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Abstract
We show that the Multicut, Sparsest-Cut, and Min-2CNF≡ Deletion problems are

NP-hard to approximate within every constant factor, assuming the Unique Games Conjecture
of Khot [STOC, 2002]. A quantitatively stronger version of the conjecture implies an inapprox-
imability factor of Ω(

√
log log n).

1 Introduction

In the Multicut problem the input is an undirected graph G = (V,E) on n = |V | vertices together
with k pairs of vertices {si, ti}k

i=1, called demand pairs, and the goal is to find a minimum-size subset
of the edges M ⊆ E whose removal disconnects all the demand pairs, i.e., in the subgraph (V,E\M)
every si is disconnected from its corresponding vertex ti. In the weighted version of this problem,
the input also specifies a positive cost c(e) for each edge e ∈ E and the goal is to find a multicut M
whose total cost c(M) =

∑
e∈M c(e) is minimal. This problem is known to be APX-hard [DJP+94].

We prove that if the Unique Games Conjecture of Khot [Kho02] is true, then for every constant
L > 0 it is NP-hard to approximate Multicut within factor L. If a quantitatively stronger
version of the conjecture is true, then Multicut is NP-hard to approximate within a factor of
Ω(

√
log log n).

Our methods also yield similar bounds for Sparsest-Cut and Min-2CNF≡ Deletion. The
Sparsest-Cut problem has the same input as Multicut, but the goal is to find a subset of the
edges M ⊆ E that minimizes the ratio of |M | (in the weighted version, the total cost of M) to the
number of demand pairs that are disconnected in (V,E\M).1 Since Sparsest-Cut is not known to
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be APX-hard, our result gives the first indication that this problem might be hard to approximate.
In the Min-2CNF≡ Deletion problem the input is a weighted set of clauses on n variables, each
clause of the form (x ≡ y), where x and y are literals, and the goal is to find a Boolean assignment to
the variables minimizing the total weight of unsatisfied clauses.2 Our results immediately extend
also to the Correlation Clustering problem [BBC04, CGW03, DI03, EF03] of minimizing
disagreements in a weighted graph, because the approximability of this problem is known to be
equivalent to within constant factors to that of Multicut in weighted graphs [CGW03, EF03].

1.1 Known results on Multicut, Sparsest-Cut, and Min-2CNF≡ Deletion

Multicut and Sparsest-Cut are fundamental combinatorial problems, with connections to mul-
ticommodity flow, edge expansion, and metric embeddings. Both problems can be approximated
to within O(log k) factors through linear programming relaxations [LR88, GVY96, AR98, LLR95].
These bounds match the lower bounds on the integrality gaps of the corresponding relaxations up
to constant factors [LR88, GVY96]. Min-2CNF≡ Deletion can also be approximated to within
an O(log n) factor, as implied by the results of Klein et al. [KARR90] (see also [Vaz01, Section
20.4]), who give an approximation-preserving reduction from this problem to Multicut. Recently,
improved approximation algorithms for the Sparsest-Cut problem have been developed using
a semidefinite programming relaxation [ARV04, CGR05, ALN05]. This started with the ground-
breaking O(

√
log n)-approximation of Arora et al. [ARV04] for the uniform demands case, and the

best approximation factor currently known for general demands is O(
√

log k log log k) [ALN05].
The obvious modification of the semidefinite program used for Sparsest-Cut to solve Multicut
was recently shown to have an integrality ratio of Ω(log k) [ACMM05, Section 6], which matches,
up to constant factors, the approximation factor and integrality gap of previously analyzed linear
programming relaxations for this problem.

On the hardness side, it is known that Multicut is APX-hard [DJP+94], i.e., there exists a
constant c > 1, such that it is NP-hard to approximate Multicut to within a factor smaller than
c. It should be noted that this hardness of approximation holds even for k = 3, and that the
value of c is not specified therein, but it is certainly smaller than 2. The Min-2CNF≡ Deletion
problem is also known to be APX-hard, as follows, e.g., from the hardness of approximating linear
equations modulo 2 [H̊as01].

Assuming the Unique Games Conjecture, Khot [Kho02, Theorem 3] essentially obtained an
arbitrarily large constant-factor hardness for Min-2CNF≡ Deletion, and this implies, using the
aforementioned reduction of [KARR90], a similar hardness factor for Multicut. These results
are not explicitly noted in [Kho02], and are weaker than our results in several respects. First, our
quantitative bounds are better; thus if a stronger, yet almost as plausible, version of this conjecture
is true, then our lower bound on the approximation factor improves to L = Ω(

√
log log n), compared

with the roughly Ω((log log n)1/4) hardness that can be inferred from [Kho02]; this can be viewed as
progress towards proving tight inapproximability results for Multicut. Second, by qualitatively
strengthening our Multicut result to a bicriteria version of the problem, we extend our hardness
results to the Sparsest-Cut problem. It is unclear whether Khot’s reduction similarly leads to
a hardness result for Sparsest-Cut. Finally, our proof is simpler (both the reduction and its
analysis), and makes direct connections to cuts (in a hypercube), and thus may prove useful in

2Note that the constraints in Min-2CNF≡ Deletion are restricted to equality (and effectively non-equality)
constraints.
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further investigation of such questions.
For Sparsest-Cut, no hardness of approximation result was previously known. Independently

of our work, Khot and Vishnoi [KV05] have recently used a different construction to show an arbi-
trarily large constant factor hardness for Sparsest-Cut assuming the Unique Games Conjecture;
their hardness factor could, in principle, be pushed to (log log n)1/4−δ , for every fixed δ > 0, as-
suming a stronger quantitative version of the conjecture. Additionally, they prove an integrality
ratio lower bound of (log log n)1/4−δ , for the semidefinite program relaxations used in the recent
approximation algorithms for Sparsest-Cut.

1.2 The Unique Games Conjecture

Unique 2-prover game is the following problem. The input is a bipartite graph GQ = (Q,EQ),
where each side p = 1, 2 contains n = |Q|/2 vertices denoted qp

1 , · · · , q
p
n, and represents n possible

questions to prover p. In addition, the input contains for each edge (q1
i , q

2
j ) ∈ EQ a non-negative

weight w(q1
i , q

2
j ), abbreviated wij . These edges will be called question edges, to distinguish them

from edges in the Multicut instance. Each question to a prover is associated with a set of d
distinct answers, denoted by [d] = {1, . . . , d}. The input also contains, for every edge (q1

i , q
2
j ) ∈ EQ,

a bijection bij : [d] → [d], which maps every answer of question q1
i to a distinct answer for q2

j .
A solution A to the 2-prover game consists of an answer Ap

i ∈ [d] for each question qp
i (i.e., a

sequence {Ap
i } over all p ∈ [2] and i ∈ [n]). The solution is said to satisfy an edge (q1

i , q
2
j ) ∈ EQ if

the answers A1
i and A2

j agree, i.e., A2
j = bij(A1

i ). We assume that the total weight of all the edges
in EQ is 1 (by normalization). The value of a solution is the total weight of all the edges satisfied
by the solution. The value of the game is the maximum value achievable by any solution to the
game.

Conjecture 1.1 (Unique Games [Kho02]). For every fixed η, δ > 0 there exists d = d(η, δ)
such that it is NP-hard to determine whether a unique 2-prover game with answer set size d has
value at least 1 − η or at most δ.

We will also consider stronger versions of the Unique Games Conjecture in which η, δ, and d are
functions of n. Specifically, we will consider versions with η ≤ O(1/

√
log log n), δ ≤ 1/(log n)Ω(η),

and d = d(η, δ) ≤ O(log n). The reason for the latter upper bound is that our construction size is
exponential in d.

Plausibility of the conjecture and stronger versions of it. The Unique Games Conjecture
has been used to show optimal inapproximability results for Vertex Cover [KR03] and Max-
Cut [KKMO04, MOO05]. Proving the conjecture using current techniques appears quite hard.
In particular, the asserted NP-hardness is much stronger than what we can obtain via standard
constructions using the PCP theorem [AS98, ALM+98] and the parallel repetition theorem [Raz98],
two deep results in computational complexity.

Although the conjecture seems difficult to prove in general, some special cases are well-understood.
In particular, if at all the Unique Games Conjecture is true (and assuming P )= NP), then necessar-
ily d ≥ max{1/η1/10, 1/δ}. This follows from a rounding procedure for a semidefinite programming
relaxation presented in [Kho02]. On the other hand, Feige and Reichman [FR04] showed that for
every constant L > 0 there exists a constant δ > 0, such that it is NP-hard to distinguish whether
a unique 2-prover game (with d = d(L, δ)) has value at least Lδ or at most δ; this result falls short
of the Unique Games Conjecture in that Lδ is bounded away from 1.
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Stronger versions of the conjecture in which d, η and δ are functions of n have also been
considered. Trevisan [Tre05] and Gupta and Talwar [GT06] recently developed approximation
algorithms for solving instances of Unique Games where η decreases with n (based on an SDP and
an LP relaxation respectively, different from the one used in [Kho02]). These algorithms imply
that a stronger version of the Unique Games Conjecture can only be true if η(n) = ω(1/ log n)
(assuming P )= NP).

Very recently, Charikar, Makarychev and Makarychev [CMM06] improved upon the rounding
algorithm of Khot [Kho02] to obtain better approximation algorithms for Unique Games. Their
results imply that for Unique Games Conjecture to be true, we must have η = Ω(1/ log d) and
δ = Ω(d−Ω(η)). If the Unique Games Conjecture is true, these bounds are nearly optimal in that
strengthening them (beyond low order terms) would refute the conjecture. Furthermore, the results
nearly match the integrality gap of [KV05] for the natural SDP relaxation of Unique Games. These
together suggest that the unique 2-prover game may in fact be hard for d = Θ(log n), δ = d−Ω(η),
and every Ω( log d

d ) ≤ η < 1/2.
Our Ω(

√
log log n) hardness result (Corollary 1.4 below) requires η ≤ O(1/

√
log log n), δ ≤

1/(log n)Ω(η), and d = d(η, δ) ≤ O(log n), which is not excluded by the above results.

1.3 Our results

We prove the following hardness of approximation for Multicut, Sparsest-Cut, and Min-
2CNF≡ Deletion based on the Unique Games Conjecture.

Theorem 1.2. Suppose that for η = η(n), δ = δ(n), and d = d(η, δ) ≤ O(log n), it is NP-
hard to determine whether a unique 2-prover game with |Q| = 2n vertices and answer set size d
has value at least 1 − η(n) or at most δ(n). Then there exist constants c1 and c2 with L(n) =
c1 min{ 1

η(nc2 ) , log
1

δ(nc2 )}), such that it is NP-hard to approximate Multicut, Sparsest-Cut, and
Min-2CNF≡ Deletion to within factor L(n).

This theorem immediately implies the following two specific hardness results.

Corollary 1.3. The Unique Games Conjecture implies that, for every constant L > 0, it is NP-
hard to approximate Multicut, Sparsest-Cut, and Min-2CNF≡ Deletion to within factor
L.

Corollary 1.4. A stronger version of the Unique Games Conjecture in which η ≤ O(1/
√

log log n),
δ ≤ 1/(log n)Ω(η), and d = d(η, δ) ≤ O(log n), implies that for some fixed c > 0, it is NP-hard to ap-
proximate Multicut, Sparsest-Cut, and Min-2CNF≡ Deletion to within factor c

√
log log n.

For Sparsest-Cut our hardness results hold only for the search version (in which the algorithm
needs to produce a cutset and not only its value), since our proof employs a Cook reduction. As
noted before, a similar (but slightly weaker) bound is proved in [KV05].

Remark. The conference version of our paper [CKK+05] presented a weaker bound than that
of Theorem 1.2, with the dependence on η being Ω(log 1/η). Based on a stronger version of the
Unique Games Conjecture that has now been proven false by Charikar et al. [CMM06], we claimed
an Ω(log log n) hardness result in [CKK+05]. Our current analysis only implies an Ω(

√
log log n)

hardness, based on the strongest unfalsified version of the Unique Games Conjecture. The reduction
is exactly the same, but the analysis is different (and perhaps simpler), as the current version uses
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Friedgut’s Junta Theorem [Fri98] rather than a theorem of Kahn, Kalai, and Linial [KKL88]. This
improvement was motivated, in part, by the integrality ratio of [KV05] for unique games, which
suggests a significant asymmetry between η(n) and δ(n).

1.4 Preliminaries

Regular Unique Games. A unique 2-prover game is called regular if the total weight of question
edges incident at any single vertex is the same, i.e., 1/n, for every vertex in Q. We now show that
we can assume without loss of generality that the graph in the Unique Games Conjecture is regular.
For simplicity, we state this only for fixed η and δ. A similar result holds when they depend on n,
because we increase the input size by no more than a polynomial factor, and increase η and δ by
no more than a constant factor.

Lemma 1.5. The Unique Games Conjecture implies that for every fixed η, δ > 0, there exists
d = d(η, δ) such that for any n = ω(max( 1

η , 1
δ )) it is NP-hard to decide if a regular unique n-vertex

2-prover game has value at least 1 − η or at most δ.

The proof is given in Appendix A, and is based on an argument of Khot and Regev [KR03,
Lemma 3.3]. The dependence of d on η and δ is important for our purposes. We thus point out
that this argument does not change d = d(η, δ), and increases the size of the instance by at most
a polynomial factor in n. This is acceptable in the setting of Theorem 1.2, since the requirement
d = d(η, δ) ≤ O(log n) is maintained and only the unspecified constants therein are affected.

Bicriteria Multicut. Our proof for the hardness of approximating Sparsest-Cut relies on a
generalization of Multicut, where the solution M is required to cut only a certain fraction of the
demand pairs. For a given graph G = (V,E), a subset of the edges M ⊆ E will be called a cutset
of the graph. A cutset whose removal disconnects all the demand pairs is a multicut.

An algorithm is called an (α,β)-bicriteria approximation for Multicut if, for every input
instance, the algorithm outputs a cutset M that disconnects at least α fraction of the demands
and has cost at most β times that of the optimum multicut. In other words, if M∗ is a least cost
cutset that disconnects all the k demand pairs, then M disconnects at least αk demand pairs and
c(M) ≤ β · c(M∗).

Hypercubes, dimension cuts, and antipodal vertices. As usual, the d-dimensional hyper-
cube (in short a d-cube) is the graph C = (VC , EC) with the vertex set VC = {0, 1}d, and an edge
(u, v) ∈ EC for every two vertices u, v ∈ {0, 1}d that differ in exactly one dimension (coordinate).
An edge (u, v) is called a dimension-a edge, for a ∈ [d], if u and v differ in dimension a, i.e.,
u⊕ v = 1a where 1a is a unit vector along dimension a. The set of all the dimension-a edges in the
hypercube is called the dimension-a cut in the hypercube; a dimension cut is a dimension-a cut for
some dimension a. The antipode of a vertex u is the (unique) vertex u all of whose coordinates are
different from those of u, i.e., u = u ⊕ 1 where 1 is the vector with 1 in every coordinate. Notice
that v is the antipode of u if and only if u is the antipode of v; thus, {u, u} form an antipodal pair.
The following simple fact will be key in our proof.

Fact 1.6. In every hypercube, a single dimension cut disconnects every antipodal pair.
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Organization. In Section 2 we prove the part of Theorem 1.2 regarding the Multicut problem;
our proof will actually hold for bicriteria approximation for Multicut. We will then show in
Section 3 that this stronger result yields a similar hardness of approximation for Sparsest-Cut.
Finally, in Section 4, we modify the reduction to obtain a hardness of approximation for Min-
2CNF≡ Deletion.

2 Hardness of bicriteria approximation for Multicut

In this section we prove the part of Theorem 1.2 regarding the Multicut problem, namely, that
the Unique Games Conjecture implies that it is NP-hard to approximate Multicut within a
certain factor L. Our proof will actually show a stronger result—for every α ≥ 7/8 it is NP-hard
to distinguish between whether there is a multicut of cost less than n2d+1 (the YES instance)
or whether every cutset that disconnects at least αk demand pairs has cost at least n2d+1L (the
NO instance). This implies that it is NP-hard to obtain an (α, L)-bicriteria approximation for
Multicut.

We start by describing a reduction from unique 2-prover game to Multicut (Section 2.1), and
then proceed to analyze the YES instance (Section 2.2) and the NO instance (Sections 2.3 and 2.4).
Finally, we discuss the gap that is created for a bicriteria approximation of Multicut (Section
2.5).

2.1 The reduction

Given a regular unique 2-prover game instance GQ = (Q,EQ) with n = |Q|/2 and the corresponding
edge weights wij and bijections bij : [d] → [d], we construct a Multicut instance G = (V,E) with
demand pairs, as follows. For every vertex (i.e., question) qp

i ∈ Q, construct a d-dimensional
hypercube Cp

j ; the dimensions in this cube correspond to answers for the question qp
j .

3 For each
of the 2n hypercubes, we let the edges inside the hypercube have cost 1, and call them hypercube
edges.

For each question edge (q1
i , q

2
j ) ∈ EQ, we extend bij (in the obvious way) to a bijection from the

vertices of C1
i to the vertices of C2

j , and denote the resulting bijection by b′ij : {0, 1}d → {0, 1}d.
Formally, for every u ∈ {0, 1}d (vertex in C1

i ) and every a ∈ [d], the a-th coordinate of b′ij(u) is
given by (b′ij(u))a = ub−1

ij (a). Then, we connect every vertex u ∈ C1
i to the corresponding vertex

b′ij(u) ∈ C2
j using an edge of cost wijΛ, where Λ = n/η is a scaling factor. These edges are called

cross edges.
Denote the resulting graph by G = (V,E). Notice that V is simply the union of the vertex sets

of the hypercubes Cp
i , for all p ∈ [2] and i ∈ [n], and that the edge set E contains two types of

edges, hypercube edges and cross edges.
To complete the reduction, it remains to define the demand pairs. For a vertex u ∈ V , the

antipode of u in G, denoted u, is defined to be the vertex antipodal to u in the hypercube Cp
i that

contains u. The set D of demand pairs then contains every pair of antipodal vertices in G, and
hence k = |D| = n2d−1. Note that every vertex of G belongs to exactly one demand pair.

3This is a standard technique in PCP constructions for graph optimization problems. A hypercube can be
interpreted as a “long code” [BGS98], and a dimension cut is the encoding of an answer in the 2-prover game.
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2.2 The YES instance

Lemma 2.1. If there is a solution A for the unique 2-prover game GQ such that the total weight
of the satisfied questions is at least 1 − η, then there exists a multicut M ⊆ E for the Multicut
instance G such that c(M) ≤ 2d+1n.

Proof. Let A be such a solution for GQ. Construct M by taking the following edges. For every
question qp

i ∈ Q and the corresponding answer Ap
i (of prover p), take the dimension-Ap

i cut in cube
Cp

i . In addition, for every edge (q1
i , q

2
j ) ∈ EQ that the solution A does not satisfy, take all the cross

edges between the corresponding cubes C1
i and C2

j .
We first claim that removing M from G disconnects all the demand pairs. To see this, we

define a Boolean function f : V → {0, 1} on the graph vertices. For every cube Cp
i , consider the

dimension-Ap
i cut; it disconnects the cube into two connected components, one containing the all

zeros vector 0 and one containing the all ones vector 1. For every v ∈ Cp
i , let f(v) = 0 if v is in

the same side as 0, and f(v) = 1 otherwise. This is exactly the Ap
i -th bit in v, i.e., f(v) = vAp

i
.

Now consider any demand pair (v, v), and note that f(v) = 1 − f(v). We will show below that
every edge (u, v) /∈ M satisfies the property f(u) = f(v). This will clearly complete the proof of
the claim.

Consider first a hypercube edge (u, v) in Cp
i that is not a dimension-Ap

i edge. Then f(u) =
uAp

i
= vAp

i
= f(v), by the definition of f . Next consider a cross edge (u, v) /∈ M . Then this edge

lies between cubes C1
i and C2

j , such that the question edge (q1
i , q

2
j ) satisfied by the unique 2-prover

game solution A. Therefore, bij(A1
i ) = A2

j . Then, f(u) = uA1
i

= vbij(A1
i ) = vA2

j
= f(v).

Finally, we bound the cost of the solution. Let S be the set of question edges not satisfied by
the solution A. The total cost of the multicut solution is thus

c(M) = 2n 2d−1 + 2dΛ
∑

(q1
i ,q2

j )∈S

wij ≤ 2dn + 2dΛη = 2d+1n.

2.3 Hypercube cuts, Boolean functions, influences, and juntas

We will analyze the NO instance shortly, but first we set up some notation and present a few
technical lemmas regarding cuts in hypercubes. In particular, we present Theorem 2.2, which will
have a crucial role in the sequel.

Recall that the dimensions of the hypercubes in the multicut instance correspond to answers to
the 2-prover game. Therefore, we would like to determine which dimensions are the most significant
participants in a cut on the cube, as follows. Let C = (VC , EC) be a d-dimensional hypercube.
It will be useful to represent cuts on the hypercube C as functions f : VC → Z. Such a function
f corresponds to a partition of VC into sets {f−1(r) | r ∈ f(VC)}, which in turn corresponds
to the cutset {(u, v) ∈ EC | f(u) )= f(v)}. Notice that f can be described as a function on d
Boolean variables (corresponding to the dimensions of the hypercube), where the dimension a ∈ [d]
corresponds to the a-th variable. The influence of a dimension (variable) a ∈ [d] on the function f ,
denoted If

a , is defined as the fraction of the dimension a-edges (u, v) ∈ EC for which f(u) )= f(v).
In other words, If

a = Pru∈VC [f(u) )= f(u ⊕ 1a)] where 1a is a unit vector along dimension a. The
total influence (also called average sensitivity) of f is

∑
a∈[d] I

f
a . We say that the function f is a
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k-junta if there exists a subset J ⊆ [d], |J | ≤ k, such that for every variable (dimension) a /∈ J and
for every u ∈ VC , we have f(u) = f(u ⊕ 1a). In other words, f depends on at most k variables,
and the remaining variables have zero influence. Two functions f and f ′ are said to be ε-close if
Pru∈VC [f(u) )= f ′(u)] ≤ ε.

An important special case is that of Boolean functions, i.e., g : VC → {0, 1}, which corresponds
to a bipartition of VC . The balance of a Boolean function g is defined as min{ |g−1(0)|

|VC | , |g−1(1)|
|VC | }, i.e.,

the minimum of Pru∈VC [g(u) = 0] and Pru∈VC [g(u) = 1].
The next theorem, due to Friedgut [Fri98], asserts that every function of low total influence is

close to a junta. We will later use it to determine a set of dimensions that are the most significant
participants in a low-cost cutset.

Theorem 2.2 (Friedgut’s Junta Theorem). Let g be a Boolean function defined on a hypercube
and fix ε > 0. Then g is ε-close to a Boolean function h defined on the same cube and depending
on only 2O(T/ε) variables, where T =

∑
a∈[d] I

g
a is the total influence of g.

2.4 The NO instance

Lemma 2.3. There exists L = Ω(min{η−1, log δ−1}) such that if the Multicut instance G has
a cutset of cost at most 2d+1nL whose removal disconnects α ≥ 7/8 fraction of the demand pairs,
then there is a solution A for the unique 2-prover game GQ whose value is larger than δ.

Proof. Let L = min{c/η, c log(1/δ)} for a constant c > 0 to be determined later, and let M ⊆ E
be a cutset of cost c(M) ≤ 2d+1nL whose removal disconnects α ≥ 7/8 fraction of the demand
pairs. Using M , we will construct for the unique 2-prover game GQ a randomized solution A
whose expected value is larger than δ, thereby proving the existence of a solution of value larger
than δ. The randomized solution A (i.e., a strategy for the two provers) is defined as follows.
Label each connected component of G \ M as either 0 or 1 independently at random with equal
probabilities, and define a Boolean function f : V → {0, 1} by letting f(v) be the label of the
connected component of v ∈ V . Next, for each vertex (question) qp

i ∈ Q consider the restriction of
f to the hypercube Cp

i ⊂ V , denoted f|Cp
i
, and apply to it Theorem 2.2 (Friedgut’s Junta Theorem)

with ε = 1/64, to obtain a subset of the variables (dimensions) Jp
i ⊆ [d]; the idea is that for many

hypercubes we obtain |Jp
i | ≤ 2O(L/ε). Finally, choose the answer Ap

i uniformly at random from Jp
i ,

independently of all other events.
We proceed to analyze the expected value of this randomized solution A. Recall that the value

of a solution is equal to the probability that, for a question edge (q1
i , q

2
j ) chosen at random with

probability proportional to its weight, we have a2
j = bij(a1

i ). Notice that although q1
i and q2

j are
correlated, each one is uniformly distributed because Q is regular. Without loss of generality,
we assume removing M disconnects at least as many demand pairs inside the cubes {C1

l }l∈[n] as
inside the cubes {C2

l }l∈[n]. Now we claim that with a constant probability over the choice of a
question edge, the cut M has a low cost over edges incident on the corresponding hypercubes, and
disconnects many demand pairs in the hypercubes. In other words, the quality of the cut locally is
nearly as good as the quality of the cut globally. In particular, we upper bound the probability of
the following four “bad” events (for a random question edge (q1

i , q
2
j )):

E1 = fewer than 1/8-fraction of the vertices v ∈ C1
i satisfy f(v) )= f(v).

E2 = M contains more than 2d+5L hypercube edges in C1
i .
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E3 = M contains more than 2d+5L hypercube edges in C2
j .

E4 = M contains more than 2d+5ηL cross edges between C1
i and C2

j .

First, by our assumption above, removing M disconnects at least α ≥ 7/8 fraction of the demand
pairs inside the cubes {C1

l }l∈[n]. Thus, the expected fraction of demand pairs (v, v) in C1
i that are

not disconnected in G\M (and thus clearly f(v) = f(v)) is at most 1/8. In addition, the expected
fraction of demand pairs (v, v) in C1

i that are disconnected in G \ M and satisfy f(v) = f(v), is
at most 1/2, because different connected components of G \ M are labeled independently. Thus,
the expected fraction of vertices v ∈ C1

i for which f(v) = f(v) is at most 5/8, and by Markov’s
inequality, Pr[E1] ≤ 5/7. Next, the cutset M contains at most 2d+1nL hypercube edges, thus the
expected number of edges in C1

i ∪ C2
j that are contained in M is at most 2d+1L, and by Markov’s

inequality Pr[E2 ∪ E3] ≤ 1/16. Finally, Pr[E4] ≤ 1/16, as otherwise the total cost of M along the
cross edges corresponding to this event is more than 1/16 · (2d+5ηL) ·Λ = 2d+1nL ≥ c(M). Taking
a union bound, we upper bound the probability that any of the bad events occurs by

Pr[E1 ∪ E2 ∪ E3 ∪ E4] ≤
5
7

+
2
16

<
6
7
.

In order to lower bound the expected value of the randomized solution A, we would like to show
that if none of the above bad events happens, then the two sets of dimensions J1

i and J2
j obtained

using Friedgut’s Junta Theorem are relatively small, and further they are in “weak agreement”, and
these two properties will immediately imply that the randomized solution A satisfies Pr[bij(A1

i ) =
A2

j ] > δ. Observe that if (u, v) ∈ E and f(u) )= f(v), then (u, v) ∈ M . If the event E2 does not
occur, then the total influence of f|C1

i
is at most 64L, and thus |J1

i | ≤ 2O(L/ε). Similarly, if the
event E3 does not occur, then the total influence of f|C2

j
is at most 64L, and thus |J2

j | ≤ 2O(L/ε).
In addition, if the event E1 does not occur, then the balance of f|C1

i
is at least 1/16.

We now claim that if none of the above bad events happens then there is a ∈ J1
i for which

bij(a) ∈ J2
j . Indeed, assume towards contradiction that J1

i ∩ b−1
ij (J2

j ) = ∅. Then by construction
there is a Boolean function g1

i : C1
i → {0, 1} that is ε-close to f|C1

i
and depends on only variables

in J1
i . Clearly, the balance of g1

i is close to that of f|C1
i
, namely, at least 1/16 − ε. Similarly, there

is a Boolean function g2
j : C2

j → {0, 1} that is ε-close to f|C2
j

and depends on only variables in J2
j .

We can relate these two functions via b′ij : Ci
1 → C2

j , namely by considering h : C1
i → {0, 1} given

by h(v) = g2
j (b

′
ij(v)).

Notice that h is ε-close to f|C2
j
◦ b′ij, and that it depends only on variables in b−1

ij (J2
j ). Therefore

g1
i and h depend on disjoint sets of variables. It follows that Prv∈C1

i
[g1

i (v) )= h(v)] ≥ 1/16 − ε,
because if we condition on the value of the variables in b−1

ij (J2
j ) we get that h(v) is determined, but

this does not affect the distribution of g1
i (v), which still attains each value (0 or 1) with probability

at least 1/16 − ε. Consequently, g1
i and h = g2

j ◦ b′ij are not (1/16 − ε)-close.
On the other hand, the event E4 not occurring implies that at most 32ηL vertices v ∈ C1

i
satisfy f(v) )= f(b′ij(v)). In other words, f|C1

i
is (32ηL)-close to f|C2

j
◦ b′ij . The former is ε-close

to g1
i while the latter is ε-close to g2

j ◦ b′ij (because b′ij is a bijection on the variables), and by the
triangle inequality we get that g1

i and h = g2
j ◦ b′ij are 2ε+ 32ηL close. If c > 0 is sufficiently small,

2ε + 32ηL < 1/16 − ε, which yields a contradiction.
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Using the above claim we get that for a random question edge,

Pr[A2
j = bij(A1

i )] ≥ Pr[A1
i ∈ J1

i ∩ b−1
ij (J2

j ), A2
j = bij(A1

i )]

≥ 1
7
· 2−O(L/ε) · 2−O(L/ε)

= 2−O(L).

We conclude that the expected value of the randomized solution A is Pr[A2
j = bij(A1

i )] ≥
2−O(L) > δ, where the last inequality holds if c > 0 is sufficiently small, and this completes the
proof of Lemma 2.3.

2.5 Putting it all together

The above reduction from unique 2-prover game to Multicut produces a gap of L(n) = Ω(min{ 1
η(n) , log

1
δ(n)}).

We assumed d(η, δ) ≤ O(log n), and thus the resulting Multicut instance G has size N =
(n2d)O(1) = nΘ(1). It follows that in terms of the instance size N , the gap is

L(N) = Ω(min{ 1
η(NΘ(1))

, log 1
δ(NΘ(1))

}).

This completes the proof of the part of Theorem 1.2 regarding the Multicut problem, namely,
that the Unique Games Conjecture implies that it is NP-hard to approximate Multicut within the
above factor L(N). In fact, the above proof shows that it is NP-hard to obtain even a (7/8, L(N))-
bicriteria approximation.

Note that the number of demand pairs is k = n2d−1 = nΘ(1), and thus the hardness of approx-
imation factor is similar when expressed in terms of k as well. Note also that all edge weights in
the Multicut instance constructed above are bounded by a polynomial in the size of the graph.
Therefore, via a standard reduction, a similar hardness result holds for the unweighted Multicut
problem as well.

3 Hardness of approximating Sparsest-Cut

In this section we prove the part of Theorem 1.2 regarding the Sparsest-Cut problem. The proof fol-
lows immediately from the next lemma in conjunction with the hardness of bicriteria approximation
of Multicut (from the Section 2).

Lemma 3.1. Let 0 < α < 1 be a constant. If there exists a polynomial-time algorithm for
Sparsest-Cut that produces a cut whose value is within factor ρ ≥ 1 of the minimum, then there
is a polynomial time algorithm that computes an (α, 2ρ

1−α )-bicriteria approximation for Multicut.

Proof. Fix 0 < α < 1, and suppose A is a polynomial-time algorithm for Sparsest-Cut that
produces a cut whose value is within factor ρ ≥ 1 of the minimum. Now suppose we are given an
input graph G = (V,E) and k demand pairs {si, ti}k

i=1. We may assume without loss of generality
that every si is connected (in G) to its corresponding ti. Let cmin and cmax be the smallest and
largest edge costs in G, and let n = |V |.

We now describe the bicriteria approximation algorithm for Multicut. For every value C ∈
[cmin, n2cmax] that is a power of 2, execute a procedure that we will describe momentarily to
compute a cutset MC ⊆ E, and report, from all these cutsets MC whose removal disconnects at
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least αk demand pairs, the one of least cost. For a given value C > 0, the procedure starts with
MC = ∅, and then iteratively “augments” MC as follows: Take a connected component S of G\MC ,
apply algorithm A to G[S] (the subgraph induced on S and all the demand pairs that lie inside S),
and if the resulting cutset ES has value (in G[S]) at most ρ

1−α · C
k , then add the edges ES to MC .

Here, the value (ratio of cost to demands cut) of ES is defined as bS = c(ES)/|DS |, where DS is
the collection of demand pairs that lie in G[S] and get disconnected (in G[S]) when ES is removed.
Proceed with the iterations until for every connected component S in G \MC we have bS > ρ

1−α
C
k ,

at which point the procedure returns the cutset MC .
This algorithm clearly runs in polynomial time. To analyze its performance, we first claim that

for every value C, the cutset MC returned by the above procedure has sparsest-cut value (ratio
of cost to demand disconnected, in G) at most ρ

1−α
C
k . Indeed, suppose the procedure performs t

augmentation iterations. Denote by Si the connected component S that is cut at iteration i ∈ [t],
by ESi the corresponding cutset output by A, and by DSi the corresponding set of demand pairs
that get disconnected. Clearly, MC is the disjoint union E1 ∪ · · · ∪ Et, and it is easy to verify that
the collection DC of demand pairs cut by the cutset MC is the disjoint union DS1 ∪ · · ·∪DSt . Thus,

c(MC) =
t∑

i=1

c(ESi) ≤ ρ

1 − α
· C

k

t∑

i=1

|DSi |

=
ρ

1 − α
· C

k
|DC |,

which proves the claim.
For the sake of analysis, fix an optimal multicut M∗ ⊆ E, i.e., a cutset of G whose removal

disconnects all the demand pairs and has the least cost. The sparsest-cut value of M∗ is b∗ =
c(M∗)/k. We will show that if C ∈ [c(M∗), 2c(M∗)], then the above procedure produces a cutset
MC whose removal disconnects a collection DC containing |DC | ≥ αk demand pairs; this will
complete the proof of the lemma, because it immediately follows that

c(MC) ≤ ρ

1 − α
· C

k
|DC | ≤

ρ

1 − α
· 2c(M∗),

and clearly c(M∗) ∈ [cmin,
(n
2

)
· cmax]. So suppose now C ∈ [c(M∗), 2c(M∗)] and assume for

contradiction that |DC | < αk. Denote by V1, . . . , Vp ⊆ V the connected components of G \ MC ,
and let Dj contain the demand pairs that lie inside Vj. It is easy to see that

∑p
j=1 |Dj | = k −

|DC | > (1 − α)k. Similarly, let M∗
j be the collection of edges in M∗ that lie inside Vj. Then

c(M∗) ≥
∑p

j=1 c(M∗
j ). Notice that, in every induced graph G[Vj ], the edges of M∗

j form a cutset
(of G[Vj ]) that cuts all the demand pairs in Dj . Using the stopping condition of the procedure, and
since A provides an approximation within factor ρ, we have c(M∗

j ) ≥ 1
1−α

C
k |Dj | (the inequality is

not strict because Dj might be empty). We thus derive the contradiction

c(M∗) ≥
p∑

j=1

c(M∗
j ) ≥ 1

1 − α
· C

k

p∑

j=1

|Dj | > c(M∗).

This shows that when C ∈ [c(M∗), 2c(M∗)], the procedure stops with a cutset MC whose removal
disconnects |DC | ≥ αk demand pairs, and concludes the proof of the lemma.
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4 Hardness of approximating Min-2CNF≡ Deletion

In this section, we modify the reduction in Section 2.1 to obtain a hardness of approximation for
Min-2CNF≡ Deletion. In particular, we reduce the Multicut instance obtained in Section 2.1
to Min-2CNF≡ Deletion, such that a solution to the latter gives a Multicut of the same cost
in the former.

The Min-2CNF≡ Deletion instance contains 2d−1n variables, one for each demand pair (u, u).
In particular, for every demand pair (u, u) ∈ D, we associate the literal xu with u and the literal
xu = ¬xu with u. For every edge e = (u, v) in the graph G there is a clause (xu ≡ xv) whose weight
is equal to the edge-weight we.

The following lemma is immediate from the construction and implies an analog of Lemma 2.3
for Min-2CNF≡ Deletion.

Lemma 4.1. Given an assignment S of cost W to the above instance of Min-2CNF≡ Deletion,
we can construct a solution of cost W to the Multicut instance G.

Proof. Let M be the set of edges (u, v) for which S(xu) )= S(xv). Then M corresponds to the
clauses that are not satisfied by S and has weight W . The lemma follows from observing that M
is indeed a multicut—S is constant over connected components in G \ M , and for every demand
pair (u, u), we have S(xu) )= S(xu).

We now give an analog of Lemma 2.1.

Lemma 4.2. If there is a solution A for the unique 2-prover game GQ such that the total weight of
the satisfied questions is at least 1−η, then there exists an assignment S for the above Min-2CNF≡
Deletion instance such that c(S) ≤ 2d+1n.

Proof. Given the solution A for GQ, we construct an assignment S as follows. For every question
qp
i and for every vertex u in the corresponding hypercube Cp

i , define S(xu) to be the Ap
i -th bit of

u, i.e., S(xu) = uAp
i
. Note that this is a valid assignment, i.e., S(xu) = 1− S(xu) for all vertices u,

as uAp
i

= 1 − uAp
i
.

We bound the cost of the solution by first analyzing the clauses corresponding to hypercube
edges in the corresponding Multicut instance. Consider unsatisfied clauses containing both vari-
ables in the same hypercube Cp

i , and note that the hypercube edges corresponding to these clauses
form a dimension-Ap

i cut in the cube Cp
i . Therefore, the total weight of these clauses is at most

(2d−1)(2n) = 2dn.
Finally, consider an unsatisfied clause (xu ≡ xv) corresponding to vertices in different hyper-

cubes C1
i and C2

j . Then S(xu) )= S(xv) implies that uA1
i

= vbij(A1
i ) )= vA2

j
, or, bij(A1

i ) )= A2
j . There

are at most 2d such clauses for each question pair not satisfied by the solution A. Therefore, the
total weight of such clauses is at most 2dηΛ = 2dn.

The lemma follows from adding the two costs.

Lemmas 4.1 and 4.2 along with Lemma 2.3 imply the part of Theorem 1.2 regarding Min-
2CNF≡ Deletion.
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5 Concluding remarks

Several important questions are left open. First, one would like to eliminate the dependence on the
Unique Games Conjecture, and obtain a “standard” hardness of approximation result. Yet another
challenge is to improve the hardness factor. For Multicut, the Ω(log k) integrality ratio lower
bound of [ACMM05] suggests that the inapproximability bound may be improved. In particular,
(log k)c hardness for a constant c > 1/2 will separate the approximability of Multicut from that
of Sparsest-Cut (in light of the recent approximation due to [ALN05]).

The main bottleneck to improving the hardness factor lies in Friedgut’s Junta Theorem (and
similarly in the result of [KKL88] that we used in the conference version). These bounds are tight
in general, as shown by the tribes function [BL90] (see also [Fri98, Section 2]).

A third challenge is to obtain hardness of approximation results for the uniform-demand case of
the Sparsest-Cut problem or for the Balanced-Cut problem. Our results do not apply to this
special but important case; in particular, if a 2-prover system has a low-cost balanced cut, then the
corresponding graph on hypercubes would have a low-cost balanced cut regardless of the value of
the 2-prover game. Alternatively, of course, one might improve the approximation algorithms for
any of these problems.
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A Regularity of the Unique Games instance

Proof of Lemma 1.5. Given a unique 2-prover game Q, we describe how to convert it to a regular
game while (nearly) preserving its completeness and soundness. Let the maximum weight of any
edge in Q be wmax = maxe we. First we remove all edges of weight less than 1

2n3 wmax from the
graph, and renormalize the weights of the remaining edges so that they still sum to 1. Note that
the optimal solution to the game has value at least wmax, and this edge-removal step reduces the
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value of any solution by at most 1
2nwmax. So any solution of value 1 − η in the original game now

has value at least 1−η− 1
2n , and any solution of value at most δ in the original game now has value

at most δ(1 + 1
2n). Therefore, this first step changes the soundness and completeness parameters

by at most an additive 1
2n .

Next, let wmin be the minimum weight of any edge. We round down weights of all edges to
the nearest multiple of t = 1

2nwmin, and renormalize the weights so that they sum to 1. As before,
we only remove a 1

2n fraction of the total weight and renormalize by a factor of at most 1 + 1
2n .

Therefore, this changes the soundness and completeness parameters by at most an additive 1
2n . The

total change to the parameters is at most 1
n , which is at most a constant factor by our assumption

regarding n.
Now we convert Q to a regular graph Q′ as follows. For each prover p ∈ {1, 2} and question

qp
i , form W (p, i)/t vertices qp

i (1), · · · , q
p
i (W (p, i)/t), where W (p, i) is the total weight of all the

edges incident on qp
i . For every pair of vertices (q1

i , q
2
j ), connected by an edge e in Q, we form an

edge between q1
i (x) and q2

j (y), for all possible values of x and y, with weight we
t

W (1,i)
t

W (2,j) . The
bijection on the edge (q1

i (x), q2
j (y)) is set to be the same as the original bijection bij on edge (q1

i , q
2
j ).

Note that the total weight of all the edges remains the same as before. Each new vertex q1
i (x)

has total weight
∑

e we
t

W (1,i)
t

W (2,j)
W (2,j)

t = t, where the sum is over all edges e incident on q1
i . The

same holds for any new vertex q2
j (y). Therefore, the graph is regular. Furthermore, the number of

vertices increases by a factor of at most 4n4.
It only remains to show that the soundness and completeness parameters are preserved. To see

this, note that any solution on the original graph Q can be transformed to a solution of the same
value on Q′, by picking the same answer for every vertex qp

i (x) in Q′ as the answer picked for qp
i

in Q. Likewise, consider a solution in Q′. Note that for a fixed p and i, all questions qp
i (x) are

connected to identical sets of vertices with identical bijections. Thus, we can replace answers to all
these questions by the answer to the question qp

i (x) that has the most satisfied edges incident on
it, thereby increasing the value of the solution. Now, the solution in Q that picks the same answer
for qp

i as the answer for qp
i (x) in Q′ has the same weight as the new solution in Q′ which is at least

as much as the value of the original solution in Q′.
Thus for every solution in Q, there is a solution of the same or larger weight in Q′ and vice versa.

This proves that the two games have exactly the same soundness and completeness parameters.
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