (2) is
at least

(
k
2

)
ε
3 |R|. (While [9] does not “truncate” the distance metric on the terminal graph at k, as we do

for ∆, it can be shown that their proof works even when such truncation is done). Since the total number of
nonterminal-nonterminal edges is y = k|R|, we get that the total stretch of nonterminal-nonterminal edges
is at least (ε′k)y, for some constant ε′ > 0.

We now wish to compare this to the total stretch of these edges in the original assignment f . In transforming
f to f ′, we may have increased the total stretch. Call a nonterminal-nonterminal edge bad if it is incident
to at least one nonterminal in V1. Thus there are at most

∑
v∈V1

dv bad edges. Since we are in Case 2, this
means that there are at most (2α)y bad edges, i.e., at most a 2α-fraction of all nonterminal-nonterminal
edges is bad. Call the nonterminal-nonterminal edges which are not bad good. Then, when we go back
from f ′ to f , |∆(f ′(v), f ′(u)) − ∆(f(v), f(u))| ≤ 2γk; this is true because if an edge with endpoints u, v
is good, both u and v are not in V1, and hence ∆(f ′(v), f(v)) ≤ γk, and ∆(f ′(u), f(u)) ≤ γk. For a bad
edge |∆(f ′(v), f ′(u)) − ∆(f(v), f(u))| ≤ k. Hence the total stretch of nonterminal-nonterminal edges in
the assignment f is at least (ε′k)y − (2αy)k − y(2γk) = yk(ε′ − 2α − 2γ), where the first subtracted term
corresponds to the bad edges, and the second subtracted term corresponds to the good edges.

We choose α and γ small enough so that, for f , the total stretch of nonterminal-nonterminal edges becomes
at least ε′′yk, for some constant ε′′ > 0. Since each nonterminal-nonterminal edge has a weight of

√
k, the

total contribution of these edges to the cost, and hence the total cost in Case 2, is at least ε′′yk3/2.

Thus the ratio between the costs in the No and Yes cases is Ω(
√

k). As in [9], the size N of the instance
that we constructed is nO(k2), where n is the size of the formula φ from which we started. Choosing k to be

poly(lg n), which is (lg N)
1
2−δ for an arbitrarily small constant δ > 0, we get

Theorem 6 For any constant δ > 0, there is no O((log N)
1
4−δ)-approximation algorithm for 0-Extension

unless NP ⊆ DTIME(npoly(log n)).

6 A O(
√

diam(d))-Approximation Algorithm for 0-Extension

We define the diameter of (T, d) as diam(d) = maxi,j d(i,j)
mini6=j d(i,j) . Alternatively, we can scale d so that the minimum

distance between different points is 1, and then the diameter is simply the largest distance. We describe
a rounding algorithm that guarantees a ratio of O(

√
diam(d)) between the costs of the fractional solution

and of the rounded solution. Let G = (V,E) be an input graph, and let T ⊆ V denote the set of terminals.
Given a solution x for the earthmover relaxation, let emd(v, T ) = minj∈T {emd(xv, xj)}. The algorithm uses
the following lemma.

Lemma 7 (Archer et al. [1]). There exist c1, c2 > 0 such that for every input graph G = (V,E), for every
set T of terminals, and for every solution x for the earthmover relaxation, there exists a distribution on
solutions y such that for every v ∈ V , if emd(xv, xj) > c1 · emd(v, T ), then yv

j = 0, and furthermore, for
every u, v ∈ V , Ey[emd(yu, yv)] ≤ c2 · emd(xu, xv).

We use the rounding algorithm of [17], designed for the case in which d is a uniform metric.
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Lemma 8 (Kleinberg and Tardos [17].) There is a probabilistic polynomial-time rounding algorithm that,
given a feasible solution x to the earthmover relaxation, generates a probability distribution over assignments
ϕ : V → T satisfying ϕ(v) = v if v ∈ T such that for every u, v ∈ V , E[d(ϕ(u), ϕ(v)] ≤ ‖xu − xv‖1; and for
every v ∈ V and i ∈ T , Pr[ϕ(v) = i] ≤ 2xv

i .

We are now ready to describe the algorithm. We assume that d is scaled so that the minimum distance
between different terminals is 1. Thus diam(d) is the maximum distance between terminals. First, pick α
in the range

√
diam(d) < α < 2

√
diam(d) uniformly at random. Assign to terminal 1 all nodes v ∈ V such

that emd(v, T ) > α. Second, truncate x to a (random) solution y using Lemma 7, ignoring the nodes already
assigned. Use the uniform metric-case rounding algorithm of Lemma 8 on y to assign the remaining nodes
to terminals.

Theorem 9 The expected cost of the rounded solution is O(
√

diam(d)) times the cost of x.

Proof: We do an edge-by-edge analysis. We calculate the expected cost incurred in the first phase and
that incurred in the second phase, showing that both are O(

√
diam(d)) times the cost of x in the linear

program.

Take any edge {u, v}; first, we calculate the expected cost it incurs in the first phase. Choose u so that
emd(u, T ) ≤ emd(v, T ). By the triangle inequality, emd(xu, xv) ≥ emd(v, T ) − emd(u, T ). As we draw α
uniformly in a range of length

√
diam(d), we have that the probability that α ∈ [emd(u, T ), emd(v, T )] is

at most emd(xu, xv)/
√

diam(d). If this happens, {u, v} is stretched to a length of at most diam(d), so the
expected contribution of these edges to the cost is at most the cost of x times O(

√
diam(d)).

Now we calculate the expected cost incurred in the second phase by an edge {u, v}. For it to be positive, it
must be the case that emd(u, T ), emd(v, T ) < 2

√
diam(d), for otherwise either one or both of u and v was

already assigned in the first phase, and hence there is no cost to charge to {u, v} in the second phase. Hence
we may assume emd(u, T ), emd(v, T ) < 2

√
diam(d). We condition on α ≥ max{emd(u, T ), emd(v, T )}. This

happens with probability at most 1, so we are perhaps overestimating the cost of the rounding via the uniform-
case algorithm. Suppose u, v are assigned to terminals tu, tv, respectively. By Lemma 8, the guarantee of
the uniform-case rounding rounding algorithm is that Pr[tu 6= tv] ≤ ‖yu − yv‖1. Notice that by the triangle
inequality, d(tu, tv) ≤ emd(tu, xu)+ emd(xu, xv)+ emd(xv, tv). Further notice that by Lemma 8, yu

tu
6= 0, so

by Lemma 7, emd(tu, xu) ≤ c1 emd(xu, T ) ≤ 2c1

√
diam(d). The term emd(xv, tv) can be bounded similarly,

so d(tu, tv) ≤ emd(xu, xv) + 4c1

√
diam(d). Also, emd(xu, xv) ≥ Ey[emd(yu, yv)]/c2 ≥ Ey[‖yu − yv‖1]/(2c2)

(as the minimum distance between different terminals is 1). Fix y. We have

E[d(tu, tv)] ≤ Pr[tu 6= tv] · (emd(xu, xv) + 4c1

√
diam(d))

≤ ‖yu − yv‖1 · (emd(xu, xv) + 4c1

√
diam(d))

≤ 2 · emd(xu, xv) + 4c1

√
diam(d) · ‖yu − yv‖1,

as ‖yu − yv‖1 ≤ 2. Taking the expectation over y, we get

Ey[E[d(tu, tv)]] ≤ 2 · emd(xu, xv) + 4c1

√
diam(d) · Ey[‖yu − yv‖1]

≤ (2 + 8c1c2

√
diam(d)) · emd(xu, xv),

using the above inequalities. Adding together the costs in the two phases gives us a ratio of O(
√

diam(d)).
2

References

[1] A. Archer, J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talwar, and É. Tardos, Approximate
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A Alternative Integrality Ratio Constructions

In this section we provide an alternative construction of a Metric Labeling instance for which the earth-
mover relaxation has an integrality ratio of Ω(log |T |). We also show how the method used in Section 4 can
be applied to this construction to find an instance of 0-Extension with integrality ratio Ω(

√
log |T |). This

construction uses properties of certain linear codes, and is inspired by the results in [16].
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Fix a linear code C ⊆ {0, 1}n with distance at least ηn and rate at least (1−δ)n where η and δ are sufficiently
small constants (the Gilbert-Varshamov bound shows that such codes exist with δ ≈ H(η) where H() is the
binary entropy function).

Let T0 be the orthogonal subspace of the code, i.e., T0 = C⊥. Let T denote the set of all cosets of T0, i.e.,

T = {T0 + v : v ∈ {0, 1}n}.

Note that every coset has cardinality 2δn and the number of cosets is 2(1−δ)n.

Let ∆ denote the Hamming metric on {0, 1}n. Consider the following metric dEM on T : For T, T ′ ∈ T ,

dEM (T, T ′) := min
u∈T,v∈T ′

∆(u, v).

In fact, for any fixed u0 ∈ T, v0 ∈ T ′, we have

dEM (T, T ′) = min
v∈T ′

∆(u0, v) = min
u∈T

∆(u, v0).

This is indeed the earthmover distance. Consider the uniform probability distribution on T and T ′, respec-
tively. The earthmover distance between these distributions (with underlying Hamming metric) is exactly
dEM (T, T ′). This is because there is a “matching” between points in T and T ′ such that the Hamming
distance between every pair of matched points is exactly dEM .

The following two lemmas are from [16]. We provide the proofs here for completeness.

Lemma 10 Let θ > 0 be a sufficiently small constant. Then if two cosets T, T ′ are picked at random from
T , then with high probability dEM (T, T ′) ≥ θn.

Proof: Fix coset T and fix any u0 ∈ T . Consider the process of picking another random coset T ′. One
can pick a y ∈ {0, 1}n at random and define T ′ = T + y. Clearly,

Pr[∃v ∈ T ′ such that ∆(u0, v) ≤ θn] = Pr[∃u ∈ T such that ∆(u0, u + y) ≤ θn]

≤
∑
u∈T

Pr[∆(u0, u + y) ≤ θn]

≤ |T | · 2−(1−H(θ))n

= 2−(1−H(θ)−δ)n,

where the inequality on the penultimate line follows because u + y is a random vector and its distance from
u0 has binomial distribution with mean n/2. 2

Lemma 11 Let f : T 7→ Rm be any assignment of vectors to points in T . Let ‖ · ‖ denote the `2-norm.
Then

ET,i[‖f(T )− f(T + ei)‖2] ≥ 2η · ET,T ′ [‖f(T )− f(T ′)‖2],

where ei denotes a vector whose ith coordinate is equal to 1 and the rest are 0. T and T ′ are random cosets
picked independently and i is picked randomly (and independently of T ) from 1 ≤ i ≤ n.

Proof: Clearly, it suffices to prove this when f is a real-valued function (i.e., m = 1), since the desired
inequality can be “split” into separate inequalities for every dimension. So assume f is a real-valued function.
Let f ′ be a function on {0, 1}n that is constant on every coset T and whose value on this coset equals f(T ).
Clearly,

ET,ei [|f(T )− f(T + ei)|2] = Ex∈{0,1}n,ei
[|f ′(x)− f ′(x + ei)|2]

= Ex,ei
[f ′(x)2 + f ′(x + ei)2 − 2f ′(x)f ′(x + ei)].
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Note that
Ex[f ′(x)2] = Ex,ei

[f ′(x + ei)2] =
∑

S⊆[n]

f̂ ′(S)2.

Also, using Fourier expansion,

Ex,ei
[f ′(x)f ′(x + ei)] = Ex,ei

[
∑
S,S′

f̂ ′(S)f̂ ′(S′)χS(x)χS′(x + ei)]

=
∑
S

f̂ ′(S)2Eei
[χS(ei)]

=
∑
S

f̂ ′(S)2(1− 2|S|/n).

Combining these, we get

ET,ei [|f(T )− f(T + ei)|2] = 4
∑

S⊆[n]

f̂ ′(S)2 · |S|
n

.

Now note that the function f ′ is constant on every coset of T0 and hence only those Fourier coefficients are
non-zero that are in T⊥

0 , i.e., those that are codewords in C. Thus either S = ∅ or |S| ≥ ηn since the code
has distance ηn. The lemma follows by observing that the total Fourier mass on non-empty coefficients is
given by ∑

S⊆n

f̂ ′(S)2 − f̂ ′(∅)2 = Ex[f ′(x)2]− Ex[f ′(x)]2

=
1
2
Ex,x′ [f ′(x)2 + f ′(x′)2 − 2f ′(x)f ′(x′)]

=
1
2
Ex,x′ [|f ′(x)− f ′(x′)|2]

=
1
2
ET,T ′ [|f(T )− f(T ′)|2.

2

A.1 Metric Labeling

Consider the following Metric Labeling instance. The label set is {0, 1}n. The distance between two
labels is the Hamming distance between them. The input graph has vertices corresponding to cosets of T0,
i.e., the set of vertices is T . There is an edge between T and T + ei for every coset T and a coordinate
vector ei. All edges have weight 1. The cost of assigning a vertex corresponding to a coset T to a label
x ∈ {0, 1}n is 0 if x ∈ T ⊆ {0, 1}n, and ∞ otherwise.

Fractional Solution: The fractional solution assigns to every vertex T a uniform probability distribution
on labels in T . The earthmover distance between such distributions is exactly dEM . For every edge
(T, T + ei), we have dEM (T, T + ei) = 1. Thus the average cost per edge in the fractional case is 1.

Integral Solutions: Now we will prove an Ω(n) lower bound on the average cost per edge of any integral
solution.

Take any labeling of vertices, i.e., a map h : T 7→ {0, 1}n such that for every coset T , h(T ) ∈ T . We also
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think of values of h as vectors in Rn. The following series of inequalities gives the desired lower bound.

ET,i[∆(h(T ), h(T + ei)] = ET,i[‖h(T )− h(T + ei)‖2]
≥ 2η · ET,T ′ [‖h(T )− h(T ′)‖2]
= 2η · ET,T ′ [∆(h(T ), h(T ′))]
≥ 2η · ET,T [ min

u∈T,v∈T ′
∆(u, v)]

= 2η · ET,T ′ [dEM (T, T ′)],

which is Ω(n), where on the second line we used Lemma 11 and at the end we used Lemma 10. Thus the
integrality ratio of the earthmover relaxation for this instance is Ω(n), which is Ω(log |T |).

A.2 0-Extension

We define an instance of 0-Extension as follows. The set X of terminals is defined as

X := {(T, x) : T ∈ T , x ∈ {0, 1}n, x ∈ T}.

The metric dX on X is defined as

dX((T, x), (T ′, x′)) := L · dEM (T, T ′) + ∆(x, x′),

where L will be chosen to be
√

n later.

The set of nonterminals is defined to be T . The input graph has as its vertex set the union of the set of
terminals and the set of nonterminals. There is an edge between nonterminals T and T + ei. These edges
have a weight of K (which we will choose to be

√
n later). There are edges from a nonterminal T to all

terminals {(T, x) : x ∈ T}. These edges have a weight of 1.

Thus, the cost of an assignment f : T 7→ X of nonterminals to terminals is

cost(f) := K · ET,T+ei [dX(f(T ), f(T + ei))] + ET,x∈T [dX(f(T ), (T, x))].

Call the two components of the cost function as cost1 and cost2, respectively.

Fractional Solution:

We construct a fractional solution whose cost is at most K · (L + 1) + n.

Assign to a nonterminal T the uniform probability distribution on the set {(T, x) : x ∈ T} of terminals.
Clearly, the “movement” (T, x) 7→ (T + ei, x + ei) “moves” this distribution to the uniform probability
distribution on the set of terminals {(T + ei, x

′) : x′ ∈ T + ei}. Therefore, the contribution to the cost1
component of the cost is

K · dX((T, x), (T + ei, x + ei)) = K · (L · dEM (T, T + ei) + ∆(x, x + ei))
= K · (L + 1).

Also for any T and x0 ∈ T , the earthmover distance between the uniform distribution on set {(T, x) : x ∈ T}
and the distribution “concentrated” at (T, x0) is at most n. This is an upper bound on the cost2 component
of the fractional cost.

Integral Solutions:

We will prove a min{Ω(nK),Ω(nL)} lower bound on the cost of any integral solution.

Let f : T 7→ X be any assignment of nonterminals to terminals. Denote f(T ) = (g(T ), h(T )), where
g(T ) ∈ T , h(T ) ∈ {0, 1}n and h(T ) ∈ g(T ).
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We consider two cases.

Case (i): ET,T ′ [dEM (g(T ), g(T ′))] ≤ γn where γ > 0 is a small constant to be chosen later.

Applying the triangle inequality, we have

dEM (T, T ′) ≤ dEM (T, g(T )) + dEM (g(T ), g(T ′)) + dEM (g(T ′), T ′).

Taking expectation over random T, T ′ and using Lemma 10, we see that

θn ≤ 2 · ET [dEM (g(T ), T )] + γn.

Assuming γ ≤ θ/2, we have

ET [dEM (g(T ), T )] ≥ θn/4. (3)

Now we will show that the cost2-component of the cost is at least L · θn/4. Indeed,

cost2 = ET,x∈T [dX(f(T ), (T, x))]
= ET,x∈T [dX((g(T ), h(T )), (T, x))]
= ET,x∈T [L · dEM (g(T ), T ) + ∆(h(T ), x)]
≥ ET [L · dEM (g(T ), T )]
≥ L · θn/4.

Case (ii): ET,T ′ [dEM (g(T ), g(T ′))] ≥ γn.

From h(T ) ∈ g(T ), h(T ′) ∈ g(T ′), and the definition of dEM , we get

ET,T ′ [∆(h(T ), h(T ′)] ≥ γn.

We will show a lower bound of K · 2ηγn on the cost1-component of the cost. We see that cost1 equals

K · ET,T+ei
[dX((g(T ), h(T )), (g(T + ei), h(T + ei)))] ≥ K · ET,T+ei

[∆(h(T ), h(T + ei))]
= K · ET,T+ei

[‖h(T )− h(T + ei)‖2]
≥ K · 2η · ET,T ′ [‖h(T )− h(T ′)‖2]
= K · 2η · ET,T ′ [∆(h(T ), h(T ′))]
≥ K · 2η · γn,

where we used Lemma 11 again.

Choosing K = L =
√

n gives an upper bound of O(n) on the fractional cost and a lower bound of Ω(n3/2) on
the cost of any integral solution. This proves the Ω(

√
log |T |) integrality ratio for 0-Extension. Observe

the tradeoff between the two cost components cost1 and cost2 that limits to Ω(
√

log N) the lower bound
that we can prove.
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