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1. Introduction

Problem statement and motivation. The job interval selection problem (JISP) is a simple yet
powerful model of scheduling problems. In this model, the input is a set of n jobs. Each job is a
set of intervals of the real line. The intervals may be listed explicitly or implied by other parameters
defining the job. To schedule a job, one of the intervals defining it must be selected. To schedule
several jobs, the intervals selected for the jobs must not overlap. The objective is to schedule as many
jobs as possible under these constraints. For example, one popular special case of JISP has each job j
specified by a release date rj , a deadline dj , and a processing time pj . To schedule job j, an interval
of length pj must be selected within the interval [rj , dj ]. Using the notation convention of [19], this
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problem is equivalent to 1|rj |
∑

U j . The generalizations of this special case of JISP to multiple machine
environments (for example, the unrelated machines case R|rj |

∑
U j) are also common in applications.

These can be modeled as JISP by concatenating the schedules for the machines along the real line, and
specifying the possible intervals for each job accordingly. Due to some of their applications, these special
cases of JISP are often called the throughput maximization problem or the real-time scheduling problem.

Special cases of JISP are used to model scheduling problems in numerous applications. Some examples
include: selection of projects to be performed during a space mission [16],1 placement of feeders in
feeder racks of an assembly line for printed circuit boards [10, 25], time-constrained communication
scheduling [1], and adaptive rate-controlled scheduling for multimedia applications [26, 21, 23]. These
applications and others inspired the development of many heuristics for JISP or special cases of JISP,
most of them lacking theoretical analysis (see the above-mentioned references).

Our results. In this paper we give several exact and approximation algorithms for JISP or special
cases of JISP. In particular, our main result is a polynomial time approximation algorithm for JISP with
guarantee arbitrarily close to e/(e − 1) < 1.582. Our algorithm gives better guarantees for JISPk, the
special case of JISP where each job has at most k possible intervals. For example, our bound for JISP2
is arbitrarily close to 4

3 . We consider the special case of 1|rj |
∑

U j and give a pseudo-polynomial time2

algorithm to solve the problem optimally for the special case of constant relative window sizes (i.e., when
there is a constant k such that for every job j, dj − rj ≤ k · pj), which occurs in adaptive rate-controlled
scheduling applications. In fact, the latter result holds even in the case that jobs have weights and the
goal is to maximize the total weight of scheduled jobs (i.e., for special cases of 1|rj |

∑
wjU j). The ideas

we use in our 1.582-approximation algorithm for JISP can also be applied to the resource allocation
problem, a generalization of JISP where intervals have heights and can overlap in time, as long as the
total height at any time does not exceed 1. We obtain a ratio arbitrarily close to (2e−1)/(e−1) < 2.582,
improving on the best previously known approximation factor of 5 [4].

Previous work. Work on (special cases of) JISP dates back to the 1950s. Jackson [17] proved that the
earliest due date (EDD) greedy rule is an optimal algorithm for 1||Lmax. This implies that if all jobs can be
scheduled in an instance of 1||

∑
U j , then EDD finds such a schedule. Moore [22] gave a greedy O(n log n)

time optimal algorithm for 1||
∑

U j . On the other hand, the weighted version 1||
∑

wjU j is NP-hard
(knapsack is a special case when all deadlines are equal). Sahni [24] presented a fully polynomial time
approximation scheme for this problem. When release dates are introduced, then already 1|rj |

∑
U j is

NP-hard in the strong sense [13]. The following simple greedy rule gives a 2-approximation algorithm:
Whenever the machine becomes idle, schedule a job that finishes first among all available jobs (see Adler
et al. [1] or Spieksma [25]). Much of the recent work on JISP variants extends this bound to more general
settings. Indeed, Spieksma [25] showed that the greedy algorithm gives a 2-approximation for arbitrary
instances of JISP. Bar-Noy, Guha, Naor, and Schieber [5] gave a 2-approximation for 1|rj |

∑
wjU j and

a 3-approximation for R|rj |
∑

wjU j using a natural time-indexed linear programming formulation of
fractional schedules. Bar-Noy, Bar-Yehuda, Freund, Naor, and Scheiber [4] and independently Berman
and DasGupta [7] gave combinatorial 2-approximation algorithms for R|rj |

∑
wjU j , based on the local

ratio/primal-dual schema.3 Though these and other papers contain better bounds for some special cases
of JISP (see below), no technique for improving upon the factor of 2 approximation was known prior to
this paper, even for the special case of 1|rj |

∑
U j . The integrality ratio of the natural LP formulation,

even for this special case, is 2 [25, 5]. As for hardness of approximation results, JISP2 is MAX SNP-
hard [25]. Also, R|rj |

∑
U j is MAX SNP-hard [5]. In both cases, the constant lower bounds for which

the problem is known to be hard are very close to 1.

Some other special cases of JISP are known to be in P . Interval scheduling, where every job has a
single choice, is equivalent to maximum independent set in interval graphs, and therefore has a polynomial
time algorithm, even for the weighted case (see [14]). In fact, Arkin and Silverberg [2] gave a flow-based
algorithm for weighted interval scheduling on identical machines. The problem becomes NP-hard on
unrelated machines, even without weights. Baptiste [3], generalizing a result of Carlier [9], showed that

1According to the reference, the decision process may take up to 25% of the budget of a mission.
2This means that the time parameters rj , dj , pj for each job are given in unary notation.
3Using time-indexed formulations requires the time parameters rj , dj , pj to be written in unary. For time parameters in

binary notation, slightly weaker bounds hold. In all cases where job weights are mentioned, we assume that they are given

in binary notation.
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1|pj = p, rj |
∑

wjU j (i.e., when all job processing times are equal) is in P .

There are also NP-hard special cases of JISP that were known to have better than 2 approximations.
Spieksma [25] proved that the natural LP formulation has a better than 2 integrality ratio in the case
of JISP2. Berman and DasGupta [7] gave a better than 2 approximation algorithm for the special
case of 1|rj |

∑
wjU j with constant relative window sizes (the ratio approaches 2 as the relative window

sizes grow). Our optimal algorithm improves their result. Bar-Noy et al. [5] showed that the greedy
algorithm’s approximation guarantee for the identical machines case P |rj |

∑
U j approaches e/(e− 1) as

the number of machines grows. The same holds in the weighted case for their LP-based algorithm and
for the combinatorial algorithms of [4, 7]. They pointed out this improvement as a possible scheduling
anomaly. Our results refute this possibility (at least in the unweighted case), as they give guarantees
approaching e/(e− 1) for all cases of JISP.

We note that some of the above-mentioned problems were investigated also in the context of on-line
computing, where jobs have to be scheduled or discarded as they arrive (see, for example, [6, 20, 11, 18]).

Our methods. Our algorithms rely on proving special structural properties of optimal or near-optimal
solutions. The main idea behind the approximation algorithm for JISP is computing a division of the time
line into blocks, such that there exists a near-optimal solution, in which no job crosses block boundaries,
and only a constant number of jobs is scheduled inside each block. We then use the above partition to
write a better linear program, which enumerates over all the possible schedules inside each block. In
fact, the partition produced by our algorithm has slightly weaker properties, but they are still sufficient
for producing an improved linear program. The algorithm for JISP consists of two phases. In the first
phase, we compute a partition of time line into blocks, and divide the blocks into two subsets BI and
BII . The algorithm also produces a schedule of a subset SI of jobs in blocks BI . The heart of the
algorithm analysis is showing that there is a near-optimal schedule with the following properties: (1) no
job is crossing block boundaries, (2) the subset of jobs scheduled inside the blocks of BI is exactly SI ,
and (3) in each block b ∈ BII , only a constant number of jobs is scheduled. The goal of the second phase
is to find a near-optimal solution of the remaining jobs in subset BII of blocks. The constant bound on
the number of jobs to be scheduled inside each such block allows us to generate a new LP relaxation that
leads to the improved approximation guarantee.

The pseudo-polynomial time algorithm for bounded relative window sizes uses a dynamic program
that is motivated by Baptiste’s algorithm for uniform job sizes [3]. Our case is more complicated, and
the result is based on a bound on the number of small jobs that can “overtake” a larger job in an optimal
schedule.

Throughout this paper we assume without loss of generality that all the time parameters are integral.

2. A 1.582 Approximation Algorithm for JISP The JISP is defined as follows. The input is
a set J of n jobs, where for each job j ∈ J , a set I(j) of time intervals is specified. The sets I(j) of
time intervals can be either given explicitly, or in other ways (for example, by listing the release date,
the deadline and the processing time of a job). In order to schedule job j ∈ J , one of the intervals
I ∈ I(j) must be chosen, and we say that job j is scheduled on interval I in this case. The goal is
to schedule maximum number of jobs, while all the intervals on which the jobs are scheduled must be
non-overlapping.

In this section we present a polynomial time (e/(e− 1) + ε)-approximation algorithm for JISP, where
ε > 0 is an arbitrary constant. The main idea of the algorithm is a partition of the time line into blocks.
We use several iterations of the greedy algorithm to compute a partition that allows us to discard job
intervals that cross block boundaries without losing too many jobs. Moreover, we are able to estimate the
number of jobs in each block. We deal separately with blocks that contain a large number of jobs. For the
other blocks, we generate an LP relaxation to the scheduling problem by enumerating over all feasible
schedules in each block. We then randomly round the optimal LP-solution, to obtain the improved
approximation guarantee.

Let k =
⌈

6
ε

⌉
. We denote the input set of jobs by S, and the maximum finish time of a job in S (the

time horizon) by T . The algorithm works in two phases. In the first phase, we divide the time line [0, T ]
into blocks and partitions the blocks into two subsets BI and BII . We also schedule a subset SI ⊆ S of
jobs in blocks BI . In the second phase, we schedule at most 4kk ln k+3 jobs in each block of BII . Every
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scheduled job (in both phases) is completely contained in a single block. The analysis of the algorithm
depends on the fact that these added constraints do not reduce the optimal solution by much. Therefore,
we must perform the partition into blocks carefully. Throughout the analysis of the algorithm, we fix
an arbitrary optimal solution opt. Abusing notation, we use opt to denote both some fixed optimal
schedule and the set of jobs scheduled in this schedule. Given a partition B of the time line into blocks,
let optB be an optimal schedule under the constraint that no job may cross the boundary of a block in
B.

We begin with the description of the first phase. At the end of the phase, we have a partition of
the time line into blocks. In some of the blocks, we determine the schedule in the first phase. We also
compute a set Spass of jobs to be scheduled in the second phase. Let SI denote the set of jobs scheduled
in the first phase, and let BI denote the set of blocks where the jobs from SI are scheduled. Let BII

be the set of the remaining empty blocks. In the first phase, we perform at most k ln k + 1 iterations.
The first iteration is slightly different from the others. Its purpose is to compute an initial partition into
blocks. In each of the following iterations we refine the partition into blocks from the previous iteration.
In the second phase, we schedule a set of jobs SII ⊂ Spass ⊂ S \ SI in the blocks from BII .

The first iteration: In the first iteration we run algorithm greedy, which is defined as follows. Start
at time 0. Whenever the machine becomes idle, schedule a job that finishes first among all the available
jobs.

Denote by S1 the set of jobs that are scheduled by greedy. Using the schedule produced by greedy,
we partition the time line into blocks, each containing k3 jobs that greedy scheduled. (Notice that
the last block might have fewer jobs, and its endpoint is the time horizon T .) We denote this partition
into blocks by B1. For any feasible schedule sched, let |sched| denote the number of jobs scheduled in
sched.

Lemma 2.1 |optB1 | ≥ (1− 1/k3)|opt|.

Proof. In each block opt might schedule at most one job that crosses the right boundary of the
block. In fact, this cannot happen in the last block, as it extends to the time horizon. Thus, the number
of jobs eliminated from opt by the partition into blocks is at most d|S1|/k3e− 1. However, |opt| ≥ |S1|.
2

Lemma 2.2 In each block computed by the first iteration, opt schedules at most k3 jobs from R1 = S\S1.

Proof. The lemma follows from the existence of a one-to-one mapping of unscheduled jobs in opt
to scheduled jobs in S1. Each unscheduled job in opt is mapped to the unique overlapping job in S1

that prevented it from being scheduled, because it had an earlier finish time. 2

The partition after the first iteration does not harm the optimal solution too much, as Lemma 2.1
states. However, by Lemma 2.2, opt may schedule as many as twice the number of jobs that were
scheduled by greedy. To do that, opt might schedule a very large number of jobs from S1 in some
blocks. We must identify these blocks and further partition them. This is the purpose of later iterations.
In later iterations we only refine the existing partition into blocks. Thus, Lemma 2.2 holds for the block
partition throughout the first phase.

The ith iteration: The input to the ith iteration is the set of jobs Si−1 that was scheduled in the
previous iteration, and the previous iteration’s partition Bi−1 into blocks. The output is a schedule for a
subset of jobs Si ⊂ Si−1, and a new partition into blocks Bi that refines the input partition. Implicitly, a
set Ri = Si−1 \Si of unscheduled jobs is defined and used in the analysis. To compute the new schedule,
we run greedy on Si−1, disallowing job intervals that cross block boundaries. Whenever we complete
the schedule of a block, we check how many jobs were scheduled in the block. If more than ki+2 jobs
are scheduled, we partition the block into smaller blocks, each containing ki+2 scheduled jobs (except,
perhaps, the last) and then proceed with greedy to the next block. Otherwise, we empty the block and
proceed with greedy. (Notice that jobs from the emptied block can now be scheduled in a later block.)
Let Si denote the set of jobs that get scheduled eventually by this process and Bi the new partition into
blocks.
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Lemma 2.3 |optBi
| ≥ (1− i/k3)|opt|.

Proof. In every iteration j, for 1 ≤ j ≤ i, the number of new blocks increases by at most |Sj |
kj+2 ≤ |Sj |

k3 .
Each block eliminates at most one job from opt (the job that crosses the block’s right boundary, if such
a job exists). Since there is a feasible solution containing all the jobs from Sj (the one computed in
iteration j), |opt| ≥ |Sj |. In total, the number of jobs eliminated from the optimal solution by the
iterations 1, . . . , i is at most

∑i
j=1

|Sj |
k3 ≤ i

k3 |opt|. Thus, there is a feasible solution of jobs that do not
cross the boundaries of the blocks from Bi, containing at least

(
1− i

k3

)
|opt| jobs. 2

Lemma 2.4 In each block computed by the ith iteration, opt schedules at most 2ki+2 jobs from Ri =
Si−1 \ Si.

Proof. Consider a block b from Bi. All the jobs from Ri were available when greedy tried to
schedule jobs in block b, as none of these jobs are scheduled in any other block. In both cases, whether
the block b was emptied by greedy, or it was created by partitioning some block from the previous
iteration, greedy can schedule at most ki+2 jobs in this block. As there is a one-to-one correspondence
between the unscheduled jobs from Ri and the jobs scheduled by greedy in block b, at most 2ki+2 jobs
from Ri can be scheduled in block b. 2

Stopping condition: For each integer i : 1 ≤ i ≤ k ln k, let Ai be the following event: i is the first
iteration in which |Si| ≥

(
1− 1

k

)
|Si−1| holds. Let E be the event that Ai does not happen for any

i : 1 ≤ i ≤ k ln k.

If event Ai happens for some i : 1 ≤ i ≤ k ln k, then the first phase is terminated after the completion
of iteration i. The output of the first phase in this case is determined as follows. We discard the block
refinement of the last iteration, i.e., the final block partition is Bi−1. We set SI = Si, BI is the set of
blocks where the jobs from SI are scheduled, Spass = S \ Si−1, and BII = Bi−1 \BI .

If event E happens, we terminate the algorithm after the completion of phase k ln k+1. We set SI = ∅,
BI = ∅, Spass = S \S(k ln k+1), and BII = B(k ln k+1). We denote by r the number of iterations in the first
phase. We sometimes refer to blocks in BII as empty blocks.

Lemma 2.5 |optBr
| ≥

(
1− 1

k

)
|opt|.

Proof. Since r ≤ k ln k + 1, by Lemma 2.3, |optBr
| ≥

(
1− k ln k+1

k3

)
|opt| ≥

(
1− 1

k

)
|opt|. 2

Definition 2.1 Let BI , BII , SI , Spass be the output of the first phase of the algorithm, and let B be
the final partition of the time line into blocks. Given any schedule sched, we say that it is a restricted
feasible schedule, if the following three conditions hold: (1) no job crosses a block boundary, (2) the set
of jobs scheduled in blocks BI is exactly SI , and (3) all the jobs scheduled in blocks of BII belong to the
subset Spass of jobs.

Let opt′ be the optimal restricted feasible schedule. The heart of the algorithm analysis is proving
that the number of jobs scheduled in opt′ is close to |opt|.

Lemma 2.6 |opt′| ≥ (1− ε)|opt|.

Proof. Consider two cases.

Case 1: Event E happens. Recall that in this case, for each i : 1 < i ≤ k ln k, |Si| ≤
(
1− 1

k

)
|Si−1|,

and thus |S(k ln k+1)| ≤
(
1− 1

k

)k ln k |S1| ≤ |S1|
k ≤ |opt|

k holds.

We now show how to convert opt into a restricted feasible schedule in two steps, without losing too
many jobs. Recall that Spass = S \ S(k ln k+1), BII = B(k ln k+1), BI = ∅, SI = ∅. The first step is
removing from opt all the jobs that cross block boundaries. From Lemma 2.5, at least |optB(k ln k+1) | ≥(
1− 1

k

)
|opt| jobs remain after this step. The second step is removing all the jobs in S \ Spass from

the schedule. Since S \ Spass = S(k ln k+1) the number of jobs we remove from opt in this step is
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|S(k ln k+1)| ≤ |opt|
k . It is easy to see that the resulting schedule is restricted feasible, and that it contains

at least
(
1− 2

k

)
|opt| ≥ (1− ε)|opt| jobs.

Case 2: Assume now event Ai happens for some i : 1 ≤ i ≤ k ln k. Recall that in this case SI = Si, BI

is the subset of blocks where jobs in SI are scheduled in iteration i, BII contains the remaining blocks, and
Spass = S \Si−1. We start with the optimal solution opt, and convert it into a restricted feasible solution
in three steps, while bounding the number of jobs we remove from opt in each step. In the first step, we
remove all the jobs that cross block boundaries. Again, following Lemma 2.5, the number of jobs removed
at this step is at most |opt|

k . The second step is removing all the jobs in Si−1 \ Si from the schedule.
Since |Si| ≥

(
1− 1

k

)
|Si−1| and Si ⊆ Si−1, we have that |Si−1 \ Si| = |Si−1| − |Si| ≤ |Si|

k ≤ |opt|
k . Thus,

we lose at most |opt|
k jobs in this step. In our final third step, we discard all the jobs that are currently

scheduled in blocks BI but do not belong to SI , and schedule the job set SI in blocks BI similarly to the
schedule produced by the first phase of the algorithm. Observe that all the jobs discarded in this step
belong to Spass = S \ Si−1 = R1 ∪ R2 ∪ . . . ∪ Ri−1. Let b be some block in BI . By Lemma 2.4 and the
fact that Bi−1 is a refinement of the block partitions of the previous iterations, for all 1 ≤ j ≤ i− 1, at
most 2kj+2 jobs from set Rj can be scheduled in block b. Thus, at most Σi−1

j=12kj+2 ≤ 4ki+1 jobs from
Spass can be scheduled in b. On the other hand, we know that at least ki+2 jobs from SI are scheduled in
b in iteration i. Thus, the number of jobs removed from opt on this step is bounded by 4

k |S
I | ≤ 4

k |opt|.

The schedule obtained after performing the above steps is clearly restricted feasible, and the number
of jobs it contains is at least:

|opt| − |opt|
k

− |opt|
k

− 4|opt|
k

=
(

1− 6
k

)
|opt| = (1− ε)|opt|

2

Lemma 2.7 In every empty block opt′ schedules less than 4kk ln k+3 jobs from Spass.

Proof. The lemma follows from Lemmas 2.2 and 2.4. Every empty block is completely contained
in a single block in each of the previous iterations. The jobs from Spass that opt′ schedules in an empty
block are contained in the sets R1, R2, . . . , Rj , where j is the last iteration. Thus, the number of jobs
opt schedules in an empty block is less than 2

∑j
i=1 ki+2 < 4kj+2 ≤ 4kk ln k+3. 2

Notice that the number of blocks at the end of the first phase is polynomial in n: in each iteration we
create at most n new blocks, and there are at most k ln k + 1 iterations.

We now proceed with the description of the second phase of the algorithm. The input to this phase is
the final partition into blocks that was computed in the previous phase (where each block is marked as
empty or not), and the set Spass of jobs yet to be scheduled. Let S′pass denote the set of jobs from Spass

that opt′ schedules in empty blocks. We define an integer program that computes the best schedule
of jobs from Spass in empty blocks. The number of jobs scheduled in the integer program is clearly an
upper bound on |S′pass|. We then use the integer program’s linear programming relaxation to compute an
approximate solution. Let B denote the set of empty blocks. By Lemma 2.7, for every block b ∈ B, opt′

schedules at most 4kk ln k+3 jobs from Spass in b. Given an ordered set of at most 4kk ln k+3 jobs, it is
easy to schedule the jobs in b in that order, if such a schedule exists: Scan the jobs from first to last, and
place each job in its turn as early as possible inside the block b. Thus, the number of possible schedules
in b for jobs from Spass is at most the number of ordered sets of jobs of size at most 4kk ln k+3, which is∑4kk ln k+3

s=0 s!
(
n
s

)
= n2O(k ln2 k)

. Let M(b) denote the set of all such schedules for block b ∈ B. The integer
program contains, for every block b ∈ B, and for every schedule M ∈ M(b), a variable yb

M ∈ {0, 1}.
Setting yb

M = 1 means that the schedule M is chosen for the block b. The integer program that computes
an upper bound on |S′pass| is the following:

maximize
∑
b∈B

∑
M∈M(b)

∑
j∈M

yb
M subject to
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∑
b∈B

∑
M∈M(b)|j∈M yb

M ≤ 1 ∀j ∈ Spass∑
M∈M(b) yb

M = 1 ∀b ∈ B

yb
M ∈ {0, 1} ∀b ∈ B, ∀M ∈M(b).

The first set of constraints makes sure that each job is scheduled at most once, and the second set
of constraints makes sure that a unique feasible schedule is chosen for every empty block. The linear
programming relaxation is derived by replacing the last set of constraints with the constraints y ≥ 0.
Denote the resulting linear program by LP. Let y be a feasible solution to LP. We round y to an integer
solution yint using the following two-step algorithm:

(i) In every block b ∈ B, choose at random, independently of the choice in other blocks, a schedule
M ∈M(b) with distribution yb (i.e., schedule M ∈M(b) is chosen with probability yb

M ).
(ii) For every job j ∈ Spass, if more than one block has a schedule containing j as a result of the

previous step, remove j from all schedules containing it except one, chosen arbitrarily.

For every job j ∈ Spass and for every block b ∈ B, put xb
j =

∑
M∈M(b)|j∈M yb

M , and put xj =
∑

b∈B xb
j .

Clearly, the value of the solution y is z =
∑

j∈Spass
xj . Let pj be the probability that j is scheduled in

yint, and let zint be the value of the solution yint. Both yint and zint are random variables.

Lemma 2.8 For every job j ∈ Spass, pj ≥
(
1− 1

e

)
xj.

Proof. The probability that we do not schedule j is the probability that in every block no schedule
containing j was chosen, which is

∏
b

(
1− xb

j

)
. Let t be the number of blocks where a schedule containing

j appears with positive probability in y. The product is maximized when in each such block b, xb
j = xj/t.

Thus, pj = 1−
∏

b

(
1− xb

j

)
≥ 1− (1− xj/t)t. Therefore, pj/xj ≥

(
1− (1− xj/t)t

)
/xj . The right-hand

side is monotonically decreasing in xj , and thus the minimum is achieved at xj = 1. We conclude that
pj/xj ≥ 1− (1− 1/t)t ≥ 1− 1

e . This completes the proof of the lemma. 2

Corollary 2.1 E[zint] ≥
(
1− 1

e

)
z.

Proof. E[zint] =
∑

j∈Spass
pj ≥

∑
j∈Spass

(
1− 1

e

)
xj =

(
1− 1

e

)
z. 2

We can now state and prove the main theorem in this section:

Theorem 2.1 For every ε > 0, the two-phase algorithm runs in polynomial time and guarantees, in
expectation, an e/(e− 1) + ε approximation to JISP.

Proof. Let SII be the set of jobs scheduled by rounding the optimal solution y∗ to LP. Let z∗ be the
value of y∗. The expected value of the solution produced by the algorithm is E[|SI |+|SII |] = |SI |+E[|SII |].
By Corollary 2.1, E[|SII |] ≥

(
1− 1

e

)
z∗ ≥

(
1− 1

e

)
|S′pass|.

As |SI | + |S′pass| = |opt′| ≥ (1 − ε)|opt| (by Lemma 2.6), the expected value of the solution is
|SI |+E[|SII |] ≥ |SI |+

(
1− 1

e

)
|S′pass| ≥

(
1− 1

e

)
(|SI |+|S′pass|) ≥

(
1− 1

e

)
(1−ε)|opt| ≥

(
1− 1

e − ε
)
|opt|.

2

Recall that JISPk is a special case of JISP, where each job has at most k possible intervals. It is easy
to see, from the proof of Lemma 2.8 and from Corollary 2.1 and Theorem 2.1, that the approximation
factor our algorithm achieves for JISPk is kk

kk−(k−1)k + ε. In particular, for k = 2, the approximation
factor is 4/3 + ε.

Resource Allocation The resource allocation problem is defined similarly to throughput maxi-
mization on one machine (1|rj |

∑
U j), except that now each job j has a height hj . Several jobs can be

executed simultaneously, as long as the total sum of heights of jobs executed at the same time never
exceeds 1.

Calinescu et al [8] consider a special case where each job has exactly one interval in which it can be
executed, i.e., dj − rj = pj for all j. They show a (2 + ε)-approximation algorithm as follows. The jobs
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are divided into a set of large jobs (with heights ≥ δ for some constant δ) and a set of small jobs (all the
other jobs). For the set of large jobs, the problem can be solved optimally by dynamic programming.
For the set of small jobs, they show an LP-based (1 + ε)-approximation algorithm, where ε is a function
of δ. Since either more than half of jobs in the optimal solution are large, or more than half of jobs in
the optimal solution are small, this gives a (2 + ε)-approximation.

We use these ideas combined with the ideas we used in the approximation algorithm for JISP to
improve the approximation factor of resource allocation problem (in the unweighted case).

We also start by fixing some small constant δ, and dividing the jobs into the set of large and small
jobs, as described above. It turns out that the algorithm of [8] for small jobs easily extends to the general
resource allocation problem. The following lemma easily follows from [8].

Lemma 2.9 There is an approximation algorithm for resource allocation problem, where the heights of
jobs are at most δ, that achieves a (1 + ε(δ))-approximation. For 0 < δ ≤ 0.01, 0 < ε(δ) < 1 and is
monotonically increasing in δ.

Below we show that our approximation algorithm for JISP can be extended to handle resource alloca-
tion for large jobs, for any constant δ. The algorithm gives ( e

e−1 + ε)-approximation for large jobs.

Finally, we combine both results as follows. If the optimal solution contains more than a fraction e
2e−1

of large jobs, our algorithm for large jobs will schedule at least e−1
2e−1 (1 − ε′)|opt| jobs. Otherwise, the

optimal solution contains at least a fraction e−1
2e−1 of small jobs. Then the algorithm for small jobs will

schedule at least e−1
2e−1 (1 − ε′′)|opt| jobs. Thus, the approximation factor of our algorithm is 2e−1

e−1 + ε,
where ε is an arbitrarily small constant. This improves the best previously known approximation factor
of 5, due to [4].

It now remains to show how to extend our approximation algorithm for JISP to resource allocation
with large jobs. Let z be the maximum number of large jobs that can be scheduled simultaneously, i.e.,
z =

⌊
1
δ

⌋
where δ is the minimum height of a large job. The first phase of the algorithm is performed

almost similarly to the original algorithm, with the following changes.

First Iteration: We run greedy again, in the same manner as before (i.e., all the jobs are scheduled
on non-overlapping intervals; we do not attempt to schedule several jobs to be executed simultaneously).
The only difference from the first iteration in the original algorithm is that now the jobs are divided
into blocks containing k3z jobs each. It is easy to see that Lemma 2.1 still holds: indeed, for each block
boundary there are at most z jobs in the optimal schedule crossing it, while the block contains at least
k3z jobs scheduled in the current iteration. Also, similarly to Lemma 2.2, OPT schedules at most k3z2

jobs from R1 in each block. The reasoning is the same as in the proof of Lemma 2.2, except that now, for
each job j scheduled in some block b by the algorithm, there can be up to z jobs in the optimal solution,
which are prevented from being scheduled by j.

Iteration i: Iteration i is performed similarly as in the original algorithm (again, we only schedule
jobs on non-overlapping intervals). The only difference is that now a block is emptied if it contains less
than ki+2zi jobs, and it is subdivided into smaller blocks containing ki+2zi jobs otherwise. Since each
new block boundary is crossed by at most z jobs in the optimal solution, Lemma 2.3 still holds. The
statement of Lemma 2.4 changes as follows: in each block computed by the ith iteration, OPT schedules
at most 2ki+2zi+1 jobs from Ri. Again, the proof is almost unchanged: we only need to notice that each
job scheduled in some block in iteration i prevents at most z jobs from OPT from being scheduled in the
current iteration.

The stopping condition: remains exactly the same as in the original algorithm. Since Lemmas 2.1
and 2.3 hold for the new algorithm, Lemma 2.5 is also true. It now only remains to analyze Lemma 2.6.
The analysis of the first case remains unchanged: the only jobs discarded in this case are the jobs that
cross block boundaries or the jobs from S(k ln k+1). Consider now the second case, when event Ai happens.
The jobs discarded in the first step are the jobs that cross block boundaries, and their number is bounded
by |opt|

k as before. The jobs discarded at the second step are the jobs in Si−1 \Si, whose number is also
bounded by |opt|

k as before. For the third step, we remove the jobs in Spass = R1∪R2∪· · ·∪Ri−1, which
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are scheduled in blocks BI . Consider one such block b. Then for each j : 1 ≤ j ≤ i−1, at most 2kj+2zj+1

jobs from Rj are scheduled in b. Summing up for all j : 1 ≤ j ≤ i− 1, we get that at most 4ki+1zi jobs
from Spass are scheduled in b. Since there are ki+2zi jobs from SI scheduled in b in iteration i, we get
that the number of jobs removed from the optimal schedule in the third step is at most 4

k |S
I | ≤ 4

k |OPT|.
The rest of the proof remains unchanged.

Finally, the second phase of the algorithm remains almost unchanged: the only difference is that the
number of jobs that can be scheduled in each empty block now grows by a factor zO(k ln k), and the
possible schedules considered by the algorithm allow jobs to be executed simultaneously, as long as the
sum of their heights does not exceed 1. Since both z and k are constant, the running time of the algorithm
remains polynomial.

3. Jobs with Small Windows In this section we give a dynamic programming algorithm that
computes an optimal solution for instances of 1|rj |

∑
wjUj . Let T = maxj∈S dj denote the time horizon.

The running time of our algorithm is polynomial in n = |S| and in T , and is exponential in poly(k),
where k = maxj∈S(dj − rj)/pj . Thus, if for every job j ∈ S, its window size dj − rj is at most a constant
factor times its processing time pj , we get a pseudo-polynomial time algorithm.

Let S = {1, 2, . . . , n} be the set of jobs, sorted in non-decreasing order of processing times, ties broken
arbitrarily. Let Releasej(s, e) = {i | i ≤ j, ri ∈ [s, e)}. The dynamic program computes the entries
D(s, x, e, j, in,out), where s ≤ x < e are integers (points on the time line), j ∈ S, and in, out are
subsets of S of size at most k2. We require the following conditions on the sets of jobs in and out:

• in
⋂

out = ∅.
• out ⊆ Releasej(s, e), and all the jobs in out can be scheduled after time e (as their release dates

are before e, this condition can be checked by using the EDD rule).

• in ⊆ Releasej(0, s), and all the jobs in in can be scheduled after time x (this also can be checked
using EDD).

The value stored in D(s, x, e, j, in,out) is an optimal schedule of jobs from the set Releasej(s, e)
⋃

in\out
in the time interval [x, e). The output of the algorithm is the entry D(0, 0, T, n, ∅, ∅).

We compute the entries of D in increasing order of j. For j = 0, for all s, x, e, in,out,
D(s, x, e, 0, in,out) is the empty schedule. Inductively, the algorithm computes D(s, x, e, j, in,out)
as follows: If j 6∈ Releasej(s, e)

⋃
in \ out, set D(s, x, e, j, in,out) = D(s, x, e, j − 1, in \ {j},out \ {j}).

Otherwise, enumerate over all feasible placements of j in the interval [x, e− pj ]. For each such placement
t, compute an optimal schedule St as explained below. Finally, set D(s, x, e, j, in,out) to be the best
schedule among D(s, x, e, j − 1, in \ {j},out \ {j}) and St, for all t.

It remains to show how to compute St. If we schedule job j starting at time t, then the scheduling
problem of D(s, x, e, j, in,out) is split into two subproblems on the intervals [s, t) and [t, e). Thus, St is
the union of the schedules D(s, x, t, j−1, E, F ), J , and D(t, t+pj , e, j−1, G,H), for some sets E,F,G,H,
where J is the schedule containing just the job j placed starting at t. To enumerate over the relevant
choices for E,F,G,H all we have to do is to decide which jobs with release date before t are scheduled
after j. We partition the set out into two sets of jobs, those with release dates before t and those with
release dates after t. Let B1 = out

⋂
Releasej−1(s, t) and let B2 = out

⋂
Releasej−1(t, e). For every

partition of in \ {j} into A1 and A2, and for every B ⊆ Releasej−1(s, t) \ B1, such that A2

⋃
B can be

scheduled after time t + pj and B1

⋃
B can be scheduled after time t + pj , set E = A1, F = B1

⋃
B,

G = A2

⋃
B, and H = B2. (Below, we prove that these settings satisfy the conditions on the indices

of the table D.) We set St to be the schedule for the best such partition of in and choice of B. This
completes the description of the dynamic program.

Figure 1: Computation of St.

We now proceed with the analysis of the algorithm. We begin the analysis with an observation on the
structure of optimal solutions. Consider an optimal solution opt. For every job j scheduled in opt, let
tj denote the starting time of j in opt. Let B(j) = {i < j | ri < tj and ti > tj}.
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Lemma 3.1 For every j ∈ S, |B(j)| ≤ k2.

Proof. Let i ∈ B(j). As jobs are sorted by their processing times, pi ≤ pj . On the other hand,
pi > pj/k, otherwise the job j is longer than the window of i, in contradiction with the assumption that
ri < tj whereas ti > tj . Consider the job i ∈ B(j) with maximum ti. All the jobs in B(j) are scheduled
by opt inside [ri, di]. By our discussion, di − ri ≤ kpj . By the lower bound on the processing time of the
jobs in B(j), at most k2 such jobs fit in this interval. 2

Remark: A tighter analysis gives a bound of O(k log k).

Lemma 3.2 Every choice for the sets E,F,G,H considered by the above algorithm satisfies the following
conditions: Each of the sets contains at most k2 jobs, and D(s, x, t, j−1, E, F ), D(t, t+pj , e, j−1, G,H)
are valid entries of D.

The proof of this lemma is easy following the above discussion, and is omitted.

Lemma 3.3 The schedule D(s, x, e, j, in,out) computed by the algorithm is a feasible schedule of jobs
from Releasej(s, e)

⋃
in \ out in the time interval [x, e).

Proof. The proof is by induction on j. The empty schedule D(s, x, e, 0, in,out) is clearly feasible.
Consider the schedule D(s, x, e, j, in,out). Job j is scheduled only if it belongs to Releasej(s, e)

⋃
in\out.

If j is scheduled, it starts at some time t ∈ [x, e − pj) inside its time window, so its own schedule is
feasible. If j is not scheduled, the schedule is D(s, x, e, j − 1, in \ {j},out \ {j}), which is feasible by
the induction hypothesis. If j is scheduled at time t, the schedule we return is the union of j’s schedule,
D(s, x, t, j−1, E, F ), and D(t, t+pj , e, j−1, G,H). We argue that the sets of jobs used in these schedules
are distinct, so no job is scheduled twice. (Clearly, the schedules do not overlap.) This follows from the
fact that the sets Releasej−1(s, t), Releasej−1(t, e), A1, and A2 are all distinct, and the jobs in B are
considered only in the computation of D(t, t + pj , e, j − 1, G,H). 2

Lemma 3.4 The schedule D(s, x, e, j, in,out) is computed correctly.

Proof. The proof is by induction on j. Clearly, the lemma is true for j = 0. Now consider
an optimal schedule opt(s, x, e, j, in,out) of jobs from Releasej(s, e)

⋃
in \ out in the time interval

[x, e). If j is not scheduled in this solution, then by induction this optimal schedule has the same profit
as D(s, x, e, j − 1, in \ {j},out \ {j}), which is one of the schedules checked by the algorithm in the
computation of D(s, x, e, j, in,out). So assume that j is scheduled in opt(s, x, e, j, in,out) starting at
time t. Let B1 = out

⋂
Releasej−1(s, t) and let B2 = out

⋂
Releasej−1(t, e). Let A2 be the subset of

in scheduled in opt(s, x, e, j, in,out) after job j, and let A1 = in \ (A2

⋃
{j}). Let B be the subset of

jobs from Releasej−1(s, t) \ B1 scheduled in opt(s, x, e, j, in,out) after job j. Then, by the induction
hypothesis, the schedule considered by the algorithm for E = A1, F = B1

⋃
B, G = A2

⋃
B, and H = B2

is as good as opt(s, x, e, j, in,out). 2

We conclude

Theorem 3.1 The dynamic programming algorithm computes an optimal schedule in time
O

(
npoly(k)T 4

)
.

Proof. The correctness of the algorithm follows from Lemmas 3.3 and 3.4. The number of entries
in the dynamic programming table D is O

(
T 3n

(
n
k2

)2
)
. To compute an entry D(s, x, e, j, in,out), we

have to check at most T possible placements of job j. For each such placement, there are at most 2k2

possible partitions of in, and
(

n
k2

)
choices of B. For each such partition of in and choice of B, we have to

run EDD several times. This takes at most O (n log n) time. So the time complexity of the algorithm is
O

(
T 4n2 log n

(
n
k2

)32k2
)
≤ O

(
T 42k2

n3k2+2 log n
)
. 2



Chuzhoy et al.: Approximation Algorithms for JISP
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS 11

References

[1] M. Adler, A.L. Rosenberg, R.K. Sitaraman, and W. Unger. Scheduling time-constrained communi-
cation in linear networks. In Proc. 10th Ann. ACM Symp. on Parallel Algorithms and Architectures,
pages 269–278, 1998.

[2] E.M. Arkin and E.B. Silverberg. Scheduling jobs with fixed start and end times Discrete Applied
Mathematics, 18:1–8, 1987.

[3] P. Baptiste. Polynomial time algorithms for minimizing the weighted number of late jobs on a single
machine with equal processing times. Journal of Scheduling, 2:245–252, 1999.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to approxi-
mating resource allocation and scheduling. Journal of the ACM (JACM) volume 48, issue 5, pages
1069 - 1090, 2001.

[5] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of multiple machines
in real-time scheduling. SIAM Journal on Computing, volume 31, number 2, pp. 331-352, 2001.

[6] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and F. Wang.
On the competitiveness of on-line real-time task scheduling. Real-Time Systems, 4:125–144, 1992.

[7] P. Berman and B. DasGupta. Improvements in throughput maximization for real-time scheduling.
In Proc. 32nd Ann. ACM Symp. on Theory of Computing, May 2000.

[8] G. Calinescu, A. Chakrabarti, H.J. Karloff, and Y. Rabani. Improved Approximation Algorithms for
Resource Allocation. IPCO 2002, the 9th Conference on Integer Programming and Combinatorial
Optimization, Lecture Notes in Computer Science 2337, Springer-Verlag, 2002, pp. 401-414
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