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choose, among the 2w children of pi, a child which is the root of a subtree in I containing no
representative of a vertex in the ith (previous) layer and also containing no representative (so
far) of a vertex in layer ¢ + 1. (Since there are at most 2w nodes in layers ¢ and ¢ + 1, the 2w

children of pi, suffice.) This child is then p;"'l.

It remains to show that for any two consecutive layers, the distance in 1" between any pair of
vertices contained in those two layers is equal to the distance in [ between their representatives.
Consider any two consecutive layers numbered ¢ and ¢ + 1. The proof is by induction on z. The
case of 1 = 0 is easy and the proof is omitted. Now consider « > 0. Notice that by the inductive
hypothesis the claim is true if both vertices in the pair are taken from the ith layer. As we
generate the representatives for the vertices in the ¢ + 1st layer, we check the distances between
the representatives and the representatives of vertices in the ¢th layer, and the distances between
their representatives and the representatives already created for vertices in layer ¢ + 1. Consider
1 of the ¢ + st layer. If the distance to its parent v} in 7" is 0, then, as

J :
described above, we have p“tt

a particular vertex v
= p, which is the representative of its parent. Since pi has already
been considered in the current step of the induction, the claim trivially holds. If the distance
between U;-H and v} is 1, the choice of p;"'l guarantees that its distance to any representative ¢
of a vertex in layer ¢ + 1 which was already considered in the current step of the induction, or
of a vertex in layer i, is exactly the distance between p} and g, plus 1. Thus, the claim holds in
this case as well.

Therefore we conclude that at each step, the distance traversed by the w-MSS server is equal
to the distance traversed by the w-LTT searcher. We also conclude that the optimal costs for
both instances are the same (since an optimal path for one induces a path for the other with the

same cost). This completes the proof of the lemma. =

Lemmas 13 and 14 give the following result:

Theorem 15 For each w, strictly c,-competitive, deterministic or randomized algorithms exist
for w-MSS for all metric spaces with integral distances if and only if a ¢, -competitive, determin-
istic or randomized algorithm, respectively, exists for w-LGT.

8 Concluding Remarks

An obvious open problem is to close the gap between the upper bound and the lower bound
for deterministic and randomized layered graph traversal. Of special interest is the question of
designing an efficient randomized traversal algorithm. In an earlier version of this paper, we
conjectured that a polynomial upper bound is achievable by the use of randomization. Since
then, this conjecture has been proven by Ramesh [Ram], who gives a O(w'?)-competitive ran-
domized algorithm. Ramesh has also reported improvements in the deterministic upper bounds
(to O(w®2")) and in the randomized lower bounds (to a nearly quadratic bound). Burley [Bur]
recently further improved the deterministic upper bound to O(w2") via an algorithm for metrical
service systems.
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follows that on some graph K assigned positive probability under G(w), B’s expected cost is at
least r,, L,,. But the source—target distance in K is L,,. =

7 Metrical Service Systems

In the following section, w-MSS abbreviates “metrical service systems with requests of size
at most w,” w-LGT abbreviates “traversal of layered graphs of width at most w,” and w-LTT
abbreviates “traversal of 0 — 1 rooted layered trees of width at most w.” (Notice that w-LGT
and w-LTT algorithms traverse only graphs of width at most w.)

Lemma 13 If A is a ¢, -competitive algorithm for w-LGT, then there exist strictly ¢, -competitive
on-line algorithms for w-MSS in all metric spaces with integral distances.

Proof. Fix a metric space where the distances are integral. Given a sequence of w-MSS
requests, we construct, in an on-line manner, a layered graph. Layer 0 contains a single vertex,
which is the starting point of the server. The vertices of layer ¢ > 0 are the points of the ith
request. For every i > 0, every vertex of layer ¢ is connected to every vertex of layer ¢ + 1 by an
edge of weight equal to the distance between the two points. Apply the w-LGT algorithm A to
this graph. When A first encounters layer ¢, it chooses a vertex in that layer to move to. The
w-MSS algorithm serves the ith request by moving to that point. m

Definition. Let I be an infinite rooted layered tree in which each vertex has 2w children. Let
r denote the root of I. Let M be an infinite metric space whose underlying set is V([) and in
which the distance between u and v is the length of the v — v path in [I.

Lemma 14 Let B be a strictly c,,-competitive w-MSS algorithm for the infinite metric space M.
Then there exists a c,-competitive on-line w-LTT algorithm A (and therefore one for w-LGT).

Proof. Let T be an instance of the w-LTT problem. Let s be the source vertex of T', initially
occupied by the searcher. We use B to define algorithm A which traverses T" as follows. From
the, say, I; < w vertices v, vS, "'7% in the ¢th layer of T', we construct, on-the-fly, a sequence
P,y ...,pfi of [; vertices of the metric space M (p; “representing” v;), and then present the set
{p1,PY, . 1.} as a request of [; < w points to B. B will choose one of the points, say, p:, to
move to. We stipulate, then, that A moves to v;.

Let us start by defining v{ := s, the source vertex of T'. Representing v{ is p := r, the root of
I. A starts on the node p = p!.

At a generic time, A will occupy some node in, say, layer ¢ of the layered graph. When layer
1+ 1 is revealed, we must choose request ¢ + 1 in M, the response to which tells to which node
of layer 1 + 1 A should move. This is done as follows. Let the [;;; < w nodes of the ¢ 4 st

layer of T' be v{™' vitt . vit! Look at the edge between a node vt
41 J

;""1 and its parent v, is of weight 0, then we represent

by the same node pi that represented its parent: p;"'l := pt. If, on the other hand, the
i+,
i

in the 7 4+ 1st layer and its

parent called, say, vi. If the edge between v
i+1
U .
J

edge from U;-H to its parent v! is of weight 1, then we choose a child of p! to represent v we
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Pick an odd + < N. At the end of stage ¢ — 1, the searcher occupies either u; or ;. Let J
be a graph having 1 — 1 stages that induces the searcher to occupy u; at the end of stage 1 — 1
(if possible). Now define an algorithm A,,_; (dependent on .J) for traversing graphs drawn from
G(w — 1), as follows. A,_; mimics A, in the graph drawn from G(w — 1) in the F,_; layers
succeeding u;, until, if ever, A, backtracks through s to a nondescendant of w;. At this point,
A, —1 blindly marches ahead in a naive way, until w;;; is reached.

The cost of backtracking through s is so large that the cost incurred by A,, in the 2F,,_; layers
succeeding u;, given that the first 1 — 1 stages equal J, is at least the cost of A,,_; on those same
layers. The inductive hypothesis now implies that the expected cost of A, in the 2F,,_; layers
succeeding u;, given J, is at least r_1Ly_1.

Now choose an ¢ — 1-stage graph J', if possible, so that A,, occupies [; at the end of stage ¢ — 1.
A similar argument implies that the conditional expected cost incurred by A,, in the 2F,,_; layers
succeeding {;, given that the first ¢ — 1 stages of H equal J’, is at least r,_1L,_1. It follows that
the (unconditional) expected cost incurred by A, in progressing from either u; or [; to either
Uiy OF L1918 at least ry,_1 L, 1.

At the end of stage IV, we flip a coin to decide which vertex, unyq or [x11, becomes the parent
of the target. With probability 1/2, the searcher must backtrack through s to the target. Thus
he incurs an additional expected cost of at least (1/2)(NLy,—1 + Ey—1). The total expected cost
divided by L,, is at least

(N/2)rut Loy + (1/2)(NLuey + Euei)
(1/2)Euer + (N/2) Loy

(N/2)ruet Ly + (1/2)7wet Bt + (1/2) (N Ly—y + Euct) — (1/2)ru1 Eu_y
(1/2)Buor + (N/2) Ly

(1/2)r 0ot Bus

= (ry_ +1)—
(1 + 1) = 03B + (N2) Lums
(1/2)rw—1Ew—1
2 (rw—l ‘I’ 1) - (N/Q)L L
rw—le—l
> Tw—1t+1— N

= ry1+(1—=1/m).m
Now we prove the following theorem.

Theorem 12 For every positive integer w, for every randomized algorithm B for traversing
graphs drawn from G(w), there exists a layered graph K of width at most w such that the ratio
of the expected distance traversed by B to the length of the shortest root—target path in K s at
least r,,.

Proof. The proof follows Yao’s observation regarding the minimax principle [Yao]. Choose
a randomized algorithm B and a width w. Lemma 11 implies that the expected cost incurred
by every deterministic algorithm A on a graph drawn randomly from G(w) is at least r,L,.
However, B is nothing more than a probability distribution on deterministic algorithms. It
follows that the expected cost of B on a graph drawn randomly from G(w) is at least ryL,,. It
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Figure 2: Randomized Lower Bound

Let £, = 25,F,. It is clear that this is an upper bound on the distance traversed by any
algorithm when it traverses any layered graph drawn from G(w).

Now we construct the probability distributions. See Figure 2.
Basis: w = 1. With probability 1 we draw a single edge (s,1) of length 1 with s the root and ¢
the target.
Inductive Step: w > 1. We start with a vertex designated as the root, say s. To s we attach two
edges (s,uq),(s,l;) of length (1/2)E,_; each. We now construct the graph in stages. For stage
1 we draw a copy H; from G(w — 1) and attach it to uy (i.e., make u; the root of this copy).
The target of Hy we call uy. Hy has F,,_; layers of non-source vertices in it. For these F,,_;
layers we extend [; by a path of F,_; length-0 edges ending at [,. For stage 2, we extend [y by
independently drawing a graph Hj from G(w — 1), and we extend uy by a path of F,,_; length-0
edges. We continue this pattern for N = N,, = mr,,_1 F,_1 stages (N is an even integer). In the
1th stage, for ¢+ odd, we independently select a graph H; as in stage 1, and for 7 even, we choose
H; independently as in stage 2. In the last layer we have vertices uyy; and [y4;. We toss a coin
and equiprobably choose one. It gets a child, the target, via a length-0 edge; the other gets none.
This completes the construction.

Lemma 11 For all positive integers w, for all deterministic algorithms A,, designed to traverse
graphs drawn from G(w), the expected cost of A, to traverse a graph drawn randomly from G(w)
1s at least vy, L,,.

Proof. By induction on w. The w = 1 case is trivial.

Let w > 2. Choose a deterministic algorithm A,, for graphs drawn from G(w).

Within this proof, we imagine that the random graph H is generated “on the fly,” i.e., only
when the searcher reaches either u; or [;, for  odd, are the two graphs for stages ¢« and ¢ + 1
drawn from G(w — 1), and only then are stages ¢ and 7 + 1 of H built. This makes no difference,
since A, is on-line and its behavior cannot depend on the future.
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phase. A discards an element from the set when the length of the corresponding path reaches
2% He pays $1 every time this happens. The expected number of times B backtracks is at most
the expected cost to B of the game above. Thus we may take £, = H,. We have proven

Theorem 9 The competitive ratio of the randomized algorithm above for traversing disjoint
paths is at most 8 + 8H,,.

A Lower Bound

Theorem 10 Let w and M be any positive integers. For any randomized on-line algorithm A for
traversing disjoint paths of width at most w, there is a width-w layered graph for which the length
of the shortest source—target path is M, but on which A’s expected cost is at least M(2H,, — 1).

Proof. Each path in the width-w layered graph begins with M unit-cost edges. For a layered
graph that begins this way, at time M there is at least one layer-M vertex which is occupied
by the searcher with probability at least 1/w. We give that vertex no children, but to every
other layer-M vertex we give a child via a length-0 edge. At time M + 1, at least one of the
w — 1 layer-(M + 1) vertices is occupied by the searcher with probability at least 1/(w —1). We
add a length-0 edge to layer M + 2 from every layer-(M + 1) vertex but that one. That one
dies. We repeat this process for layers M 4+ 2, M +3,..., M 4+ (w — 1); in layer M + ¢ there are
exactly w — 1 vertices, 1 = 0,1,2,...,2w — 1. The unique vertex in layer M + w — 1 is the target.
The expected cost incurred by A is bounded below by M plus 2M times the sum, over each
leaf in the graph other than the target, of the probability that A visits that leaf. This sum of
probabilities is % + % + % R % = H,, — 1. The total expected cost is hence at least
M(1+2H,—-1)=02H,—1)M. =m

6 A Randomized Lower Bound

Now we return to general layered graphs. Fix an integer m > 2. Let r,, = w(1 — 1/m) for all
w.
By induction on w, we construct for each w a probability distribution G(w) on a finite family
of layered graphs of width w. Every graph drawn from G(w) has a designated vertex as the root
and another as the target; the target is the unique vertex in the final layer. From the inductive
construction it will be easy to verify that the following quantities depend only on w and m:

o the length L, of the shortest root—target path in the graph
o the sum 5, of the edge lengths

e the number F,, of layers, excluding Lo (the layer containing the source).
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current layer. It then backtracks through the source to the current layer on the chosen path,
incurring a cost of at most 2 - 2% in the process.

Whatever path the algorithm is following in phase k, it blindly continues to follow that path
until its length reaches 2¥. Whenever the length of the current path reaches 2*, the algorithm
replaces it by a path chosen randomly from those paths of length less than 2% —if any exist—
backtracking through the source and incurring a cost of at most 2 - 2¥ in the process. A new
phase begins and k is incremented as soon as every path has length at least 2*.

Analysis

Our initial backtracking cost at the start of a phase is at most 2-2%. If £, is an upper bound on
the expected number of times the algorithm switches paths within any phase, then the expected
cost within phase & is at most okl 4 [ okl — 2k+1(1 + Fy,). Let ¢ denote the number of phases.
Our total expected cost is bounded above by (14 FE,) Y4, 281 < (1 + E,,)242. The adversary’s
cost is at least 27!, giving us a competitive ratio bounded by 8 + 8F,,. We show that we can
takeEw:Hw:1—|—%—|—%—|—---—|—%Nlnw.

We now describe a probabilistic game which models the path selection process in a phase. Let
S be a set of size n. There are two players A and B. Initially B randomly and uniformly picks
one element, hiding his choice from A. At each step A chooses one element of S and removes
it from S. Whenever A discards the element selected by B, B pays A $1 and B uniformly at
random picks a new item (if S is still nonempty).

We prove that the expected cost F), incurred by B is exactly H,. Clearly F; = 1 and for
n > 2, F, satisfies

1
F, (1+F1)+5(1+0)

3| =

1 1 1
(L4 Foot) + —(1 4 Faa) 4 —(14 Fog) - +

This recurrence and the fact that /7 = 1 imply that F, = H, for all n since

1
Fn:1+g(F1+F2+F3+"'+Fn—1)-

Thus
nFn:n—I'(Fl—I'FQ‘I"I’Fn—I)
and
(n_l)Fn—lz(n_l)—I'(Fl—l'FZ‘l’—I'Fn—?)v
if n >3, so

nFn — (n — 1)Fn_1 =1 + Fn—l-

Therefore for n > 3, n(F, — F,—1) = 1 and F,, = F,_1 + 1/n. Since F; = 3/2, it follows that
F, = H, for all n.

The connection between the experiment and layered graph traversal

A corresponds to the adversary and B corresponds to the algorithm. Each element in the set
is associated with a path in the layered graph of length less than 2% at the beginning of the kth

12



Proof. We may assume w > 2. Let s be a source with two children a; and b, via edges of length
v Suppose A moves from s to a;. As in Lemma 7, we can attach to a; an infinite tree £,,_; of
width at most w — 1 such that C'(ay) > 2*7*(L(ay) — 2<w_1)2) if by is extended by an infinite path
of length 0. At time T'(a1), A occupies a descendant by of by. Truncate the tree to height T'(a4).
Let as be a descendant of a; in layer T'(aq), of minimum distance from a;. All descendants of a,

in layer T'(ay), other than az, will have no children. Now attach to by an infinite tree !

w—17 as

in Lemma 7, and to a, attach an infinite length-0 path.
C(by) > 297 (L(by) — 20w~ D7),

At time T'(bs), A occupies a descendant as of ay. Truncate the tree to height T'(bs). Let bs be
a descendant of by in layer T'(b2), of minimum distance from b,. All descendants of by in layer
T'(by), other than bs, will get no children.

Repeat this process ad infinitum. Each pair of additions increases the length of the shortest

root—active-leaf path by at least 2(*=1°. Eventually we reach a situation in which we have

constructed ay, by, az, ba, ..., ay, by so that if
o= L(ay) + L(as) + L(as) + - -
and

B = L(by) + L(bs) 4+ L(bg) + - - -,

then min{a, 3} > 2v* By the claim embedded in the proof of Lemma 7, by that time A’s cost
is at least

2" *(a + ) > 2¥ " min{a, 3}.

The adversary’s cost is

2" + min{a, 3} < 2min{a, A}

Therefore the competitive ratio is at least

2=t min{a, 8} _
2min{a, 5}

V7?2 m

5 Disjoint Paths

Let L be a layered graph which consists of a set of disjoint paths except that they share the
common source. Fach edge has a 0 — 1 length.

We define the algorithm in phases. At the beginning, while some path has length 0, the
algorithm simply chooses such a path and follows it until, if ever, its length increases. It then
switches to another path of length 0, and follows that one until its length increases. This continues
until all paths have positive length. Then the first phase begins.

In the kth phase (k = 1,2,...), the length of the shortest path from the source to the current
layer lies in the interval [, = [2571 2%). At the start of phase k the algorithm chooses a path
randomly and uniformly from among those paths of length in I running from the source to the

11



in layer T'(a1), i.e., mark them as inactive. They will have no children. Now “truncate” the entire
infinite tree to level T'(aq) by removing all vertices in layers T'(ay) + 1,7 (ay) + 2, T(a1) + 3, ....

By the inductive assertion we can find a new infinite tree £/ | of width at most w—1 so that if
E! | is attached to by and all other vertices in layer T'(a;) (including ay but no other descendants
of ay) are extended by 0-length infinite paths, C'(by) > 2%7%(L(by) — 2<w_1)2). Now truncate the
tree to level T'(by) by eliminating all vertices in layers T'(by) + 1,7T'(b2) 4+ 2,T'(by) + 3, .... At time
T'(by), either A occupies a descendant as of az or a nondescendant of s. If A occupies a descendant
as of as we attach a new infinite tree E!/_; to as and “kill” all descendants of by in layer T'(bz)
except for one descendant b3 of minimum distance from b,.

This process continues until at some point A visits a nondescendant of s. This must happen
eventually, because there is at least one infinite 0-path. Since each stage adds at least 2¢° to A’s
cost, every competitive algorithm must eventually switch at some time 7'(s) to a nondescendant
of s.

Suppose that the algorithm has constructed ay, by, as, b, ..., ag, by but neither ayq nor byyq.
Thus A visits either aj or by but exits the subtree rooted at s at time T'(ay) or T'(by), whichever
is defined.

Claim. C(s) increases by at least

2% 4 272(L(a;) — 207%) > 22 [(a;)

between the time when A occupies a; and time T'(¢;). Similarly, between the time when A
occupies b; and time T'(b;) C'(s) increases by at least

29 4 272(L(b;) — 200=1%) > 22 ().

Proof of Claim. In moving from a; to a nondescendant of a;, A incurs a cost of at least 2" on
the edges out of s. On the edges in the subtree rooted at a;, A incurs a cost of

Cla;) > 2 2(L(a;) — 2017

by the inductive case of the theorem. The proof of the second statement is similar.

But if
o= L(ay) + L(as) + L(as) + - -

and
B = L(by) 4 L(bs) + L(bs) + - -,
then
L(s) = 2*" + min{a, 8}.
Thus C(s) > 2 *(a+ 3) > 2* ' min{a, B} = 271 (L(s) — 2w2). Now make the tree infinite, as
required, by attaching infinite length-0 paths to each leaf in the final layer. m

Now we prove a lower bound of 2¥~2 on the competitive ratio.

Theorem 8 If A is a layered graph traversal algorithm, then its competitive ratio on width-w
graphs is at least 272,

10



4 A Lower Bound for Deterministic Algorithms

Fix a competitive deterministic layered graph algorithm A for arbitrary layered graphs. A
traces out a path in each layered graph. We construct a layered tree that forces A to perform
poorly. Figure 1 illustrates the lower bound construction. The construction is recursive. The
idea is that A is forced to move back and forth between the two subtrees attached to the source
s, thus incurring a large cost compared with the shortest path to the target.

Definition. Let H be a layered tree. Suppose that v € L;_; # ) is the vertex visited by A at
time .
1. Define T'(v) to be the minimum j > ¢, if any, such that A visits a nondescendant of v at time

J-
2. Define L(v) to be the length of a shortest path from v to a descendant of v in layer T'(v) (if
T'(v) and any descendants in layer T'(v) exist).

3. Define C'(v) to be the cost incurred by A from the time when v is first visited until the path
traced out by A first exits the subtree rooted at v (if ever). This is exactly the cost incurred by
Aat timesi+1,:14+2,...,T(v) — 1, plus the portion of the cost incurred at time T'(v) attributable
to edges in the subgraph rooted at v.

Lemma 7 Let w > 1. Let H be a layered tree of height 1, say, and arbitrary width, with at least
two vertices in the ith layer, and let s be the leaf in layer 1 visited by A. Then there is an infinite
rooted tree F,, of width at most w with these properties:

(1) The root of E,, has min{2,w} children. The edge(s) out of the root are of length o’

(2) If E,, is attached to vertex s, and to all other vertices in the ith layer of H an infinite path
of length 0 is attached, then for this new infinite tree, L(s) exists and C(s) > 2" (L(s) — 2*°).

Proof. By induction on w. Let w =1 and let H be a tree with at least two leaves. If we attach
to s an infinite path of edges of length 2 = 2 and attach infinite paths of length 0 to other
vertices in the last layer, because A is competitive T'(s) must exist. C'(s) > L(s) — 2. So clearly
C(s) > 271 L(s) — 212).

Let w > 2. Let H be a layered tree and let s € L; be visited by A, where L;;; = 0 and
|L;] > 2. Attach to s two children ay,b; via edges of length 2" Add to all other vertices in L;
an edge of length 0.

If A occupies neither a; nor by at time ¢ + 1, then T'(s) = ¢+ 1, L(s) = 2v* and C(s) =
clearly C'(s) > 21 (L(s) — 2w2).

So we may suppose without loss of generality that A visits a; at time ¢ + 1. By induction,
there is an infinite tree F,,_; of width at most w — 1 such that if a; is extended by E,,_; and all
other leaves are extended by infinite paths of length 0,

C(ay) > 272 (L(ay) — 2=,

At time T'(ay), either A occupies a descendant of by or a nondescendant of s; suppose A occupies
a descendant by of by. Choose a descendant of @y in layer T'(a;) of minimum distance from a;.
Call it as. (Such a descendant exists because F,,_; is infinite.) “Kill” all other descendants of a,
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Figure 1: Deterministic Lower Bound

By Fact 3, the total cost in a phase is at most

d+37(2d + 16 -9*=F7Dd) + (2d + 16 - 97 d)

2=2

= 2w+ Dd+16d[(9+9>+ 9% + -+ 972 + 971 4 9¥71]

= (2w+1)d + 16d[9 9 + 9%
17
2wd 4 16d[ = - 9*
< 2wd + 16 [72 9"]
4
:d[2w+%-9w]
2 34
<d[=-9" 4+ —-9"] = 4d - 9*.
< dfg 9% + -5 9%

Suppose v is of minimum distance from the root among those vertices in the jth and final
layer. For the analysis alone, add w dummy children to v via length-0 edges. At time ¢+ 1, v
has w active leaf descendants. Thus either d = 0 in the current phase, or one vertex € S has
w active leaf descendants. Hence either d = 0, or a phase ends at time 5 and = becomes the new
root. In either case, we can study the cost incurred during complete phases.

At all times, define ® to be the distance from the source to the current root r. Define ¥ to
be the length of a shortest path from the source to an active leaf; ¥ = & + SP(r). In a phase,
either @ increases by d, if (1) terminated the phase, or if (2) ended the phase, ¥ increases by at
least d. Thus ® + VU increases within a phase by at least d, and neither ® nor ¥ ever decreases.
It follows that the cost incurred by A,, to visit some vertex in L; is at most 4 - 9 times the final
value of ® 4+ ¥, which is at most twice the final value of W. Therefore A, is 8 - 9*-competitive.
|



Proof. For a given z, only one recursive call is made while |S| = z. For z <2, A, calls A,,_;.
A; for i <w —1 can be called by A, only if z =w — i+ 1. As soon as SP(s) > d, s is evicted
from S and the subphase terminates (if not before). m

Fact 4 If a phase ends because of phase termination condition (1), i.e., there is an x € S
such that the tree rooted at x has w active leaves, then the new root x satisfies d(source,x) =
d(source,r) +d, and, at the phase end, every source—active leaf path passes through x.

Proof. Since # € S implies that = is a descendant of r satisfying d(r,x) = d, clearly
d(source,x) = d(source,r) + d. And if the tree rooted at x has w active leaves when a phase
ends, the width bound of w implies that from that time onward every source-leaf path contains
x. |

Fact 5 If condition (2) triggers the end of a phase, then the length of a shortest path from the
source to an active leaf is at least d greater at the end of the phase than at the end of the previous
phase.

Proof. When the phase starts, SP(r) = d. If S = () at the phase end, then every vertex
originally in .S has been evicted from S. All vertices in .S at the beginning of the phase evicted
by reason of inactivity are inactive at the end of the phase.

If y is any active leaf at the phase end, on the r — y path there must be a vertex x closest to r
such that d(r,z) = d. The only possible reason why this active vertex is not in S at the end of
the phase is that SP(x) > d at the end. Therefore d(r,y) = d(r,x) + d(x,y) > d+ d = 2d and
SP(r) > 2d at the end of the phase. m

Theorem 6 For each w, for each rooted, 0 — 1 tree T of width at most w, the cost incurred by
Ay on T is at most 8 - 9" times the length of a shortest path from the source to a vertex in the
highest-numbered layer.

Proof. We prove the statement by induction on w. For w = 1 the statement is clear.

Let w > 1. At the start of a phase rooted at, say, r, the searcher occupies r. He incurs no cost
until every path from r to an active leaf has positive cost. Moving from r to the designated s
costs d. Within a subphase, let z denote |S| at the beginning of the subphase. If z > 2, algorithm
Aw_(z—1) is invoked, and by Fact 2 the width of the tree on which A,_(._y) is invoked does not
exceed w — (z — 1) during the subphase. A, _; is invoked if z = 1, but the width cannot exceed
w — 1 during the subphase—for if it did, the tree rooted at s would have w active leaves and
phase termination condition (1) would hold, thereby aborting the current phase (and subphase).
Furthermore, within a subphase which starts at s, SP(s) cannot exceed d — 1. If it did, s would
be evicted from S.

By the inductive hypothesis, if z > 1 at the start of the subphase, the cost incurred during
this subphase is bounded by d (the cost of moving from r to s), plus 8 - 9*==1d, plus the cost
of backtracking to s and then to r, a total of at most d + 2(8 - 9w_(z_1)d) + d. If instead z = 1,
the cost is at most 2d + 16 - 9*~1d. There is an additional cost of d at the end of a phase if we
move the root forward.



To start a phase, we let d = SP(r). If d =0, the searcher moves along length-0 edges from r,
visiting all descendents of r at distance 0 from r (using, say DFS), then returning back to r, all
at no cost.

At this point d = SP(r) > 1 is fixed for the phase, and the searcher occupies r. If y is a
descendant of x, let d(x,y) denote the length of the unique x —y path. At all times, let S = {s|s
is an active descendant of r, d(r,s) = d, s’s parent u satisfies d(r,u) = d — 1, and SP(s) < d}.
(A function of time, S may change many times within a phase to reflect its definition; however,
d is defined once at the beginning of a phase and remains constant.) Because some active leaf is
at distance exactly d from r at the start of a phase, S # () at that time. Because the active leaf
descendants of different s € S are distinct, |S| < w always.

Let Sy denote the set S at time t. A phase ends as soon as either (1) there is an « € 5; such
that at time ¢,  has w active leaf descendants, or (2) S; = (). If either (1) or (2) occurs, the
current phase ends at time ¢t — 1, and a new phase, possibly with a new root, begins immediately
afterward.

Each phase is divided into subphases. The start of a phase marks the beginning of its first
subphase. A new subphase begins at a later time ¢ if S; is strictly smaller than S;_;. (A phase
may end in the middle of a subphase.) At the start of a subphase the searcher occupies the
root r. He chooses an arbitrary s € S and at a cost of d moves from r to s. Where z = |5, if
z = 1 then the searcher executes procedure A, _; with s as the root, and if z > 2, he executes
procedure A,_(._y) with s as the root.

When the subphase terminates, the searcher retraces all of his steps within that subphase back
to r. This ensures that the searcher occupies r at the beginning of the next subphase.

If a phase terminates because of termination condition (1), i.e., there is an @ € S} such that
the tree rooted at x has w active leaves, then S; = {x}. In this case the searcher moves from r
to x, a distance of d, and makes = the root for the next phase. If a phase terminates because of
termination condition (2), i.e., S; = (), the root remains the same vertex r. Notice that in this
case, SP(r) increased during the phase by at least d, so the next phase will begin with the new
d at least double its value in the previous phase. This concludes the definition of A,,.

Analysis
We state four easily-proven facts.

Fact 2 Ifz = |S| at the beginning of a subphase which starts at s, then throughout that subphase
the width of the subtree rooted at s is at most w — (z — 1).

Proof. At any time during the subphase, each vertex in S has at least one active leaf as a
descendant. Since |S — {s}| equals z — 1 during the subphase, s can have at most w — (z — 1)
active leaf descendants at any time, and therefore the width of the subtree rooted at s cannot
exceedw —(z—1). m

Fact 3 Within one phase, algorithm A,_1 is executed at most twice. For 1 < w — 1, A; is
executed at most once within a phase. An invocation of A; (1 <i < w — 1) starting at vertex s
terminates with SP(s) < d.



1 — Ist layer. In path G, let @ be the length of the prefix from s to uy and let b be the length of
the uy — v suffix. The length of T, equals the length of T, plus b. By the inductive hypothesis,
the length of path T, is at most the length of (,,, which is itself at most a. Therefore the
length of T, is at most a + b, the length of G,. =

Given an algorithm A to traverse T', we show how to traverse G without increasing the cost.
Suppose that A moves in T from u in layer : — 1 to v in layer ¢. The weight of the edge traversed
in T" is the length of a portion of G, in G. This portion avoids layers 1 + 1,7 + 2, ..., so the
G-traversal algorithm can follow it. Similarly, if A moves from v in layer ¢ to w in layer ¢ — 1,
the G-traversal algorithm can traverse backward the corresponding portion of G,,.

A layered tree with arbitrary nonnegative integral weights can be converted to a layered tree
with 0 — 1 weights by inserting additional intermediate layers, on the fly.

3 A Deterministic Algorithm

Without loss of generality, we may assume that the original problem asks for a traversal
algorithm for 0 — 1, rooted, layered trees of arbitrary width, each having a target. Instead, for
each w we will build a traversal algorithm A,, that maintains the following property. For each
0 — 1 rooted tree T' of width at most w without a target, for each 7, the cost incurred by A, on
T between the start and the time it visits its first layer-i vertex is at most 8- 9" times the length
of a shortest path between s and any vertex of L,.

We can easily solve the original problem via algorithms A;, A;,.... We need only run A;,
starting with 5 = 1, until the width exceeds 7, or until we reach some vertex in the same layer
as the target. If, including the newly-revealed layer, the width is k& > j, we backtrack to the
source and execute procedure Ay, starting at the source, forgetting everything we know about
the graph. As soon as we learn that the layer we occupy contains the target, we backtrack to the
source and then travel optimally to ¢. The total cost incurred by this algorithm on a width-w
graph whose shortest source—target path is of length d is bounded by

dl8-9"+8-9° 4+ +8-9"+(8-9* +1)].

This is O(9") times the source—target distance.

In order to define algorithms A,,, we need some terminology.

(1) We refer to the time just after layer ¢ and the edges from layer ¢t — 1 to ¢ have been revealed
as time t. The algorithm must move to a vertex in layer ¢ after time ¢ and before time ¢ 4 1.
(2) Vertex v is active at time ¢ if it has a descendant in layer t. At time ¢, vertices in layer ¢ are
called active leaves.

(3) At time ¢, SP(v) denotes the length of the shortest path from v to a descendant of v in layer
t (if v is active at time ).

Now we construct the algorithms. A; is the obvious algorithm. A, for w > 1 is constructed
from Ay, As, As, ..., A1 as follows. Its execution is divided into phases. Within each phase, a
vertex r, initially the source, is designated as the root for that entire phase. We will maintain
the invariant that every path from the source to an active leaf passes through the root r. The
searcher occupies r at the start of the phase. Furthermore, an integer d is fixed for the entire
duration of the phase.



most w points. One of these points is then selected by the on-line algorithm, and the server is
moved to that point; the cost is the distance moved. [CL] give a competitive metrical service
system algorithm for uniform metric spaces and deterministic and randomized algorithms for
all metric spaces for the case of w = 2. Note that the k-server problem can be reduced to the
metrical service systems problem in the configuration space. Section 7 shows that the metrical
service systems problem with requests of size w (in metric spaces with integral distances) is
equivalent to the width-w layered graph traversal problem, when w is known in advance, in that
a ¢,-competitive algorithm exists for one problem if and only if one exists for the other. Related
recent work appears in [FL].

2 Trees are Sufficient

We first prove that given a competitive on-line algorithm for traversing width-w layered trees,
in which each edge has a 0 — 1 weight and each non-source vertex has a neighbor in the previous
layer, one can construct an on-line algorithm, with the same competitive ratio, for traversing
arbitrary width-w layered graphs.

Definition. Let H be any layered graph with source s, and let v be a vertex in H in, say, layer
L;. Define H, to be a shortest s —v path in H which contains no vertex of L;1; UL;1oULjy5U---
(if such a path exists).

Let GG be a layered graph of width at most w with nonnegative integral edge weights and with
source s. We start by proving that an on-line algorithm traversing G can construct, on the fly,
a layered tree T" with the following properties.

1. A vertex v is in T"s 1th layer if and only if v is in G’s ith layer and G, exists.
2. For all v, the length of T, is at most the length of GG, (if G, exists).

3. Each non-source vertex in T' has exactly one neighbor in the previous layer. (We call such
a tree rooted.)

Furthermore, any on-line traversal algorithm for T can be simulated on G without increasing the
cost.

The tree T = T(() is defined by induction on the layer index ¢, starting from a one-node
graph (1 = 0). Let 7 > 0. For every v in G’s ith layer L; for which (7, exists, one vertex and one
edge are added to T as follows. Let ug = s and let G, =< wug, uy, ug,...,us, v >. Let up be the
first vertex in ¢, which is in layer L,_;. Add to T vertex v and edge (uy,v) with weight equal
to the weight of the portion of (G, between uy and v.

Lemma 1 For all v, the length of T, is at most the length of G, .

Proof. By induction on the index of the layer containing v.
Basis: 1 = 0. Trivial.
Inductive Step: © > 0. Assume correctness for 1 — 1. Suppose that v is adjacent in T' to uy in T"s



converting the problem with arbitrary nonnegative weights to one with integer weights. The
competitive ratio is affected by at most a constant factor due to this conversion. This factor can
be made arbitrarily close to one by taking the lower bound arbitrarily close to zero.

In sections 3 and 4 we give upper and lower bounds, exponential in w, on the competitive ratio
for deterministic layered graph traversal:

e Section 3 gives an algorithm which attains a competitive ratio of O(9") on layered graphs
of width w. This algorithm does not need to know w in advance and automatically adjusts
itself to deal with the real width on hand.

e Section 4 proves that for all w, 2¥7% is a lower bound on the competitive ratio of any
deterministic on-line layered graph traversal algorithm.

Thus arbitrary layered graphs are much harder to traverse than those consisting of disjoint paths.

Randomized on-line algorithms are addressed in several papers including [BLS, RS, CDRS,
FKLMSY, BBKTW, KRR]. An oblivious adversary is one who constructs the sequence of events
in advance and deals with the sequence optimally. For this adversary model [BLS] and [FKLMSY]
give examples where randomization can improve the competitive ratio exponentially. This ad-
versary models a world in which the on-line algorithm’s actions do not themselves influence
future events. One can consider a situation where the on-line algorithm’s actions have a direct
influence on the future. In such cases [BBKTW] have shown that randomization cannot improve
the competitive ratio more than polynomially. We deal with randomized layered graph traversal
algorithms (assuming an oblivious adversary), and present the following results.

e Section 5 gives a randomized on-line algorithm for the disjoint path traversal problem. The
competitive ratio is O(logw). We also show that this is optimal up to a constant factor.
This is an exponential improvement over the bound for deterministic algorithms. This
result immediately gives a randomized min operator [FRR] for on-line k-server algorithms:
given a set of w possibly conflicting on-line strategies, a new on-line strategy can be devised
which is no worse than O(log w) times the best of these strategies on every input.

e Section 6 gives a lower bound of w/2 on the competitive ratio of any randomized traversal
algorithm for general layered graphs.

The problem of traversing layered graphs generalizes numerous on-line problems. For instance,
metrical task systems (see [BLS]) can be modeled as layered graphs where layers represent tasks,
and in each layer there is a node for each possible state. The k-server problem (see [MMS]),
viewed in the servers’ configuration space, is the problem of traversing the layered graph of
permitted configurations for each request. Unfortunately, the width of this graph depends on
the cardinality of the metric space, and not just on the number of servers, so layered graph
techniques are inadequate for producing solutions to the k-server problem directly. However, the
algorithm given in [BCR] for traversing layered graphs consisting of disjoint paths was used by
[FRR] in their construction of competitive k-server algorithms.

As an additional example of the power of layered graph traversal as a tool for designing on-line
algorithms, consider the problem of metrical service systems, suggested by [CL]. A single server
moving among points of a metric space is presented with requests. Each request is a set of at



Baeza-Yates, Culberson and Rawlins [BCR] and Papadimitriou and Yannakakis [PY] consider
a large family of shortest path problems that operate with incomplete information. They describe
algorithms that start at a source, search for the target, and learn about the environment as they
progress. The complexity measure associated with such an algorithm is the ratio of the total
distance traversed by the algorithm to the length of the shortest source-target path. Related
work on exploring graphs with incomplete information is considered in [DP].

This measure is closely related to the concept of competitive analysis, introduced by Sleator
and Tarjan [ST], which gives a worst case complexity measure for on-line algorithms. An on-line
algorithm is an algorithm which must deal with a sequence of events, responding to events in
real time without knowing what the future holds. The competitive ratio of an on-line algorithm
A is defined as the supremum, over all sequences of events o, and all possible (on- or off-line)
algorithms ADV, of the ratio between the cost associated with A to deal with ¢ and the cost
associated with ADV to deal with 0. We say that A is c-competitive, if this supremum is at
most ¢. (In some of the on-line literature, especially that dealing with paging and the k-server
problem, from the cost of A on ¢ a constant additive term is subtracted, before dividing by the
cost of ADV on 0. Where ambiguity might arise, we shall say that A is strictly e-competitive,
meaning that the definition without an additive term is used.)

The layered graph traversal problem was introduced in [PY], and generalizes work of [BCR].
A layered graph is a connected graph in which the vertices are partitioned into sets Ly =
{s}, L1, Lo, L3, ... and all edges run between L;_; and L; for some i. Fach edge has a non-
negative integral weight. Vertex s is known as the source. Let w = max{|L;|}; w is called
the width of the graph. An on-line layered graph traversal algorithm starts at the source and,
without knowing w, moves along the edges of the graph, paying a cost equal to the weight of the
edge traversed. Its goal is to reach the vertex ¢ in the last layer known as the “target”; which
vertex is the target is not revealed until the searcher occupies a vertex in the last layer. Edges
can be traversed in either direction, but the on-line algorithm pays whenever it crosses the edge.
The edges between L;_; and L;, and their lengths, become known only when a node in L;_ is
reached.

We define the competitive ratio of a layered graph traversal algorithm to be the worst case
ratio between the total distance traveled by the on-line algorithm and the length of the shortest
source-target path. (If the algorithm is randomized, we use the expected distance it travels.)
The competitive ratio of a layered graph traversal algorithm is given as a function of the width
w.

A layered graph is said to consist of w disjoint paths if it is formed from w paths which are
vertex disjoint except that each contains the common source. [BCR] give optimal deterministic
algorithms for all w with a competitive ratio which is asymptotic to 2ew.

For arbitrary layered graphs, [PY] give an optimal algorithm for width 2, with a competitive
ratio of 9. It follows from [BCR] that 1 4 2w(1 + ﬁ)w_l ~ 2ew is a lower bound on the
competitive ratio. Prior to this paper no other bounds were known.

Section 2 proves that general layered graphs of width w weighted with arbitrary nonnegative
integers are no more difficult to traverse than width-w layered trees whose weights are 0 — 1.
Notice that if we know a lower bound on the smallest non-zero weight of an edge, then we can
express the weights as multiples of this lower bound and round to the closest integer, thereby
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Abstract

A layered graph is a connected graph whose vertices are partitioned into sets Lo =
{s}, Ly, Lo, ..., and whose edges, which have nonnegative integral weights, run between
consecutive layers. Its width is max{|L;|}. In the on-line layered graph traversal problem,
a searcher starts at s in a layered graph of unknown width and tries to reach a target vertex
t; however, the vertices in layer ¢ and the edges between layers ¢ — 1 and ¢ are only revealed
when the searcher reaches layer 7 — 1.

We give upper and lower bounds on the competitive ratio of layered graph traversal
algorithms. We give a deterministic on-line algorithm which is O(9%*)-competitive on width-
w graphs and prove that for no w can a deterministic on-line algorithm have a competitive
ratio better than 2*=2? on width-w graphs. We prove that for all w, w/2 is a lower bound
on the competitive ratio of any randomized on-line layered graph traversal algorithm. For
traversing layered graphs consisting of w disjoint paths tied together at a common source,
we give a randomized on-line algorithm with a competitive ratio of O(log w) and prove that
this is optimal up to a constant factor.

1 Introduction

Finding the shortest path in a graph from a source to a target is a well-studied problem.
Dijkstra’s algorithm [Dij] appeared in 1959. Other algorithms can be found in [Bel, Flo, FF,
AMOT].

*Computer Science Department, School of Mathematics, Tel-Aviv University, Tel-Aviv 69978, Israel.

TUniversity of Pennsylvania, Department of Statistics, The Wharton School, Philadelphia, PA 19104-6302,
USA. This work was done while the author was at the Graduate School of Business, University of Chicago.

tCollege of Computing, Georgia Tech, Atlanta, GA 30332-0280, USA. This author was supportd in part by
NSF grant CCR-8807534. This work was done while the author was at the Department of Computer Science,
University of Chicago.

§Computer Science Department, University of Toronto, Toronto, Ontario M5S 1A4, Canada. Work done while
a graduate student at the Computer Science Department, Tel Aviv University.

T This work was done while the author was a graduate student at the Computer Science Department, Tel Aviv
University.

IDepartment of Computer Science and Engg., Indian Institute of Technology, Bombay, India 400076. This
author was supported in part by NSF grants CCR-8710078 and CCR-8906799. This work was done while the

author was a graduate student at the Department of Computer Science, University of Chicago.



