
On the Value of Coordination in Distributed

Decision Making∗

Sandy Irani† Yuval Rabani‡

Keywords: Analysis of Algorithms, Distributed Computation, Competitive
Analysis, Load Balancing, Virtual Circuit Routing.

Abstract

We discuss settings where several “agents” combine efforts to solve problems.
This is a well-known setting in distributed artificial intelligence. Our work
addresses theoretical questions in this model which are motivated by the work
of Deng and Papadimitriou [11]. We consider optimization problems, in
particular load balancing and virtual circuit routing, in which the input is
divided among the agents. An underlying directed graph, whose nodes are
the agents, defines the constraints on the information each agent may have
about the portion of the input held by other agents. The questions we discuss
are: Given a bound on the maximum out-degree in this graph, which is the
best graph? What is the quality of the solution obtained as a function of the
maximum out-degree?

∗An earlier version of this paper appeared in Proceedings of the 34th IEEE Symposium
on Foundations of Computer Science, Palo Alto, 1993, under the title “on the value of
information in coordination games.”

†Supported in part by NSF Grant CCR-9309456. Address: Department of Infor-
mation and Computer Science, University of California, Irvine, CA 92717. Email:
irani@ics.uci.edu .

‡Address: Lab. for Computer Science, MIT, 545 Technology Square, Cambridge, MA
02139. Work done while at ICSI, Berkeley, and supported by a Rothschild post-doctoral
fellowship. Email: rabani@theory.lcs.mit.edu .

1 Introduction

In recent years, there has been a great deal of research activity focused on
analyzing algorithms which must compute using partial information about
the problem to be solved. Much of this research effort has focused on on-line
algorithms, where the limitation is due to temporal constraints: the input is
arriving a piece at a time, and output must be produced before all the input
arrives. The study of on-line algorithms is motivated by the fact that many
problems which arise in a wide variety of settings are inherently on-line (i.e.,
one doesn’t have the luxury of being able to collect all the information about
an the instance of the problem before a partial answer must be produced).
However, part of the reason for the recent interest in this area is the introduc-
tion of an appealing means of evaluating on-line algorithms called competitive
analysis [18, 15]. The idea is to determine the quality of an on-line algorithm
by comparing its performance to the performance of the optimal algorithm
that can see the entire input in advance. Thus we measure what is lost by
solving the problem on-line.

The work in this paper follows a model proposed by Deng and Papadim-
itriou [11] and further discussed by Papadimitriou and Yannakakis [17] who
extend the use of competitive analysis to a more general setting than on-line
algorithms. They discuss settings where several “agents” combine efforts to
solve problems. The idea is that global information about a problem to be
solved may be lacking due to spatial (or other) constraints. The framework
suggested in [11] is to model specific constraints in the availability of in-
formation and study the solution quality that can be obtained under these
information regimes. In [17], the information regime is determined by the
input. Linear programming is considered, where each agent is responsible
for a variable or a set of variables, and sees all constraints involving those
variables.

We take a different approach that is suitable for the case that information
is available at a price. Rather than analyzing particular constraint structures,
we focus on the best constraint structure given a bound on the amount each
agent communicates. We address the following questions. To what extent is
it useful for the agents to communicate information about the piece of the
input that each holds? What is the most effective pattern of communication?
If some a priori information about the problem instance is known, how can
this information be used to improve the solution quality?

2

1.1 The Model

We consider optimization problems in the following context: A set of agents
A = {a0, a1, . . . , an−1} are given an instance I of an optimization problem.
Each agent is presented with a portion of the input: ai gets input Ii, where
I = ∪iIi. We assume that the objective function is not part of the input and
is known to all agents.

A strategy S for the agents is a pair (G, D), where G is a directed graph
and D is a set of algorithms, one for each agent. We refer to G as the
knowledge graph because it represents the information available to each agent:
a directed edge (a, b) in G means that agent a knows of the input portion
given to agent b. Each agent’s decisions are a function only of the input it
knows: a set of algorithms D is valid for a knowledge graph G if the algorithm
for each agent aj is a function only of Ij and all Ik such that (j, k) ∈ E. If
S = (G, D) is a strategy, then D must be valid for G. In some cases, we refer
to an undirected knowledge graph in which case an edge between agents a
and b indicates that a and b know each other’s input.

We denote by costS(I) the value of the objective function for a strategy
S on input I, and we denote by cost(I) the value of the objective function
for the optimal, global strategy on input I. A strategy S is c-competitive if
for every I, costS(I)− c · cost(I) is bounded by a constant. The competitive
ratio of S denoted cS is the infimum over all c such that S is c-competitive.

If the knowledge graph is predetermined, then the goal is to devise the
best algorithm with the given limitation in information. Thus, for a given
knowledge graph G, we would like to choose the best set of algorithms D
that are valid for that graph. The competitive ratio for a knowledge graph
denoted cG is the infimum of c(G,D) over algorithms D that are valid for
G. On the other hand, if complete information is available (that is, any
two agents can communicate) but at a cost, we would like to determine to
what extent the solution can be improved with more information. Thus, we
consider strategies that are constrained by limiting the maximum degree of
a vertex in G. If G has maximum degree r, we call S an r-strategy. cr is
the infimum of cS over all r-strategies. What pattern of communication and
what algorithm are best for a given limitation in communication: for a given
r what r-strategy achieves cr? To what extent is communication useful: how
does cr decrease as r increases? We study these general issues with respect
to two specific problems: load balancing and virtual circuit routing.

3

Awerbuch et al. [3] study a problem very similar in flavor to the problems
we consider here. They consider the number of steps necessary to broadcast
a message in a fixed network. They show bounds on the number of steps
necessary as a function of the radius of the network graph each vertex knows.
Unlike our model, the processors do not get to choose the information they
acquire. However, for the problems we consider, it is always optimal for
the agents to communicate by grouping themselves into disjoint cliques and
completely sharing information within a clique.

There are several applications to this model. We mention some of them
here.
Parallel Programming. It is now clear that realistic models of parallel
computation must address communication overhead as well as processing
time [1, 10, 12, 16, 19]. It seems easier to design and implement a parallel
program where the parallel tasks are oblivious to each other as much as pos-
sible. Coordination between parallel tasks requires additional programming
and increases communication overhead. Our work speaks to the tradeoff
between the amount of coordination in a parallel program and the effective-
ness of that program in solving specific problems. Particularly, the design of
system services such as batch execution might benefit from this analysis.
High speed network management. High speed networks are expected to
serve a large number of users bidding for a variety of services. The allocation
of network resources by a centralized network manager becomes impractical
under such conditions. As pointed out by [17], the multiple agents model is
suitable for discussing performance degradation due to the distributed nature
of network management. Specifically, our results relate to the following ques-
tions: Network managers are requested to allocate virtual connecting paths
between pairs of sites. Each virtual circuit consumes a fixed bandwidth.
What is the required capacity of network links and switches to handle the
expected traffic? How does this capacity change as a function of communica-
tion among network managers? What network structures support distributed
management?
Large scale planning. The question of cooperation among communicating
problem solvers is considered fundamental in distributed AI, as it addresses
planning problems in a large scale system or organization that is faced with
a rapidly changing environment. See [6] for a comprehensive collection of
papers in the field. The AI approach tends to be either qualitative or ex-
perimental. Recent theoretical results [11, 17] as well as this work focus on

4

quantitative analysis of such problems.

1.2 Outline of Results

We consider the load balancing problem discussed in [11]. Each agent gets a
set of jobs to be executed, where the length of each job is known in advance.
The agents redistribute the jobs among themselves. Their goal is to minimize
the maximum load on an agent. The optimal strategy clearly divides the jobs
evenly among all the agents, or as evenly as possible given the granularity of
the job lengths.

Deng and Papadimitriou give a complete analysis of the problem of three
agents scheduling jobs on two processors for all possible knowledge graphs.
They also show that for an arbitrary number n of agents distributing jobs
among themselves, when the agents do not communicate at all (i.e., the
knowledge graph has no edges), then there is a way for each agent to redis-
tribute its jobs that achieves a competitive ratio of 2

√
n. Furthermore, for

any deterministic strategy, there is a way of assigning n jobs of length 1 to
the n agents such that some agent receives at least

√
n jobs. Thus if G has

no edges, then
√

n ≤ cG ≤ 2
√

n.
We generalize their results to show that for a fixed knowledge graph G,√

α(G) ≤ cG ≤ 2
√

φ(G), where α(G) is the size of the maximum independent

set of G and φ(G) is the size of the minimum clique cover in G. Thus, when

G is a collection of disjoint (r + 1)-cliques,
√

n/(r + 1) ≤ cr ≤ 2
√

n/(r + 1).
The factor of two can be reduced when all the job lengths are identical.

As one might suspect, randomization is a very powerful tool in this set-
ting. Deng and Papadimitriou show for the empty knowledge graph that if
each agent sends each job to a random destination, then the competitive ratio
is log n/ log log n. We show an asymptotically matching lower bound (also
shown independently by Alon [2]). Furthermore, we consider r-strategies for
all r. We show tight bounds of cr ∈ Θ(log(n

r
)/log log(n

r
)). The lower bound

holds for any distribution of r-regular graphs; i.e., even when global informa-
tion available to all agents is hidden from the adversary. For example, the
lower bound holds even if the agents can organize themselves into random
collections of disjoint (r+1)-cliques. The upper bound follows, as in the deter-
ministic case, from an algorithm that gives cG = O (log φ(G)/ log log φ(G))
for all knowledge graphs G. The upper bound requires that agents which

5

share their pieces of input can also toss common coins (but no global coins
are needed).

We also consider questions that relate to virtual circuit routing. The
problem is to route permutations in a network where each agent is respon-
sible for selecting the route of a single input. The goal is to minimize the
node or edge congestion. When no information is available to the agents
besides their own destination assignment, this is the well-studied question of
oblivious routing. If the paths for each input-output pair are precomputed by
some central algorithm, we have the problem of global routing – also, a very
well-understood problem. We consider routing where the available informa-
tion is in the spectrum between the oblivious and the global cases. Each
agent (which represents a single input vertex in the network) knows its own
destination and the destinations of some of the other agents and must decide
on its path using the available information. The knowledge graph represents
what information is available to which agents and we determine the benefit
obtained when each agent has degree at most r in the knowledge graph.

We consider N -node, degree-d networks with n input and n output nodes.
We assume that the network is optimal for the required task; i.e., the agents
may choose the structure of the network. For that reason, we do not give
a competitive analysis but a worst case analysis. We show an r-strategy
for routing in a log n-dimensional Beněs network [4, 20] with maximum

edge congestion of
√

n
r
. The lower bounds on oblivious routing of [7, 14]

can be modified to show lower bounds of 1
2d

√
n
N

n
r

on edge congestion and
1
2

√
n
N

n
(d+1)r

− n
2Nr

on node congestion. We show a lower bound on node con-

gestion of Ω
(

log(n
r
)

log log(n
r
)

)
for randomized r-strategies. The lower bound follows

the lower bound on oblivious single-port routing of Borodin et al. [9]. All of
our bounds match the previously known bounds for r = 1 (oblivious routing)
and r = n (global routing).

2 Load Balancing

Each agent decides deterministically where to send its jobs based on the set
of jobs it has and the set of jobs each of its neighbors in the knowledge graph
has. Let φ(G) be the size of the minimum clique cover for a graph G and

6

α(G) the size of the maximum independent set of G. We prove the following
theorem.

Theorem 1 For every graph G,
√

α(G) ≤ cG ≤ 2
√

φ(G).

Proof. Let S be an independent set. Let |S| = s. Give n/
√

s jobs to each
agent in S. After the jobs have been redistributed, some agent a will get

√
s

jobs. Pick a subset of at most
√

s agents such that the total number of jobs
given to agent a by agents in the subset is at least

√
s. Now instead, give

n/
√

s jobs only to agents in the subset. Since there are at most n jobs total,
the optimal cost is one. Agent a still gets

√
s jobs.

Let φ(G) = Φ. Partition the vertices into Φ cliques, c0, . . . , cΦ−1. A
clique acts as one agent since all the agents know the inputs of the other
agents in the clique. Fix an arbitrary ordering on the agents: a0, ..., an−1.
Let m = n/Φ. Each clique ci divides its tasks into at most n groups so as to
minimize the maximum length of a group’s tasks. Then it sorts the groups
in decreasing order by length. Clique ci sends the jobs in group k to agent
abmic+k (mod n).

Fix some agent aj. Let ij be the number that satisfies bmijc ≤ j <
bm(ij + 1)c. Let ti denote the number of jobs given to agent j from the
clique cij−i (mod Φ) (the clique that precedes clique ij in the ordering by i).
Fix some k such that 1 ≤ k < Φ. We divide the work sent to agent aj

into two parts: T1 =
∑k−1

i=0 ti, and T2 =
∑Φ−1

i=k ti. The total job length sent
to agent aj is T = T1 + T2 ≤ 2 max{T1, T2}. We can lower bound the cost
to the optimal strategy by max0≤i<k ti because each clique divides its jobs
into groups so that the maximum total length in any group is minimized. If
T1 ≥ T2,

T

max0≤i<k ti
≤ 2T1

max0≤i<k ti
≤ 2k.

Clique cij−i (mod Φ) sends at least ti jobs to agents b(ij−i)m (mod n)c, . . . , bmijc.
Thus the total number of jobs originating at clique cij−i (mod Φ) is at least
(bmijc − bm(ij − i) (mod n)c+ 1)ti ≥ miti. The total length of all the jobs
in the system is at least

∑Φ−1
i=k miti ≥ mk

∑Φ−1
i=k ti. Thus, the optimal solution

sends jobs of length at least

mk
∑Φ−1

i=k ti
n

=

∑Φ−1
i=k ti
Φ/k

=
kT2

Φ

7

to some agent. Thus, if T2 ≥ T1,
T

kT2/Φ
≤ 2T2

kT2/Φ
= 2Φ/k. Picking k to

minimize the maximum of the two bounds 2Φ/k and 2k, we get k =
√

Φ
which yields an upper bound of 2

√
Φ.

Corollary 2
√

n
r+1

≤ cr ≤ 2
√

n
r+1

.

Proof. The lower bound follows from the fact that any graph with maxi-
mum degree r has an independent set of size at least n/(r + 1) (the greedy
algorithm finds such a set). For the upper bound, partition the set of agents
into disjoint subsets of size r + 1 each. The knowledge graph consists of
n/(r + 1) complete graphs, one on each of the subsets.

Remark.The upper bound can be improved to
√

2Φ when all the job lengths
are the same. When the jobs lengths are not the same, it is an NP-hard
problem to divide a set of jobs into at most n groups so as to minimize the
maximum total length in any group. However, there is a polynomial time
approximation algorithm which comes within a factor of 4/3 of the optimal
solution [13]. Thus, the above upper bound can be achieved by polynomial
time bounded agents with an extra factor of 4/3 in the ratio.

A natural question to ask is whether the upper or lower bound of Theorem
1 is tight. In order to answer this question, we need to examine a class of
graphs whose maximum independent set and minimum clique cover differ.
The distribution G(n, 1

2
) is the distribution over all n node undirected graphs

where each pair of nodes is adjacent independently with probability 1
2
. If G is

drawn according to G(n, 1
2
), then with high probability, φ(G) = Ω(n/ log n)

and α(G) = O(log n) [5]. These facts combined with the following claim
imply that the upper bound of Theorem 1 is not tight for the case when all
job lengths are 1. We suspect that the lower bound is not tight either — that

there are graphs G for which cG lies strictly between
√

α(G) and
√

φ(G).

Claim 3 If G is drawn at random from G(n, 1
2
), then with high probability,

cG = O(n
1
3 log n) when all job lengths are uniform.

Proof. We can assume that no agent receives more than n jobs. If an agent
receives x jobs, it can distribute nbx/nc jobs evenly among the agents and
it is left with the problem of distributing the remaining x mod n jobs.

An i-adversary gives each agent either 0 jobs or x jobs where 2i ≤ x <
2i+1. Suppose that for every 0 ≤ i ≤ log n, we can achieve a ratio of c

8

against an i-adversary. Then we can achieve a ratio of c(log n + 1) against
any adversary. Let the i-agents be those agents that receive y jobs such that
2i ≤ y < 2i+1. Each i-agent follows the strategy against the i-adversary
with the following change. For every non-i-agent whose input it can “see,” it
assumes that that agent received 0 jobs. Let Mi be the number of jobs given
to the agent who receives the maximum number of jobs from i-agents after
the jobs have been redistributed. Let Xi be the total number of jobs given
to i-agents by the adversary. Let t = log n. The agent with the maximum
number of jobs after redistribution has no more than

∑t
i=0 Mi jobs. The

optimal solution gives at least d(∑t
i=0 Xi)/ne jobs to some agent. We are

guaranteed that Mi/dXi/ne ≤ c.
Since

∑t
i=0d(Xi/n)e ≤ (t + 1)d(∑t

i=0 Xi)/ne, we have that∑t
i=0 Mi

d∑t
i=0

Xi

n
e

≤ (t + 1)
∑t

i=0 Mi∑t
i=0dXi

n
e

≤ (t + 1) ·max
i

{
Mi

dXi

n
e

}
≤ c · (log n + 1)

Now for every 0 ≤ i ≤ log n, we show a strategy against an i-adversary.
Then we show that with high probability, G has a certain property which
ensures that each strategy achieves a ratio of O(n

1
3). Say that G has property

A if for every subset of 8n1/3 nodes in G, the subgraph induced by that subset
has more than 4n2/3 edges. We have the following lemma:

Lemma 4 When G is chosen according to G(n, 1
2
), then

Pr[G does not have property A] ≤ 2n1/3(8 log n−5n1/3/3).

Proof. Let s = n1/3. Consider a fixed subset S of 8s vertices. What is
the probability that there are at most 4s2 edges in the subgraph induced by
S? There are at least

(
8s
2

)
≥ 28s2 edges slots. Thus the expected number of

edges is at least 14s2. Using Chernoff bounds, the probability that a fixed
subset of 8s vertices induces a subgraph with no more than 4s2 edges is at
most

e−(10s2)2/2·28s2 ≤ 2−5s2/3.

9

Thus, the probability that there is a subset of size 8s vertices in the graph
whose induced subgraph has fewer than 4s2 edges is at most(

n

8s

)
2−5s2/3 ≤ n8n1/3

2−5n2/3/3 ≤ 2n1/3(8 log n−5n1/3/3).

Now we will show the strategy against an i-adversary. Our strategy gives
the desired ratio if G has property A. Therefore, if property A holds, the
strategies for all i give the desired ratio. Let m = 2dlog ne. There will be
n agents sending jobs and and m receivers. The jobs sent to receiver j are
sent to agent j (mod n). An agent gets no more than twice the load of the
heaviest loaded receiver. We will determine the ratio of the most heavily
loaded receiver in the distributed solution to the most heavily loaded agent
in the optimal solution. Let X = 2i. Let xj be the number of jobs that
start with agent j. Since we are playing against an i-adversary, xj = 0 or
X ≤ xj < 2X for all j.

If X ≥ n2/3, then agent j sends a job to receiver k + j mod n for all
1 ≤ k ≤ xj. If some agent gets a jobs after redistribution, then there are
at least aX jobs among all the agents. The optimal solution gives at least
aX/n to some agent. This gives a ratio of at most n/X.

If X ≤ n1/3, then each agent keeps all the jobs that it receives.
If n1/3 ≤ X ≤ n2/3, then divide the receivers into m/X groups of X

consecutive receivers. The agents are also divided into consecutive groups of
X. There are only dn/Xe such groups and the last group may have fewer
than X agents.

There are two cases:

Case 1. If an agent in group i gets jobs and is adjacent to no more than n1/3

agents with jobs in its group, then it distributes its jobs evenly among
the receivers in group i. In this case, an agent gives at most two jobs
to each receiver.

Case 2. If an agent j is adjacent to at least n1/3 agents with jobs in its group,
it sends its jobs to receiver (Xk+(j mod X)) (mod m) for 0 ≤ k < xj.
In other words, each agent can be specified by the group to which
it belongs (j div X) and its number within the group (j (mod X)).
Starting with group 0 and cycling through the m/X groups of receivers,
agent j gives its jobs to the receiver in each group which has the same
number within its group.

10

Now consider a group of X agents with more than 8n1/3 agents that fall
into case 1. Pick 8n1/3 of them and call this set S. Every agent in S has
fewer that n

1
3 edges to agents in S. That means that the subgraph induced

by S has no more than 4n2/3 edges (since the sum of degrees is twice the
number of edges); i.e., G does not have property A. Thus, by Lemma 4, with
high probability G has the property that it is impossible to have more than
8n1/3 agents that fall into case 1. For the remainder of the proof, we assume
that this is the case. Using the fact that an i-agent from Case 1 gives at
most two jobs to each agent in its group, we can conclude that the number
of jobs given to an agent by i-agents from Case 1 is at most than 16n1/3.

So suppose that some receiver j gets l jobs from Case 2 agents. Receiver
j only gets these jobs from agents whose number is congruent to j mod
X. Each of these agents is in a different group and spreads its jobs as
evenly as possible among the groups of receivers. Since each agents starts
with at most 2X jobs and there are m/X groups, at most d2X2/me ≤
max{1, 2X2/m} jobs that end up with agent j come from the same group.
Thus, there are at least min{l, lm/2X2} groups where n1/3 of the agents get
jobs. Each such group has at least Xn1/3 jobs. Thus, the total number of
jobs is at least Xn1/3 min{l, lm/2X2}, and the optimal solution gives at least
(X/n2/3) min{l, lm/2X2} to some agent. Thus, the competitive ratio due to
Case 2 is at most max{n2/3/X, 2X/n1/3}. For n1/3 ≤ X ≤ n2/3, the ratio is
at most 2n1/3.

We show the following upper bound on randomized strategies.

Theorem 5 For every knowledge graph G there is a randomized load bal-
ancing strategy whose competitive ratio is in O

(
log(Φ)

log log(Φ)

)
where Φ = φ(G).

Proof. Let m = dn/Φe. Pick a clique cover of G of size Φ. We assume that
the agents within a clique know the set of jobs assigned to the other agents
in the cliques as well as their random bits. Thus, each clique operates as a
single agent. The agents will be divided into Φ sets of size m. Each agent
will be indexed by a pair (i, j) where 0 ≤ i ≤ Φ − 1 and 0 ≤ j ≤ m − 1. i
indicates the set to which the agent belongs and j indicates the place within
the set.

Each clique cl divides its tasks into at most n sets such that the maximum
length of a set’s tasks is minimized. Then it sorts the sets in decreasing order
of length. Each set will be indexed by a triplet (i, j, l) where 0 ≤ i, l ≤ Φ− 1

11

and 0 ≤ j ≤ m − 1. The third index denotes the clique where the jobs
originate. The first two indices identify the specific set at clique l. Let
s(i, j, l) be the total length of the jobs in set (i, j, l). They are sorted so that
s(i, j, l) ≥ s(i′, j′, l) if i < i′ or if i = i′ and j ≤ j′. For each i ∈ {0, . . . , Φ−1},
clique cl draws k ∈ {0, . . . , Φ − 1} uniformly at random. Then for all j ∈
{0, . . . ,m− 1}, it sends all the jobs in set (i, j, l) to agent (k, j).

Denote the optimal cost for this instance by OPT . Denote the cost due
to the distributed algorithm by the random variable D. We wish to show
that E[D] ∈ O((log Φ/ log log Φ)OPT).

Consider a related problem: we have Φ agents. Agent l gets a set of Φ
jobs of lengths s(0, 0, l), s(1, 0, l), . . ., s(Φ− 1, 0, l). (Some of these could be
of length 0). Let OPT ′ be the cost when the jobs are optimally distributed
among the Φ agents. Let D′ be the random variable denoting the cost of the
distributed algorithm which sends each job to a random agent. The result
of [11] gives that E[D′] ∈ O((log Φ/ log log Φ)OPT ′). Clearly, D and D′ are
identically distributed, so E[D] = E[D′]. We show that OPT ≥ 1

3
OPT ′,

which completes the proof.
Divide the jobs from the second problem into two sets:

T1 =
Φ−1∑
l=0

s(0, 0, l)

T2 =
Φ−1∑
i=1

Φ−1∑
l=0

s(i, 0, l)

Let MAX = max0≤l≤Φ−1 s(0, 0, l) Clearly, MAX ≥ T1/Φ. We claim two
facts:

1. OPT ≥ max{MAX, T2

Φ
};

2. OPT ′ ≤ MAX + T1+T2

Φ
.

The theorem follows from the two claims because

OPT ′ ≤ 2MAX +
T2

Φ
≤ 3OPT.

To prove the first claim, observe that in the first problem each clique
divides the jobs into sets so as to minimize the maximum length of the jobs

12

in any set. So the length of the jobs in any set is a lower bound on the
optimal solution. The second part of the ‘max’ in claim 1 follows from

OPT ≥ 1

n

m−1∑
j=0

Φ−1∑
i=0

Φ−1∑
l=0

s(i, j, l)

Since for all 1 ≤ i < m,
∑m−1

j=0 s(i, j, l) ≥ m · s(i + 1, 0, l),

≥ m

n

Φ−1∑
i=1

Φ−1∑
l=0

s(i, 0, l)

≥ mT2

n
=

T2

Φ
.

To see the second claim, observe the discrepancy disc in the optimal
solution. The discrepancy is the difference between the maximum load on
an agent and the minimum load on an agent. Clearly, disc ≤ MAX. Since
(T1 + T2 + Φ · disc)/Φ is an upper bound on the optimal cost, the claim
follows.

Corollary 6 There are randomized load balancing r-strategies for all n, r

with a competitive ratio in O
(

log(n
r
)

log log(n
r
)

)
.

Proof. Partition the set of agents into disjoint subsets of size r + 1 each.
The knowledge graph consists of dn/(r + 1)e complete graphs, one on each
of the subsets.

Corollary 6 is tight up to a constant factor, as the following theorem
shows.

Theorem 7 If 4

√
r(n)

n
−→ 0 as n → ∞, then for every sufficiently large n

and for r = r(n), the competitive ratio of every randomized load balancing

r-strategy on n agents is in Ω
(

log(n
r
)

log log(n
r
)

)
.

Remark.If 4

√
r(n)

n
≥ ε > 0 for all n, then n

r(n)
≤ ε−4. So, we get a lower

bound of Ω
(

log(n
r
)

log log(n
r
)

)
for all r < n. Alon [2] has independently shown a

lower bound of Ω(log n/ log log n) for the special case of an empty knowledge
graph. This bound follows from our proof as well.

13

Proof of Theorem 7. We need to consider only r-regular knowledge
graphs (i.e., with out-degree r). Applying von Neumann’s minimax prin-
ciple (see [21, 8]), we show a probability distribution over inputs which beats
every deterministic algorithm.

For the sake of completeness, we state and prove the exact claim that is
needed (see [8, Lemma 7.2] for the original version).

Lemma 8 Let Ĩ be a probability distribution over a finite sample space of in-
puts, such that for every deterministic r-strategy S, EĨ [costS(Ĩ)−c·cost(Ĩ)] ≥
0. Then, for every randomized r-strategy S̃ there exists an input instance
I = I(S̃) for which

ES̃[costS̃(I)]

cost(I)
≥ c.

Proof. Fix S̃. S̃ is a probability distribution over deterministic strate-
gies Sχ. Since for every χ, EĨ [costSχ(Ĩ) − c · cost(Ĩ)] ≥ 0, we have that

Eχ[EĨ [costSχ(Ĩ) − c · cost(Ĩ)]] ≥ 0. We may switch the order of integration

since all expectations are finite. We get EĨ [Eχ[costSχ(Ĩ) − c · cost(Ĩ)]] ≥ 0,

or EĨ [costS̃(Ĩ) − c · cost(Ĩ)] ≥ 0. Therefore, there exists I ∈ Ĩ for which
costS̃(I)− c · cost(I) ≥ 0.

The distribution we choose gives every agent d jobs independently with
probability p and 0 jobs otherwise. We use d =

4
√

r3n and 4
d

< p < 4e
d
, so

that p(1 − p)rd = 4. Notice that d ∈ ω(r) ∩ o(n). The expected cost of the
optimal algorithm is at most 8e. Our goal is to show that the expected cost
of any deterministic r-strategy is in Ω(β), where β = log(n/r)/ log log(n/r).

Let k = log(d
r
)/ log log(d

r
). By our choice of d, k ≥ β/4. We need the

following lemma.

Lemma 9 If r(n) ∈ o(d(n)), and Z = Z(n) is distributed according to the

binomial distribution B
(

4(r+1)
d

, d
4(r+1)

)
, then for n large enough,

Prob[Z ≥ k] ≥ r

d
.

Proof. Let λ = E[Z] = 1. Prob[Z = k] (which is a lower bound for
Prob[Z ≥ k]) can be estimated using the Poisson approximation to the bi-
nomial distribution. It gives

Prob[Z = k] > p(k; λ)e−
k2

d/4(r+1)−k
− λ2

d/4(r+1)−λ ,

14

where p(k; λ) = e−λλk/k!.
We can estimate p(k; λ) for large k using Stirling’s formula as follows.

p(k, 1) =
1

e(k)!
≥ a√

k

(
e

k

)k

,

for some constant a.

Also, e−
k2

d/4(r+1)−k
− λ2

d/4(r+1)−λ −→ 1 as n → ∞, so for sufficiently large n
this is lower bounded by 1

2
.

We have, for sufficiently large n,

log

2
√

k

a

(
k

e

)k
 ≤ k log k ≤ log

(
d

r

)
.

The condition that 4

√
r(n)

n
−→ 0 as n →∞, implies that r(n) ∈ o(d(n)).

We use Lemma 9 to bound a similar distribution. A vertex of G is said
to be chosen if it gets jobs. A vertex is isolated if it is chosen and none of its
neighbors are chosen.

Lemma 10 Let A be a subset of the vertices of G. To each vertex v ∈ A,
assign an integer weight Wv between 1 and k/8 such that

∑
v∈A Wv ≥ d

4
. Let

Y be the sum of the weights of the isolated vertices in A. Let Z be as in
Lemma 9. Then for n sufficiently large,

Prob[Y ≥ k

2
] ≥ 1

e9
Prob[Z ≥ k].

Proof. Recall that k = log(d/r)/ log log(d/r). Let s = d/4. We may as-
sume that

∑
v∈A Wv = s, otherwise we reduce weights and remove 0-weighted

vertices from A until equality holds. For each vertex v ∈ A, we introduce
Wv indicator variables. Each variable is set to 1 if its corresponding vertex
is isolated and to 0 otherwise. Denote the indicator variables by Y1, . . . , Ys.
Y =

∑
Yj. For X a k-subset of {1, . . . , s}, VY (X) is the subset of vertices

associated with {Yi | i ∈ X}.
The proof proceeds in two steps. First, we relate the probability of the

desired event in G to the probability of a similar event in a graph GU , derived
from G, where vertex weights are 1. Then we relate the probability of the
desired event in GU to the distribution of Z.

15

We form a graph GU which is identical to G except that for every vertex
v ∈ A, we have a set Sv of Wv nodes in GU . If v and u are adjacent in G,
then in GU every vertex in Su is adjacent to every vertex in Sv. Note that
the degree in GU is at most kr/8. Let AU = ∪v∈ASv. Notice that |AU | = s.
Let Ui denote the indicator variable that is 1 if vertex i in AU is isolated and
0 otherwise when each vertex of GU is chosen independently of the others
with probability p. Let U =

∑
Uj.

Now consider a particular graph GZ of s vertices consisting of disjoint
(r + 1)-cliques. Let Z1, . . . , Zs be the indicator variables which indicate for
each vertex whether it is isolated when each vertex is chosen with probability
p. Clearly, the distributions of Z from Lemma 9 and

∑
Zj are identical.

We wish to show that

1. Prob[Y ≥ k
2
] ≥ Prob[U ≥ k]/e4.

2. Prob[U ≥ k] ≥ Prob[Z ≥ k]/e5.

Proof of Part (2): Define

SU = E

 ∑
X⊂{1,...,s},|X|=k

∏
j∈X

Uj

 .

Similarly

SZ = E

 ∑
X⊂{1,...,s},|X|=k

∏
j∈X

Zj

 .

Clearly, SU is an upper bound on Prob[U ≥ k] and SZ is an upper bound on
Prob[Z ≥ k]. First we prove that SU ≥ SZ/e2.

Examine a fixed k-set X of {1, . . . s}. When does
∏

j∈X Uj = 1? This
happens when X forms an independent set, all the vertices in X are chosen
and all the vertices in the neighborhood set of X are not chosen. Notice that
|X| = k and the neighborhood set of X has at most rk2/8 vertices. Thus
if X forms an independent set, then

∏
j∈X Uj = 1 with probability at least

pk(1 − p)rk2 ≥ pk/e ≥ pk(1 − p)rk/e. (The first inequality follows from the
fact that for sufficiently large n, rk2 � 1/p. Since (1− 1/x)x−1 > e−1 for all
x ≥ 2, the inequality follows.)

Now let’s look at the Zjs. If X forms an independent set, then the
neighborhood set of X has size rk (because the graph is composed of disjoint

16

(r + 1)-cliques). Thus if X is an independent set, then
∏

j∈X Zj = 1 with
probability exactly pk(1− p)rk.

Thus we have to prove that the number of k-sets X that are independent
sets in GU is at least 1/e times the number of k-sets X that are indepen-
dent sets in GZ . We do this by picking X at random and showing that
Prob[X is independent in GU] ≥ e−1. We pick a random k-set, vertex by
vertex in GU . Let vi denote the ith vertex that is picked and Vi denote
{v1, . . . , vi}. The neighborhood set of Vi is denoted N(Vi).

Thus, we have:

Prob[Vk is independent]

=
k∏

j=1

Prob[vj 6∈ N(Vj−1) | Vj−1 is independent]

≥
k∏

j=1

(
1− rk(j − 1)

8(s− j + 1)

)
≥

k∏
j=1

(
1− 2rk(j − 1)

8s

)

≥
(

1− rk2

4s

)k

≥ e−1.

The last inequality holds for sufficiently large n, since k � d/rk2. There-
fore, we conclude that SU ≥ SZ/e2.

We now complete the proof that Prob[U ≥ k] ≥ Prob[Z ≥ k]/e5. Observe
that

Prob[U ≥ k] ≥ SU(1− p)s−k ≥ SU/ee ≥ SU/e3.

The first inequality comes from the fact that the probability that there are
exactly k isolated vertices in A is at least SU(1− p)s−k (The lower bound is
obtained by summing over all independent k-sets in GU , the probability that
the k-set is isolated and all other vertices in AU are not chosen). The second
inequality uses the fact that p < e/s and that for sufficiently large n, k > e,
and thus s− k < (s/e− 1)e. Therefore to complete the proof of Part (2),

Prob[U ≥ k] ≥ 1

e3
SU ≥ 1

e5
SZ

≥ 1

e5
Prob[Z ≥ k].

Proof of Part (1): Let I be the set of independent sets in A of size at
most k

2
whose weights sum to at least k

2
. We want to relate the number of

17

independent k-sets in AU to the number of subsets in I. To do that, we map
every independent k-set X in AU , to an independent set in I as follows: if
|VY (X)| ≥ k

2
, then map X to an arbitrary size k

2
subset of VY (X). Since

the weight of a vertex is at least 1, the weight of the subset is at least k
2
.

If |VY (X)| < k
2
, then map X to VY (X). For any independent set I ∈ I,

there are at most (k
8
)

k
2

(
s

k/2

)
independent sets mapped to I: there are at most

(k
8
)

k
2 ways to pick the first k

2
vertices from the sets in GU associated with the

vertices of I and
(

s
k/2

)
ways to pick the remaining vertices from AU . Define

SY =
∑
I∈I

p|I|(1− p)|N(I)|.

We can lower bound SY by SU/e as follows:

SU ≤
∑

X indep., |X|=k

pk

≤
(

k

8

)k/2 (
s

k/2

)∑
I∈I

pk

≤
(

k

8

)k/2 (
s

k/2

)
pk/2

∑
I∈I

pk/2

≤
(

k

8

)k/2 (
s

k/2

)
pk/2

∑
I∈I

epk/2(1− p)kr/2

≤
(

k

8

)k/2 (
s

k/2

)
pk/2eSY .

We show that (
k

8

) k
2
(

s

k/2

)
p

k
2 ≤ 1,

thus concluding that SY ≥ SU/e. Observe that p was chosen so that p(1 −
p)r = 4

d
= 1

s
. So p

k
2 = (1

s
)

k
2 (1− p)−kr/2 ≤ e(1

s
)

k
2 for sufficiently large n.

(
k

8

) k
2
(

s

k/2

)
p

k
2

18

≤
(

k

8

) k
2 s

k
2

(k
2
)!

es−
k
2

≤
(

k

8

) k
2 (2e

k

) k
2

e ≤ 1,

where the inequalities hold for sufficiently large n. In a similar manner to
the proof for Part (2),

Prob[Y ≥ k/2] ≥ 1

e3
SY ≥ 1

e4
SU

≥ 1

e4
Prob[U ≥ k].

This completes the proof of Lemma 10. We now proceed with the proof
of Theorem7.

Consider the following n by n bipartite graph H. There is an edge between
a vertex x on the left and a vertex y on the right for every job that agent x
sends to agent y when agent x is isolated. There is an edge from vertex x on
the left to vertex x on the right for every job that x keeps when x is isolated.
Note that the degree of a left node in H is exactly d. If a vertex is isolated,
then it sends its jobs according to the edges in H. We examine the load due
to isolated vertices only.

Our proof proceeds in three steps. First, we address two special cases: (i)
there is a right vertex in H of degree at least βd; (ii) there are at least d left
vertices in H that have an edge of multiplicity β/32 or more. Then, we prove
the theorem for graphs H that do not fall into either of these categories.

Lemma 11 If H has a right vertex v of degree at least βd, then the expected
number of jobs sent to v is at least 4β.

Proof. Let u1, u2, . . . , uk be the neighbors of v on the left. For i =
1, 2, . . . , k, let Wi denote the multiplicity of the edge between ui and v.∑

Wi ≥ βd. Each of the ui’s is isolated with probability p(1−p)r. Therefore,
the expected number of jobs that v get is p(1−p)r ∑Wi ≥ p(1−p)rβd ≥ 4β.

Lemma 12 If there are at least d left vertices in H with an edge of multi-
plicity β/32 or more, then the expected maximum number of jobs an agent
gets is at least β/32e4.

19

Proof. There is a set S of at least d/4e vertices such that if any of them
is isolated, some agent has a load of at least β/32. For v ∈ S, let Ev denote
the event that v is isolated and the remaining vertices in S are not chosen.
Prob[Ev] ≥ p(1 − p)rk(1 − p)d/4e−1 ≥ 4

de3 . (Recall that p ≤ 4e/d and for n
sufficiently large rk � 1/p.) The probability that some vertex in S is isolated
is at least

∑
v∈S Prob[Ev] ≥ 1/e4. Thus, the expected maximum load is at

least β/32e4.

We now consider the remaining case, where all right vertices in H have
degree at most βd, and at most d left vertices in H have edges of multiplicity
β/32 or more. Remove all the vertices on the left which have an edge of
multiplicity at least β/32. There are at least n− d left vertices remaining.

We need the following lemma.

Lemma 13 If the maximum degree of a right vertex in H is βd, then there
exists a subgraph H ′ of H such that

1. The number of right vertices in H ′ is at least d
r
.

2. The degree of each right vertex in H ′ is at least d
4
.

3. For every two distinct right vertices x, y in H ′, their neighborhood sets
do not intersect.

Proof. Let c = 2βd3/r(n−2d). Define a graph I whose vertices are a subset
of the right vertices of H as follows. Remove all right vertices of degree less
than d/2. Remove edges till each remaining right vertex has degree exactly
d/2. Call the remaining graph H ′′. Connect two right vertices by an edge iff
the size of the intersection of their neighborhood sets in H ′′ is at least c. The
degree of any vertex in I is at most d2/c. The number of right vertices in H
that have degree at least d/2 is at least (n− 2d)/2β, because the maximum
degree is βd and the sum of degrees is (n − d)d. Therefore, there is an
independent set of size at least (n− 2d)c/2βd2 ≥ d/r in I. Take a subset of
size d/r of the independent set together with the neighborhood sets of these
vertices in H ′′ and the connecting edges. What we get is a collection of d/r
stars. Each right vertex is a root of one star and has degree d/2. Remove
from this collection any left vertex that participates in more than one star.
Since each right vertex removes from each other star at most c left vertices,
the resulting stars are vertex disjoint and have minimum root degree of at
least d/2− cd/r which is at least d/4 for sufficiently large n.

20

The neighborhood sets of the right vertices of H ′ induce a collection
of d/r disjoint sets of vertices in G. We call this collection of sets A =
A1, A2, . . . , Ad/r. To each vertex v that belongs to such a set, we assign it a
weight Wv which is equal to the multiplicity of its edge to its adjacent right
vertex in H ′. Since we have removed the vertices incident to edges of high
multiplicity, the weight of any vertex is at most β/32 ≤ k/8. Each set has a
total weight of at least d/4. Let ai be the sum of the weights of the isolated
vertices in set Ai. We wish to show that the expected maximum over all ai

is in Ω(β).
For the remainder of the proof, “adjacency” refers to adjacency in the

knowledge graph G. N(X) denotes the neighborhood set of a set of vertices
X. A subset X of vertices is isolated (not isolated/chosen/not chosen) if
every vertex in the set is isolated (not isolated/chosen/not chosen). Let Ej

denote the event (a1 < k/2) ∧ (a2 < k/2) ∧ . . . ∧ (aj < k/2).

Lemma 14 Let 1 ≤ j ≤ d/r. If Prob[Ej−1] ≥ 1− 1
2e

then

Prob[aj ≥ k/2 | Ej−1] ≥
1

2e4
Prob[aj ≥ k/2].

Proof. Let A = A1 ∪ A2 ∪ · · · ∪ Aj−1. Let E = Ej−1. For each vertex
v ∈ Aj we introduce Wv indicator variables as in the proof of Lemma 10.
Let Y1, . . . , Ys be those variables. SY is defined as in Lemma 10. Using the
arguments from the proof of Lemma 10, we have that Prob[aj ≥ k/2 | E] ≥
E[SY | E]/e3. Also, E[SY] is a trivial upper bound on Prob[aj ≥ k/2].
Therefore, it is sufficient to prove that E[SY | E] ≥ E[SY]/2e. Fix an
arbitrary independent set I ∈ I. We need to prove that Prob[I is isolated |
E] ≥ Prob[I is isolated]/2e.

The event that I is isolated happens if and only if I is chosen and N(I)
is not chosen. Therefore, p|I| ≥ Prob[I is isolated]. Also,

Prob[I is isolated | E]

= p|I|Prob[N(I) is not chosen | E].

Since

Prob[N(I) is not chosen] = (1− p)|N(I)|

≥ (1− p)kr ≥ e−1,

21

we have that

Prob[N(I) is not chosen | E]

≥ Prob[N(I) is not chosen ∧ E]

≥ Prob[N(I) is not chosen] + Prob[E]− 1

≥ 1

2e
.

Putting these facts together, we get that

Prob[I is isolated | E] ≥ p|I|

2e
≥ Prob[I is isolated]

2e
.

We can now complete the proof of the theorem. The condition of Lemma 10
holds for sufficiently large n. If there exists j, 1 ≤ j ≤ d/r, for which
Prob[Ej] < 1 − 1/2e, then the expected maximum load is at least k/4e ≥
β/16e. Otherwise, we may use Lemma 14 to get

Prob[max aj ≥ k/2]

= 1− Prob[∀j, aj < k/2]

= 1−
∏
j

Prob[aj < k/2 | Ej−1]

= 1−
∏
j

(1− Prob[aj ≥ k/2 | Ej−1])

≥ 1−
∏
j

(1− 1

2e4
Prob[aj ≥ k/2])

≥ 1−
∏
j

(1− 1

2e13
Prob[Z ≥ k/2])

≥ 1−
(
1− r

2e13d

) d
r

≥ 1− e
−1

2e13 ,

where the last inequality holds for sufficiently large n. Thus, E[max{ai}] ≥
(1 − e

−1

2e13)(k/2) ≥ (1 − e
−1

2e13)(β/8) = Ω(β). Recalling that the expected
optimal cost is at most 8e, the theorem follows.

22

3 Routing

We show n(log n + log r)-node networks with n input nodes where a max-

imum edge congestion of
√

n
r

can be guaranteed by a particular r-strategy.

Theorem 17 proves this to be at the least nearly optimal.

Theorem 15 Divide all the input nodes into groups of r consecutive nodes.
If each agent knows the destinations of the other input nodes in its group
then we can route any n×n permutation on an n(log n+log r)-node network

with maximum edge congestion
√

n
r
.

Proof. The network is derived from the Beněs network. We take the
first log(n/r)/2 levels of a log n-dimensional Beněs network, then the middle
2 log r levels of that network, then the next log(n/r)/2 levels. As with global
routing on a Beněs network, the bound on edge congestion is guaranteed even
if there are two inputs for each source and two outputs for each destination.
In the proof, we trace the selection of each path by describing the motion of
a “packet” that moves along the path.

In every level, number each node from top to bottom 0, 1, ..., n− 1. The
nodes in each level are divided into n

r
groups of r nodes. The groups in the

first level (the input level) determine the knowledge graph — each group is
a clique in the knowledge graph.

For the first log(n/r)/2 levels, each input picks the greedy path, based
on the first log(n/r)/2 bits of the destination.

At this point, each packet reaches a place which differs with its input in
only the first log(n/r)/2 bits. There are n

r
log r-dimensional Beněs networks

in the middle. The source nodes of each such subnetwork (i.e., the nodes at

level log(n/r)/2 + 1 of the whole network) receive packets from at most
√

n
r

different cliques. Furthermore, the place of each packet within its clique has
not changed (that is, the place of each packet agrees with its source in the
last log r bits). Thus, each node has at most two packets from each clique.

Now we will use the next 2 log r levels to route within each r× r network
according to the last r bits of the destination. (to be explained later).

Afterwards, the place of each packet corresponds with its destination in
the first log(n/r)/2 bits and the last log r bits. If the bits are numbered from
left to right, then the place of a packet can only disagree with its destination

in bits log n/r/2 + 1 through log n/r. Thus, there are at most
√

n/r packets

23

per node. Each packet then takes the greedy path to its destination. The

congestion never exceeds
√

n/r, since at each successive level, the upper
bound on the congestion decreases by a factor of two.

So far, everything specified about the paths can be determined by each
source node without any extra information besides the destination of its own
inputs.

Now we have to explain how to do the routing in the middle r×r subnet-
works. Now source and destination refer to the source and destination within
the r× r network. We are guaranteed that for any such subnetwork, we only

have
√

n/r cliques routing simultaneously on that subnetwork. There are at

most two packets per source from any single clique. There are at most
√

n/r
packets per destination from all cliques. Each clique determines the paths for
all inputs in that clique so as to satisfy the conditions of Lemma 16 below.

We then examine what happens when we have
√

n/r cliques superimposed
on the same r × r network.

In each level, number the nodes 0, 1, ..., r−1 from top to bottom. Number
levels from right to left so that the destination nodes are at level 1. For
j ∈ {0, ..2log r−k−1−1}, define Si(j, k) to be the nodes in the ith level numbered
2log r−k+1x + j, for all x ∈ {0, 1, .., 2k−1 − 1}. So, for any i, i′ with i > i′ and
any k ≥ i, packets arriving at nodes in Si(j, k) can only reach level i′ nodes
in Si′(j, k). In particular, packets arriving in Si(j, i) can only reach level 1
nodes in S1(j, i). We have the following lemma:

Lemma 16 Each clique can route the paths of its inputs so that

1. In the first half of any particular r×r Beněs network, each edge carries
at most one path; and

2. In the second half of the network, the congestion along each edge coming
into nodes in Si(j, i) from the previous level is the same (±1).

Proof. The proof is by induction on r. Consider the two (r − 1)× (r − 1)
subnetworks in the middle. Suppose we manage to route the r × r problem
so that each source sends one packet through the bottom network and one
through the top network. And suppose that we manage to route the packets
so that if a destination gets t packets, t/2 are routed through the bottom
network and t/2 are routed through the top. (If t is not even, the number of
packets routed through the top and the number routed through the bottom

24

may differ by 1). Then we have managed to satisfy the constraints for the
outer two level. By induction, we can satisfy the constraints for the inner
levels.

So we just have to show that we can route the packets in that way. Make
a bipartite graph - left vertices represent sources, right vertices represent
destinations. An edge from a left vertex to a right vertex, represents a path
routed from that source to that destination. The degree of each vertex on the
left is two. The edges can be colored red and blue so that every vertex has
half its edges red and half blue. The red edges represent paths through the
upper subnetwork and the blue edges represent paths through the lower one.
To see that the coloring of the edges can be done, split every vertex on the
right with degree higher than two into vertices of degree two and at most one
of degree one. Now combine pairs of degree one vertices so that the graph is
2-regular. By Hall’s Theorem, the edges can be colored so that every vertex
is incident to a red and a blue edge. When the vertices are recombined to
get the original graph, if a vertex is incident to d edges, then at least bd/2c
of the edges are colored with each color.

We argue that if each clique can route its paths through each subnetwork
so that conditions 1 and 2 are maintained, then the congestion is at most√

n/r even when we consider the congestion from all
√

n/r cliques that are
routing simultaneously on a particular subnetwork. In the first half of the
network, each clique has only one path per edge. Thus, the total edge con-

gestion is at most
√

n/r. In the second half of the network, paths that reach

a node in Si(j, i) can only reach nodes in S1(j, i). If there are x paths coming
into a node in Si(j, i) then property 2 guarantees that there are a total of
x2i−1 paths coming into all nodes in Si(j, i). These paths are all destined

for nodes in S1(j, i). There can only be 2i−1
√

n/r such paths because each

destination gets only
√

n/r paths from all cliques. Thus x ≤
√

n/r.

Theorem 17 For every n-input, n-output, N-node, degree-d network, for
every deterministic routing strategy with degree-r knowledge graph,

1. there exists a permutation for which the maximum congestion at a node
is at least 1

2

√
n
N

n
(d+1)r

− n
2Nr

;

2. there exists a permutation for which the maximum congestion at an
edge is at least 1

2d

√
n
N

n
r
.

25

The proof is more or less a straightforward adaptation of the oblivious routing
lower bounds of Borodin and Hopcroft [7] and of Kaklamanis, Krizanc and
Tsantilas [14].
Proof. Part 1. Let S be an independent subset of size n

2r
in the knowledge

graph. It has a neighbor set (in the knowledge graph) of size at most n
2
.

Fix the destinations of the sources in this neighbor set. We will ignore the
congestion due to these paths. The algorithm for the inputs in S is now
specified by a set of at least n

2
paths for each input — one to each remaining

target.
Let a = 1

2

√
n
N

n
(d+1)r

. We can assign to each of t ≥ n
2
− da of the possible

paths of an input node in S an internal node w, such that each assigned w is

assigned for at least a paths and at most (d + 1)a = 1
2

√
n
N

n(d+1)
r

paths. The
reason is as follows. Let u ∈ S. Repeat the following process. Find a node
w that is an internal node of at least a paths from u. Mark it and assign w
to a of these paths. Remove the paths and repeat till no such node can be
found. Now, for each of the paths that have not been assigned a node, trace
the path from its destination to its source, and assign it the first marked
node that it encounters (excluding its source or destination), if there is one.
A path does not get assigned a node either if its destination is a neighbor of
u, or if it passes through an unmarked neighbor of u. There are at most da
such paths. The number of paths that get assigned any particular marked
node w is at most the a paths that marked w, plus any path that passed
through an unmarked neighbor of w. There are at most da of the latter.

The number of distinct nodes w assigned for a fixed input in S is at least
n/2−da
(d+1)a

≥ n
2(d+1)a

−1. There are n
2r

nodes in S, so a total of n2

4(d+1)ra
− n

2r
nodes

w are hit. Since there are N nodes in the network, there is a node w that
is hit by at least n2

4N(d+1)ra
− n

2Nr
= 1

2

√
n
N

n
(d+1)r

− n
2Nr

paths from different

input nodes. Each input node that hits w can choose from among at least
1
2

√
n
N

n
(d+1)r

destinations that cause a hit on w, so there is a choice of distinct

destinations for all input nodes that hit w.
Part 2. Let S be an independent set of size t = n/2r in the knowledge graph.
As in part 1, we fix the destinations of the sources in the neighborhood set of
S and ignore the congestion due to the paths they choose. The destination
of any source in S can be any of at least n/2 remaining output nodes in
the network. An algorithm is specified by nt/2 paths. There are at least
t − 1 paths that end at any output node v (because v can also be a source

26

node in S). Let S(v) denote the set of edges in the network which have

k =
√

n
N

n
r
/2d or more paths ending in v passing through them. Let S∗(v)

be the set of nodes incident to edges in S(v). Note that |S∗(v)| ≤ 2|S(v)|.
Also, v ∈ S∗(v). Thus,

|S − S∗(v)| ≤ (k − 1)d|S∗(v)|.

(For each source u not in S∗(v), follow its path to v until it hits a node in
S∗(v). The last edge in this path has less than k paths in it.) This gives us
that

t ≤ kd|S∗(v)| ≤ 2kd|S(v)|.

Thus t/2kd ≤ |S(v)|. Summing over all n/2 destinations v,

∑
v∈V

|S(v)| ≥ nt

4kd
.

Since there are Nd/2 edges in the network, there is some edge e for which
e ∈ S(v) for at least

nt/4kd

Nd/2
= k

different values of v.
Select e and v1, . . . , vk such that e ∈ S(vi) for 1 ≤ i ≤ k. This means

that we can find u1, . . . , uk such that ui 6= uj for i 6= j and the paths from ui

to vi all pass through e.

The following is a lower bound for randomized oblivious routing strate-
gies. The lower bound holds when the knowledge graph is a set of fixed
r-cliques.

Theorem 18 For every n-input, n-output, n-node, degree-d network, for
every randomized routing strategy with a deterministic knowledge graph con-
sisting of disjoint r-cliques, if dr ≤ n/2 log4 n, then there is a permutation

for which the expected maximum congestion at a node is in Ω
(

log(n
r
)

log log(n
r
)

)
.

Proof. The proof follows a lower bound on randomized oblivious routing
due to Borodin et al. [9]. We show a probability distribution over permu-
tations that beats every deterministic routing strategy. Let t = n/r. There

27

are t r-cliques in the knowledge graph. Each node will be numbered by a
pair (i, j), where i represents the name of the clique the node is in and j
represents the name of the node within the clique. 1 ≤ i ≤ t and 1 ≤ j ≤ r.
We pick one of t! permutations uniformly at random. Each permutation is
specified by a permutation over the cliques. If clique i is mapped to clique
k, then (i, j) has to connect to (k, j) for all 1 ≤ j ≤ r. Thus each node has
to connect to one of t destinations. For some valid source-destination pairs
(u, v), we assign a node (called V (u, v)) which is an internal node in the path
from u to v. V (C, D) denotes the multiset of nodes V (u, v), u ∈ C, v ∈ D,
(u, v) a valid source-destination pair, and V (u, v) exists. |V (C, D)| denotes
the size of the set, counting multiplicity.

Lemma 19 Consider a clique C. The assignment can be picked so that

1. A node w appears in at most (d + 1) log t multisets V (C, D).

2. If a node w appears in a multiset V (C, D), then it appears in V (C, D)
for at least log t different cliques D.

3.
∑

D |V (C, D)| ≥ n− dr log t.

Proof. Consider all the paths from a clique C to all the destination cliques
D. There are a total of n paths. (For each source-dest pair of cliques, there
are r paths, and there are t destination cliques). Color each path so that
the paths arriving at the same clique have the same color. This means that
all the paths originating at a single source node have different colors. There
are at most r paths colored with the same color. Now for each node that
has at least log t paths of different colors going through it, mark the node
and assign it log t paths of different colors. Then for each unassigned path,
follow it from destination to source and assign it to the first marked node
that it hits. A node will get at most dr log t paths of at most d log t colors
this way. (This is because if a path gets assigned to a node, it came from an
unmarked node. There are at most d unmarked nodes adjacent to a marked
node. The paths that pass through an unmarked node have fewer than log t
colors. There are at most r paths of a given color.)

How many paths don’t get assigned? A path doesn’t get assigned if it
reaches its source node without hitting a marked node. There are r source
nodes. How many make it back to a single source node u without getting

28

assigned? If it doesn’t get assigned, it passes through an unmarked neighbor
of u just before it hits u. Call the neighbor v. All the paths going into u
have different colors. If v is unmarked, than there are fewer than log t paths
of different colors that pass through v. Thus there are fewer than d log t
unassigned paths that reach u.

In what follows we denote by (C, D) the color of the r paths that lead
from sources in C to destinations in D. Each of the t2 combinations has a
distinct color.

Now, execute the following procedure. Find a node w that is hit by a
single color (C, D) at least log t times. Remove all paths from C and repeat.

If at least t/2 such nodes are found, then we have the following situa-
tion: There is a sequence C1, C2, . . . , Ct/2 of source cliques, and a sequence
D1, D2, . . . , Dt/2 of destination cliques (not necessarily distinct), such that if
Di is assigned to Ci, there is a node that is log t congested. The probability
that Di is assigned to Ci is 1/t. Conditioned upon D1 not assigned to C1,
D2 not assigned to C2, . . ., Di−1 not assigned to Ci−1, the probability that
Di is assigned to Ci is still at least 1/2t. Therefore, with probability at least
1− (1− 1/2t)t/2 ≥ 1− e−1/4, there is a log t congested node.

Otherwise, we have removed at most t/2 source cliques. The remaining
source cliques have the property that no node is hit more than log t times by
the same color. From now on, we consider only the remaining source cliques.

Let ECw denote the expected number of paths from sources in C that pass
through w. The assignment of V (C, D) has the property that

∑
w

∑
C ECw ≥

(n − dr log t)/2, where the second sum is taken over the remaining source
cliques C.

Suppose that for all w,
∑

C ECw ≤ log t (Otherwise the lower bound on
the expected congestion is established). Let δ = 1/8. A node w is good if∑

C ECw ≥ δ. The number of good nodes is at least n/2−δn−dr log t/2
log t−δ

≥ n
8 log n

.

Fix a good node w. The assignment of V (C, D) has the following property.

For every clique C either ECw = 0, or log t
t
≤ ECw ≤ (d+1) log2 t

t
. To see the

upper bound recall that none of the nodes are hit more than log t times by
a single color (C, ·). By claim 1 of Lemma 19, the upper bound follows. The
lower bound follows from claim 2 of Lemma 19.

We want to lower bound the probability that h source cliques hit w for
some h < log t. Each hit corresponds to some clique C such that ECw ≥ log t

t
.

There are at least log t cliques D such that w is in V (C, D). A hit by C

29

removes one destination clique D from the list of possible destinations of
other source cliques. Consider the conditional expectation of the number of
paths from sources in C that pass through w, conditioned upon at least h
other source cliques having hit w. By the above arguments, this conditional
expectation is at least 1

t
. Further notice that if w ∈ V (C, D), it may appear

in V (C, D) at most log t times (because of our assumption on the remaining
source cliques). If D is assigned to C, we will count this as only one hit, so
the expected number of hits on w is bounded below by 1

log t

∑
C ECw. Also,

the probability of a hit due to source C is at most (d + 1) log t/t.
We use the following probabilistic lemma, due to Borodin et al. [9].

Lemma 20 (Borodin et al.) Let x1, . . . , xk be independent 0/1 random vari-
ables. Let pi = Prob[xi = 1],

∑
pi = σ and a ≤ pi ≤ b. Then, for any

Y ≤ σ
2eb log(b/a)

,

Prob[
∑

xi > Y] ≥
(

σ

2e log(b/a)Y

)Y

.

In our case, σ = δ/ log t = 1/8 log t, a = 1/t, b = (d + 1) log t/t.
According to the lemma, for n sufficiently large, the probability that node

w is at least Y = log t
8 log log t

congested is at least 1/
√

t ≥ log t/t, provided that
the condition on Y holds. It can be easily verified that for sufficiently large
n, the condition that dr ≤ n/2 log4 n implies the required condition on Y .

To summarize, we have shown that one of the following properties holds:

1. There is a sequence of (not necessarily distinct) nodes x1, x2, . . . , xt/2

such that with constant probability at least one of them is at least log t
congested; or

2. there is a node w whose expected congestion is at least log t; or

3. there is a node w1 that is at least log t/8 log log t congested with prob-
ability at least 1/

√
t ≥ log t/t.

If the first or second case holds, we are done. If the third case holds, we
would like to construct a sequence of t/ log t nodes w1, w2, . . . , wt/ log t with
the property that for every i, if w1, w2, . . . , wi−1 are less than log t/α log log t
congested, then wi is at least log t/α log log t congested with probability at

30

least log t/t, for some constant α. We construct such a sequence by repeating
the entire argument above at most t/ log t times. If w1, w2, . . . , wi, i < t/ log t,
are less than log t/ log log t congested, this constrains t′ = i log t/ log log t <
t/ log log t source cliques to their destination cliques. We remove these cliques,
and can thus repeat the above discussion setting t := t′′ = t − t′, and
assigning new values V (u, v) for the remaining cliques. Notice that t′′ ≥
t(1− 1/ log log t). We get one of the following properties:

1. There is a sequence of (not necessarily distinct) nodes y1, y2, . . . , yt′′/2

such that with constant probability at least one of them is at least
log t′′ ≥ log t− 1 congested; or

2. there is a node w′ whose expected congestion is at least log t′′ ≥ log t−1;
or

3. there is a node wi+1 that is at least log t′′/8 log log t′′ ≥ (log t−1)/8 log log t
congested with probability at least 1/

√
t′′ ≥ log t/t.

All the probabilities and expectations are conditioned upon the assignment
of destination cliques to the t′ constrained source cliques.

In the first case, recall that it followed from each of the y’s being hit
by log t′′ paths of one pair of source-destination cliques. If we remove the
conditioning upon the assignment of destination cliques to the t′ constrained
source cliques, this at most halves the probability of such a hit (because
t′ < t/2), so there would still be a constant probability for one of the y’s to be
at least log t−1 congested. In the second case, a similar argument shows that
removing the condition at most halves the expected congestion at w′ (using
linearity of expectations). In the third case, we have constructed another
node in the sequence w1, w2, . . . , wt/ log t, and may proceed to constructing
the next one.

In the above proof, the permutation depends on the r-cliques. Assuming
that dr3 ≤ n/ log3 n, the lower bound in fact holds even when the agents
can organize themselves into random r-cliques. The proof requires choosing
uniformly at random an n-permutation of destinations rather than mapping
cliques to cliques. We omit the proof.

31

4 Open Problems

We have given tight bounds, up to constant factors, for cr, both in the de-
terministic and the randomized cases. It would be interesting to give better
bounds for cG in terms of other parameters of the graph G. Given G, what
is the computational complexity of determining cG? Our randomized upper
bounds use shared coins. Can the same bounds be achieved with private
coins? Our bounds for routing are far from being tight. Can one route deter-
ministically on a high-degree network (where d is not a constant) achieving
node or edge congestion close to the lower bounds given in Theorem 17?
Does the randomized lower bound for node congestion hold for arbitrary
knowledge graphs? Can a matching upper bound be achieved for large r?

5 Acknowledgements

We would like to thank the referees for their thorough reading and useful
comments and suggestions. In particular, we would like to thank referee B
for pointing out a flaw in our original proof of Lemma 10.

References

[1] A. Aggarwal, A.K. Chandra, M. Snir. On communication latency
in PRAM computation. In Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures, Santa Fe, 1989.

[2] N. Alon. Private Communication.

[3] B. Awerbuch, O. Goldreich, D. Peleg, R. Vainish. A Tradeoff Between
Information and Communication in Broadcast Protocols. In Proceed-
ing of the 3rd Aegean Workshop on Computing, July 1988.

[4] V. Beněs. Mathematical Theory of Connecting Networks and Tele-
phone Traffic, Academic Press, New York, 1965.

[5] B. Bollobás. Random Graphs, Academic Press, 1985.

[6] A.H. Bond and L. Gasser, editors. Readings in distributed artificial
intelligence, Morgan Kaufmann, 1988.

32

[7] A. Borodin, J. Hopcroft. Routing, merging, and sorting on parallel
models of computation. Journal of Computer and System Science,
30(1):130-145, February 1985.

[8] A. Borodin, N. Linial, and M. Saks. An optimal on-line algorithm for
metrical task systems. Journal of the ACM, 39:745–763, 1992.

[9] A. Borodin, P. Raghavan, B. Schieber, E. Upfal. How much can hard-
ware help routing? In Proceedings of the ACM 25th Symposium on
the Theory of Computing, San Diego, 1993.

[10] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos,
R. Subramonian, T. von Eicken. LogP: Towards a realistic model
of parallel computation. In Proceedings of the 4th ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programming, San
Diego, 1993.

[11] X. Deng, C.H. Papadimitriou. On the value of information. In Proceed-
ings of the 12th IFIPS Congress, Madrid, 1992. Also in Proceedings of
the World Economic Congress, Moscow, 1992.

[12] C. Dwork, M. Herlihy, O. Waarts. Contention in Shared Memory
Algorithms. In Proceedings of the 25th ACM Symposium on Theory
of Computing, San Diego, 1993.

[13] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal on Applied Mathematics, 17:416-429,1969.

[14] C. Kaklamanis, D. Krizanc, T. Tsantilas. Tight bounds for oblivi-
ous routing. In Proceedings of the 2nd ACM Symposium on Parallel
Algorithms and Architectures, July 1991.

[15] A.R. Karlin, M.S. Manasse, L. Rudolph, D.D. Sleator. Competitive
snoopy caching. Algorithmica, 3(1):70–119, 1988.

[16] C.H. Papadimitriou, M. Yannakakis. Towards an architecture-
independent analysis of parallel algorithms. In Proceedings of the 20th
ACM Symposium on Theory of Computing, 1988.

33

[17] C.H. Papadimitriou, M. Yannakakis. Linear programming without
the matrix. In Proceedings of the 25th ACM Symposium on Theory of
Computing, San Diego, 1993.

[18] D.D. Sleator, R.E. Tarjan. Amortized efficiency of list update and
paging rules. Communication of the ACM, 28:202–208, February 1985.

[19] L.G. Valiant. A bridging model for parallel computation. Communi-
cation of the ACM, 33(8):103-111, August 1990.

[20] A. Waksman. A permutation network. Journal of the ACM, 15(1):159–
163, January 1968.

[21] A.C. Yao. Probabilistic computations: Toward a unified measure of
complexity. In Proceedings of the 18th IEEE Symposium on Founda-
tions of Computer Science, 1977.

34

