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Abstract
In this paper we give a constant factor approximation al-
gorithm for the capacitated k-median problem. Our algo-
rithm produces a solution where capacities are exceeded by
at most a constant factor, while the number of open facili-
ties is at most k. This problem resisted attempts to apply
the plethora of methods designed for the uncapacitated case.
Our algorithm is based on adding some new ingredients to
the approach using the primal-dual schema and lagrangian
relaxations.

Previous results on the capacitated k-median problem
gave approximations where the number of facilities is ex-
ceeded by some constant factor. Relaxing the constraint on
the number of facilities seems to render k-median problems
much simpler. In some applications it is important not to
violate the constraint on the number of facilities, whereas
relaxing the capacity constraints is a natural thing to do, as
the capacities express rough estimates on cluster sizes.

1 Introduction

In this paper we consider the following capacitated k-
median problem. The input is a set of clients C, a set
of potential facilities F , a non-negative integer capacity
function u : F → N, a metric distance d on C ∪ F , and
a positive integer k. The desired output is a subset of
open facilities F ′ ⊂ F of cardinality at most k and an
assignment of clients to open facilities ϕ : C → F ′ such
that for all i ∈ F ′,

∣∣ϕ−1(i)
∣∣ ≤ u(i). The objective is

to minimize the total assignment cost
∑

j∈C d(j, ϕ(j)).
In the related capacitated facility location problem the
input includes non-negative facility costs fi for all i ∈
F . The output set of facilities F ′ may be of any
positive cardinality, and the objective is to minimize
the total assignment cost plus the total opening cost∑

j∈C d(j, ϕ(j)) +
∑

i∈F ′ fi.
Facility location and k-median problems are moti-

vated by applications in logistics, distributed systems,
clustering, and other areas. In recent years variants of
these problems (mostly the uncapacitated versions) in-
spired an explosion of research promoting diverse meth-
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ods. Constant factor approximations were discovered
for uncapacitated facility location [20] and for unca-
pacitated k-median [4] (both used the LP relaxation
of [7] and the filtering technique of [14]). The ap-
proximation factors for both problems were improved
significantly using the original filtering/LP-rounding
ideas [5, 6, 9], the primal-dual schema and lagrangian
relaxations [12, 3], local search heuristics [13, 1], and
dual fitting [15, 11, 10, 21, 16]. (See also the surveys
in [8, 19].) The current approximation guarantee cham-
pions for these problems [1, 16] are quite close to the
known hardness of approximation results. Constant fac-
tor approximations were discovered for the capacitated
facility location problem [12, 18].

Unfortunately, none of this impressive collection of
results seemed to apply directly to the capacitated k-
median problem. Standard LP relaxations are known
to have unbounded integrality gap for this problem [4].
If the capacity constraints are relaxed, and the approxi-
mation algorithm is allowed to exceed the capacities by a
constant factor, this is no longer necessarily true. How-
ever, the methods used to solve uncapacitated k-median
all seem to suffer from serious drawbacks when trying
to apply them to the capacitated problem. For exam-
ple, capacitated facility location can be solved using the
primal-dual schema [12]. However, this is done by re-
ducing the problem to the uncapacitated case, changing
the metric to include some of the facility opening costs
in the process. The resulting bounds are not of the
form that can be used in the lagrangian relaxation ap-
proach that solved the uncapacitated k-median. The
only previous attempts to address the capacitated k-
median problem (to the best of our knowledge) got a
constant factor approximation with a constant factor
violation of the capacities for the case of uniform capac-
ities [4], or while exceeding the number of facilities k
by a constant factor [2]. Solving the uniform capacities
case requires a simple modification of the uncapacitated
algorithm. Relaxing the restriction on the number of fa-
cilities usually renders k-median problems much easier.

In this paper we give a constant factor approxima-
tion algorithm for the capacitated k-median problem.
Our algorithm produces a solution where capacities are
exceeded by at most a constant factor. We note that
in clustering applications where the capacities are esti-



mates on cluster sizes, relaxing the constraints imposed
by those estimates might be a reasonable thing to do.
Our algorithm is based on a simple primal-dual algo-
rithm for capacitated facility location that also exceeds
the capacities by constant factors, but on the other hand
produces solutions that can be used in the lagrangian
relaxation approach. Our solution differs from previ-
ous results (e.g. [12]) in two main respects. Firstly, we
base our primal-dual algorithm not on the usual LP re-
laxation of [7], but on a different relaxation similar to
the one used in dual fitting. Secondly, our procedure
that generates a k-median solution is much more com-
plicated than similar procedures in previous work, and
its analysis has to amortize the cost of some connec-
tions against others in a non-trivial fashion. The reason
for this is that some clients have to be rerouted to far-
away facilities to accommodate the (relaxed) capacity
constraints. We note that in this extended abstract, we
made no attempt to optimize the constant guarantees.

2 Preliminaries

Suppose we are given some solution to a capacitated
facility location problem. Let Φ denote the client
connection cost and Ψ denote the facility cost of the
solution. Our algorithm for the capacitated k-median
problem can be based on any approximation algorithm
for the capacitated facility location problem, which
always produces a solution where the capacities are
violated by at most a constant factor, and the inequality
Φ + rΨ ≤ rOPT holds for some constant r, where
OPT is the value of the optimal solution. We remark
that the algorithm of Jain and Vazirani [12] produces
a solution of the desired form for the uncapacitated
facility location problem. However, this does not seem
to extend to arbitrary capacities. Therefore, we show
a new approximation algorithm for the capacitated
facility location problem with the above properties,
which is based on LP relaxation similar to the one used
in [10], rather than the usual LP relaxation of [7].

Our algorithms are motivated by and analyzed
using the following integer linear program formulation of
the capacitated facility location problem. To state the
formulation, we use the following notation: For every
facility i and every subset of clients D of size |D| ≤ u(i),
we define a star S = S(i,D). The cost of this star
is w(S) = fi +

∑
j∈D d(i, j). We denote f(S) = i,

c(S) = D, and n(S) = |D|. Let S be the set of all
such stars. The integer linear program formulation is:

minimize
∑

S∈S w(S)zS

s.t. ∑
S|j∈c(S) zS ≥ 1 ∀j ∈ C

zS ∈ {0, 1} ∀S ∈ S

By relaxing the integrality constraints to zS ≥ 0
∀S ∈ S, we get a linear programming relaxation for
the capacitated facility location problem. We denote
this relaxation by (FLR). Notice that (FLR) has an
exponential number of variables. However, we will not
need to solve it. The dual LP, which we denote by
(DFL), is:

maximize
∑

j∈C αj

s.t. ∑
j∈c(S) αj ≤ w(S) ∀S ∈ S

αj ≥ 0 ∀j ∈ C

Let z∗fl denote the value of an optimal solution for the
capacitated facility location problem. Then by weak
duality z∗fl ≥

∑
j αj for any dual feasible solution α.

Let z be an integral solution to (FLR). Note that
it is possible that there are several stars with the same
facility i in z. It is sometimes convenient to assume
that we have n available copies of each facility, where
each copy is viewed as a different facility. In this
representation, each facility is opened at most once in z,
and we can express z as a pair of integral vectors (x, y)
in the following way. For every i ∈ F , yi = 1 iff there is
a star S with f(S) = i and zS = 1, and for every i ∈ F
and j ∈ C, xij = 1 iff there is a star S with f(S) = i,
j ∈ c(S), and zS = 1. We denote by Φ(z) = Φ(x, y) =∑

i∈F, j∈C d(i, j)xij (the total connection cost of z), and
we denote by Ψ(z) = Ψ(x, y) =

∑
i∈F fiyi (the total

opening cost of z).
We will use the following mixed integer program

formulation of the capacitated k-median problem

minimize
∑

j∈C

∑
i∈F d(i, j)xij

s.t. ∑
i∈F xij ≥ 1 ∀j ∈ C∑
i∈F yi ≤ k

xij ≤ yi ∀i ∈ F, ∀j ∈ C
yi ∈ {0, 1} ∀i ∈ F

We denote by (KMR) the linear programming relax-
ation derived by relaxing the integrality constraints to
yi ≥ 0 ∀i ∈ F . We denote by z∗km the value of an
optimal solution for the capacitated k-median problem.

In both the capacitated k-median problem and the
capacitated facility location problem we are interested
in infeasible solutions that may connect too many clients
to a facility. However, we restrict the excess to at most
γ times the capacity, for some constant γ > 1. More
formally, if ϕ is the assignment function of clients to
facilities in our solution, we require that |ϕ−1(i)| ≤
γu(i) for all facilities i. We call such a solution a γ-
feasible solution. (Similarly, a fractional solution is γ-
feasible iff it violates the capacity constraints by no more



than a factor of γ.) We call an algorithm that produces
a γ-feasible solution whose cost is at most β times the
optimum a (β, γ)-approximation.

3 Facility Location

In this section we present and analyze our bi-criteria
approximation algorithm for the facility location prob-
lem. Our algorithm will be used in the approximation
of the capacitated k-median problem. The algorithm
is made up of two phases. We define and discuss each
phase separately.

Phase 1. The goal of this phase is to find a feasible
solution to the dual program (DFL). This solution will
serve as a lower bound on the cost of the optimal
solution. We also obtain an infeasible primal solution.
In the second phase, this solution will be converted into
a solution satisfying the relaxed capacity constraints.

We start with all dual variables equal to 0. All the
facilities are closed, and no stars are allocated. For each
facility i, in this phase, we are going to allocate at most
one star whose center is i. As soon as such a star is
allocated, the facility i is declared “open”. Allocating
stars and opening facilities is done as follows. While
there are unconnected clients, increase uniformly the
values αj for all unconnected clients j, until one of the
following conditions holds:

1. There is a currently closed facility i and a set D of
clients (connected or unconnected) of size at most
u(i), such that

∑
j∈D(αj − d(i, j)) = fi. If the

condition holds for some facility i and set D of
clients, we allocate the star S = S(i, D). Facility
i is declared open. All the clients in c(S) that are
currently unconnected become connected to i. If,
for some unconnected client j 6∈ c(S), αj ≥ d(i, j)
holds, then we connect j to i.

2. For some unconnected client j and open facility i,
αj becomes equal to d(i, j). Then we connect j to
i.

Notice that in the end all the clients are connected.
However, the number of clients connected to i may thus
exceed u(i). This will be fixed in phase 2.

Claim 3.1. If client j is connected to facility i in the
end of phase 1, then αj ≥ d(i, j). Also, if j ∈ c(S)
for some star S allocated by the algorithm, then αj ≥
d(j, f(S)) (note that in this case j is not necessarily
connected to f(S)).

Proof: First, assume j ∈ c(S) for some star S allocated

by the algorithm, with f(S) = i. Then,
∑

j′∈c(S)\{j}
αj′ ≤ fi +

∑

j′∈c(S)\{j}
d(i, j′)

(otherwise the first condition was true for the star
S′ = S(i, c(S) \ {j}) before S was allocated). Since
the first condition holds for S, αj ≥ d(i, j).

Now suppose j is connected to some facility i, a
star S with f(S) = i is allocated by the algorithm, and
j 6∈ c(S). Then if j connected to i when star S was
allocated, αj ≥ d(i, j) clearly holds. If j connected to i
later, then αj = d(i, j).

Claim 3.2. Phase 1 can be implemented to run in
polynomial time.

Proof: The number of iterations is bounded by |C|.
We show that each iteration can be implemented to run
in polynomial time. Consider an iteration. Let A be the
set of currently open facilities, and let B = F \A. Let C1

be the set of currently connected clients, C2 = C \ C1.
Our goal is to compute the increase ∆ in values of αj

for all j ∈ C2 in this iteration, and in case the first rule
must be applied, we must find the star that should be
allocated.

Consider a facility i ∈ B. For each 0 ≤ r1 ≤ |C1|,
0 ≤ r2 ≤ |C2|, such that r1 + r2 ≤ ui, let D(i, r1, r2)
be the set of r1 connected clients and r2 unconnected
clients that minimizes

δ(i, r1, r2) = fi +
∑

j∈D(i,r1,r2)

d(i, j)−
∑

j∈D(i,r1,r2)

αj .

Clearly, set D(i, r1, r2) consists of r1 connected clients
and r2 unconnected clients with the largest (αj−d(i, j))
values. Notice that the first condition holds at the end
of current iteration for some star S with f(S) = i, and
c(S) a set of r1 connected and r2 unconnected clients if
and only if ∆ = δ(i,r1,r2)

r2
.

Let ∆1 be the minimum value of δ(i,r1,r2)
r2

over
all facilities i ∈ B, and all integers 0 ≤ r1 ≤ |C1|,
0 ≤ r2 ≤ |C2|, such that r1+r2 ≤ ui. The first condition
holds for some star in current iteration if and only if
∆ = ∆1. Put ∆2 = minj∈C2,i∈A{d(i, j)− αj}. Clearly,
the second condition holds in this iteration if and only
if ∆ = ∆2. Thus, the increase in values αj for j ∈ C2

in current iteration is ∆ = min{∆1,∆2}, and can be
computed in polynomial time. In case ∆ = ∆1, the
first condition holds. In this case we allocate the star
S(i,D(i, r1, r2)), i ∈ B for which δ(i,r1,r2)

r2
= ∆.

Claim 3.3. The vector α computed in phase 1 is a
dual feasible solution.



Proof: Consider a star S. Let i = f(S). If i is
closed, then

∑
j∈c(S) αj ≤ w(S), for otherwise S or

some other star with i as its center would have been
opened by the algorithm. Suppose i is open at the end
of the algorithm, and S′ with f(S′) = i is allocated.
If S′ = S, then trivially

∑
j∈S αj = w(S), because

as soon as this condition holds and S is allocated, all
j ∈ S that were not connected previously, get connected
and their αj-s stop increasing. If S′ 6= S, partition
c(S) into two subsets. Let C1 be the set of all clients
j ∈ S that had αj ≥ d(i, j) at the time when S′ was
allocated, and let C2 be the set of all other clients in
c(S). When S′ was allocated, the following condition
was true:

∑
j∈C1

(αj − d(i, j)) ≤ fi. As for the clients
j ∈ C2, when phase 1 terminates αj ≤ d(i, j), because
if at some point αj = d(i, j), we connect j to i and
stop increasing αj . Therefore, at the end of phase 1,∑

j∈S αj ≤ w(S). Thus, in all cases the dual constraints
are satisfied.

Phase 2. In this phase we convert the solution pro-
duced in phase 1 into a solution satisfying the relaxed
capacity constraints.

Put S ′ = ∅. Given a star S with facility i, let
r(S) = fi

n(S) . Sort the stars allocated in phase 1 by
non-decreasing r(S) value. Scan the stars in this order.
Let S be the current star. If there is no star S′ ∈ S ′
such that c(S′) ∩ c(S) 6= ∅, add S to S ′. Let F ′ be the
set of facilities i such that there is a star with center i in
S ′. Note that for each client j, there is at most one star
S ∈ S ′ that contains j. If there is a star S ∈ S ′ such
that j ∈ c(S), connect j to f(S). We say that this is a
direct connection. Let j be one of the remaining clients,
and suppose that at the end of phase 1, j was connected
to facility i. If i ∈ F ′, then connect j to i. This is also
called a direct connection. Otherwise, there is a client j′

and a star S′ ∈ S ′ such that j′ ∈ c(S) ∩ c(S′). Connect
j to f(S′). We say that this is an indirect connection
for which j′ is responsible. Finally, for every S ∈ S ′
consider the set of clients D connected to i = f(S).
Open d|D|/5u(i)e copies of i. Connect to each copy at
most 5u(i) clients from D.

We first bound the connection cost.

Claim 3.4. At the end of phase 2, if client j is
connected directly to facility i, then d(i, j) ≤ αj , and if
j is connected indirectly to i, then d(i, j) ≤ 3αj .

Proof: The first part of the claim follows from
Claim 3.1. As for the second part, suppose j is con-
nected indirectly to i′, and let j′ be the client respon-
sible for this connection. Let S′ ∈ S ′ be the star with
f(S′) = i′. Let i be the facility to which j was connected
at the end of phase 1, and let S be the star allocated in

phase 1 with f(S) = i. From Claim 3.1, d(i, j′) ≤ αj′ ,
d(i′, j′) ≤ αj′ and d(i, j) ≤ αj . We show that αj′ ≤ αj :
When star S was allocated, either j′ connected to i, or
it was already connected to some other facility. There-
fore, αj′ stopped growing by the time S was allocated.
However, j connected to i either when it was allocated
or later. Therefore, αj′ ≤ αj , and the connection cost
d(i′, j) ≤ d(i, j) + d(i, j′) + d(i′, j′) ≤ αj + 2αj′ ≤ 3αj .

Claim 3.5. Let S ∈ S ′, and let i = f(S) ∈ F ′. We
denote by c′(S) the set of clients connected to i that do
not belong to c(S). Then the total cost of all the copies
of i is at most

∑

j∈c(S)

(αj − d(i, j)) +
∑

j∈c′(S)

αj

4
.

Proof: As S was allocated in phase 1, we have∑
j∈c(S) αj = w(S). More than one copy of i is opened

only if there are at least 4u(i) clients not in c(S)
connected to i. Pick 4u(i) of these clients and charge
each of them with fi

4u(i) . If t copies of i are opened, there
are at least 5u(i)(t − 2) uncharged clients not in c(S).
Charge each of these clients with fi

5u(i) .
Consider a client j 6∈ c(S) connected to i. Observe

that S can only be allocated after time fi

n(S) in phase
1. If j is connected directly to i, then it was connected
to i at the end of phase 1. Therefore, it connected to
i at time fi

n(S) or later, and αj ≥ fi

n(S) ≥ fi

u(i) . If j is
connected to i indirectly, then there is a star S′ and
i′ = f(S′), such that j was connected to i′ at the end
of phase 1. By the order in which stars were added to
S ′, fi′

n(S′) ≥ fi

n(S) . Therefore, αj ≥ fi′
n(S′) ≥ fi

n(S) ≥ fi

u(i) .

The main result of this section is the following
bound on the performance guarantee of the algorithm.

Lemma 3.6. Let (x, y) be the solution computed by
the above two-phase algorithm. Then,

Φ(x, y) + 4Ψ(x, y) ≤ 4
∑

j

αj ≤ 4z∗fl.

Proof: Let B be the set of directly connected clients
belonging to stars in S ′, let D be the set of all the
other directly connected clients, and let I be the set of



indirectly connected clients. Then

4Ψ(x, y) + Φ(x, y)

≤ 4Ψ(x, y) + 4
∑

j∈B

d(ϕ(j), j)

+
∑

j∈D

d(ϕ(j), j) +
∑

j∈I

d(ϕ(j), j)

≤ 4
∑

j∈B

αj + 4
∑

j∈D∪I

α

4
+

∑

j∈D

αj + 3
∑

j∈I

αj

≤ 4
∑

j∈C

αj

4 k-Median

Consider any capacitated facility location algorithm
that produces a γ-feasible solution (x, y) such that
Φ(x, y) + βΨ(x, y) ≤ βz∗fl. We have:

Lemma 4.1. The above-mentioned algorithm can be
used to generate in polynomial time two γ-feasible
solutions S1 = (x1, y1) with k1 open facilities and
S2 = (x2, y2) with k2 open facilities, such that the
following conditions hold:

1. k1 ≤ k ≤ k2.

2. k2−k
k2−k1

Φ(S1) + k−k1
k2−k1

Φ(S2) ≤ β · z∗km.

The proof of this lemma is identical to the lagrangian
relaxation argument of [12]. Alternatively, one can
prove this lemma using a packing argument similar to
the one in [17]. We do not include a proof in this
extended abstract.

Thus, for the remainder of this section we assume
that we are given two such solutions S1 = (x1, y1) and
S2 = (x2, y2), generated using the algorithm from the
previous section. Let A denote the set of open facilities
in S1, and let B denote the set of open facilities in S2.
For each client j ∈ C, let ϕ1(j) be the facility that serves
j in S1, and let ϕ2(j) be the facility that serves j in S2.

Put a = k2−k
k2−k1

and b = k−k1
k2−k1

. The fractional
solution S = aS1+bS2 is a 5-feasible solution to (KMR).
The solution cost is aΦ(S1)+bΦ(S2) ≤ 4z∗km. If a ≥ 0.1,
we can take the solution S1. As k1 ≤ k, this is a
5-feasible solution for the k-median problem. Its cost
Φ(S1) ≤ 10Φ(S) ≤ 40z∗km.

Otherwise, we do the following. Let U1(i) denote
the set of clients connected to facility i ∈ A in solution
S1. Similarly, let U2(i) denote the set of clients con-
nected to i ∈ B in solution S2. For each i ∈ A, i′ ∈ B,
we define wi(i′) = |U1(i)∩U2(i

′)|
|U1(i)| . Note that wi(i′) is the

fraction of clients in U1(i) that are connected to i′ in so-
lution S2. Thus, for every i ∈ A,

∑
i′∈B wi(i′) = 1. We

open (at random) a set F = F1 ∪ F2 ∪ F3 of facilities.

We will show that the number of open facilities is at
most k with high probability. The set F is determined
as follows.

Let A1 = {i ∈ A | ∃i′ ∈ B with wi(i′) ≥ 0.1}, and
put k′ = |A1|. Clearly, k′ ≤ k1 < k. Take F1 ⊆ B to
be a set of size k′ such that for every i ∈ A1, there is at
least one i′ ∈ F1 with wi(i′) ≥ 0.1. There are k2 − k′

facilities in B \F1 and k1−k′ facilities in A\A1. Notice
that a(k1 − k′) + b(k2 − k′) = k − k′. Take F2 to be a
set of size db(k2 − k′)e chosen uniformly at random from
B\F1. Next, consider i ∈ A\A1. Let {i1, i2, . . . } be the
set of all facilities i′ ∈ B with non-zero weight wi(i′),
ordered by non-decreasing order of their distance from
i. Put t = t(i) = max{j | ∑

s<j wi(is) < 0.5}, and put
d(i) = d(i, it). Put B′ = B′(i) = (F1∪F2)∩{i1, . . . , it}.
If

∑
i′∈B′ wi(i′) < 0.1, we add i to F3. (Notice that

F3 ⊂ A, unlike F1, F2.) Finally, put F = F1 ∪ F2 ∪ F3.

Claim 4.2. For every i ∈ A \A1, Pr[i ∈ F3] ≤ a
2 .

Corollary 4.1. With probability at least 1
2 , |F | =

|F1|+ |F2|+ |F3| ≤ k.

Proof: By Claim 4.2 and linearity of expectation,
E[|F3|] ≤ a(k1 − k′)/2. Thus, by Markov’s inequality,
Pr[|F3| > a(k1 − k′)] ≤ 1

2 . As the number of open
facilities is integral, |F3| ≤ ba(k1 − k′)c with probability
at least 1

2 . Therefore, with probability at least 1
2 , |F | =

|F1|+ |F2|+ |F3| ≤ k′+ db(k2 − k′)e+ ba(k1 − k′)c = k.

Proof of Claim 4.2: Consider the facilities
i1, i2, . . . , it. Let pi′ denote the probability that i′ 6∈
F1 ∪ F2. Then, for i′ ∈ B, pi′ = 0 if i′ ∈ F1 and
pi′ ≤ 1 − b = a otherwise. For j = 1, 2, . . . , t de-
fine a random variable Xj . If ij 6∈ F1 ∪ F2 then
Xj = 10wi(ij). Otherwise, Xj = 0. Let W =∑t

j=1 wi(ij). By the definition of t, 0.5 ≤ W ≤ 1.
Also, for every j, wi(ij) < 0.1 (otherwise, i ∈ A1). We

have µ = E
[∑t

j=1 Xj

]
≤ 10aW . The event i ∈ F3

happens only if
∑

i′∈(F1∪F2)∩{i1,...,it} wi(i′) < 0.1, i.e.∑t
j=1 Xj > 10W − 1. We bound the variance:
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∑

j

Xj




= E





∑

j

Xj
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−


E


∑

j

Xj







2

=
∑

j

(10wi(ij))2pij
(1− pij

)

+ 2
∑

j,j′
100wi(ij)wi(ij′)

(
Pr

[
(ij 6∈ F1 ∪ F2)∧
(ij′ 6∈ F1 ∪ F2)

]
− pij pij′

)

As B \ (F1 ∪ F2) is a set of fixed size, Pr[(ij 6∈
F1 ∪F2)∧ (ij′ 6∈ F1 ∪F2)] ≤ pij

pij′ . Recall also that for
each j, 10wi(ij) ≤ 1. Therefore,

V ar


∑

j

Xj


 ≤

∑

j

(10wi(ij))2pij
(1− pij

)

≤
∑

j

10pij wi(ij) = µ

Using Chebyshev’s inequality,

Pr


∑

j

Xj ≥ 10W − 1




= Pr


∑

j

Xj − µ ≥ 10W − 1− µ




≤
V ar

[∑
j Xj

]

(10W − 1− µ)2

≤ µ

(10W − 1− µ)2

Note that µ ≤ 10Wa ≤ W (since a ≤ 0.1). Also,
2W ≥ 1. Therefore,

Pr


∑

j

Xj ≥ 10W − 1


 ≤ 10Wa

49W 2
≤ 20

49
a ≤ 1

2
a

After determining the set of open facilities F ′,
an optimal assignment of clients to facilities can be
computed in polynomial time. However, it is easier to
analyze a suboptimal assignment that is derived from
the solutions S1 and S2. Consider a client j ∈ C. We
distinguish between three cases:

Case 1: If ϕ2(j) ∈ F , then we connect j to ϕ2(j).
The connection cost is d(j, ϕ2(j)), and this happens
with probability at least b.

Case 2: If ϕ2(j) 6∈ F , but ϕ1(j) ∈ F , we connect j
to ϕ1(j). The connection cost is d(j, ϕ1(j)).

Case 3: Both ϕ1(j) 6∈ F and ϕ2(j) 6∈ F . Put
i = ϕ1(j). Define U ′ = {j′ ∈ U1(i) | ϕ2(j′) ∈ B′(i)}.
Let U ′′ = U1(i) \ U ′. As i 6∈ F3, |U ′| ≥ 0.1|U1(i)|.
Therefore, there is a function g : U ′′ → U ′, where at
most 9 clients from U ′′ are mapped to each client in
U ′. We connect each client j ∈ U ′′ to ϕ2(g(j)). The
connection cost of j is bounded by d(i) + d(i, j).

Lemma 4.3. If a ≤ 0.1 then the above procedure
generates a solution whose cost is at most 12z∗km.

Proof: The expected cost is bounded by:
∑

j∈C

(d(j, ϕ2(j)) + a · d(j, ϕ1(j)) + a · d(ϕ1(j)))

= Φ(S2) + a · Φ(S1) + a ·
∑

i∈A\A1

|U1(i)|d(i)

We now bound the last term. Notice that by the
definition of d(i), for at least half the clients j ∈ U1(i),
d(i, ϕ2(j)) ≥ d(i). Therefore,

∑

i∈A\A1

|U1(i)|d(i) ≤ 2
∑

j∈C

d(ϕ1(j), ϕ2(j))

≤ 2
∑

j∈C

(d(j, ϕ1(j)) + d(j, ϕ2(j)))

≤ 2Φ(S1) + 2Φ(S2).

As a ≤ 0.1, b ≥ 0.9. Thus, 2a ≤ b
2 and 1.5b > 1.

Therefore, the expected cost of the solution is at most:

Φ(S2) + a · Φ(S1) + 2a · Φ(S1) + 2a · Φ(S2)
≤ 3a · Φ(S1) + 3b · Φ(S2) ≤ 12z∗km.

Claim 4.4. The above procedure generates a solution
where the capacities are exceeded by a factor of at most
50.

Proof: In the fractional solution S the capacities are
violated by the factor of at most 5. For clients connected
by case 1 or case 2, these are exactly their connections
in solutions S1 and S2. So for each facility i ∈ F , there
are at most 5u(i) such clients connected to it. For each
such client, at most 9 additional clients are mapped to
the same facility by the function g. Therefore, in total,
for each facility i, at most 50u(i) clients connect to i.

The above discussion proves the main result of this
paper:



Theorem 4.1. The algorithm presented in this sec-
tion is a (40, 50)-approximation to the capacitated k-
median problem.
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