References

[BBKTW] S. BEN-DaAvVID, A. BORODIN, R.M. KARP, G. TARDOS, AND A. WIGDERSON.

[BKT]

[BLS]

[CDRS]

On the Power of Randomization in Online Algorithms. In Proc. of the 22nd Ann.
ACM Symp. on Theory of Computing, pages 379-386, May 1990.

P. BErRMAN, H.J. KARLOFF, AND G. TARDOS. A Competitive Three-Server
Algorithm. In Proc. of the 1st Ann. ACM-SIAM Symp. on Discrete Algorithms,
pages 280-290, January 1990.

A. BORODIN, N. LINIAL, AND M. SAKS. An Optimal On-Line Algorithm for Met-
rical Task Systems. In Proc. of the 19th Ann. ACM Symp on Theory of Computing,
pages 373-382, May 1987.

D. CoppPERSMITH, P. DOYLE, P. RAGHAVAN, AND M. SNIR. Random Walks
on Weighted Graphs and Applications to On-line Algorithms. In Proc. of the 22nd
Ann. ACM Symp. on Theory of Computing, pages 369-378, May 1990.

[CKPV] M. CHROBAK, H.J. KARLOFF, T. PAYNE, AND S. VISHWANATHAN. New Results

[CL]

[FRR]

[Kar]

[MMS]

on Server Problems. SIAM Journal on Discrete Mathematics, 4(2):172-181, 1991.

M. CHROBAK AND L. LARMORE. An Optimal On-line Algorithm for the Server
Problem on Trees. SIAM Journal of Computing, 20:144-148, 1991.

A. FiaT, Y. RABANI, AND Y. RAVID. Competitive k-Server Algorithms. In Proc.
of the 31st Ann. IEEFE Symp. on Foundations of Computer Science, pages 454463,
October 1990.

S. IraNT AND R. RUBINFELD. A Competitive 2-Server Algorithm. [Information
Processing Letters, 39:85-91, 1991.

R.M. KARP. A randomized (n 4+ 1)k competitive algorithm on the graph. personal

communication, 1989.

M.S. MaNassg, L.A. McGEocH, AND D.D. SLEATOR. Competitive Algorithms
for On-Line Problems. Journal of Algorithms 11:208-230, 1990.

D.D. SLEATOR AND R.E. TARJAN. Amortized Efficiency of List Update and
Paging Rules. Communication of the ACM, 28(2) pages 202-208, 1985.



is at most 1. Since the optimal cost is at least 0.25, the cost of serving the requests in phase

p using our on-line strategy is at most (12k® + 4k? + 4) - costopr (71 ... Tir). O
Theorem 6: Our on-line strategy is O(k®)-competitive.

Proof: Let o = ¢1,...,¢; be a request sequence, where ¢; is the sequence of requests
in the ¢-th phase of our strategy. From Lemma 5 it follows that the cost of serving ¢,
for i = 1,...,¢t — 1, using our strategy is at most O(k”) - costopr(#;). From Observation
1 and Corollary 3 we get that the cost of serving ¢, using our on-line strategy is at most
4k* - costopr(¢:) + 3k°. It is easy to see that costopr(c) > Z;Zl costopr(d;). Hence, the

cost of serving o using our strategy is at most O(k?) - costopr(c) + 3k°. O

4. Generalizations

Our algorithm can be generalized to obtain ¢;-competitive algorithms for other metric spaces.
The properties needed from such a space M are as follows. There exist n(k) sub-spaces
My, ..., M4y whose union is the space M, such that:

1. There exists a di-competitive algorithm A; for each sub-space M,.

2. For each sub-space M, and any two points & and y in M;, the ratio of the distance

between x and y in M; to their distance in M is bounded by some function of k.

3. Let o be any request sequence that requests points not in M;, for ¢ = 1,...,n(k). Let
b be a lower bound on costopr (o). The ratio of the cost of serving a single request and
of moving from a configuration of A; to a configuration of A; to the lower bound b is

bounded by some function of &.

A concrete example is a metric space defined by a 1-tree (a connected graph with only
one cycle). In this case the sub-spaces are the trees given by cutting the cycle. The resulting

algorithm is O(k®)-competitive.

Acknowledgements: We thank the referee for point us to the generalizations of our algo-

rithm.



To upper bound ® note that the initial servers’ positions are arbitrary. Therefore, the
maximal initial value of ® may be k(k — 1)/2 + k* < 1.5k*. Following the arguments of
[CKPV], we conclude that the cost of serving T using DC} is at most k - costpopr(7) + 1.5k%.
O

Corollary 3: The cost of serving 7 using DC; starting from any initial servers’ position is
at most 4k? - costopr(7) + 1.5k%.

Consider a phase p of our strategy. Suppose that this phase consists of m sub-phases.
Let 7; be the sequence of requests in the i-th sub-phase. Recall that all the phases, except
possibly the last, end with an additional request, denoted r, that exhausts all the double-

cover strategies.

Observation 1:

m
COStopT(Tl . Tm) > Z COStOPT(Tj)‘
J=1

Proof: Let I be the initial position for which costopr (7 ... 7,) = costopr (71 ... T, [1).
Then,

t

COStopT(Tl - Tm) = Z COStopT(T]‘, ]]‘),
7=1

where I; denotes the servers’ position after serving the prefix 7y...7,_1 using a strategy
achieving costopr (71 ... 7, I1). Clearly, costopr(7;, [;) > costopr(7;), for all 1 < j <t. The

observation follows. O

Suppose that phase p ends with a request r that exhausts all the double-cover strategies.
Lemma 4: The optimal cost of serving the sequence of requests in p is at least 0.25.

Proof: The sequence of requests 7y ... 7,7 consists of at least one request on each arc Cy;,
for 1 < ¢ < 2k. Since only k mobile servers are available, at least half of the odd-indexed
arcs has to be crossed by the servers in order to serve all the requests, incurring a cost of

0.25. O

Lemma 5: The cost of serving the requests in phase p using our on-line strategy is at most
(12k% + 4k? + 4) times the optimal cost.

Proof: From Observation 1 and Corollary 3 we get that the cost of serving 7 ... 7, using
our on-line strategy is at most 4k* - costopr(7y ... 7)) + 1.5mk?. Since the number of sub-

phases is at most 2k, this is bounded by 4k* - costopr(7y - .. T ) + 3k%. The cost of serving r



of serving o using A and starting from the initial position I. Define costopr(o) to be the

minimum over all initial positions I of costopr (o, I).

Consider a sub-phase in which D(C; is used to serve the requests. Let 7 be the sequence
of requests in this sub-phase. Recall that all the requests in 7 are on 5;. Our goal is to prove
that the cost of serving 7 using DC; is at most 4k? times the cost of serving 7 by an optimal
strategy for the circle C', plus an O(k?) additive factor. This is done in two stages. First, we
prove that the cost of serving 7 by an optimal strategy for the line S; is at most 4k times
the cost of serving 7 by an optimal strategy for the circle C'. Then, we prove that the cost
of serving 7 by DC; is at most k times the cost of serving it by an optimal strategy for .S;,
plus an O(k?) additive factor.

Lemma 1: Let LOPT be an optimal strategy for the line S; that starts with the initial
position I for which costopr(7) = costopr(7,I). Then, the cost of serving T using LOPT,

denoted costropr(T), is at most 4k - costopr (7).

Proof: Let OPT be the strategy for C' that achieves costopr(7, ). Without loss of
generality we may assume that OPT is lazy; i.e., it moves a server only to serve a request.
Consider the strategy A for the line S; that simulates O PT by serving each request moving
the same server as OP1. Note that whenever OPT moves a server across Cy; the cost of
OPT and the cost of A might differ. However, in this case OPT' pays at least ﬁ and A pays

at most 1. Therefore, costropr(7) < costa(7) < 4k - costopr (7). O

Lemma 2: The cost of serving 7 using DC; starting from any initial servers’ position is at

most k - COStLopT(T) + 1.5k2.

Proof: Using the potential function defined in [CKPV], we compare the cost incurred by
LOPT and the cost incurred by DC;. At any given time, let xq,. .., z; denote the positions

of the servers moved using the strategy LOPT ordered clockwise starting from <-. Let

S1,...,5E denote the positions of the servers moved using the strategy DC); ordered in the
same order. By [CKPV], the function

k
(a1, ..., T, 515...,88) = dist(sy,s;) + k- > dist(ay, s:)

1<i<j<k i=1
exhibits the following properties:
1. Whenever LOPT moves a server, ® is increased by at most k times the work of LOPT'.

2. Whenever DC; moves, ® is decreased by at least the work of DC.



The line S; defines a metric space M, by setting the distance between two points on 5; as

the length of the portion of S; connecting these points.

Notice that C4,...,Cy partition the circle €' into 4k arcs of equal size.

Our on-line strategy for the circle works in phases. For ¢ = 1,...,2k, let DC; to be the
double-cover strategy for the line segment S;. Each phase begins with all the double-cover
strategies DCY, ..., DUy marked as non-exhausted, and ends when all of them are ezhausted.
When a request r within a phase has to be served, the following two steps are taken by our

on-line strategy.
Step 1: If request r is for a point on Cy;, 1 <@ < 2k, then mark strategy DC; as exhausted.

Step 2: Find the lowest indexed double-cover strategy that has not yet been exhausted.
If there is no such strategy then serve r using an arbitrary server, terminate the phase, and
start a new phase by marking all the double-cover strategies as non-exhausted. Otherwise
(i.e., there exists such a strategy), serve r using the server determined by this lowest indexed

non-exhausted double-cover strategy.

Consider a phase of the strategy. The phase can be divided into sub-phases, where in
each sub-phase a single double-cover strategy D is used to serve the requests. Notice that
in each such sub-phase all the requests are on 5;. For all phases, except possibly the last,

we have an additional last request that exhausts the last double-cover strategy used.

In the next section we prove that the cost of serving the requests in each sub-phase using
the double-cover strategy is at most 4k? times the cost of serving them using an optimal
strategy for the circle, plus an O(k?) additive factor. We also prove that the optimal cost of
serving all the requests in each phase, except possibly the last, is at least 0.25. Since there
are at most 2k sub-phases in a phase and the cost of serving the last request in a phase is

at most one, we conclude that our strategy is O(k®)-competitive.

3. Competitive analysis

In this section we prove that the competitive ratio of our strategy is O(k?).

Definition 3: Let o be a request sequence on the circle C'. For a given initial position of

the k servers I, define costopr(0o, ) to be the minimum over all strategies A of the cost



for the discrete circle. A discrete circle is a metric space that consists of a finite subset of

the circle points, unlike the (continuous) circle that consists of an infinite set of points.

In [BBKTW], Ben-David et al. investigate the power of randomization in on-line al-
gorithms. They prove that if there exists a ¢i-competitive randomized strategy against an
adaptive adversary and a di-competitive randomized strategy against an oblivious adversary
for some metric space, then there exists a ¢ - dp-competitive deterministic strategy for this
metric space. However, the proof is existential and does not construct this deterministic
strategy. Applying this theorem to the strategies given in [Kar, CDRS], we get that there
exists a 4k*-competitive deterministic strategy for the discrete circle. Unfortunately, we do

not know how to construct such a strategy.

Our on-line strategy (as well as the strategy proposed in [Kar]) uses the k-competitive
on-line strategy for the line given in [CKPV]. This deterministic strategy, called the double-
cover strategy, works as follows. Suppose that a request appears at a point = of the line. If
x 1s to the left of the leftmost server then this server moves to serve the request. Similarly,
if = is to the right of the rightmost server then this server moves to serve the request. If x
is between two servers, then the closer server moves to serve the request, and the further
moves towards the request the same distance made by the closer server. The proof that this

strategy is k-competitive uses a potential function argument.

The rest of the paper is organized as follows. In the next section we give an overview of
our strategy and in Section 3 we prove that this strategy is (8k° + 4k* + 4)-competitive. We

end with some generalizations.

2. Overview of the strategy

JFrom now on, we assume without loss of generality that the circle has unit length circum-

ference. We start with some definitions.

Definition 1: The circle C is the set of points given by the polar coordinates {ps = (3+,0) |

27

0 <0 < 2r}. (From now on, we will use 0 as a shorthand for py.) The circle C' defines
a metric space M by setting the distance between two points §; and 0y as the length of

the shortest path in C connecting these points; that is, the minimum between % and
] — o]
2

Definition 2: For j = 1,...,4k, let the arc C; be the set of points {0 | (j — 1)7/2k < 0 <
Jgw/2k}. Fori=1,...,2k, let S; be the line segment given by omitting the arc Cy; from C.



An on-line strategy A for moving the servers is ¢i-competitive for M if for every request
sequence o, the cost of serving o using the strategy A is bounded (up to an additive constant)
by ¢ times the cost of serving o using the best off-line strategy; i.e., a strategy whose
decisions are based on an apriori knowledge of the request sequence o. More formally, define
costopr (o) to be the optimal cost of serving o, and cost4(o) to be the cost of serving sigma

using A. Then, A is ¢z-competitive if for all request sequences o,
cost4(o) < ¢ - costopr(0) + R,

for some constant R that does not depend on o (it may depend on k and the metric space).

In this paper we consider the k-server problem on (a metric space defined by) the cir-
cle. Specifically, the & mobile servers occupy points of the circle and the cost of a move
between two points is the distance between these points as measured on the circle. We give

a deterministic on-line strategy for this problem that is O(k®)-competitive.

Our strategy is the best constructive deterministic strategy for & > 2. It is the first
deterministic strategy designed specifically for the metric space defined by the circle. For
k > 3, applying the known strategies for a general metric space, either the one for an
arbitrary k [FRR], or the one for & = 3 [BKT], result in inferior strategies for the circle. For
k = 2, the k-server strategies for a general metric space given in [MMS], [CL], and [IR] are
two, four, and ten competitive, respectively, and thus, better than our strategy for this case,

that is 116 competitive.

Karp [Kar] gives a randomized strategy for the k-server problem on the circle. In this
strategy a random point r is chosen on the circle. Then, the requests are served using the
strategy for the line that results after “cutting” the circle at the point r. It is proved in [Kar]
that this strategy achieves an expected competitive ratio 2k against an oblivious adversary;
i.e., an adversary that fixes the sequence of requests without the knowledge of the random
decisions made by the on-line strategy. Our strategy also involves “cutting” the circle in
some specified points and using the on-line strategy for each of the resulting lines. In this

sense, our strategy can be viewed as a derandomization of the strategy given in [Kar].

Coppersmith et al. [CDRS] give a randomized strategy for the k-server problem on a
broad class of metric spaces, called resistive metric spaces. This strategy is k-competitive
against an adaptive on-line adversary; i.e., an adversary that initiates a request based on the
previous decisions of the on-line strategy, but has to serve the requests on-line. The circle
is not a resistive metric space. However, using a resistive metric space that “approximates”

the circle, [CDRS] achieve a 2k-competitive strategy against an adaptive on-line adversary



A Deterministic O(k3)-Competitive
k-Server Algorithm for the Circle

Amos Fiat * Yuval Rabani* Yiftach Ravid* Baruch Schieber

Abstract

Suppose that k£ mobile servers are located on a circle. Repeatedly, a request at a
point = on the circle appears. To serve this request one of the serves has to be moved
to x. The cost of moving a server to z is the distance on the circle between the server’s
previous location and . The decision which server to move has to be done on-line; that
is, without the knowledge of future requests. We give a deterministic on-line algorithm
for making these decisions. Our algorithm is O(k®)-competitive: for any sequence of
requests, the cost incurred by our algorithm in serving this sequence is bounded (up to
an additive constant) by O(k?) times the cost of serving this sequence using the best
off-line algorithm; i.e., an algorithm that has apriori knowledge of the whole sequence.

Our algorithm is the best deterministic constructive algorithm for k£ > 2.

1. Introduction

The k-server problem is stated as follows. Given a metric space M, suppose that k£ mobile
servers are located at some points of M. Repeatedly, a request at a point + € M appears. To
serve this request one of the servers has to be moved from its current location to x. The cost
of this move is the distance in M between the current location and x. The decision which
server to move has to be done on-line; that is, without the knowledge of future requests.
On-line problems, and specifically the k-server problem, received a lot attention recently.

See, e.g., [ST, BLS, MMS, CDRS, FRR].

*Department of Computer Science, School of Mathematics, Tel-Aviv University, Tel-Aviv 69978, ISRAEL.
TIBM - Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown, NY 10598.



