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Abstract

Given a database of n points in {0, 1}d, the partial match problem is: In response
to a query x in {0, 1, ∗}d, find a database point y such that for every i whenever xi 6= ∗,
we have xi = yi. In this paper we show randomized lower bounds in the cell-probe
model for this well-studied problem [Riv74, Knu73, Riv76, MNSW98, BOR99, CIP02].

Our lower bounds follow from a two-player asymmetric randomized communication
complexity near-optimal lower bound for this problem, where we show that either Alice
has to send Ω(d/ log n) bits or Bob has to send Ω(n1−o(1)) bits. When applied to the
cell-probe model, it means that if the number of cells is restricted to be poly(n, d)
where each cell is of size poly(log n, d), then Ω(d/ log2 n) probes are needed. This is
an exponential improvement over the previously known lower bounds for this problem
obtained by Miltersen et al. [MNSW98] and Borodin et al. [BOR99].

Our lower bound also leads to new and improved lower bounds for related prob-
lems including a lower bound for the `∞ c-nearest neighbor problem for c < 3 and
an improved communication complexity lower bound for the exact nearest neighbor
problem.

1 Introduction

Given a database of points in a space and a query, the nearest neighbor problem is to find
a database point that is “close” to the query. Here, the notion of closeness depends on the
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underlying space and also on whether a close, but not necessarily the closest data point
suffices. The goal is to preprocess the database and create a static data structure that will
support efficient search. The complexity measures are the size of the data structure (usually,
a table) and the number of probes into the table.

The nearest neighbor problem is a fundamental problem in computational geometry
with numerous applications and many efficient algorithms are known for low-dimensional
Euclidean spaces. However, these algorithms become inefficient in terms of query time and/or
space requirements as the dimension grows—this is the so-called curse of dimensionality.
This prompted the quest for very efficient (and possibly randomized) algorithms for the
approximate nearest neighbor problem in Euclidean/Hamming spaces and the last few years
have seen tremendous progress made in this direction [Kle97, IM98, KOR00]; also supporting
this line of study was the evidence for the curse of dimensionality for these spaces provided by
the recent lower bounds of [BOR99, CCGL99, BR00]. However, for many nearest neighbor
problems, there is still a huge gap between the upper and lower bounds. In fact, for many
of these problems, the gap is exponential.

1.1 Our results

In this paper we consider an instantiation of the nearest neighbor problem—the partial match
problem. This problem has been investigated for the last few decades (see, for example,
[Riv74, Knu73]), but all solutions discovered so far have either essentially Ω(n) query time
or 2Ω(d) space. This leads to the widely believed conjecture that this problem also suffers
from the curse of dimensionality (see [BOR99, BR00, CIP02]). We give supporting evidence
for this conjecture by proving essentially optimal communication complexity lower bounds
for this problem, and thus dramatically improving the existing lower bounds in the cell-probe
model.

Specifically, we show that in the cell-probe model, if the number of cells is restricted to be
poly(n, d) where each cell is of size poly(log n, d), then Ω(d/ log2 n) probes are needed; this
is an exponential improvement over the bounds in [MNSW98, BOR99]. Our lower bound
follows from an asymmetric two-sided error randomized communication complexity lower
bound for this problem, where we show that either Alice has to send Ω(d/ log n) bits or Bob
has to send Ω(n1−o(1)) bits.

There are several consequences of this basic lower bound and the most notable ones
include: (1) a near-optimal communication complexity lower bound and a cell-probe lower
bound for the `∞ c-nearest neighbor problem for c < 3; this addresses the presumed hardness
used by Indyk [Ind01] and (2) a near-optimal communication complexity lower bound for the
Hamming nearest neighbor problem; this strengthens the bound on Bob’s communication
obtained by Barkol and Rabani [BR00].

1.2 Related work

As mentioned earlier, the problem of partial match has been investigated for quite a while.
The first non-trivial result for this problem was obtained by Rivest [Riv74, Riv76], who
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showed that for d ≤ 2 log n, the “exhaustive storage” solution can somewhat be improved.
Recently, Charikar et al. [CIP02] presented two algorithms with the following query-time–
space tradeoffs: n · exp(O(d log2 d

√
c/ log n)) space and O(n/2c) query time for any c and

ndc space and O(dn/c) query time for any c ≤ n. If the number of cells is restricted to be
at most poly(n, d) where each cell is of size poly(log n, d), the previously known cell-probe
lower bounds were Ω(

√
log d) due to Miltersen et al. [MNSW98] and Ω(log d) due to Borodin

et al. [BOR99].
The nearest neighbor problem in d-dimensional Euclidean space or the d-dimensional

Hamming cube is also a well-studied problem. Note that the exact version of nearest neighbor
in the Hamming cube can be solved trivially by a single probe into a table of 2d cells, each
containing d bits. The best algorithms for the exact nearest neighbor problem in Euclidean
space take poly(d, log n) query time and need nΘ(d) space (see, for instance, [Mei93]). For the
approximate version of the problem, the best known algorithms are randomized and make
O(log log d) probes to a table of size poly(n, d) [IM98, KOR00]. The current best known
cell-probe randomized lower bound for the exact nearest neighbor problem (in both the
Hamming and the Euclidean cases) is Ω(d/ log n) for a table of size poly(n, d) [BOR99, BR00];
in a less general yet reasonable model, Beame and Vee [BV02] showed a lower bound of
Ω(d

√
log d/ log log d). For the approximate nearest neighbor problem in the Hamming cube,

Chakrabarti et al. [CCGL99] showed a lower bound of Ω(log log d/ log log log d) and Liu
[Liu03] has recently improved this to Ω(d1−o(1)); these lower bounds, however, apply only to
deterministic algorithms.

For the nearest neighbor problem under the `∞ norm, Indyk [Ind01] gave a 3-approximation
algorithm that makes O(d log n) probes into a table of size O(n1+log d) and an O(log log d)-
approximation algorithm that uses an essentially linear-sized table. This paper also shows
that for factors below 3, this problem is as hard as the partial match problem. No lower
bound better than Ω(log d) was known before for the `∞ nearest neighbor problem.

1.3 Organization

In Section 2, we provide a brief description of the lower bound technique that we use.
In Section 3, we will obtain a cell-probe lower bound for an intermediate problem called
Intersect All. Finally, in Section 4, we use this lower bound to demonstrate near-
optimal lower bounds for partial match, exact nearest neighbor, `∞ nearest neighbor, and
other related problems.

2 Background

2.1 The cell-probe model

The cell-probe model was formulated by Yao [Yao81]. It is acknowledged as a general data
structure model for proving lower bounds. In the basic cell-probe model, there are three
parameters s, b, and t. Here, s denotes the number of cells in the data structure, b denotes
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the maximum cell size in terms of the number of bits in the cells, and t denotes the number
of probes made into the data structure. An important technique to obtain lower bounds in
the cell-probe model is via asymmetric communication complexity [Ajt88, Mil94]. For more
details on the cell-probe model, see the survey by Miltersen [Mil99].

2.2 Asymmetric communication complexity

Let f : X ×Y → {0, 1}. In the asymmetric communication complexity model, there are two
players Alice and Bob. Alice gets an input X ∈ X (to be thought of as the query) and Bob
gets an input Y ∈ Y (to be thought of as the database). Their goal is to compute f(X,Y )
(to be thought of as finding the nearest neighbor of X). The complexity measure is the total
number of bits communicated by each player—an [a, b]-protocol is one in which Alice sends
a bits and Bob sends b bits. A randomized protocol is said to have two-sided error ε if it
computes the function on every input correctly with probability at least 1− ε.

Lower bounds on (randomized) asymmetric communication complexity lead to (random-
ized) lower bounds in the cell-probe model.

Lemma 1 (Miltersen [Mil94]). For any function, if there is a (randomized) solution in the
cell-probe model with parameters s, b, and t, then there is a (randomized) [tdlog se, tb]-protocol
for the corresponding communication problem.

It therefore suffices to show lower bounds on the (randomized) asymmetric communica-
tion complexity. To accomplish this, we use the richness technique due to Miltersen et al.
[MNSW98], which we describe below. This presentation is slightly different from the version
present in [MNSW98], but is more convenient for us to work with.

2.3 The richness technique

It will be convenient to view any function f : X × Y → {0, 1} via its function matrix Mf .
This is a 0–1 matrix whose rows are indexed by inputs X ∈ X to Alice and the columns are

indexed by inputs Y ∈ Y to Bob and is such that Mf (X, Y )
def
= f(X, Y ). This is also helpful

when dealing with deterministic protocols where f(X,Y ) denotes the output of the protocol
on the input pair (X, Y ).

Let wA(·) and wB(·) be non-negative weight functions defined on the row and column
inputs respectively, and extend it to subsets as well.1 We say that a column input Y is
α-good if wA({X | f(X, Y ) = 1}) ≥ α.

Definition 2 ((α, β)-richness). A function matrix Mf is (α, β)-rich if

wB({Y | Y is α-good}) ≥ β.

1Given a weight function w(·) on a set T , and a subset S ⊆ T , w(S) def=
∑

s∈S w(s).
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Let P be any deterministic protocol in which Alice uses a bits and Bob uses b bits of
communication. Let f(X, Y ) denote the output of P on the input pair (X, Y ). It is well-
known that P induces a partition of Mf into monochromatic rectangles, which we refer to
as [a, b]-partition of Mf .

The deterministic version of the richness lemma [MNSW98] states that if a function f
has deterministic protocol with low communication, then the function matrix has a heavy
1-monochromatic rectangle. We say that a rectangle R = U × V in Mf , not necessarily
monochromatic, has weight at least α× β if wA(U) ≥ α and wB(V ) ≥ β.

Lemma 3 (Deterministic richness lemma [MNSW98]). If a function matrix is (α, β)-rich
and has an [a, b]-partition, then there exists a 1-monochromatic rectangle in this partition
that has weight at least (α/2a)× (β/2a+b).

For randomized protocols, we will restrict ourselves to the case when the weight functions
are probability distributions µA and µB on X and Y respectively. Let µ be the distribution
on X × Y defined by µ(X, Y ) = µA(X) · µB(Y ). The weight of any set of input pairs is the
probability mass assigned to that set by µ. The randomized version of richness lemma states
that if a function f has a randomized two-sided error protocol with low communication,
and if the weight of the ones of f is large, then Mf has a heavy rectangle which is almost
1-monochromatic.

Lemma 4 (Randomized richness lemma [MNSW98]). Suppose function f has a randomized
δ-error [a, b]-protocol, and the weight of the ones of f is at least c, where c ≥ 4

√
δ, then there

exists a rectangle R of weight at least (c/2a+2) × (c/2a+b+2) such that Pr(X,Y )∼µ[f(X, Y ) =

0 | (X,Y ) ∈ R] ≤
√

δ.

Note that Lemma 4 holds for two-sided error protocols. For one-sided error, meaning the
protocol never errs on the zeros of f , the proof (Appendix A.2) shows that the rectangle R
is in fact a 1-monochromatic rectangle for f .

3 A cell-probe lower bound

In this section we show randomized cell-probe lower bounds for the following problem.

Intersect All: Let the database D be a family of n sets Y1, Y2, . . . , Yn where every
Yi ⊆ [d]. Given a query X ⊆ [d], does X intersect Yi for every 1 ≤ i ≤ n?

By Lemma 1, a lower bound for this problem in the cell-probe model would follow from
a lower bound in the asymmetric communication complexity setting. We prove the latter by
a rather straightforward application of Lemma 4. We first give an overview of this proof.

The function matrix for Intersect All has rows indexed by Alice’s inputs which are
all the sets X ⊆ [d] and columns indexed by Bob’s inputs which are all tuples 〈Y1, Y2, . . . , Yn〉
where Yi ⊆ [d] for every i. A crucial step in our proof is to restrict Alice’s input to only some
specific sets, namely, sets Xi ∈ X where X is a design. All sets X ∈ X have the same size
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d′ = Ω(d) and the intersection of any two distinct sets X,X ′ ∈ X has size at most θd′ where
θ > 0 is a small constant. It is well-known that such designs with size 2Ω(d) exist and they
have found many applications in complexity theory, most notably the Nisan–Wigderson’s
construction of a pseudorandom generator from hard functions [NW94].

Any two members X and X ′ of the design are almost disjoint. Therefore, when we pick
a set Y (of some specific size) at random, the events Y ∩ X = ∅ and Y ∩ X ′ = ∅ are
almost independent. This allows us to apply an inclusion-exclusion inequality to bound the
probability that a randomly picked set Y intersects all the sets X1, X2, . . . , Xt for some t ≈ n.
Using this bound, we can immediately bound size of any 1-monochromatic rectangle in the
matrix Mf .

Now we get to the details of the proof. We begin by defining a design.

Definition 5 (Design). A collection of sets {X1, . . . , Xm} where Xi ⊆ [d] is called a
(d,m, α, β)-design if

1. |Xi| = dαde, ∀ i,

2. |Xi ∩Xj| ≤ βd, ∀ i 6= j.

The following lemma shows the existence of designs (see, for instance, [NW94]). Appendix
A.3 contains a proof of this lemma.

Lemma 6. For every θ > 0, there exist c1, c2 > 0 such that for all sufficiently large integers
d, there exists a (d, 2c2d, c1, θc1)-design. In fact, one can take c1 = θ/2 and c2 = θ2/96.

Let X be the design guaranteed by the lemma, let

Y def
= {〈Y1, Y2, . . . , Yn〉 | Yi ⊆ [d]},

and let d′
def
= dc1de. X will be the set of inputs to Alice and Y will be the set of inputs for Bob.

We will fix probability distributions µX and µY on the inputs to Alice and Bob respectively.
(These will also play the role of the weight functions when applying the richness technique.)
µX is the uniform distribution on X . µY is obtained by picking a tuple 〈Y1, Y2, . . . , Yn〉 where
the sets Yi ⊆ [d] are picked independently and each set Yi is picked by taking every i ∈ [d]

with probability q, where q
def
= (ln n)/d′. Note that we have assumed d = ω(ln n).

Let f denote the restriction of Intersect All to X × Y . Recall that by definition,
Mf (X, 〈Y1, . . . , Yn〉) = 1 if and only if X ∩ Yi 6= ∅ for every i.

Lemma 7. The weight of the ones of f is at least 1/(2e).

Proof. Fix a set X ∈ X , and let Y = 〈Y1, . . . , Yn〉 be picked at random according to µY . We
have,

PrYi
[Yi ∩X = ∅] = (1− q)|X| =

(
1− ln n

d′

)d′

≤ e− ln n =
1

n
.

Therefore,

PrY [f(X, Y ) = 1] = PrY1,...,Yn [∀i Yi ∩X 6= ∅] ≥
(

1− 1

n

)n

≥ 1

2e
.
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Theorem 8. Suppose R = U × V is a rectangle in Mf where |U | = n and µY(V ) ≥
exp(−1

2
n1−3θ). Then R is not 1-monochromatic.

Proof. Let U consists of the row inputs X1, X2, . . . , Xn. We will show that when a column
〈Y1, Y2, . . . , Yn〉 is picked at random according to distribution µY , then the probability that
the column has 1’s in all n rows is at most exp(−1

2
n1−3θ). Thus we need to upper bound the

probability of the event
Yj ∩Xi 6= ∅, ∀ 1 ≤ i, j ≤ n.

Let us first compute the probability that a random set Y (where every element i ∈ [d]
is picked with probability q) intersects every Xi. Let Ei be the event that “Y ∩ Xi = ∅”.
Clearly,

PrY [Ei] = (1− q)|Xi| =

(
1− ln n

d′

)d′

≥ 1

n1+θ
,

and since for i 6= j, we have |Xi ∩Xj| ≤ θd′, we have

PrY [Ei ∧ Ej] = (1− q)|Xi∪Xj | ≤
(

1− ln n

d′

)(2−θ)d′

≤ 1

n2−θ
.

Now we apply inclusion-exclusion bound. Let t = n1−2θ.

PrY [∧n
i=1(Y ∩Xi 6= ∅)]

≤ PrY [∧t
i=1(Y ∩Xi 6= ∅)]

= 1− PrY [∨t
i=1(Y ∩Xi = ∅)]

= 1− PrY [∨t
i=1Ei]

≤ 1−
t∑

i=1

PrY [Ei] +
∑

1≤i<j≤t

PrY [Ei ∧ Ej]

≤ 1− t · 1

n1+θ
+

t2

2

1

n2−θ

= 1− 1

n3θ
+

1

2

1

n3θ

= 1− 1

2

1

n3θ
.

Since Yj, 1 ≤ j ≤ n are picked independently, we have

PrY1,...,Yn [∧n
j=1 ∧n

i=1 Yj ∩Xi 6= ∅] ≤
(

1− 1

2

1

n3θ

)n

≤ exp

(
−1

2
n1−3θ

)
.

Theorem 9. Suppose R = U × V is a rectangle in Mf where |U | = n and µY(V ) ≥ 2w,
where w = exp(−1

2
n1−3θ). Then, Pr[f(X, Y ) = 0 | (X, Y ) ∈ R] ≥ 1/(2n).
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Proof. This follows by carefully looking at the proof of Theorem 8. What we have shown is
that the set of column inputs each of which has a 1 in all the n rows has weight at most w.
Therefore, for a rectangle with n rows and columns with total weight 2w, at least half the
columns contain a zero in some row. This proves the theorem.

Theorem 10. For any ε > 0 and for any two-sided error [a, b]-protocol for Intersect All
with error 1/3, either a = Ω(ε2d/ ln n) or b = Ω(n1−ε).

Proof. This follows easily from Theorem 9 and Lemma 4. Assume on the contrary that there
exists a protocol with error 1/3 where Alice sends at most 10−5ε2d/ ln n bits and Bob sends
at most n1−ε bits. We first repeat the protocol 4 ln n times to get the error down to 1/n4. In
this new protocol, Alice sends at most 10−54ε2d bits and Bob sends at most 4n1−ε ln n bits.
By Lemma 7, the ones in the matrix Mf have weight at least 1/(2e) ≥ 1/8. By Lemma 4,
there exists a rectangle R with weight at least

1

8 · 24ε2d/105+2
× 1

8 · 24ε2d/105+4n1−ε ln n+2

such that Pr(X,Y )∼µ[f(X,Y ) = 0 | (X, Y ) ∈ R] ≤ 1/n2. Let θ = ε/4 so that the matrix Mf

has 2c2d = 2θ2d/96 rows. Therefore the number of rows of the rectangle R is

2c2d 1

8 · 24ε2d/105+2
≥ 2θ2d/96 1

2θ2d/200
≥ 2θ2d/200 ≥ n.

The total weight of the column inputs of this rectangle is

1

8 · 24ε2d/105+4n1−ε ln n+2
≥ 2 exp

(
−1

2
n1−3θ

)
.

This contradicts Theorem 9 and we are done.

Theorem 11. For any ε > 0 and for any one-sided error [a, b]-protocol for Intersect All
with error 1/3, either a = Ω(ε2d) or b = Ω(n1−ε).

Proof. This follows in a similar manner as the proof of Theorem 10. However, for protocols
with one-sided error, Lemma 4 guarantees that the rectangle R is monochromatic. Thus we
don’t need to reduce the error probability and we save the ln n factor in communication.

Corollary 12. Any randomized algorithm for Intersect All in the cell-probe model that
uses at most poly(n, d) cells with size poly(d, log n) each, must make Ω(d/ log2 n) probes. If
the algorithm makes only one-sided error, it must make Ω(d/ log n) probes.

Proof. Suppose there is a cell-probe algorithm with parameters s, b, t where s = poly(n, d)
and b = poly(d, log n). By Lemma 1, there is a communication protocol where Alice sends
t log s bits and Bob sends tb bits and by Theorem 10, either t log s ≥ Ω(ε2d/ log n) or tb ≥
n1−ε. Therefore we must have the number of probes t ≥ Ω(d/ log2 n).
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4 Applications

We discuss the applications of the above lower bound for partial match, exact nearest neigh-
bor, and other related problems.

Partial Match: Given a database of n points in {0, 1}d, and a query x in {0, 1, ∗}d, is
there a database point y such that for every i whenever xi 6= ∗, we have xi = yi?

The partial match problem is equivalent to Intersect All in the following way. Given
an instance of Intersect All with database Y and query X, we obtain X ′ from X by
replacing each 0 in X by a ∗ and each 1 by a 0. Now, it is easy to see that (X ′, Y ) is a true
instance for Partial Match if and only if (X, Y ) is a false instance for Intersect All.
Therefore, using Lemma 1, Theorem 10, and the above reduction, we have

Theorem 13. For any ε > 0, any two-sided error randomized algorithm in the cell-probe
model for Partial Match that makes t probes, either uses 2Ω(d/(t log2 n)) cells or uses cells
of size Ω(n1−ε/t).

In particular, if the number of cells is restricted to be poly(n, d) where each cell is of size
poly(log n, d), then the algorithm must make Ω(d/ log2 n) probes.

Subset Query: Let U be a universe and let P be a family of subsets of U . Given a query
set Q ⊆ U , is there a P ∈ P such that Q ⊆ P?

Subset Query is intimately related to Partial Match. By virtue of the equivalence
shown between these problems shown by Charikar et al. [CIP02], we obtain a cell-probe
lower bound similar to Theorem 13 for the Subset Query query problem as well.

Interpreting Partial Match in a geometric manner as stated by Borodin et al. [BOR99],
we obtain an improved cell-probe lower bound for the affine subspace problem: whether or
not a query affine subspace contains at least one database point.

Nearest Neighbor: Let ham(·, ·) denote the Hamming distance in {0, 1}d and let P be
a set of points in {0, 1}d. Given a query point Q ∈ {0, 1}d, find a point P ∈ P such that
ham(P, Q) = minP ′∈P ham(P ′, Q).

Using Theorem 10 and a reduction given by Borodin et al. [BOR99], we conclude that
in the asymmetric communication problem for a decision version of the nearest neighbor
problem, either Alice sends Ω(ε2d/ ln n) bits or Bob sends Ω(n1−ε) bits, for any ε > 0.
The best previous bound for this problem were due to Barkol and Rabani [BR00] who
showed that either Alice sends Ω(εd) bits or Bob sends Ω(nδ) bits, where δ < 1/8 and ε
depends on δ. Using other reductions stated by Borodin et al. [BOR99], our improved
communication complexity lower bounds hold for decision versions of nearest neighbor in
`d
p (d-dimensional real space under the `p norm), for all finite p ≥ 1. Via easy reductions,

the communication complexity lower bound of other geometric data structures problems
is also improved. These include point location in an arrangement of hyperplanes, and a
multi-dimensional generalization of the dictionary problem. For more details, see [BOR99].
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`∞ c-Nearest Neighbor Let `d
∞ denote the d-dimensional real space under the `∞ norm

and let P be a set of points in of `d
∞. Given a query point Q ∈ `d

∞, is there a P ∈ P such
that |P −Q|∞ ≤ c ·minP ′∈P |P ′ −Q|?

For c < 3 this problem is as hard as Partial Match as shown by Indyk [Ind01].
Therefore, a near-optimal communication complexity lower bound and a cell-probe lower
bound follows for the c-nearest neighbor in `∞ norm, for c < 3.

Via an easy reduction from this problem, we obtain similar bounds for the following range
search problem as well: The database is a set of points in d-dimensional real space and given
a query which is a rectilinear range, does the query contain a database point. These bounds
apply as well to the dual problem where the database is a set of ranges and the query is a
point.
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A Proofs

A.1 Proof of Lemma 3

Proof. We use induction on a+ b. If a+ b = 0 then a = 0, b = 0, the matrix consists solely of
1’s and there is only one rectangle which is the whole matrix. So the lemma is clearly true
in this case.

For the induction step, first consider the case when Bob sends the first bit. This splits the
matrix M vertically into two parts, say M1 and M2. At least one of the two parts, say M1,
is (α, β/2)-rich and it has [a, b− 1]-partition. By induction hypothesis, one of the rectangles

R in M1 is 1-monochromatic and has weight at least α
2a × β/2

2a+b−1 = α
2a × β

2a+b .
Now consider the case when Alice sends the first bit. This splits the matrix M horizontally

into two parts, say M1 and M2. At least one of the two parts, say M1 is (α/2, β/2)-rich
and has a [a − 1, b]-partition. Using the induction hypothesis, there is a 1-monochromatic

rectangle R with weight at least α/2
2a−1 × β/2

2a−1+b = α
2a × β

2a+b .

A.2 Proof of Lemma 4

Proof. Fix the random coins of the protocol such that the deterministic function g computed
by the protocol satisfies

Pr(X,Y )∼µ[f(X, Y ) 6= g(X, Y )] ≤ δ.

The ones in the matrix Mg have weight at least c − δ and it has an [a, b]-partition. Call a
rectangle R in this partition good if

Pr[f(X, Y ) 6= g(X, Y ) | (X, Y ) ∈ R] ≤
√

δ.

By an averaging argument, ∑
R:R is not good

µ(R) ≤
√

δ.

Now, modify the protocol such that we output a 0 for the all the inputs in bad rectangles.
If g′ is the function computed by this new protocol, note that Mg′ has an [a, b] partition

identical to that of Mg. The ones in the matrix Mg′ have weight at least c− δ −
√

δ ≥ c/2,
implying by another averaging argument that Mg′ is (c/4, c/4)-rich.

Applying Lemma 3, there is a 1-monochromatic rectangle R in the [a, b] partition of Mg′

with weight at least c
2a+2 × c

2a+b+2 . Since all the bad rectangles are 0-monochromatic, R must
be a good rectangle. Moreover, Mg and Mg′ have identical values in R, therefore g(X, Y ) = 1
for every (X, Y ) ∈ R. By the definition of goodness,

Pr
(X,Y )∼µ

[f(X, Y ) = 0 | (X,Y ) ∈ R] ≤
√

δ.
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A.3 Proof of Lemma 6

Proof. We will prove Lemma 6 with c1 = θ/2 and c2 = θ2/96. Thus we will construct a
design of size 2θ2d/96 where every set has size θd/2 and every pairwise intersection has size
at most θ2d/2. We will select sets X1, X2, ... one by one in a greedy fashion. Having selected
X1, X2, . . . , Xr, if there exists a set X, |X| = θd/2 such that it intersects every Xi, 1 ≤ i ≤ r
in at most θ2d/2 points, we let Xr+1 = X and continue this process. Using a probabilistic
argument, we show that as long as r ≤ 2θ2d/96, there always exists such a set X.

Consider the process of picking a set X where each element of [d] is selected with proba-
bility 3θ/4. We will use the following Chernoff bound (for example, see the book by Chazelle
[Cha00, Lemma A.3]).

Lemma 14. Suppose Z1, Z2, . . . , Zt are independent 0-1 random variables and Pr[Zi = 1] = p
for every i. Let Z =

∑t
i=1 Zi. Then for 0 < a < 1/2,

Pr[Z > (1 + a)pt] ≤ exp(−pta2/4),

Pr[Z < (1− a)pt] ≤ exp(−pta2/2).

Using this bound with p = 3θ/4, we have

Pr[|X| < θd/2] < exp(−θd/24) ≤ 1/2,

and
Pr[|X ∩Xi| > θ2d/2] < exp(−θ2d/96).

Taking a union bound, it follows that as along as r < 2θ2d/96, there exists a set X of size
at least θd/2 that intersects every Xi in at most θ2d/2 points. Taking any subset of X with
size θd/2 completes the proof.
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