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Abstract

The seminal paper of Leighton and Rao (1988) and subseqapetppresented approximate min-
max theorems relating multicommodity flow values and cuacé#es in undirected networks, developed
the divide-and-conquer method for designing approximnmagiigorithms, and generated novel tools for
utilizing linear programming relaxations. Yet, despitegigtent research efforts, these achievements
could not be extended to directed networks, excluding a f@ses that are “symmetric” and therefore
similar to undirected networks. This paper is an attempétoady the situation. We consider the prob-
lem of finding a minimum multicut in a directed multicommagditow network, and give the first non-
trivial upper bounds on the max flow-to-min multicut ratiouiQesults are algorithmic, demonstrating
nontrivial approximation guarantees.

1 Introduction

A networkis a graphz = (V, E), directed or undirected, with positive edge capacitie¥ — R*, together
with a list of source-sink pairs of vertices,t;), (s2,t2), ..., (sk, tx), Sometimes calledommodities
Usually, we usek to denote the number of commodities. A multicut is a set ofesdg C E whose
removal disconnects all commodities (thatGs;- M = (V, E — M) has nos; — t; path fori = 1,... k),
and its capacity is the sum of the capacities of the edge®/ inThe problem of finding a multicut of
minimum capacity may be formulated as a simple and eleg#etén program, and dropping the integrality
constraints gives a linear programming (LP) relaxatione ©ptimal value of this LP relaxation (which is
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a lower bound on the minimum capacity of a multicut) equads rileximum value of a multicommodity
flow (see Section 2 for details). In the single-commodity=£ 1) case, the celebrated max flow-min cut
theorem of Ford and Fulkerson [7] states that the minimunaci&p of a multicut equals the maximum
value of a flow. This is one of the key results in combinatooiatimization, and it has numerous important
applications, both in theory and in practice. Unfortunatéhis theorem does not generalize to multiple
commodities, and moreover, the general problem of findingranmum-capacity multicut is NP-hard (for
k > 3 commodities for undirected networks, and for> 2 commodities for directed networks). See [14]
for more discussion on multicommodity flows.

Based on ground-breaking work by Leighton and Rao [15], amgroving on earlier results due to
Klein et al [11], Garg, Vazirani, and Yannakakis [8] provadapproximate minmax theorem for undirected
networks: the minimum capacity of a multicut is at méflog k) times the maximum value of a mul-
ticommodity flow; moreover, their proof is constructive agiles anO (log k)-approximation algorithm
(the algorithm runs in polynomial time and returns a multisdnose capacity is at mos?(log k) times
the maximum value of a multicommodity flow). Despite pemsistresearch efforts, these results could
not be extended to directed networks, excluding a few cdmgsate “symmetric” and therefore similar to
undirected networks.

In this paper, we consider the problem of finding a minimurmpacity multicut in networks (without
any symmetry assumptions), “network” without “undirectedeaning “directed network” from now on,
and provide the first nontrivial upper bounds relating neulticapacities to multiflow values. For a net-
work G, we denote byC'(G) the minimum capacity of a multicut, and by(G) the maximum value of
a multicommodity flow. (For undirected networks, we denote the corresponding quantities®yG’)
andF’(G").) We prove four related theorems. Each of these theorenes gibound o’ (G) in terms of
F(G) and other parameters of the netwark moreover, each proof gives an efficient algorithm for firgdin
a multicut whose capacity is at most the bound(¢dz). The bounds given by the first three theorems are
mutually incomparable in the sense that for each of the thoeeds, there exist networks where that bound
is better than the other bounds.

Theorem 1 There is a polynomial-time algorithm that takes a netw@rkatisfyingc(e) > 1 for all arcse
and finds a multicuf/ satisfyingce(M) < 108 F(G)3.

We prove that without thec(e) > 1 for all ¢” condition, no result of the formC'(G) < g(F(G)) for
all G” is possible. (For undirected networks, Yannakakis [24]jve, via a variant of the region-growing
procedure of [8], thal’(G) = O(F(G) log F(G)), if all capacities are at least 1.)

Theorem 2 There is a polynomial-time algorithm that take&-&ommaodity networks satisfyingc(e) > 1
for all arcs e and finds a multicuf\/ satisfyinge(M) < 391In(k + 1)F(G)2.

Again, the (e) > 1 for all ¢” condition is necessary.

Theorem 3 There is a polynomial-time algorithm that takesawvertex,k-commodity networks and finds
a multicut M satisfying

(M) < (45y/nln(k +1))F(G) < (45vV2nlnn)F(G).

We give a better approximation guarantee for some instangaanar digraphs.



Theorem 4 For every A, there is a constany such that there is a polynomial-time algorithm that takes
an n-vertex,k-commodity £ > 2) networkG with uniform capacities, whose underlying undirected ¢rap
is planar, and in which the total degree of every vertex is asid\, and finds a multicut\/ satisfying

(M) < (vWIgk)n'/*F(G).

Tardos and Vazirani [23] use the methods of Klein, Plotkimj &ao [12] to prove a constant ratio for
undirected planar networks.

Theorem 1 is our basic result. The other three theorems aedlan it, and derived using techniques
such as region growing (Theorem 2), a trade-off via LP roogdilrheorem 3), and a trade-off via the planar
separator theorem (Theorem 4).

In recent work, Saks, Samorodnitsky, and Zosin [20] courstaufamily of k.-commodity networks, for
all £ ande > 0, where the minimum multicut-to-maximukcommodity flow ratio is no less than— e, in
contrast with the) (log k) upper bound in the undirected case. (An upper bouridi®h trivial consequence
of the Ford and Fulkerson theorem.) We note that in theirligay | is exponential irk, so an upper bound
of O(log |V|), for example, is still possible. In fact, the networks in2@ve special structure. Each is
obtained by addin@k distinct new vertices, t1, ..., Sk, tx 10 anundirectedgraph H, together with arcs
from thes;’s to some vertices il and from some vertices ifl to thet;’s, replacing each undirected edge
by a pair of antiparallel arcs, and assigning positive ciileacto thevertices Each terminal gets infinite
capacity. We show in Section 4 that any netwétkof such special structure with'(G) > (k/2)F(G)
must, like the example of [20], have a number of vertices wisexponential irk. Indeed, the same result
holds if capacities are instead assigned to arcs, provitEdtie arcs incident from the sources have infinite
capacity, and so do the arcs incident to the sinks.

The best inapproximability result known for directed miti is that the problem is MAX SNP-hard.
This is also the strongest hardness result known for therexted case [3].

The rest of this introduction gives our perspective on thevipus work in this area, and is not essential
for studying the new results in this paper.

In a seminal paper, Leighton and Rao [15] proved that forarmf multicommodity flow instances
the sparsest cut-to-maximum concurrent flow ratio in urdé® networks is at most logarithmic in the
number of vertices. They exhibited several applications of this result, mostlthe design and analysis of
approximation algorithms for NP-hard optimization prob& Their paper inspired a significant research
effort in the past decade. The results of this effort incltideemergence of the divide-and-conquer method
in approximation algorithms (see [22]), applications d@ithregion-growing technique to other problems [2,
8, 11, 21], and the development of alternative proofs foir thasic result and its generalizations [1, 5, 16].
In particular, Garg, Vazirani, and Yannakakis [8] gave ageaht analysis of the region-growing technique,
and used it to derive asymptotically tigh{(log k) bounds on the minimum multicut-to-maximum flow ratio
in k-commodity undirected networks.

Most of the previous research on approximation algorithongfoblems related to multicuts in directed
networks exploits some sort of “symmetry” property thatders the problems similar to the undirected
case; for example, the commodities occur in symmetric gairg;), (t;,s;) [4, 5, 6, 13, 15, 18, 21]. In
particular, for such symmetric instances, Even, Naor, & and Sudan [6], improving upon a result of
Klein, Plotkin, Rao, and Tardos [13], gave @(log k) log log k) bound, and they gave efficient algorithms
to find a “symmetric multicut” whose capacity is within thensa factor of the optimum. (A symmetric
multicut means a set of arcs whose removal disconnects aitlfiom ¢; or ¢; from s;, for every symmetric

1The sparsity of a cut is the ratio between the cut capacitythachumber of source-sink pairs that are disconnected. A
concurrent flow delivers the same amount of flow of each conityyod



pair of commodities.) These papers use region-growingnigakes, though the bounds that are proved are
usually weaker than those that can be proved in the unditectse.

Unfortunately, the literature cited in the previous paggdr has almost no relevance for (asymmetric)
directed multicuts because therenisrelation between a (directed) multicut and a symmetric icwtlt For
example, consider a directed graph on two vertigegwith two arcs(p, ¢) and (¢, p) having capacities
1 and 1000, respectively. There are two commodities, t1) = (p,q) and(sz2,t2) = (¢,p). The unique
multicut has capacity 1001, whereas there is a symmetriticatibf capacity one. Another way to see the
contrast is to compare the integrality ratios of the lineagpamming relaxations: it i©((log k) log log k)
for symmetric multicuts [6] but a construction due to Sakalethows that it ig: for directed multicuts [20].

2 Preliminaries

A networkG is a directed grapl\V, E'), without parallel arcs or self-loops, with an assignmenpasitive
capacities to the aras: £ — R™T, together with a positive integér and a set ok distinct ordered pairs
(s, t;) Of vertices,s; # t; for all i. LetT = {s1,t1, s2, to, ..., Sk, tx } be the set oferminals For any set of
arcsE’, we usec(E') to denote) . v c(e). A multicut M in G is a subsel C E such that the digraph
(V, E— M) has nos; — t; path, for each € {1,2, ..., k}. (All paths are simple in this paper.) Thapacity
of a multicut M is ¢(M). DIRECTED MULTICUT is the problem of finding a minimum-capacity multicut
in a specified networkz. Let us denote the minimum capacity of a multicutGrby C = C(G). (When
we work with undirected networks, the underlying graghis undirected and the minimum capacity of a
multicut is denoted”’ = C’'(G").)

The problem of finding a minimum-capacity multicut@is precisely the following integer program:
Find z(e) for all e € E, x(e) integral,z(e) > 0, so as to minimiz& _ ., c(e)z(e), such that for every
i = 1,2,3,...,k, and for everys; — t; pathP in G, > _.px(e) > 1. An optimal solution will have
z(e) < 1lforalle € E.

Dropping the % (e) integral” condition gives a linear programming relaxat@iDIRECTED MULTICUT:
Find a nonnegative real lengtl{e) for each are: such that for each = 1,.. ., k, the distance froms; to
t;, relative to these lengths, is at least 1, so as to minirhiz&e)z(e). Its linear programming dual is
easily seen to be equivalent toudricommoDITY FLow, which is this problem: Given a network, find
a sequenceéfi, fo, ..., fx) such thatf; is a single-source flow (of commodity in G from sources; to sink
ti, such thai( f1, fo, ..., fi) satisfies) >, ... fi(e) < c(e) for all e € E, and in which the sum overof the
value of f; is maximized. Lett’ = F'(G) denote the optimal value of the multicommodity flowGh It is
easy to see that'(G) > F(G) for all G. (In an undirected networ&’, the optimal flow value is denoted
F' = F'(G").) Since MuLTICOMMODITY FLOW can be written as a linear program of polynomial size, it
can be solved in polynomial time.

We are interested in the relation betwe@(G) and F/(G) in an arbitrary networlG. CanC(G) be
bounded as a function df (G) for all G? More formally, is there a functiom: R — R such that for all7,
regardless of the number of vertices and commoditigs;) < g(F'(G))? We will (easily) see below that
if the capacities can be arbitrarily small, then the answero. However, if we insist that(e) > 1 for all
e € E, then itis a nontrivial fact that'(G) < 1 impliesC(G) < 1.

Note that DRECTED MULTICUT is not a generalization of NDIRECTED MULTICUT obtained by re-
placing each undirected edge by a pair of antiparallel arddg replacing each commodify;, t;} by a pair
of “antiparallel” commoditiess;, ¢;), (;, s;). For example, consider a four-vertex undirected tree vaith r
r and leavesg, I, 3. Let us define three commodities, one for each pair of leaugs make all capacities
one. LetG’ denote the network. Then, we haV&G’) =2 > F'(G’) = 1.5 (any two edge§r,;}, {r,1;}



form a multicut, and an optimal flow assigns the valye to each of the three undirected — ¢; paths).
However, if we now replace each edge by two antiparallel gash of unit capacity) and define six com-
modities, one for each ordered pair of leaves, then thetdmlewetworkG hasC'(G) = 3 = F(G) (the three
arcs entering the roetform a multicut, and an optimal flow assigns the valye to each of the six directed
s; — t; paths).

3 Algorithms and bounds for multicut

3.1 Multicut is bounded by a function of flow

In this section we prove Theorem 1, tha(G) < 108F(G)3, provided thatc(e) > 1 for all arcse.
But first we prove that such a result is not possible withoet‘d{e) > 1 for all ¢” assumption. Garg,
Vazirani, and Yannakakis show [8] that there exigts> 0 such that for all sufficiently large, there is
ann-vertex, undirected, unit-capacities netwark (on an expander), having’(G.,)/F'(G)) > ~vlgn.
Create a (directed) network,, from G/, by replacing each edge by a pair of antiparallel, unit-cépac
arcs. We havel'(G,) < F'(2G]) = 2F'(G),) (because any flow i, is feasible in2G,,, which
is G, with its capacities doubled) an@'(G,) > C’'(G]) (because ifM is a minimum multicut in
Gp, thenM" = {{u,v}|(u,v) € Mor(v,u) € M} is a multicut inG], and|M'| < |M]). Hence
C(Gn)/F(Gy) > C'(G))/(2F'(G))) > (v/2)1g n. Now suppose that'(G) < g(F(G)) for all directed
networksG. Choose a large enoughand set\ = F(G,,). Let H, = G, /) (i.e., scale all capacities down
by \). We have (using3 1gn)F(G,) < C(Gy))

Tign = QlenF(@) < 0(G) = C(H,) < g(F(H) = of

1
A2 A
which is a contradiction.

Now we prove Theorem 1, which is restated here for converienc
Theorem 1 There is a polynomial-time algorithm that takes a netw@rkatisfyingc(e) > 1 for all arcs e
and finds a multicuf/ satisfyingc(M) < 108 F(G)3.

Proof. We give a polynomial-time algorithm to construct a multiofitapacity at most08F? in a network

G ondigraph(V, E) satisfyingc(e) > 1 for all e, whereF' = F(G). First, find a nonnegative, rational length
functionz satisfying) |, c(e)z(e) = F'and) . pz(e) > 1for all s; — ¢; pathsP, for all i. (Such anc is
given by an optimal solution to the linear programming raté&on of DDRECTED MULTICUT in Section 2;
the optimal value 5, c(e)z(e) equalsF = F'(G) by the duality theorem of linear programming.) Define
f=>.xz(e) <> .cle)x(e) = F. For atechnical reason, we neegt) < 1/6 for all e. Replace any arc
e with z(e) > 1/6 by a path of[6z(e)] new arcs of length at mosy'6 each, whose lengths add¢e), all

of whose capacities arge).

We need some more definitions. Lt C E. Given any vertex and realp, let Bp/ (s, p) = {u € V|
there is ars — w path in(V, E’) of length at mosp}. Definedg: (s, p) = {(a,b) € E'|a € Bg/(s,p),b &
Bgi (s, p)}. Informally speakingBg (s, p) denotes the ball with radiysand centre in the digraphV, E),
anddp (s, p) denotes the set of arcs @F, E’) that leave this ball.

For our purposeshe prefixof pathP =< g, uy, us, ..., u, > (whose length may exceed 1) is the path
P’ =< ugp,uy,us, ...,u; > wherei is minimal such that the length @’ (relative tox) is at leastl /6, and
the suffixof path P =< wg, u1,us, ..., u, > is the path?’ =< u;, u;11,...,u, > wherei is maximal such
that the length of”’ is at leastl /6.

Here is the algorithm. The embedded comments are needdufanalysis.



I* Let count(e) = 0foralle € E. */
LetE' = E.
As long as there is a pafs;, t;) such that some; — t; path exists irG’ = (V, E'), repeat:

1. Choose any such
/* Find a shortest; — t; pathP; in G’ with respect tar. */

2. Find a real numbes; which minimizesc(dz (s;, p)) among those in the interval(1/3,2/3).
[*Let B, = BE/(Si,pi). */
I* Incrementcount(e) for all arcse in the prefix of P;. */

3. Remove from&’ all arcs indg/ (s;, pi)-

OutputM = E — E'.
End.

Obviously this process terminates and provides a multis( claim that the capacity of the multicut is
at most108 f2F < 108F3.
We need the following lemma, which is implicit in [8]. See@[&2, p.204].

Lemma5 LetG = (V, E) be adigraph and let € V. Letz : E — R™ be alength function; : E — R™
be a positive capacity function, add C E. Then there is @ € (1/3,2/3) such thate(dg/ (s, p)) < 3F”,
whereF’' =%~ _p c(e)z(e) < F.

The lemma implies that in a given iteration we cut arcs of capat most3F'.

Call the process of incrementingunt(e) charginge. In each iteration, we charge a set of arcs of total
length at least /6, all endpoints of which are il (s;,1/3) C Bg/(si, pi) = Bi, because each arc has
length at mosi /6 and becausg; > 1/3. Since the total capacity addedfb— E’ in an iteration is at most
3F,

c¢(E—E'") <18F Z z(e)count(e)
eeE

is an invariant. We prove next thatunt(e) never exceedsf, and hence

o(E— E') < (18F)(6f) Y x(e) = 108f>F.
eeE

Choose any are = (u,v) in the original G and relabel the commodities so that we charge the
iterations for commodities, 2, ..., b, in that order (and no others); these need not be consedtgrations,
of course. We claim, for = 1,2, ..., b, that:

(1) None of the vertices on the suffix &f are inB;.
(2) All the vertices in the suffix of?, are inBy N BoN B3N ---N B;_1.

Now (1) is trivial, because we chosepawhich is less thar2/3, and each arc’s length is at masts;
hence the endpoints of the suffix are not3n

Proving (2) is not much harder. Since the iteration for cordityoi charges, P; must contaire. The
headv of e = (u,v) must be inP;, P, ..., P,, and moreovery must be inBy, Bs, ..., By (in the iteration
for commodity/, all endpoints of arcs we charge arefp). Consider now the subpath of P; starting at
v and ending at the last vertex &% (clearly, @ contains the suffix of?;). For eacl?Y < ¢, we claim thatB,



Figure 1: An illustration of the proof of Theorem 1. The daslires indicate the “ballsB, and B;.

contains each vertex @. The reason is that we removed all arcs leavif)(i.e., all arcs with tails inB,
and heads iV — By) at the end of the iteration for commodify Hence, in the iteration for commodity
any path in the current digraph that starts with a verteRjimust have all its vertices iB, (the path cannot
leave By). Since the start vertexof @ is in By, every vertex of) is in B,. This proves (2). See Figure 1.

We conclude that if < 4, then the suffix off, is disjoint from the suffix off;, because each vertex of
the suffix of P is not in B, and each vertex of the suffix @, is in B,. Therefore, the sum of the lengths
of arcs inG is at least(1/6)b (since there aré disjoint suffixes, each of length at leaist6), and hence
(1/6)b < f,orb <6f. m

3.2 The region-growing technique

Recall that the digraph is denotéd = (V, E), each arce has a positive capacity(e), and there aré:
commodities, each specified by a source-sink pagirt;). Let each are have a nonnegative lengtt(e).
(The intention is that is a feasible solution to the linear programming relaxatbBIRECTED MULTICUT
in Section 2.) Letl,(v,w) denote the shortest-path distance from vertés vertexw with respect to arc
lengthsz.

For a vertex sef C V, let(S,V — S) denote the set of arcs leavisg {(v,w) | v € S,w € V — S},
andforE’ C E, leteg:/(S,V —S) denotec(E' N (S, V —5)). Letvolg(S) denote the sum af(e)c(e) over
all arcse € F that have at least one end vertex (either tail or head).in

Recall thatF'(G) denotes the optimal value of the linear program

min{z cle)x(e) : dyp(sit;) >1(i=1,...,k); x>0}

and thatvolg (V') = F(G) if the length functionz is optimal for the LP.
The next lemma extends Lemma 4.1 (on region growing) of Géagirani and Yannakakis [8] to di-
rected networks, and has been previously applied by Kledh ¢13].



Lemma 6 ([8, 13]) LetG, ¢, x, and thek commodities be as above. lzebe any positive real and letbe
any vertex of7. Then there exists a real number0 < p < In(k + 1)/r, such that

cp(B,V — B) <1 - (volg(B) + volg(V)/k),

where B denotesBg(q, p) (i.e., the set of vertices such thatG has ag — v path of length at most).
Moreover, there is an efficient algorithm to fipdand B¢ (q, p).

3.3 An algorithm and proof for Theorem 2

Before describing the algorithm, we restate Theorem 2,dawenience.

Theorem 2 There is a polynomial-time algorithm that takeg-&ommodity network: satisfyinge(e) > 1
for all arcs e and and finds a multicut/ satisfyinge(M) < 39In(k + 1) F(G)2.

Proof of Theorem 2. Here is the algorithm:

Let F' = E, let M = (), and for each € {1,...,k}, let B; = 0.

While there is a commodity € {1, ..., k} such thatG’ = (V, E’) has ans; — t; pathdo

Choose such an

LetG; = (V;, E;) be the subgraph @’ obtained by keeping exactly those vertices and arcs that
belong to some; — t; path inG’.

Apply Lemma 6 (the GVY procedure) G; with start vertex; = s; andr = 3In(k + 1), and
1

let B; be the vertex set given by the lemma, iB;,= Bg, (s, p), wherep < In(k+1) _ 3

Add to M all the arcs ofE; in the cut(B;, V; — B;) in G;.
ReplaceE’ by ' — M = E — M.

End While

Output the multicuth and stop.

For the analysis, it is convenient to havé) < 1/6 for all arcse. As in the proof of Theorem 1, we
replace each arecwith z(e) > 1/6 by a path off 6z(e) | new arcs of length at mosy6 each, whose lengths
add tozx(e), all of whose capacities arge).

For eachi € {1,...,k} such thatB; is nonempty and for each vertexin B;, we assign a path af;,
denoteds (i, v), and called thesuffix ofv with respect to commodity To defines (i, v), take anys; — t;
path P of G; that containz, and leto (i, v) be the suffix of P of length at least /6 and with the fewest
vertices. Note thaP exists (by our choice off; and the fact that € B;) and has length at least(since
d.(si,t;) > 1). Clearly,o (i, v) has length less thaty3 (sincez(e) < 1/6, Ve € E). Note that every vertex
win o(i,v) hasd,(w,t;) < 1/3, and every vertex. in B; hasd,(s;,u) < 1/3; henceo(i,v) is disjoint
from B;.

We need a claim.

Claim. Every vertexw of G is in at most6F'(G) setsB;, i € {1,...,k}.
Proof of Claim. Focus on any vertew and suppose that there are two commoditiaad; such thatw is
in B; and B;. Assume without loss of generality that the algorithm peseel: before;.

Suppose that (i, w) ando(j, w) have a vertexy in common. TherG; contains av — y path called,
say, P;. Focus onG’ at the start of the iteration for commodityand call this digraplG*. Clearly, G* has

8



Figure 2: Anillustration of the proof of Theorem 2. The sdliites indicate the suffixes(i, w) (horizontal)
ando(j,w) (vertical). P; is a subpath of the; — ¢; path indicated by dashed and solid lines.

ans; — w path that is contained i3; (sincew € B;), G* contains thev — y path P; (since: is processed
beforej), andG* has ay — t; path that is a subpath ef(i, w). By concatenating these three paths, we see
thatG* has arns; — t; walk W (allowing repeated vertices) that contains some ard3;oMoreover, every
arc of W that is in the cu{B;, V; — B;) in G* is an arc of the middle patR;, because the first of the three
paths formingi¥ has all its vertices insid®; and the last of the three paths formiig has all its vertices
outsideB;. Shortcut thes; — t; walk W to get ans; — t; pathP in G*. Then every vertex o and arc of
P is present inG;. Moreover, inG;, every arc ofP in the cut(B;, V; — B;) is an arc ofP;, and there is at
least one such arc. Hence, at least one a#¢; @ removed fromE’ by the iteration for commodity. This is
a contradiction, sincé’; is supposed to be a path@f. Hence g (i, w) ando (j, w) must be vertex-disjoint.
This proves the claim, since the suffixe@, w), wherei is such thatv € B;, are pairwise disjoint, and
the number of suffixes is at mo3t, z(e)/(1/6) < 6, c(e)z(e) < 6F(G), since each suffix has length
atleastl/6 andc(e) > 1 forall e € E. See Figure 2.m

Clearly, the theorem holds ¥ = 0 or if F'(G) = 0, sinceC(G) = 0 in these cases (the algorithm
returnsM = (). If F(G) # 0, then note tha#'(G) > 1, by the assumption on the capacities. The rest of
the proof follows from Lemma 6 and the claim, since

k
o(M) = > cg,(Bi,V;— By)
i=1

IN

k
> " 3In(k + 1)(volg, (Vi) /k + volg, (B;))
=1

IN

k
3In(k + 1)(F(G) + Y _ volg, (B;))
i=1

31n(k + 1)(F(G) + 12F(G)?)
39In(k + 1)F(G)2,

IN A

where the inequalitEf:1 volg,(B;) < 12F(G)? holds because

k

k
Z volg,(B;) = Z Z{c(u,v)x(u,v) : (u,v) € F;and(u € B; orv € B;)}
i=1

i=1



< c(u, v)x(u, v)(k(u) + £(v))
(u,v)ER
< > clu,v)z(u,v)(12F(G)) < 12F(G)?,
(u,v)eE
wherex(v) denotes the number of commodities {1,...,k} such that vertex is in B;, and we have

k(v) < 6F(G) by the claim above.m

Remark. The assumptiondé{e) > 1,Ve € E” is used to get the boundk(v) < 6F(G),Yv € V,” and
also, it impliesF(G) < F(G)2. The next result, Theorem 3, uses a variant of this proofakaids this
assumption.

3.4 The proof of Theorem 3

We restate Theorem 3, for convenience.
Theorem 3 There is a polynomial-time algorithm that takesrawvertex,k-commaodity networks and finds

a multicut M satisfying
(M) < (45y/nln(k + 1)) F(G).

Proof of Theorem 3. The algorithm for Theorem 3 consists of two stages.d.et 0 be a parameter (later,
we will fix o = 1/y/nln(k + 1)).

In the first stage, we tak&/; to be the set of all arcse € E such thatz(e) > «, and we takel’ =
E — M;. M, is the subset of the multicut found by the first stage, Bhi the arc set of the current digraph
after the first stage. (Informally, we “cut” all the arcsi; by “rounding up” the LP solution:, and these
arcs are ignored by the second stage.)

The second stage applies the algorithm of Theorem@ te (V, E'). Let M, be the multicut found by
the second stage. The final multicut obtained by the algorithV/ = My U Mo.

Consider the capacity:(M) of M. First, c(M1) = > cpcle) < Docpy cle)z(e)/a <
Y ecp cle)x(e)/a = F(G)/a, where the first inequality holds since the ards M, have been “rounded
up” fromz(e) > ato 1.

We estimate:( M2 ) by modifying the analysis in the proof of Theorem 2 to exploé fact thatz(e) < «
for all arcse in the input. Choose anye {1, ..., k} such thatB; is nonempty, let be any vertex im3;, and
focus on the suffixr(i,v). Sinceo(i,v) has length at least/6 and each are (in Stage 2) has(e) < «,
there must be at leaét /6)/« vertices ino(i,v). By the claim in the proof of Theorem 2, any two distinct
suffixeso (i, v) ando (j,v), i # j, are vertex-disjoint. Consequently, for any vertexhe number of distinct
suffixeso(i,v), ¢ € {1,...,k}, is at mostn/(1/(6a)) = 6an (note that we did not use any assumption
on the arc capacities). In other words, each vertex is in &t fen distinct setsB;, i € {1,...,k}. An
argument similar to that of the proof of Theorem 2 (but withitie assumptioné{e) > 1,Ve € E”) implies
c(Ms) is at mosBIn(k + 1)(1 + 12an)F(G).

Thenc(M) = c¢(My) 4 ¢(Ms) < F(G) +31In(k+1)(1+12an)F(G). We balance the contribution of
(7
the two terms by choosing = ﬁ to getc(M) < 3F(G)(\/nln(k +1)+14y/nin(k + 1)) =
nin(k +
(45y/nln(k+1))F(G). =
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Remarks. (1) Theorem 3 imposes no restrictions on the arc capaci{@sTheorem 3 implies that the
integrality ratio of the linear program is at mott,/n In(k 4 1), and hence any network with integrality
ratio at least /2 must haven > k2/(90? In(k + 1)).

3.5 Bounded-degree planar digraphs

In this section we prove Theorem 4, which is restated heredovenience.
Theorem 4 For everyA, there is a constany such that there is a polynomial-time algorithm that takes
an n-vertex,k-commodity £ > 2) networkG with uniform capacities, whose underlying undirected ¢rap
is planar, and in which the total degree of every vertex is asid\, and finds a multicut\/ satisfying
(M) < (WIsF)n'/AF(G).

The following planar separator lemma is implicit in LiptondaTarjan [17]:

Lemma 7 ([17]) For every integerA > 0 there exists a constant = «(A) > 1 such that for every
(undirected) planar multigraplG = (V, E)) with maximum degree at moAt, there are disjoint subsets
L,R C V of size||V|/2| each, and a se¥ of edges of size at mast,/[V|, such that every edge not i
either has both endpoints ih or both in R. Furthermore, there is a polynomial-time algorithm thatn
such a set of edges.

Proof of Theorem 4. By Theorem 2, there is a universal constaghsuch that the multicut size in a
uniform-capacity network is at most(31g k) F(G)?, if k > 2.

Fix A. We prove the assertion in Theorem 4 with the constast max{l_;%“, B}. The proof can
easily be converted into a polynomial-time algorithm.

Our proof proceeds by induction en The basis of the inductiom(= 1) is trivial. Consider am-vertex
instanceG, n > 2. If F(G) < n'/*/\/Igk, then by Theorem 2, the minimum multicut is of size at most
(Blgk)F(G)? < BVIgk - F(G)n'/* < v/1gk- F(G)n'/*. So, we may assume th&{(G) > n'/*/\/Igk.

By Lemma 7, we can find a set of at mas{/n arcs whose removal partitiors into two subgraphs of
order|n /2] each (with perhaps one isolated vertex left over). Cleashgry commodity with terminals in
two different components is cut by removing the at-megtn arcs. Letf;, fo be the maximum flows for
the remaining commodities in the two components. By thedtide assertion, fof = 1,2 one can find a
multicut of size at mosty+/Ig k) f;|n/2]'/* in theith component. (This holds even if either component has
0 or 1 commaodity, though this case isn't covered by the indaassertion.) The union of these multicuts
and the separator is a multicut for the entire instance.idtsis at most

2
oV +1/igk -3 filn/2)YY < avitaighk - (fi + f2)(n/2)V
=1

(o +~/2Y"/1gk - F(G)n'/4

<
< Wlgk- F(G)n'/4,

asfi+ fo < F(G), F(G) > n'/*/\/Igk, andy > o+ 377. =

4  Some simple constructions must be large

In this section we prove thatcommaodity arc-capacitated or vertex-capacitated nétsvasith a particular
structure and integrality ratio at ledst2 must have exponentially many vertices. The networks coatstd
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by Saks et al [20] have the structure described in Theoreraridso this theorem explains why the number
of vertices in these networks is exponentiakin

Theorem 8 Let H' = (V’, E’) be an undirected graph in which each edge has some capageity> 0.
Replace each edge by a pair of antiparallel arcs each of capacityfe) and call the resulting digraph
H = (V', E). Add2k distinct new vertices, t1, ..., S, tg, getting vertex set’ = V' U {s1,t1, ..., Sk, tx }-
Choose subsets; C V', T, C V', S, NT; = foralli =1,2,...,k and add arcs;, v) for all v € S; and
(u,t;) for all u € T;, all of infinite (or very large) capacity. Wheg is the resulting network,

C(G) < (4ylgn)F(G),
where~ is a universal constant and = |V|.
Before giving the proof, we give an application of the theore
Corollary 9 Using the notation of Theorem 8,Gf has integrality ratio at leask /2, thenn > ok/(87)

Informally, the theorem implies that if there existsqawvertex network with integrality ratio at least
(for a fixede > 0), then it must exploit the asymmetry (or, directedness)entban the example of Saks et
al.

Proof of Theorem 8. Starting with digraphH, define a network oft” by constructing one commaodity for
each pair(u, v) with u € S; andv € T; for somei, having source: and sinkv; call this networkH also.
The key pointis that'(H) = F(G) andC(H) = C(G).

We now construct an undirected versionmfand apply the result of [8] on integrality ratios of undi-
rected networks. Build an undirected network call&€tby starting from undirected graph’ and defining a
commodity for every unordered pdit, v} such that. € S;, v € T; for somei. We haveC'(H) < 2C'(H')
andF(H) > F'(H'). Apply [8] to infer that there is a universal constansuch that

C'(H') < <’Y g <Z>> FI(H') < (2ylgn)F'(H')
and then conclude that
C(G) = C(H) < 2C'(H") < (4ylgn)F'(H') < (4ylgn)F(H) = (4ylgn)F(G). m

Now we state a vertex-capacitated version.vetex multicutin a vertex-capacitated digraph is a
subset of vertices containing at least one vertex on every t; path, for alli. However, to discourage
deletion of terminals, we insist that all terminals havenié capacity. Similarly, avertex multicutin a
vertex-capacitated undirected graphis a subset of vertices containing at least one vertex oryayer t;
path, for alli. Again we insist that all terminals have infinite capacitet NC(G), NC'(G’) denote the
minimum capacity of a vertex multicut in digrajghor undirected grapli”’, respectively.

There is an obvious LP relaxation with nonnegative vargble) for all v € V, constrained so that for
all 4, all s; — t; pathsP satisfy) " _,2(v) > 1, whose objective is the minimization 3f c(v)xz(v); for
undirected graphs, we have the same problem, except ingolridirecteds; — ¢; paths. The corresponding
duals are flow problems: Find a nonnegative value for each t¢; (or s; — t;) path, for alli, such that the
sum of the values on all paths containing verteis at mostc(v), and maximize the sum of all variables.
Let NF(G), NF'(G’) be the maximum flow value in digragh or undirected grapl’, respectively.

Garg, Vazirani, and Yannakakis [9] prove a vertex analoguéheir arc result: There is a universal
constanty such thatvC’(G’) < (ylg k) NF'(G’) for all G' with & > 2 commodities.
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Theorem 10 Let H' = (V’, E’) be an undirected graph in which each vertekas some capacity(v) > 0
(and edges are uncapacitated). Replace each edgge a pair of antiparallel arcs and call the resulting
digraph H = (V' E'). Add2k distinct new verticesy, t1, ..., s, tx having infinite capacities, getting vertex
setV = V' U {s1,t1, ..., Sk, tx }. Choose subsets; C V' T, C V', S;NT; =0 foralli=1,2,... &k and
add arcs(s;, v) for all v € S; and(u, t;) for all w € T;. WhereG is the result,

NC(G) < (4y1gn)NF(G),
where~ is a universal constant and = |V|.
Corollary 11 Using the notation of Theorem 10Gfhas integrality ratio at leask /2, thenn > ok/(87),

The proof of Theorem 10 is similar to that of Theorem 8, so wé d@nexcept to note that we make the
terminals of H and H' newvertices (of infinite capacity) outside &f', since effectively we cannot delete
any terminal.

5 Further remarks

Anupam Gupta (personal communication, June 2001) hasnelotaihe following improvements, based on a
preliminary version of our results.

Theorem I There is a constant such that there is a polynomial-time algorithm that takesstwork G
satisfyingc(e) > 1 for all arcs e and finds a multicuf/ satisfyinge(M) < v F(G)2.

This implies the following improvement of Theorem 3, anddtaplies an improvement of Theorem 4
without the factor of/log k.

Theorem 3 There is a constany’ such that there is a polynomial-time algorithm that takeshavertex
networkG and finds a multicufl/ satisfyinge(M) < (v'v/n)F(G).
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