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Abstract

The seminal paper of Leighton and Rao (1988) and subsequent papers presented approximate min-
max theorems relating multicommodity flow values and cut capacities in undirected networks, developed
the divide-and-conquer method for designing approximation algorithms, and generated novel tools for
utilizing linear programming relaxations. Yet, despite persistent research efforts, these achievements
could not be extended to directed networks, excluding a few cases that are “symmetric” and therefore
similar to undirected networks. This paper is an attempt to remedy the situation. We consider the prob-
lem of finding a minimum multicut in a directed multicommodity flow network, and give the first non-
trivial upper bounds on the max flow-to-min multicut ratio. Our results are algorithmic, demonstrating
nontrivial approximation guarantees.

1 Introduction

A networkis a graphG = (V,E), directed or undirected, with positive edge capacitiesc : E → R
+, together

with a list of source-sink pairs of vertices(s1, t1), (s2, t2), . . . , (sk, tk), sometimes calledcommodities.
Usually, we usek to denote the number of commodities. A multicut is a set of edges M ⊆ E whose
removal disconnects all commodities (that is,G − M = (V,E − M) has nosi → ti path fori = 1, . . . , k),
and its capacity is the sum of the capacities of the edges inM . The problem of finding a multicut of
minimum capacity may be formulated as a simple and elegant integer program, and dropping the integrality
constraints gives a linear programming (LP) relaxation. The optimal value of this LP relaxation (which is
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a lower bound on the minimum capacity of a multicut) equals the maximum value of a multicommodity
flow (see Section 2 for details). In the single-commodity (k = 1) case, the celebrated max flow-min cut
theorem of Ford and Fulkerson [7] states that the minimum capacity of a multicut equals the maximum
value of a flow. This is one of the key results in combinatorialoptimization, and it has numerous important
applications, both in theory and in practice. Unfortunately, this theorem does not generalize to multiple
commodities, and moreover, the general problem of finding a minimum-capacity multicut is NP-hard (for
k ≥ 3 commodities for undirected networks, and fork ≥ 2 commodities for directed networks). See [14]
for more discussion on multicommodity flows.

Based on ground-breaking work by Leighton and Rao [15], and improving on earlier results due to
Klein et al [11], Garg, Vazirani, and Yannakakis [8] proved an approximate minmax theorem for undirected
networks: the minimum capacity of a multicut is at mostO(log k) times the maximum value of a mul-
ticommodity flow; moreover, their proof is constructive andgives anO(log k)-approximation algorithm
(the algorithm runs in polynomial time and returns a multicut whose capacity is at mostO(log k) times
the maximum value of a multicommodity flow). Despite persistent research efforts, these results could
not be extended to directed networks, excluding a few cases that are “symmetric” and therefore similar to
undirected networks.

In this paper, we consider the problem of finding a minimum-capacity multicut in networks (without
any symmetry assumptions), “network” without “undirected” meaning “directed network” from now on,
and provide the first nontrivial upper bounds relating multicut capacities to multiflow values. For a net-
work G, we denote byC(G) the minimum capacity of a multicut, and byF (G) the maximum value of
a multicommodity flow. (For undirected networksG′, we denote the corresponding quantities byC ′(G′)
andF ′(G′).) We prove four related theorems. Each of these theorems gives a bound onC(G) in terms of
F (G) and other parameters of the networkG; moreover, each proof gives an efficient algorithm for finding
a multicut whose capacity is at most the bound onC(G). The bounds given by the first three theorems are
mutually incomparable in the sense that for each of the threebounds, there exist networks where that bound
is better than the other bounds.

Theorem 1 There is a polynomial-time algorithm that takes a networkG satisfyingc(e) ≥ 1 for all arcs e
and finds a multicutM satisfyingc(M) ≤ 108F (G)3.

We prove that without the “c(e) ≥ 1 for all e” condition, no result of the form “C(G) ≤ g(F (G)) for
all G” is possible. (For undirected networks, Yannakakis [24] shows, via a variant of the region-growing
procedure of [8], thatC(G) = O(F (G) log F (G)), if all capacities are at least 1.)

Theorem 2 There is a polynomial-time algorithm that takes ak-commodity networkG satisfyingc(e) ≥ 1
for all arcse and finds a multicutM satisfyingc(M) ≤ 39 ln(k + 1)F (G)2.

Again, the “c(e) ≥ 1 for all e” condition is necessary.

Theorem 3 There is a polynomial-time algorithm that takes ann-vertex,k-commodity networkG and finds
a multicutM satisfying

c(M) ≤ (45
√

n ln(k + 1))F (G) ≤ (45
√

2n ln n)F (G).

We give a better approximation guarantee for some instancesin planar digraphs.
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Theorem 4 For every∆, there is a constantγ such that there is a polynomial-time algorithm that takes
an n-vertex,k-commodity (k ≥ 2) networkG with uniform capacities, whose underlying undirected graph
is planar, and in which the total degree of every vertex is at most ∆, and finds a multicutM satisfying
c(M) ≤ (γ

√
lg k)n1/4F (G).

Tardos and Vazirani [23] use the methods of Klein, Plotkin, and Rao [12] to prove a constant ratio for
undirected planar networks.

Theorem 1 is our basic result. The other three theorems are based on it, and derived using techniques
such as region growing (Theorem 2), a trade-off via LP rounding (Theorem 3), and a trade-off via the planar
separator theorem (Theorem 4).

In recent work, Saks, Samorodnitsky, and Zosin [20] construct a family ofk-commodity networks, for
all k andǫ > 0, where the minimum multicut-to-maximumk-commodity flow ratio is no less thank − ǫ, in
contrast with theO(log k) upper bound in the undirected case. (An upper bound ofk is a trivial consequence
of the Ford and Fulkerson theorem.) We note that in their graphs,|V | is exponential ink, so an upper bound
of O(log |V |), for example, is still possible. In fact, the networks in [20] have special structure. Each is
obtained by adding2k distinct new verticess1, t1, ..., sk, tk to anundirectedgraphH, together with arcs
from thesi’s to some vertices inH and from some vertices inH to theti’s, replacing each undirected edge
by a pair of antiparallel arcs, and assigning positive capacities to thevertices. Each terminal gets infinite
capacity. We show in Section 4 that any networkG of such special structure withC(G) ≥ (k/2)F (G)
must, like the example of [20], have a number of vertices which is exponential ink. Indeed, the same result
holds if capacities are instead assigned to arcs, provided that the arcs incident from the sources have infinite
capacity, and so do the arcs incident to the sinks.

The best inapproximability result known for directed multicut is that the problem is MAX SNP-hard.
This is also the strongest hardness result known for the undirected case [3].

The rest of this introduction gives our perspective on the previous work in this area, and is not essential
for studying the new results in this paper.

In a seminal paper, Leighton and Rao [15] proved that for uniform multicommodity flow instances
the sparsest cut-to-maximum concurrent flow ratio in undirected networks is at most logarithmic in the
number of vertices.1 They exhibited several applications of this result, mostlyin the design and analysis of
approximation algorithms for NP-hard optimization problems. Their paper inspired a significant research
effort in the past decade. The results of this effort includethe emergence of the divide-and-conquer method
in approximation algorithms (see [22]), applications of their region-growing technique to other problems [2,
8, 11, 21], and the development of alternative proofs for their basic result and its generalizations [1, 5, 16].
In particular, Garg, Vazirani, and Yannakakis [8] gave an elegant analysis of the region-growing technique,
and used it to derive asymptotically tightO(log k) bounds on the minimum multicut-to-maximum flow ratio
in k-commodity undirected networks.

Most of the previous research on approximation algorithms for problems related to multicuts in directed
networks exploits some sort of “symmetry” property that renders the problems similar to the undirected
case; for example, the commodities occur in symmetric pairs(si, ti), (ti, si) [4, 5, 6, 13, 15, 18, 21]. In
particular, for such symmetric instances, Even, Naor, Schieber, and Sudan [6], improving upon a result of
Klein, Plotkin, Rao, and Tardos [13], gave anO((log k) log log k) bound, and they gave efficient algorithms
to find a “symmetric multicut” whose capacity is within the same factor of the optimum. (A symmetric
multicut means a set of arcs whose removal disconnects either si from ti or ti from si, for every symmetric

1The sparsity of a cut is the ratio between the cut capacity andthe number of source-sink pairs that are disconnected. A
concurrent flow delivers the same amount of flow of each commodity.
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pair of commodities.) These papers use region-growing techniques, though the bounds that are proved are
usually weaker than those that can be proved in the undirected case.

Unfortunately, the literature cited in the previous paragraph has almost no relevance for (asymmetric)
directed multicuts because there isno relation between a (directed) multicut and a symmetric multicut. For
example, consider a directed graph on two verticesp, q with two arcs(p, q) and (q, p) having capacities
1 and1000, respectively. There are two commodities(s1, t1) = (p, q) and(s2, t2) = (q, p). The unique
multicut has capacity 1001, whereas there is a symmetric multicut of capacity one. Another way to see the
contrast is to compare the integrality ratios of the linear programming relaxations: it isO((log k) log log k)
for symmetric multicuts [6] but a construction due to Saks etal shows that it isk for directed multicuts [20].

2 Preliminaries

A networkG is a directed graph(V,E), without parallel arcs or self-loops, with an assignment ofpositive
capacities to the arcsc : E → R

+, together with a positive integerk and a set ofk distinct ordered pairs
(si, ti) of vertices,si 6= ti for all i. Let T = {s1, t1, s2, t2, ..., sk, tk} be the set ofterminals. For any set of
arcsE′, we usec(E′) to denote

∑

e∈E′ c(e). A multicutM in G is a subsetM ⊆ E such that the digraph
(V,E−M) has nosi → ti path, for eachi ∈ {1, 2, ..., k}. (All paths are simple in this paper.) Thecapacity
of a multicutM is c(M). DIRECTED MULTICUT is the problem of finding a minimum-capacity multicut
in a specified networkG. Let us denote the minimum capacity of a multicut inG by C = C(G). (When
we work with undirected networks, the underlying graphG′ is undirected and the minimum capacity of a
multicut is denotedC ′ = C ′(G′).)

The problem of finding a minimum-capacity multicut inG is precisely the following integer program:
Find x(e) for all e ∈ E, x(e) integral,x(e) ≥ 0, so as to minimize

∑

e∈E c(e)x(e), such that for every
i = 1, 2, 3, ..., k, and for everysi → ti path P in G,

∑

e∈P x(e) ≥ 1. An optimal solution will have
x(e) ≤ 1 for all e ∈ E.

Dropping the “x(e) integral” condition gives a linear programming relaxationof DIRECTED MULTICUT:
Find a nonnegative real lengthx(e) for each arce such that for eachi = 1, . . . , k, the distance fromsi to
ti, relative to these lengths, is at least 1, so as to minimize

∑

c(e)x(e). Its linear programming dual is
easily seen to be equivalent to MULTICOMMODITY FLOW, which is this problem: Given a networkG, find
a sequence(f1, f2, ..., fk) such thatfi is a single-source flow (of commodityi) in G from sourcesi to sink
ti, such that(f1, f2, ..., fk) satisfies

∑

1≤i≤k fi(e) ≤ c(e) for all e ∈ E, and in which the sum overi of the
value offi is maximized. LetF = F (G) denote the optimal value of the multicommodity flow inG. It is
easy to see thatC(G) ≥ F (G) for all G. (In an undirected networkG′, the optimal flow value is denoted
F ′ = F ′(G′).) Since MULTICOMMODITY FLOW can be written as a linear program of polynomial size, it
can be solved in polynomial time.

We are interested in the relation betweenC(G) andF (G) in an arbitrary networkG. CanC(G) be
bounded as a function ofF (G) for all G? More formally, is there a functiong : R → R such that for allG,
regardless of the number of vertices and commodities,C(G) ≤ g(F (G))? We will (easily) see below that
if the capacities can be arbitrarily small, then the answer is no. However, if we insist thatc(e) ≥ 1 for all
e ∈ E, then it is a nontrivial fact thatF (G) ≤ 1 impliesC(G) ≤ 1.

Note that DIRECTED MULTICUT is not a generalization of UNDIRECTED MULTICUT obtained by re-
placing each undirected edge by a pair of antiparallel arcs and by replacing each commodity{si, ti} by a pair
of “antiparallel” commodities(si, ti), (ti, si). For example, consider a four-vertex undirected tree with root
r and leavesl1, l2, l3. Let us define three commodities, one for each pair of leaves,and make all capacities
one. LetG′ denote the network. Then, we haveC ′(G′) = 2 > F ′(G′) = 1.5 (any two edges{r, li}, {r, lj}
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form a multicut, and an optimal flow assigns the value1/2 to each of the three undirectedsi − ti paths).
However, if we now replace each edge by two antiparallel arcs(each of unit capacity) and define six com-
modities, one for each ordered pair of leaves, then the directed networkG hasC(G) = 3 = F (G) (the three
arcs entering the rootr form a multicut, and an optimal flow assigns the value1/2 to each of the six directed
si − ti paths).

3 Algorithms and bounds for multicut

3.1 Multicut is bounded by a function of flow

In this section we prove Theorem 1, thatC(G) ≤ 108F (G)3, provided thatc(e) ≥ 1 for all arcse.
But first we prove that such a result is not possible without the “c(e) ≥ 1 for all e” assumption. Garg,
Vazirani, and Yannakakis show [8] that there existsγ > 0 such that for all sufficiently largen, there is
an n-vertex, undirected, unit-capacities networkG′

n (on an expander), havingC ′(G′
n)/F ′(G′

n) ≥ γ lg n.
Create a (directed) networkGn from G′

n by replacing each edge by a pair of antiparallel, unit-capacity
arcs. We haveF (Gn) ≤ F ′(2G′

n) = 2F ′(G′
n) (because any flow inGn is feasible in2G′

n, which
is G′

n with its capacities doubled) andC(Gn) ≥ C ′(G′
n) (because ifM is a minimum multicut in

Gn, then M ′ = {{u, v}|(u, v) ∈ M or (v, u) ∈ M} is a multicut inG′
n and |M ′| ≤ |M |). Hence

C(Gn)/F (Gn) ≥ C ′(G′
n)/(2F ′(G′

n)) ≥ (γ/2) lg n. Now suppose thatC(G) ≤ g(F (G)) for all directed
networksG. Choose a large enoughn and setλ = F (Gn). Let Hn = Gn/λ (i.e., scale all capacities down
by λ). We have (using(γ

2 lg n)F (Gn) ≤ C(Gn))

γ

2
lg n =

1

λ
(
γ

2
lg n)F (Gn) ≤ 1

λ
C(Gn) = C(Hn) ≤ g(F (Hn)) = g(

1

λ
F (Gn)) = g(1),

which is a contradiction.
Now we prove Theorem 1, which is restated here for convenience.

Theorem 1 There is a polynomial-time algorithm that takes a networkG satisfyingc(e) ≥ 1 for all arcs e
and finds a multicutM satisfyingc(M) ≤ 108F (G)3.
Proof. We give a polynomial-time algorithm to construct a multicutof capacity at most108F 3 in a network
G on digraph(V,E) satisfyingc(e) ≥ 1 for all e, whereF = F (G). First, find a nonnegative, rational length
functionx satisfying

∑

e c(e)x(e) = F and
∑

e∈P x(e) ≥ 1 for all si → ti pathsP , for all i. (Such anx is
given by an optimal solution to the linear programming relaxation of DIRECTED MULTICUT in Section 2;
the optimal value

∑

e∈E c(e)x(e) equalsF = F (G) by the duality theorem of linear programming.) Define
f =

∑

e x(e) ≤ ∑

e c(e)x(e) = F . For a technical reason, we needx(e) ≤ 1/6 for all e. Replace any arc
e with x(e) > 1/6 by a path of⌈6x(e)⌉ new arcs of length at most1/6 each, whose lengths add tox(e), all
of whose capacities arec(e).

We need some more definitions. LetE′ ⊆ E. Given any vertexs and realρ, let BE′(s, ρ) = {u ∈ V |
there is ans → u path in(V,E′) of length at mostρ}. DefineδE′(s, ρ) = {(a, b) ∈ E′|a ∈ BE′(s, ρ), b 6∈
BE′(s, ρ)}. Informally speaking,BE′(s, ρ) denotes the ball with radiusρ and centres in the digraph(V,E′),
andδE′(s, ρ) denotes the set of arcs of(V,E′) that leave this ball.

For our purposes,the prefixof pathP =< u0, u1, u2, ..., uz > (whose length may exceed 1) is the path
P ′ =< u0, u1, u2, ..., ui > wherei is minimal such that the length ofP ′ (relative tox) is at least1/6, and
the suffixof pathP =< u0, u1, u2, ..., uz > is the pathP ′ =< ui, ui+1, ..., uz > wherei is maximal such
that the length ofP ′ is at least1/6.

Here is the algorithm. The embedded comments are needed for the analysis.
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/* Let count(e) = 0 for all e ∈ E. */
Let E′ = E.
As long as there is a pair(si, ti) such that somesi → ti path exists inG′ = (V,E′), repeat:

1. Choose any suchi.

/* Find a shortestsi → ti pathPi in G′ with respect tox. */

2. Find a real numberρi which minimizesc(δE′(si, ρ)) among thoseρ in the interval(1/3, 2/3).

/* Let Bi = BE′(si, ρi). */

/* Incrementcount(e) for all arcse in the prefix ofPi. */

3. Remove fromE′ all arcs inδE′(si, ρi).

OutputM = E − E′.
End.

Obviously this process terminates and provides a multicut.We claim that the capacity of the multicut is
at most108f2F ≤ 108F 3.

We need the following lemma, which is implicit in [8]. See also [22, p.204].

Lemma 5 LetG = (V,E) be a digraph and lets ∈ V . Letx : E → R
+ be a length function,c : E → R

+

be a positive capacity function, andE′ ⊆ E. Then there is aρ ∈ (1/3, 2/3) such thatc(δE′(s, ρ)) ≤ 3F ′,
whereF ′ =

∑

e∈E′ c(e)x(e) ≤ F .

The lemma implies that in a given iteration we cut arcs of capacity at most3F .
Call the process of incrementingcount(e) charginge. In each iteration, we charge a set of arcs of total

length at least1/6, all endpoints of which are inBE′(si, 1/3) ⊆ BE′(si, ρi) = Bi, because each arc has
length at most1/6 and becauseρi > 1/3. Since the total capacity added toE −E′ in an iteration is at most
3F ,

c(E − E′) ≤ 18F
∑

e∈E

x(e)count(e)

is an invariant. We prove next thatcount(e) never exceeds6f , and hence

c(E − E′) ≤ (18F )(6f)
∑

e∈E

x(e) = 108f2F.

Choose any arce = (u, v) in the originalG and relabel the commodities so that we chargee in the
iterations for commodities1, 2, ..., b, in that order (and no others); these need not be consecutiveiterations,
of course. We claim, fori = 1, 2, ..., b, that:
(1) None of the vertices on the suffix ofPi are inBi.
(2) All the vertices in the suffix ofPi are inB1 ∩ B2 ∩ B3 ∩ · · · ∩ Bi−1.

Now (1) is trivial, because we chose aρi which is less than2/3, and each arc’s length is at most1/6;
hence the endpoints of the suffix are not inBi.

Proving (2) is not much harder. Since the iteration for commodity i chargese, Pi must containe. The
headv of e = (u, v) must be inP1, P2, . . . , Pb, and moreover,v must be inB1, B2, . . . , Bb (in the iteration
for commodityℓ, all endpoints of arcs we charge are inBℓ). Consider now the subpathQ of Pi starting at
v and ending at the last vertex ofPi (clearly,Q contains the suffix ofPi). For eachℓ < i, we claim thatBℓ
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Figure 1: An illustration of the proof of Theorem 1. The dashed lines indicate the “balls”Bℓ andBi.

contains each vertex ofQ. The reason is that we removed all arcs leavingBℓ (i.e., all arcs with tails inBℓ

and heads inV − Bℓ) at the end of the iteration for commodityℓ. Hence, in the iteration for commodityi,
any path in the current digraph that starts with a vertex inBℓ must have all its vertices inBℓ (the path cannot
leaveBℓ). Since the start vertexv of Q is in Bℓ, every vertex ofQ is in Bℓ. This proves (2). See Figure 1.

We conclude that ifℓ < i, then the suffix ofPℓ is disjoint from the suffix ofPi, because each vertex of
the suffix ofPℓ is not inBℓ and each vertex of the suffix ofPi is in Bℓ. Therefore, the sum of the lengths
of arcs inG is at least(1/6)b (since there areb disjoint suffixes, each of length at least1/6), and hence
(1/6)b ≤ f , or b ≤ 6f .

3.2 The region-growing technique

Recall that the digraph is denotedG = (V,E), each arce has a positive capacityc(e), and there arek
commodities, each specified by a source-sink pair(si, ti). Let each arce have a nonnegative lengthx(e).
(The intention is thatx is a feasible solution to the linear programming relaxationof DIRECTED MULTICUT

in Section 2.) Letdx(v,w) denote the shortest-path distance from vertexv to vertexw with respect to arc
lengthsx.

For a vertex setS ⊆ V , let (S, V − S) denote the set of arcs leavingS, {(v,w) | v ∈ S,w ∈ V − S},
and forE′ ⊆ E, let cE′(S, V −S) denotec(E′ ∩ (S, V −S)). Let volE(S) denote the sum ofx(e)c(e) over
all arcse ∈ E that have at least one end vertex (either tail or head) inS.

Recall thatF (G) denotes the optimal value of the linear program

min{
∑

e

c(e)x(e) : dx(si, ti) ≥ 1 (i = 1, . . . , k); x ≥ 0}

and thatvolE(V ) = F (G) if the length functionx is optimal for the LP.
The next lemma extends Lemma 4.1 (on region growing) of Garg,Vazirani and Yannakakis [8] to di-

rected networks, and has been previously applied by Klein etal. [13].
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Lemma 6 ([8, 13]) Let G, c, x, and thek commodities be as above. Letr be any positive real and letq be
any vertex ofG. Then there exists a real numberρ, 0 < ρ ≤ ln(k + 1)/r, such that

cE(B,V − B) ≤ r · (volE(B) + volE(V )/k),

whereB denotesBG(q, ρ) (i.e., the set of verticesv such thatG has aq → v path of length at mostρ).
Moreover, there is an efficient algorithm to findρ andBG(q, ρ).

3.3 An algorithm and proof for Theorem 2

Before describing the algorithm, we restate Theorem 2, for convenience.
Theorem 2 There is a polynomial-time algorithm that takes ak-commodity networkG satisfyingc(e) ≥ 1
for all arcse and and finds a multicutM satisfyingc(M) ≤ 39 ln(k + 1)F (G)2.
Proof of Theorem 2.Here is the algorithm:

Let E′ = E, let M = ∅, and for eachi ∈ {1, . . . , k}, let Bi = ∅.

While there is a commodityi ∈ {1, . . . , k} such thatG′ = (V,E′) has ansi → ti pathdo

Choose such ani.

Let Gi = (Vi, Ei) be the subgraph ofG′ obtained by keeping exactly those vertices and arcs that
belong to somesi → ti path inG′.

Apply Lemma 6 (the GVY procedure) toGi with start vertexq = si andr = 3 ln(k + 1), and
let Bi be the vertex set given by the lemma, i.e.,Bi = BGi(si, ρ), whereρ ≤ ln(k+1)

r = 1
3 .

Add toM all the arcs ofEi in the cut(Bi, Vi − Bi) in Gi.
ReplaceE′ by E′ − M = E − M .

End While

Output the multicutM and stop.

For the analysis, it is convenient to havex(e) ≤ 1/6 for all arcse. As in the proof of Theorem 1, we
replace each arce with x(e) > 1/6 by a path of⌈6x(e)⌉ new arcs of length at most1/6 each, whose lengths
add tox(e), all of whose capacities arec(e).

For eachi ∈ {1, . . . , k} such thatBi is nonempty and for each vertexv in Bi, we assign a path ofGi,
denotedσ(i, v), and called thesuffix ofv with respect to commodityi. To defineσ(i, v), take anysi → ti
pathP of Gi that containsv, and letσ(i, v) be the suffix ofP of length at least1/6 and with the fewest
vertices. Note thatP exists (by our choice ofGi and the fact thatv ∈ Bi) and has length at least1 (since
dx(si, ti) ≥ 1). Clearly,σ(i, v) has length less than1/3 (sincex(e) ≤ 1/6, ∀e ∈ E). Note that every vertex
w in σ(i, v) hasdx(w, ti) < 1/3, and every vertexu in Bi hasdx(si, u) ≤ 1/3; hence,σ(i, v) is disjoint
from Bi.

We need a claim.
Claim. Every vertexw of G is in at most6F (G) setsBi, i ∈ {1, . . . , k}.
Proof of Claim. Focus on any vertexw and suppose that there are two commoditiesi andj such thatw is
in Bi andBj . Assume without loss of generality that the algorithm processedi beforej.

Suppose thatσ(i, w) andσ(j, w) have a vertexy in common. ThenGj contains aw → y path called,
say,Pj. Focus onG′ at the start of the iteration for commodityi and call this digraphG∗. Clearly,G∗ has
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Figure 2: An illustration of the proof of Theorem 2. The solidlines indicate the suffixesσ(i, w) (horizontal)
andσ(j, w) (vertical).Pj is a subpath of thesj → tj path indicated by dashed and solid lines.

ansi → w path that is contained inBi (sincew ∈ Bi), G∗ contains thew → y pathPj (sincei is processed
beforej), andG∗ has ay → ti path that is a subpath ofσ(i, w). By concatenating these three paths, we see
thatG∗ has ansi → ti walk W (allowing repeated vertices) that contains some arcs ofPj . Moreover, every
arc ofW that is in the cut(Bi, Vi − Bi) in G∗ is an arc of the middle pathPj , because the first of the three
paths formingW has all its vertices insideBi and the last of the three paths formingW has all its vertices
outsideBi. Shortcut thesi → ti walk W to get ansi → ti pathP in G∗. Then every vertex ofP and arc of
P is present inGi. Moreover, inGi, every arc ofP in the cut(Bi, Vi − Bi) is an arc ofPj, and there is at
least one such arc. Hence, at least one arc ofPj is removed fromE′ by the iteration for commodityi. This is
a contradiction, sincePj is supposed to be a path ofGj . Hence,σ(i, w) andσ(j, w) must be vertex-disjoint.

This proves the claim, since the suffixesσ(i, w), wherei is such thatw ∈ Bi, are pairwise disjoint, and
the number of suffixes is at most

∑

e x(e)/(1/6) ≤ 6
∑

e c(e)x(e) ≤ 6F (G), since each suffix has length
at least1/6 andc(e) ≥ 1 for all e ∈ E. See Figure 2.

Clearly, the theorem holds ifk = 0 or if F (G) = 0, sinceC(G) = 0 in these cases (the algorithm
returnsM = ∅). If F (G) 6= 0, then note thatF (G) ≥ 1, by the assumption on the capacities. The rest of
the proof follows from Lemma 6 and the claim, since

c(M) =

k
∑

i=1

cEi(Bi, Vi − Bi)

≤
k

∑

i=1

3 ln(k + 1)(volEi(Vi)/k + volEi(Bi))

≤ 3 ln(k + 1)(F (G) +
k

∑

i=1

volEi(Bi))

≤ 3 ln(k + 1)(F (G) + 12F (G)2)

≤ 39 ln(k + 1)F (G)2,

where the inequality
∑k

i=1 volEi(Bi) ≤ 12F (G)2 holds because

k
∑

i=1

volEi(Bi) =
k

∑

i=1

∑

{c(u, v)x(u, v) : (u, v) ∈ Ei and(u ∈ Bi or v ∈ Bi)}
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≤
∑

(u,v)∈E

c(u, v)x(u, v)(κ(u) + κ(v))

≤
∑

(u,v)∈E

c(u, v)x(u, v)(12F (G)) ≤ 12F (G)2,

whereκ(v) denotes the number of commoditiesi ∈ {1, . . . , k} such that vertexv is in Bi, and we have
κ(v) ≤ 6F (G) by the claim above.

Remark. The assumption “c(e) ≥ 1,∀e ∈ E” is used to get the bound “κ(v) ≤ 6F (G),∀v ∈ V ,” and
also, it impliesF (G) ≤ F (G)2. The next result, Theorem 3, uses a variant of this proof thatavoids this
assumption.

3.4 The proof of Theorem 3

We restate Theorem 3, for convenience.
Theorem 3 There is a polynomial-time algorithm that takes ann-vertex,k-commodity networkG and finds
a multicutM satisfying

c(M) ≤ (45
√

n ln(k + 1))F (G).

Proof of Theorem 3.The algorithm for Theorem 3 consists of two stages. Letα > 0 be a parameter (later,
we will fix α = 1/

√

n ln(k + 1)).
In the first stage, we takeM1 to be the set of all arcse ∈ E such thatx(e) ≥ α, and we takeE′ =

E−M1. M1 is the subset of the multicut found by the first stage, andE′ is the arc set of the current digraph
after the first stage. (Informally, we “cut” all the arcs inM1 by “rounding up” the LP solutionx, and these
arcs are ignored by the second stage.)

The second stage applies the algorithm of Theorem 2 toG′ = (V,E′). Let M2 be the multicut found by
the second stage. The final multicut obtained by the algorithm isM = M1 ∪ M2.

Consider the capacityc(M) of M . First, c(M1) =
∑

e∈M1
c(e) ≤ ∑

e∈M1
c(e)x(e)/α ≤

∑

e∈E c(e)x(e)/α = F (G)/α, where the first inequality holds since the arcse in M1 have been “rounded
up” from x(e) ≥ α to 1.

We estimatec(M2) by modifying the analysis in the proof of Theorem 2 to exploitthe fact thatx(e) < α
for all arcse in the input. Choose anyi ∈ {1, . . . , k} such thatBi is nonempty, letv be any vertex inBi, and
focus on the suffixσ(i, v). Sinceσ(i, v) has length at least1/6 and each arce (in Stage 2) hasx(e) < α,
there must be at least(1/6)/α vertices inσ(i, v). By the claim in the proof of Theorem 2, any two distinct
suffixesσ(i, v) andσ(j, v), i 6= j, are vertex-disjoint. Consequently, for any vertexv, the number of distinct
suffixesσ(i, v), i ∈ {1, . . . , k}, is at mostn/(1/(6α)) = 6αn (note that we did not use any assumption
on the arc capacities). In other words, each vertex is in at most 6αn distinct setsBi, i ∈ {1, . . . , k}. An
argument similar to that of the proof of Theorem 2 (but without the assumption “c(e) ≥ 1,∀e ∈ E”) implies
c(M2) is at most3 ln(k + 1)(1 + 12αn)F (G).

Thenc(M) = c(M1)+ c(M2) ≤
F (G)

α
+3 ln(k +1)(1+12αn)F (G). We balance the contribution of

the two terms by choosingα =
1

√

n ln(k + 1)
to getc(M) ≤ 3F (G)(

√

n ln(k + 1)+14
√

n ln(k + 1)) =

(45
√

n ln(k + 1))F (G).
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Remarks. (1) Theorem 3 imposes no restrictions on the arc capacities.(2) Theorem 3 implies that the
integrality ratio of the linear program is at most45

√

n ln(k + 1), and hence any network with integrality
ratio at leastk/2 must haven ≥ k2/(902 ln(k + 1)).

3.5 Bounded-degree planar digraphs

In this section we prove Theorem 4, which is restated here forconvenience.
Theorem 4 For every∆, there is a constantγ such that there is a polynomial-time algorithm that takes
an n-vertex,k-commodity (k ≥ 2) networkG with uniform capacities, whose underlying undirected graph
is planar, and in which the total degree of every vertex is at most ∆, and finds a multicutM satisfying
c(M) ≤ (γ

√
lg k)n1/4F (G).

The following planar separator lemma is implicit in Lipton and Tarjan [17]:

Lemma 7 ([17]) For every integer∆ > 0 there exists a constantα = α(∆) ≥ 1 such that for every
(undirected) planar multigraphG = (V,E) with maximum degree at most∆, there are disjoint subsets
L,R ⊆ V of size⌊|V |/2⌋ each, and a setZ of edges of size at mostα

√

|V |, such that every edge not inZ
either has both endpoints inL or both inR. Furthermore, there is a polynomial-time algorithm that finds
such a set of edges.

Proof of Theorem 4. By Theorem 2, there is a universal constantβ such that the multicut size in a
uniform-capacity networkG is at most(β lg k)F (G)2, if k ≥ 2.

Fix ∆. We prove the assertion in Theorem 4 with the constantγ = max{ α
1−2−1/4

, β}. The proof can
easily be converted into a polynomial-time algorithm.

Our proof proceeds by induction onn. The basis of the induction (n = 1) is trivial. Consider ann-vertex
instanceG, n ≥ 2. If F (G) ≤ n1/4/

√
lg k, then by Theorem 2, the minimum multicut is of size at most

(β lg k)F (G)2 ≤ β
√

lg k ·F (G)n1/4 ≤ γ
√

lg k ·F (G)n1/4. So, we may assume thatF (G) > n1/4/
√

lg k.
By Lemma 7, we can find a set of at mostα

√
n arcs whose removal partitionsG into two subgraphs of

order⌊n/2⌋ each (with perhaps one isolated vertex left over). Clearly,every commodity with terminals in
two different components is cut by removing the at-most-α

√
n arcs. Letf1, f2 be the maximum flows for

the remaining commodities in the two components. By the inductive assertion, fori = 1, 2 one can find a
multicut of size at most(γ

√
lg k)fi⌊n/2⌋1/4 in theith component. (This holds even if either component has

0 or 1 commodity, though this case isn’t covered by the inductive assertion.) The union of these multicuts
and the separator is a multicut for the entire instance. Its size is at most

α
√

n + γ
√

lg k ·
2

∑

i=1

fi⌊n/2⌋1/4 ≤ α
√

n + γ
√

lg k · (f1 + f2)(n/2)1/4

≤ (α + γ/21/4)
√

lg k · F (G)n1/4

≤ γ
√

lg k · F (G)n1/4,

asf1 + f2 ≤ F (G), F (G) > n1/4/
√

lg k, andγ ≥ α + γ
21/4

.

4 Some simple constructions must be large

In this section we prove thatk-commodity arc-capacitated or vertex-capacitated networks with a particular
structure and integrality ratio at leastk/2 must have exponentially many vertices. The networks constructed
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by Saks et al [20] have the structure described in Theorem 10,and so this theorem explains why the number
of vertices in these networks is exponential ink.

Theorem 8 Let H ′ = (V ′, E′) be an undirected graph in which each edge has some capacityc(e) > 0.
Replace each edgee by a pair of antiparallel arcs each of capacityc(e) and call the resulting digraph
H = (V ′, E). Add2k distinct new verticess1, t1, ..., sk, tk, getting vertex setV = V ′ ∪ {s1, t1, ..., sk, tk}.
Choose subsetsSi ⊆ V ′, Ti ⊆ V ′, Si ∩ Ti = ∅ for all i = 1, 2, ..., k and add arcs(si, v) for all v ∈ Si and
(u, ti) for all u ∈ Ti, all of infinite (or very large) capacity. WhereG is the resulting network,

C(G) ≤ (4γ lg n)F (G),

whereγ is a universal constant andn = |V ′|.

Before giving the proof, we give an application of the theorem.

Corollary 9 Using the notation of Theorem 8, ifG has integrality ratio at leastk/2, thenn ≥ 2k/(8γ).

Informally, the theorem implies that if there exists ann-vertex network with integrality ratio at leastnǫ

(for a fixedǫ > 0), then it must exploit the asymmetry (or, directedness) more than the example of Saks et
al.
Proof of Theorem 8. Starting with digraphH, define a network onV ′ by constructing one commodity for
each pair(u, v) with u ∈ Si andv ∈ Ti for somei, having sourceu and sinkv; call this networkH also.
The key point is thatF (H) = F (G) andC(H) = C(G).

We now construct an undirected version ofH and apply the result of [8] on integrality ratios of undi-
rected networks. Build an undirected network calledH ′ by starting from undirected graphH ′ and defining a
commodity for every unordered pair{u, v} such thatu ∈ Si, v ∈ Ti for somei. We haveC(H) ≤ 2C ′(H ′)
andF (H) ≥ F ′(H ′). Apply [8] to infer that there is a universal constantγ such that

C ′(H ′) ≤
(

γ lg

(

n

2

))

F ′(H ′) ≤ (2γ lg n)F ′(H ′)

and then conclude that

C(G) = C(H) ≤ 2C ′(H ′) ≤ (4γ lg n)F ′(H ′) ≤ (4γ lg n)F (H) = (4γ lg n)F (G).

Now we state a vertex-capacitated version. Avertex multicutin a vertex-capacitated digraphG is a
subset of vertices containing at least one vertex on everysi → ti path, for alli. However, to discourage
deletion of terminals, we insist that all terminals have infinite capacity. Similarly, avertex multicutin a
vertex-capacitated undirected graphG′ is a subset of vertices containing at least one vertex on every si − ti
path, for alli. Again we insist that all terminals have infinite capacity. Let NC(G), NC ′(G′) denote the
minimum capacity of a vertex multicut in digraphG or undirected graphG′, respectively.

There is an obvious LP relaxation with nonnegative variables x(v) for all v ∈ V , constrained so that for
all i, all si → ti pathsP satisfy

∑

v∈P x(v) ≥ 1, whose objective is the minimization of
∑

c(v)x(v); for
undirected graphs, we have the same problem, except involving undirectedsi − ti paths. The corresponding
duals are flow problems: Find a nonnegative value for eachsi → ti (or si − ti) path, for alli, such that the
sum of the values on all paths containing vertexv is at mostc(v), and maximize the sum of all variables.
Let NF (G), NF ′(G′) be the maximum flow value in digraphG or undirected graphG′, respectively.

Garg, Vazirani, and Yannakakis [9] prove a vertex analogue to their arc result: There is a universal
constantγ such thatNC ′(G′) ≤ (γ lg k)NF ′(G′) for all G′ with k ≥ 2 commodities.

12



Theorem 10 LetH ′ = (V ′, E′) be an undirected graph in which each vertexv has some capacityc(v) > 0
(and edges are uncapacitated). Replace each edgee by a pair of antiparallel arcs and call the resulting
digraphH = (V ′, E). Add2k distinct new verticess1, t1, ..., sk, tk having infinite capacities, getting vertex
setV = V ′ ∪ {s1, t1, ..., sk, tk}. Choose subsetsSi ⊆ V ′, Ti ⊆ V ′, Si ∩ Ti = ∅ for all i = 1, 2, ..., k and
add arcs(si, v) for all v ∈ Si and(u, ti) for all u ∈ Ti. WhereG is the result,

NC(G) ≤ (4γ lg n)NF (G),

whereγ is a universal constant andn = |V ′|.

Corollary 11 Using the notation of Theorem 10, ifG has integrality ratio at leastk/2, thenn ≥ 2k/(8γ).

The proof of Theorem 10 is similar to that of Theorem 8, so we omit it, except to note that we make the
terminals ofH andH ′ newvertices (of infinite capacity) outside ofV ′, since effectively we cannot delete
any terminal.

5 Further remarks

Anupam Gupta (personal communication, June 2001) has obtained the following improvements, based on a
preliminary version of our results.

Theorem 1′ There is a constantγ such that there is a polynomial-time algorithm that takes a networkG
satisfyingc(e) ≥ 1 for all arcse and finds a multicutM satisfyingc(M) ≤ γ F (G)2.

This implies the following improvement of Theorem 3, and also implies an improvement of Theorem 4
without the factor of

√
log k.

Theorem 3′ There is a constantγ ′ such that there is a polynomial-time algorithm that takes ann-vertex
networkG and finds a multicutM satisfyingc(M) ≤ (γ ′

√
n)F (G).
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