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Abstract. In the 0-extension problem, we are given a weighted graph with some nodes marked
as terminals and a semimetric on the set of terminals. Our goal is to assign the rest of the nodes
to terminals so as to minimize the sum, over all edges, of the product of the edge’s weight and the
distance between the terminals to which its endpoints are assigned. This problem generalizes the
multiway cut problem of Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis and is closely
related to the metric labeling problem introduced by Kleinberg and Tardos.

We present approximation algorithms for 0-Extension. In arbitrary graphs, we present
a O(log k)-approximation algorithm, k being the number of terminals. We also give O(1)-
approximation guarantees for weighted planar graphs. Our results are based on a natural metric
relaxation of the problem, previously considered by Karzanov. It is similar in flavor to the linear
programming relaxation of Garg, Vazirani, and Yannakakis for the multicut problem and similar to
relaxations for other graph partitioning problems. We prove that the integrality ratio of the metric
relaxation is at least c

√
lg k for a positive c for infinitely many k. Our results improve some of the

results of Kleinberg and Tardos and they further our understanding on how to use metric relaxations.

Key words. metric space, approximation algorithm, linear programming relaxation, graph
partitioning

1. Introduction. Let V be a finite set, let T ⊆ V , and let d be a semimetric
on T .1 Then a semimetric δ on V is an extension of d to V iff for every i, j ∈ T ,
δ(i, j) = d(i, j). If, in addition, for every i ∈ V there exists j ∈ T such that δ(i, j) = 0,
then δ is a 0-extension of d to V .

We consider the following optimization problem, denoted 0-Extension and posed
by Karzanov [13]: Given a clique V with a nonnegative edge weight c(e) for every
edge e, a subset T of the nodes, and a semimetric d on T , find a 0-extension δ of d to
V that minimizes

∑
uv∈E c(u, v)δ(u, v).

Before doing anything else, we give an alternate formulation of 0-Extension:
Given the input above, find a function f : V → T such that f(t) = t for all t ∈ T which
minimizes

∑
uv∈E c(u, v)d(f(u), f(v)). It is easy to see that the two formulations are

equivalent, for given a feasible solution of the first kind, we can define f(u) to be
some terminal i such that δ(u, i) = 0, choosing f(u) = u if u ∈ T , and given a
feasible solution of the second kind, we can define δ(u, v) = d(f(u), f(v)) for all
u, v ∈ V ; the costs of the two solutions are identical because if u, v ∈ V , i, j ∈ T , and
δ(u, i) = δ(v, j) = 0, then δ(u, v) = δ(i, j) = d(i, j). Often, instead of defining the
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1A function d : T × T → R is a semimetric on T iff for every i1, i2, i3 ∈ T , d(i1, i1) = 0,
d(i1, i2) ≥ 0, d(i1, i2) = d(i2, i1), and d(i1, i2) + d(i2, i3) ≥ d(i1, i3). If, in addition, d(i1, i2) = 0
implies i1 = i2, then d is a metric.
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edge weights on all edges of a clique on V , we will define c(u, v) for each edge uv in a
given graph G = (V,E), where c(u, v) = 0 for uv 6∈ E is assumed. That way, we can
exploit the structure of G if, say, G is planar.

It helps to compare 0-Extension to the multiway cut problem of Dahlhaus,
Johnson, Papadimitriou, Seymour, and Yannakakis [7, 8]. Multiway Cut is the
following problem: Given a graph G = (V,E) with nonnegative edge weights c : E →
R, and a subset T ⊆ V of terminals, find a mapping f : V → T such that f(t) = t for
all t ∈ T , so as to minimize ∑

uv∈E,f(u) 6=f(v)

c(u, v).

In other words, find a set of edges of minimum total weight whose removal disconnects
all terminal pairs. If we define d to be the uniform metric on T , i.e., d(i, j) = 1 if
i 6= j and d(i, i) = 0, then Multiway Cut is exactly this problem: Find f : V → T
with f(t) = t for all t ∈ T , so as to minimize∑

uv∈E

c(u, v) · d(f(u), f(v)),

as d(f(u), f(v)) = 1 if f(u) 6= f(v) and d(f(u), f(v)) = 0 otherwise. Now 0-
Extension is the natural generalization of Multiway Cut in which, instead of
being the uniform metric, d is an arbitrary semimetric on T . In other words, we must
find an f : V → T with f(t) = t for all t ∈ V , so as to minimize∑

uv∈E

c(u, v) · d(f(u), f(v)).

Dahlhaus et al. [8] show that Multiway Cut (and therefore 0-Extension) is APX-
hard. Thus there exists a constant α > 1 such that no polynomial-time algorithm can
find a solution within a factor of α of the optimum, unless P=NP.

In this paper we develop approximation algorithms for the 0-extension problem.
We study what seems to us to be the most natural linear programming relaxation
for the 0-extension problem: find a minimum weight extension of d to V , specifically,
given the semimetric d on T , extend d to a semimetric δ on the larger set V so as to
minimize

∑
uv∈E c(u, v)δ(u, v). (We call this the metric relaxation.) Obviously, the

set of feasible extensions δ is defined by O(|V |3) linear constraints, and the objective
function is linear. Thus finding the best extension is a linear programming problem,
so it can be solved in polynomial time. We derive approximation algorithms using
the metric relaxation, thus bounding also the integrality ratio for the relaxation. For
arbitrary graphs we give a randomized, O(log |T |)-approximation algorithm. We show
that the integrality ratio is at least a constant times

√
log |T | for infinitely many |T |.

We improve the upper bounds to O(1) for (weighted) planar graphs (or, in fact, for
any family of graphs that excludes a Kr,r-minor for some fixed r).

Karzanov [13] considers the metric relaxation for the 0-extension problem, and
characterizes some of the cases in which the relaxation gives the optimal solution. For
the multiway cut problem, it was known that the metric relaxation has integrality
ratio exactly 2 − 2/|T | [5, Theorem 3.1]. Indeed, this observation uses the same
idea underlying the combinatorial algorithm of Dahlhaus et al. [8] that has the same
performance guarantee. For the general case, the quality of the metric relaxation was
not known prior to our work. For multiway cut, a different relaxation gives better
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approximations, with an asymptotic ratio significantly below 2 (see Calinescu, Karloff,
and Rabani [2] and the improved bounds of Cunningham and Tang [6] and of Karger,
Klein, Stein, Thorup, and Young [12]). It is not clear if the Calinescu et al. relaxation
can be extended to handle the general case of 0-Extension.

In a recent paper, Kleinberg and Tardos [16] give approximation algorithms for
a similar problem of classification with pairwise relations, which they call Metric
Labeling. In their problem, the terminals are distinct from the vertices and are
called labels. There is a semimetric on the labels, and for each node of the graph
there is a vector of assignment costs to each of the labels. The goal is to minimize the
total assignment cost plus the sum of weighted edge lengths. More formally, given
a graph G = (V,E) with nonnegative edge weights c : E → R, a set T of labels, a
semimetric d on T , and a nonnegative assignment cost function a : V ×T → R∪{∞},
Metric Labeling is the problem of finding a mapping f : V → T so as to minimize∑

u∈V

a(u, f(u)) +
∑

uv∈E

c(u, v) · d(f(u), f(v)).

For the case that d is the uniform metric, Kleinberg and Tardos give a 2-approximation
algorithm, based on a relaxation similar to the Calinescu et al. relaxation for mul-
tiway cut. The integrality ratio for the relaxation here, as opposed to the relax-
ation for the multiway cut problem, is at least 2 − 2/|T |. Chuzhoy [4] improves
their result for three and four labels (achieving a tight 4/3 bound for three la-
bels). Kleinberg and Tardos further give a constant approximation algorithm for
a class of tree metrics, the so-called hierarchically well-separated tree metrics (HST
metrics). Following Bartal’s small distortion embeddings of metrics into HST met-
rics [1], they use a constant-ratio approximation algorithm for HST metrics to give
a O(log |T | log log |T |)-approximation algorithm for arbitrary metrics. Gupta and
Tardos [11] later give a local search-based 4-approximation algorithm for the case
that d is a truncated linear metric (i.e., T = {1, 2, . . . , k} and for some value m,
d(i, j) = min{|i− j|,m}). Recently, Chekuri, Khanna, Naor, and Zosin [3] introduced
a new linear programming relaxation for the metric labeling problem, and using it
obtained another O(log |T | log log |T |)-approximation algorithm for arbitrary metrics,
and a 2 +

√
2-approximation algorithm for the truncated linear metric.

Kleinberg and Tardos, and Gupta and Tardos motivate their work by several ap-
plications, mostly concerning computer vision, such as image restoration and visual
correspondence. In these applications the nodes of the graph are pixels in a raster
image and the edges model adjacency (so, in fact, the graph is a two-dimensional
mesh). In image restoration applications, the labels model pixel intensities or colors.
Assigning a label to a pixel amounts to determining the “true” intensity (or color) of
the pixel from the observed values. The assignment cost penalizes for the difference
between the observed and assigned intensity. In visual correspondence applications,
the labels model possible shifts between two images. Assigning a label to a pixel
amounts to determining the shift of that pixel between the two images. The assign-
ment cost penalizes for the difference between the values of the supposedly matching
pixels. In both types of applications, the structure of the graph arises from assuming
that the a priori distribution of “true” labels is generated by a Markov random field
(where the distribution of a pixel depends only on the distribution of its neighbors).

Note that 0-Extension is a special case of Metric Labeling: Given an instance
of 0-Extension with T ⊆ V , define a : V × T → R ∪ {∞} by:

• If u ∈ T , then a(u, u) = 0 and a(u, t) =∞ for all t ∈ T \ {u}.
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• If u 6∈ T , then a(u, t) = 0 for all t ∈ T .
The feasible solutions to Metric Labeling of finite cost then correspond to functions
f : V → T which are arbitrary except for the constraint that f(t) = t for all terminals
t, and the objective function value corresponding to f is

∑
c(u, v)d(f(u), f(v)), the

value of the objective function of 0-Extension.
Thus, our results improve upon the results in [16] for this case. We note that the 0-

extension formulation seems appropriate for many of the computer vision applications
mentioned in [16, 11]. For example, if we connect each pixel by a weighted edge to the
label corresponding to its observed intensity, we get an assignment cost proportional
to the distance between the observed and assigned value. Our algorithm for weighted
planar graphs actually assumes only that V \T induces a planar graph. Thus we get a
constant-ratio approximation algorithm for some of these computer vision problems,
for an arbitrary metric on the labels T .

Another problem related to ours is the multicut problem, first considered in
the context of approximation algorithms in two papers by Garg, Vazirani, and Yan-
nakakis [9, 10] (and implicitly in Klein, Agarwal, Ravi, and Rao [14]). In this problem,
we are given a (weighted) graph and k pairs of terminals (nodes in the graph), and
the goal is to find a minimum weight set of edges whose removal disconnects every
pair of terminals. This is a different generalization of multiway cut (the latter can
be viewed as the multicut problem for all

(
k
2

)
pairs of terminals). It is incomparable

to the 0-extension problem, in the sense that neither problem is a special case of the
other. In [10], Garg et al. give a O(log |T |) approximation algorithm for the multi-
cut problem, based on a metric relaxation which assigns lengths to edges so that the
distance between every specified pair of terminals is at least 1. Their result is tight
for the relaxation. The example achieving (asymptotically) the integrality ratio is an
expander. For their upper bounds, they use a region-growing technique similar to that
used by Leighton and Rao [17] for approximating the minimum flux (edge expansion)
of a graph. Klein, Plotkin, and Rao [15] improve the Leighton and Rao technique
for planar graphs (and more generally for graphs that exclude a Kr,r-minor) to get a
constant factor approximation for the minimum flux. Using their technique, Tardos
and Vazirani [18] exhibit a constant factor approximation algorithm for the multicut
problem on planar graphs (and Kr,r-minor free graphs).

Our result can be seen as a counterpart to the Garg et al. and the Tardos and
Vazirani results. The region-growing technique does not give a good approximation in
the case of 0-extension. However, our results can be viewed as a form of (randomized)
region growing after the application of a scaling function to the distances. This is
implicit in the general case algorithm, and explicit in the planar graphs algorithm,
where we use the Klein et al. technique on the scaled distances. It is worth noting
that, as opposed to the situation of [10], expanders are not a particularly bad case
for our relaxation (see Section 4).

The rest of the paper is organized as follows. In Section 2 we present the algo-
rithm for the general case. Section 3 has the improved bounds for planar graphs. In
Section 4 we discuss the quality of the linear programming relaxation underlying our
approximation algorithms. Throughout the rest of the paper we use k to denote the
number |T | of terminals. We call the vertices in V \ T nonterminals.

2. An O(log k)-Approximation Algorithm. In this section we present the
randomized algorithm which finds a 0-extension of weight at most O(log k) times the
optimum. We begin by computing an optimal solution to the following natural linear
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programming relaxation, which we denote by (MET):

Minimize
∑

uv∈E

c(u, v)δ(u, v) subject to

(V, δ) is a semimetric,(2.1)
δ(i, j) = d(i, j) ∀i, j ∈ T.(2.2)

If an assignment f : V → T defines an optimal solution to the 0-extension prob-
lem, then putting δ(u, v) = d(f(u), f(v)) defines a feasible solution of (MET) of the
same weight as the optimal solution. Therefore, the optimal value Z∗ of (MET) is a
lower bound on the minimum weight 0-extension. We exhibit a rounding procedure
that takes any feasible solution δ of (MET) of value Z and constructs a 0-extension
assignment f : V → T whose weight is O(Z log k).

Our rounding procedure works as follows. Pick uniformly at random a permuta-
tion σ of T and independently choose, uniformly at random in the interval [1, 2), a
real number α. The rounding algorithm iteratively assigns some nodes to terminal
σ1, then some of the remaining nodes to terminal σ2, and so on. For every u ∈ V ,
put Au = mini∈T δ(u, i). The rounding procedure is given below.

The Rounding Procedure

Set f(t) = t for all terminals t.
Pick a random permutation σ = 〈σ1, σ2, . . . , σk〉 of the terminals.
Pick α uniformly at random in the interval [1, 2).
for j = 1 to k do

for all unassigned nonterminals u such that δ(u, σj) ≤ αAu, do
Set f(u) = σj (i.e., assign u to σj).

endfor
endfor

We first show that the rounding procedure produces a 0-extension:
Claim 2.1. The rounding procedure assigns every nonterminal to a terminal.

Proof. Consider a nonterminal v and let t ∈ T be a terminal with δ(v, t) = Au.
Choose j such that t = σj . Then if v is not assigned to a terminal in iterations
1, 2, . . . , j − 1, it must be assigned to t in iteration j, because α ≥ 1.

For any pair of nodes u, v ∈ V , define a random variable s(u, v) = d(f(u), f(v)).
We say that u, v ∈ V are separated if f(u) 6= f(v). Note that if u, v are not separated,
then s(u, v) = 0. Our goal is to bound the expectation E[s(u, v)]. We first state a
bound on the probability that u, v are separated.

Lemma 2.2. Fix u, v ∈ V and let δ = δ(u, v). If 0 < δ ≤ 1
4 min{Au, Av}, then

Pr[u, v are separated] ≤ 4Hk

(
δ

Au
+

δ

Av

)
,

where Hk = 1 + 1
2 + · · ·+ 1

k is the kth harmonic number.
Before we prove this bound, we state and prove its consequence, a bound for

E[s(u, v)] which is the core of the analysis of our algorithm.
Lemma 2.3. For any pair of distinct vertices u, v ∈ V , E[s(u, v)] ≤ 38Hkδ(u, v).

2

2The constant 38 is somewhat arbitrary, and definitely could be improved.
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Proof. Fix u 6= v and put δ = δ(u, v). By the triangle inequality, Av ≤ Au + δ and
Au ≤ Av + δ. We have s(u, v) = d(f(u), f(v)) = δ(f(u), f(v)) ≤ δ(f(u), u)+ δ(u, v)+
δ(v, f(v)). As α ∈ [1, 2), we obtain

s(u, v) ≤ 2Au + δ + 2Av.(2.3)

If u is a terminal, then Au = 0 and Av ≤ δ. Therefore, by Inequality (2.3),
s(u, v) ≤ 3δ regardless of the choice of σ and α. If both u and v are nonterminals
and δ = 0, then by the triangle inequality, for any terminal j ∈ T , δ(u, j) = δ(v, j).
Therefore, u and v are assigned to the same terminal, regardless of the choice of σ
and α, so s(u, v) = 0 = δ.

Thus we may assume that both u and v are nonterminals, and that δ > 0. We
consider two cases, depending on whether δ is small compared to Au or Av, or not.
If Au < 4δ, then Av < 5δ, and by Inequality (2.3), s(u, v) < 2(4 + 5)δ + δ = 19δ.
Similarly, if Av < 4δ, then s(u, v) < 19δ. Therefore, if Au < 4δ or Av < 4δ, the
lemma holds.

Assume, therefore, that δ ≤ 1
4 min{Au, Av}. (Recall that we also assume that

δ > 0.) We have

E[s(u, v)] ≤ 4Hk

(
δ

Au
+

δ

Av

)
(2Au + 2Av + δ)

≤ 4Hkδ

(
4Au + 3δ

Au
+

4Av + 3δ

Av

)
≤ 4Hkδ

(
4 +

3
4

+ 4 +
3
4

)
= 38Hkδ,

where the first inequality follows from Lemma 2.2 and Inequality (2.3).

We conclude with
Theorem 2.4. There is a randomized, polynomial-time, O(log k)-approximation

algorithm for 0-Extension.
Proof. Let δ∗ be an optimal solution of (MET) of cost Z∗. By Lemma 2.3, the ex-
pected weight of the 0-extension obtained by the rounding procedure is O(Z∗ log k).
Therefore, there exists a choice of σ and of α that produces a solution of weight
O(Z∗ log k). To obtain a polynomial-time algorithm, notice that for a given per-
mutation σ, two different values of α, α1 > α2, produce combinatorially distinct
solutions only if there is a terminal j and a node u such that δ∗(u, j) ≤ α1Au but
δ∗(u, j) > α2Au. Thus we can enumerate over at most k|V | “interesting” values of α.
We can determine these values by sorting the fractions δ∗(u, j)/Au, over all nodes u
with Au > 0 and over all j ∈ T .

Proof of Lemma 2.2. Let E(u, v) denote the event that there is a terminal j such
that when j is processed u is assigned to j whereas v remains unassigned; define
E(v, u) similarly. We will show that

Pr[E(u, v)] ≤ 4Hkδ/Au.(2.4)

By symmetry, Pr[E(v, u)] ≤ 4Hkδ/Av. Therefore, the lemma follows from Inequal-
ity (2.4).

Label the k terminals so that δ(u, 1) ≤ δ(u, 2) ≤ · · · ≤ δ(u, k). For j = 1, 2, . . . , k,
let lj = δ(u, j)/Au; 1 = l1 ≤ l2 ≤ l3 ≤ · · · ≤ lk. Let rj = δ(v, j)/Av ≥ 1.
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For γ ≥ 1, let

M(γ) = {j ∈ T | lj ≤ γ < rj},

and let

S(γ) = {j ∈ T | γ ≥ rj}.

Note that M(γ) and S(γ) are disjoint subsets of terminals. Put m(γ) = |M(γ)| and
s(γ) = |S(γ)|.

Let α ∈ [1, 2) be the value used by the rounding procedure. Then v must be
assigned to a terminal in S(α), because δ(v, j) ≤ αAv is equivalent to rj ≤ α. Sim-
ilarly, u cannot be assigned to a terminal which is not in M(α) ∪ S(α). Indeed, u
can only be assigned to a terminal j with lj ≤ α, and based on whether rj ≤ α or
not, j is either in S(α) or in M(α). Moreover, E(u, v) happens if and only if the first
terminal in M(α)∪S(α) to be processed is in M(α). Indeed, if the first such terminal
is j ∈ S(α), then v (and possibly also u) will be assigned to j. Thus

Pr[E(u, v) | α] =
m(α)

m(α) + s(α)
.

(Note that there exists a j for which rj = 1, so S(α) is never empty.) As α is
distributed uniformly in [1, 2), we get

Pr[E(u, v)] =
∫ 2

1

m(α)
m(α) + s(α)

dα.(2.5)

We need the following claim:
Claim 2.5. Fix a positive integer k and a nonnegative real β. Let

(〈l1, l2, . . . , lk〉, 〈r1, r2, . . . , rk〉) be a pair of real sequences such that 1 = l1 ≤ l2 ≤
l3 ≤ · · · ≤ lk, rj ≥ 1 for all j, some rj = 1, and (either rj − lj ≤ β or lj > 2)
for all j. Define functions m : [1,∞) → Z and s : [1,∞) → Z as follows:
m(α) = |{j| lj ≤ α < rj}| and s(α) = |{j| α ≥ rj}|. Then∫ 2

1

m(α)
m(α) + s(α)

dα ≤ Hkβ.

Proof. Note that s(α) ≥ 1 for all α (because some rj = 1), so the function we are
integrating is well-defined. Let t be the largest index for which lt ≤ 2. We prove by
induction on t that the value of the integral is at most Htβ ≤ Hkβ. For t = 1 the
claim holds, because for α ∈ [r1, 2], m(α) = 0. As r1 − 1 = r1 − l1 ≤ β, we get∫ 2

1

m(α)
m(α) + s(α)

dα ≤
∫ min{r1,2}

1

1dα ≤ r1 − 1 ≤ β = H1β.

So assume that the claim is true for the case in which exactly t − 1 j’s satisfy
lj ≤ 2 for some t ≥ 2, and consider pairs (〈l1, l2, . . . , lk〉, 〈r1, r2, . . . , rk〉) in which
exactly t j’s are such that lj ≤ 2. We compare the value I of the integral in this
case to the value I ′ of the integral for the pair in which the tth coordinate of the first
sequence is replaced by lt+1, except that if t = k, the tth coordinate is replaced by 3.
We use m′(α) and s′(α) for the latter pair, where clearly s′(α) = s(α) for all α. Note
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that the latter pair satisfies the hypotheses of the claim, and, furthermore, only t− 1
j’s are such that lj ≤ 2. Therefore, by the inductive hypothesis, I ′ ≤ Ht−1β.

If lt ≥ rt, then for every α ∈ (1, 2), m′(α) = m(α), and therefore I = I ′, thus
establishing the claim in this case. Thus we may assume that lt < rt. Clearly
m(α) ∈ {m′(α),m′(α) + 1} for any α. Therefore, for any α ∈ (1, 2),

m(α)
m(α) + s(α)

− m′(α)
m′(α) + s′(α)

≤ m′(α)+1
m′(α) + 1 + s′(α)

− m′(α)
m′(α) + s′(α)

≤ 1
m′(α) + s′(α) + 1

.

Now m(α) 6= m′(α) implies α ∈ [lt, rt], and α ∈ [lt, rt] implies lj ≤ lt ≤ α for all
j ≤ t− 1. But every j ≤ t− 1 satisfying lj ≤ α either satisfies lj ≤ α < rj or α ≥ rj ,
and hence each such j contributes to at least one of m′(α) and s′(α). Hence α ∈ [lt, rt]
implies m′(α) + s′(α) ≥ t− 1 and 1/(m′(α) + s′(α) + 1) ≤ 1/t.

Therefore I−I ′ ≤ (rt−lt)(1/t). Because lt ≤ 2, rt−lt ≤ β. Hence, I ≤ I ′+β/t ≤
Ht−1β + β/t = Htβ. This completes the proof of Claim 2.5.

We now proceed with the proof of Lemma 2.2. Note that if lj ≤ 2, then δ(u, j) ≤
2Au. Using the assumption that δ ≤ 1

4Au, we have, for such j,

rj − lj ≤
δ(u, j) + δ

Av
− δ(u, j)

Au

≤ δ(u, j) + δ

Au − δ
− δ(u, j)

Au
=

δ(δ(u, j) + Au)
Au(Au − δ)

≤ 3δ

Au − δ

≤ 4δ

Au
.

Hence, using Claim 2.5 with β = 4δ/Au, we have∫ 2

1

m(α)
m(α) + s(α)

dα ≤ Hk · 4δ/Au.(2.6)

Combining Equation (2.5) and Inequality (2.6), we get Pr[E(u, v)] ≤ 4Hkδ/Au, which
proves Inequality (2.4) and thus the lemma.

3. An O(1)-Approximation Algorithm for Planar Graphs. In this sec-
tion we use the linear programming relaxation (MET) to get improved bounds for
planar graphs. To achieve the improved bounds, we present a different rounding pro-
cedure. We show that if the input graph G = (V,E) does not have a Kr,r-minor,
then the rounding procedure presented in this section guarantees a O(r3) approx-
imation ratio. As planar graphs are K3,3-minor free, this gives a polynomial-time
O(1)-approximation algorithm for planar graphs (and, more generally, for Kr,r-minor
free graphs, for every fixed r).

The main tool that we use is the following theorem of Klein, Plotkin, and Rao [15]
(the extension to the weighted case was stated by Tardos and Vazirani [18]).

Theorem 3.1 (Klein, Plotkin, and Rao). There are constants κ and λ and
a polynomial-time algorithm KPR(H, δ, c, γ, r) which takes as input a graph H =
(VH , EH) with nonnegative integral edge lengths δ : EH → Z and nonnegative edge
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costs c : EH → Q, a positive rational γ, and a positive integer r, and finds either (1) a
Kr,r-minor in H or (2) a set of edges of total c-cost at most κ r

γ

∑
e∈EH

δ(e)c(e) whose
removal decomposes H into connected components called clusters such that the shortest
path (in H, using edge lengths δ) between any two nodes in the same component is at
most λr2γ.

Let r be a positive integer. Let δ : V × V → R be a feasible solution of (MET)
of weight Z. Using Theorem 3.1, we exhibit a deterministic rounding procedure that
obtains a 0-extension of weight O(Z), assuming that the input graph G is Kr,r-minor
free.

The main idea of the rounding procedure is to partition the nonterminals into
clusters such that, for any two nodes u and v in the same cluster, Au is at most twice
Av. We then assign all the nodes in a cluster to a terminal closest to one of the
nodes in the cluster. More formally, the rounding procedure computes a 0-extension
f : V → T as follows.

The Second Rounding Procedure

Set f(t) = t for every terminal t.
for every nonterminal u ∈ V such that Au = 0, do

Set f(u)← i for some i ∈ T with δ(u, i) = 0.
endfor
Let Ḡ = (V̄ , Ē) be the subgraph of G induced by the remaining nonterminals.
δ̄min←min{δ(u, v)/ max{Au, Av}| uv ∈ Ē, δ(u, v) > 0}.
for every edge uv ∈ Ē, do

δ̃(uv)← dδ(u, v)/(δ̄min ·max{Au, Av})e
c̃(uv)← c(u, v) ·max{Au, Av}.

endfor
Execute KPR(Ḡ, δ̃, c̃, 1/(2λr2δ̄min), r).
for each resulting cluster C ⊆ V̄ , do

Choose x ∈ C to minimize Ax.
Choose i ∈ T such that δ(x, i) = Ax.
Set f(u)← i for all u ∈ C.

endfor

We first establish a few simple facts about this rounding procedure. Let Z̃ =∑
uv∈Ē δ̃(uv)c̃(uv).
Claim 3.2. Z̃ ≤ 2Z/δ̄min.

Proof. Note that if δ(u, v) > 0, then δ(u, v)/(δ̄min · max{Au, Av}) ≥ 1; hence
δ̃(uv) = dδ(u, v)/(δ̄min ·max{Au, Av})e ≤ 2δ(u, v)/(δ̄min ·max{Au, Av}). We have∑

uv∈Ē

δ̃(uv)c̃(uv) =
∑

uv∈Ē

⌈
δ(u, v)

δ̄min ·max{Au, Av}

⌉
· (c(u, v) ·max{Au, Av})

≤ 2
δ̄min

∑
uv∈Ē

δ(u, v)c(u, v)

≤ 2
δ̄min

∑
uv∈E

δ(u, v)c(u, v)

= 2Z/δ̄min.

Claim 3.3. The total c̃-cost of the edges removed by KPR(Ḡ, δ̃, c̃, 1/(2λr2δ̄min), r)
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is at most 4κλr3Z, where κ and λ are the constants from Theorem 3.1. Moreover,
each of the resulting clusters C has δ̃-diameter at most 1/(2δ̄min).
Proof. By Theorem 3.1, the sum of c̃(uv) over edges uv with u, v in different clusters
is at most (κr/γ)Z̃. By Claim 3.2, this is at most 4κλr3Z (since γ = 1/(2λr2δ̄min)).
Also, by Theorem 3.1, the δ̃-diameter of each resulting cluster C is at most 1/(2δ̄min).

We now relate the δ̃-distances to the original δ-distances.
Lemma 3.4. Let u, v ∈ V̄ . If the length of a shortest path in Ḡ between u and v

with respect to edge lengths δ̃ is at most 1/(2δ̄min), then δ(u, v) ≤ Au.
Proof. Let 〈u = x0, x1, . . . , xj = v〉 be a shortest path in Ḡ between u and v

with respect to the edge lengths δ̃. For 1 ≤ t ≤ j, let st =
∑t

i=1 δ(xi−1, xi). By
the triangle inequality, Axt ≤ Au +

∑t
i=1 δ(xi−1, xi) = Au + st. Note that s1 ≤

s2 ≤ · · · ≤ sj . Therefore, for i ≤ j, δ(xi−1, xi)/max{Axi−1 , Axi
} ≥ δ(xi−1, xi)/(Au +

si) ≥ δ(xi−1, xi)/(Au + sj). Also, δ̃(xi−1, xi) ≥ δ(xi−1, xi)/(max{Axi−1 , Axi}δ̄min),
and therefore δ(xi−1, xi)/max{Axi−1 , Axi} ≤ δ̄minδ̃(xi−1, xi). Using this, we have
sj/(Au + sj) =

∑j
i=1 δ(xi−1, xi)/(Au + sj) ≤ δ̄min

∑j
i=1 δ̃(xi−1, xi) ≤ δ̄min/(2δ̄min) =

1/2, where the last inequality follows from the hypothesis that the length of
〈x0, x1, . . . , xj〉 is at most 1/(2δ̄min). We conclude that sj ≤ Au. Finally, notice
that by the triangle inequality δ(u, v) ≤ sj .

We are ready to analyze the performance of the rounding procedure.
Lemma 3.5. Let r > 0 be an integer. Then for every input graph G which is

Kr,r-minor free, for every feasible solution to (MET) of weight Z, the above rounding
procedure produces a 0-extension of weight at most (4 + 16κλr3)Z, where κ and λ are
the constants from Theorem 3.1.
Proof. Let uv ∈ E be an edge of G. If both endpoints u, v 6∈ V̄ , then each
endpoint is either a terminal or a node at distance 0 from some terminal; hence
d(f(u), f(v)) = δ(u, v).

If u 6∈ V̄ and v ∈ V̄ , then δ(f(u), u) = 0, and v, together with the cluster C
that contains it, is assigned to some terminal i. By the definition of the rounding
procedure, there is a node x ∈ C such that δ(x, i) = Ax ≤ Av. Combining Claim 3.3
and Lemma 3.4, we have δ(v, x) ≤ Av. Therefore, using the triangle inequality,
δ(v, i) ≤ 2Av. Using the triangle inequality again, d(f(u), f(v)) = δ(f(u), f(v)) ≤
δ(f(u), v)+δ(v, i) ≤ δ(f(u), v)+2Av. However, δ(u, v) = δ(f(u), v) ≥ Av. Therefore,
for any u 6∈ V̄ and v ∈ V̄

d(f(u), f(v)) ≤ 3δ(u, v).(3.1)

We are left with the edges uv ∈ Ē. For u ∈ V̄ , let C(u) denote the cluster
containing u. Then∑

uv∈Ē

d(f(u), f(v))c(u, v) =
∑

uv∈Ē: C(u) 6=C(v)

d(f(u), f(v))c(u, v).

However, d(f(u), f(v)) = δ(f(u), f(v)) ≤ δ(f(u), u) + δ(u, v) + δ(v, f(v)) ≤ δ(u, v) +
2Au + 2Av ≤ δ(u, v) + 4 max{Au, Av}. The second inequality follows from the fact
that by the definition of the algorithm, for every nonterminal u, f(u) is a terminal
closest to some x ∈ C(u) with δ(f(u), x) = Ax ≤ Au. As argued in the previous case,
δ(x, u) ≤ Au. The inequality follows because by the triangle inequality, δ(f(u), u) ≤
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δ(f(u), x) + δ(x, u). Therefore,∑
uv∈Ē: C(u) 6=C(v)

d(f(u), f(v))c(u, v) ≤
∑

uv∈Ē: C(u) 6=C(v)

δ(u, v)c(u, v) + 4
∑

uv∈Ē: C(u) 6=C(v)

c̃(uv)

≤ Z + 4
∑

uv∈Ē: C(u) 6=C(v)

c̃(uv).

Now Claim 3.3 states that
∑

uv∈Ē: C(u) 6=C(v) c̃(uv) ≤ 4κλr3Z, and using this
together with Equation 3.1 we finish the proof of Lemma 3.5.

We conclude with the main result of this section:
Theorem 3.6. Let r > 0 be a fixed integer. There is a deterministic polynomial-

time (4 + 16κλr3) -approximation algorithm for 0-Extension in Kr,r-minor free
weighted graphs, where κ and λ are the constants from Theorem 3.1.
Proof. Solve (MET) optimally and then use the rounding procedure from this
section, which clearly can be implemented in polynomial time. Lemma 3.5 establishes
the performance guarantee of this algorithm.

4. The Integrality Ratio. In this section we use the max flow-min cut theorem
to prove the following lower bound on the integrality ratio of the natural relaxation.

Theorem 4.1. There are c > 0 and infinitely many positive integers k such that
there is an instance of 0-Extension with k terminals for which the optimal value of
the objective function is at least c

√
lg k times the optimal value of the relaxation.

Proof. There are fixed positive ∆ and α such that there is an infinite family of
expanders of maximum degree at most ∆ having expansion at least α, i.e., graphs G
of maximum degree at most ∆ such that for any subset S of at most |V (G)|/2 nodes,
there are at least α|S| nodes not in S which are adjacent to at least one node of S.
For any expander G with n = |V (G)| sufficiently large, define l = d

√
dlg nee ≤ n and

k = dn/le. Choose any k distinct nodes h1, h2, ..., hk in V . For i = 1 to k, add l new
nodes and l new edges to the current graph, forming a new path Pi starting at hi and
ending at some new node; label that new node i. Let the new graph be G′ = (V ′, E′).
Now n′ = |V ′| = n + kl ≤ n + (1 + n/l) · l ≤ n + (n + l) ≤ n + 2n = 3n vertices.
|E′| = |E|+ kl ≤ n(∆/2 + 2).

Now define an instance I of 0-Extension as follows. The vertex set is V ′. The
set T of terminals is {1, 2, 3, ..., k}. Define d(i, j), for terminals 1 ≤ i, j ≤ k, to be
the distance in G′ between i and j. Define c(u, v) to be 1 if uv ∈ E′ and c(u, v) = 0
otherwise.

We now show that the integrality ratio for this instance I is large. First, we study
the relaxation. Define δ(u, v) to be the distance in G′ between u and v. It is clear
that δ(i, j) = d(i, j) if i, j in T . It is also clear that δ is a semimetric on G′. It follows
that

∑
u<v c(u, v)δ(u, v) = |E′| ≤ (∆/2 + 2)n (since adjacent vertices in G′ are at

distance 1).
Now we prove that there is a universal c > 0 such that any feasible solution

to I, i.e., any function f : V ′ → T with f(t) = t for all terminals t ∈ T , satisfies∑
u<v c(u, v)d(f(u), f(v)) ≥ cn

√
lg n. Note first of all that the minimum distance

between two distinct terminals i, j is at least 2l ≥ 2
√

lg n. We will see in Lemma 4.2,
however, that there are at least k/2 terminals for which the distance to terminal i∗ is
at least ε lg n, ε a fixed positive constant, not just

√
lg n, for any i∗ ∈ T .

Lemma 4.2. For any i∗ ∈ T , there are at least k/2 vertices hi in G whose distance
from hi∗ exceeds a = d lg k

2 lg ∆e.
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Proof. For a contradiction, assume that there are more than k/2 vertices of G
at distance at most a from hi∗ . By the degree bound, the number of vertices in G
at distance at most a from hi∗ is at most 1 + ∆1 + ∆2 + · · · + ∆a < ∆a+1. Hence
k/2 < ∆a+1. Hence −1 + −1+lg k

lg ∆ < a, lg k < 2 + 4 lg ∆, and k < 4∆4. Require
that n be large enough that k, which goes to ∞ with n, is at least 4∆4, giving us a
contradiction.

Let Ri = {v ∈ V ⊆ V ′|f(v) = i}. We have two cases.
• Case 1: |Ri| ≤ n/2 for all i.

If uv ∈ E, u ∈ Ri, v ∈ Rj , i 6= j, then d(f(u), f(v)) = d(i, j) = δ(i, j) ≥
2
√

lg n. Because G is an expander and |Ri| ≤ n/2 for all i, for each i the
number of edges uv, u ∈ Ri, v 6∈ Ri, is at least α|Ri|. Hence∑

u<v,u,v∈V c(u, v)d(f(u), f(v)) ≥ (1/2)
∑k

i=1 α|Ri|(2
√

lg n) = α · n
√

lg n.
(Each “cross edge” is counted twice.)
• Case 2: Some Ri, say R1, has size exceeding n/2. We will use expansion and

the max flow-min cut theorem to prove our theorem.
Choose any dk/2e terminals i such that the distance in G between hi and h1

is at least a = d lg k
2 lg ∆e; by Lemma 4.2, they exist. Let F be the set of chosen

terminals. Insist that n ≥ 16, so that a ≥ lg n
4 lg ∆ .

Let V ∗ = V ∪ (∪i∈F Pi). Build a (directed) network N on V ∗ ∪ {s, t}, s, t
being new nodes, as follows. Start with the subgraph of G′ induced by V ∗

and replace each edge by a pair of antiparallel arcs, each of capacity one. Add
arcs (u, t) for all u ∈ R1, each of capacity ∞. Add arcs (s, i) for all i ∈ F ,
each of capacity ∞. Because R1 ⊆ V and, for all i ∈ F , i 6∈ V , N has a finite
capacity s→ t cut defined by {s} ∪ F .
Now choose any finite capacity s→ t cut C∗ = (S∗, S̄∗) in N , s ∈ S∗, t 6∈ S∗.
S∗ ⊇ F and S∗ ∩ R1 = ∅. Let S = S∗ ∩ V (possibly S = ∅). Because
|R1| ≥ n/2, |S| ≤ n/2. Let C be the set of arcs (u, v) with u ∈ S, v ∈
V − S. By the expansion of G, |C| ≥ α|S|. Let M = {i|i ∈ F, hi 6∈ S}.
Corresponding to each i ∈ F such that hi 6∈ S there is at least one an arc
of Pi in C∗ − C, |M | in total. Thus the total number of arcs in C∗ is at
least α|S| + |M | ≥ α(|S| + |M |) ≥ α|F | ≥ αk/2, the penultimate inequality
following from the fact that either hi ∈ S or i ∈ M , for all i ∈ F . It follows
that the minimum capacity of an s→ t cut in N is at least αk/2.
By the max flow-min cut theorem, there are at least αk/2 arc-disjoint paths
from an i ∈ F to some vertex in R1. If Q =< i = vi0, vi1, vi2, vi3, ..., vis ∈
R1 > is such a path, then, using f(i) = i, f(vis) = 1, we have∑s−1

j=0 d(f(vij), f(vi,j+1)) ≥ d(f(i), f(vis)) = d(i, 1) ≥ a, a being at least
lg n

4 lg ∆ . Since the paths are arc-disjoint and there are at least αk/2 of them,
we infer that

∑
u<v:u,v∈V ′ c(u, v)d(f(u), f(v)) ≥ αk

2
lg n

4 lg ∆ .
Using the definition of k, this last sum is at least (α/(16 lg ∆)) ·n

√
lg n. Since

we have a feasible solution to (MET) of value at most |E′| ≤ (∆/2+2)n, the
ratio between the two is at least

α

(8 lg ∆)(∆ + 4)

√
lg n ≥ α

(8 lg ∆)(∆ + 4)

√
lg k.

Choose c = α/((8 lg ∆)(∆ + 4)) and the proof of Theorem 4.1 is complete.
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The following theorem shows that the above analysis is asymptotically tight. It
also suggests an alternative rounding procedure that for some instances performs
better than the results in Section 2 (though in general it is far worse).

Theorem 4.3. There is a polynomial-time algorithm that takes as input a con-
nected graph G = (V,E) and a subset T ⊆ V of terminals and computes a function
f : V → T with f(i) = i for all i ∈ T such that∑

uv∈E

d(f(u), f(v)) ≤ 3
√

dmax|E|,

where d(u, v) is the minimum number of edges in a path between u and v and dmax =
maxuv d(u, v).
Proof. Add a new vertex s to G and connect s to all the terminals. Run a breadth-
first search starting at s, computing for every node v ∈ V its distance l(v) from s.
Note that for every v ∈ V , 1 ≤ l(v) ≤ dmax + 1. Partition E into classes Ci, for
i = 1, 2, . . . , dmax + 1: Place edge uv ∈ E in Ci for i = min{l(u), l(v)}. Let r be the
smallest positive integer such that |Cr| ≤ |E|/

√
dmax. As

∑
i |Ci| = |E|, r ≤

√
dmax.

We now define f . Let t be an arbitrary terminal. For every v ∈ V with l(v) > r, set
f(v) = t. For every v ∈ V with l(v) ≤ r, set f(v) = tv, where tv is a terminal closest
to v in G.

If uv ∈ Ci, then d(u, tu) ≤ i and d(v, tv) ≤ i, and at least one of the inequalities
is strict. Therefore d(tu, tv) ≤ d(tu, u) + 1 + d(v, tv) ≤ 2i. Consider an edge uv ∈ Ci.
If i ≤ r − 1, then both l(u), l(v) ≤ r, so d(f(u), f(v)) = d(tu, tv) ≤ 2i ≤ 2r − 2. If
i > r, then both l(u), l(v) > r, so d(f(u), f(v)) = d(t, t) = 0. For the remaining case
of i = r we use the trivial bound d(f(u), f(v)) ≤ dmax. Using the bounds on r and
on |Cr|, we have∑
uv∈E

d(f(u), f(v)) ≤
∑
i<r

∑
uv∈Ci

(2r − 2) +
∑

uv∈Cr

dmax +
∑
i>r

∑
uv∈Ci

0 < 3
√

dmax |E|.

It is interesting to note that for bounded degree expanders the bounds are much
better. Using arguments similar to those of the proofs of Theorems 4.1 and 4.3, we
can prove

Theorem 4.4.
1. There are a positive integer ∆ and a constant κ > 0 such that for infinitely

many k there is an expander G = (V,E) with maximum degree at most ∆, |V |
being O(k log k/ log log k), and a set T ⊆ V of size k, such that the integrality
ratio of (MET) on the 0-extension instance defined by G, T , and the G-path
metric on T is at least κ log log k.

2. For every positive constants ∆ and α, there is a λ such that if n is sufficiently
large, the optimal cost of 0-Extension on the 0-extension instance defined
by any n-node expander G of maximum degree at most ∆ with expansion
constant at least α, any set T ⊆ V of terminals, and the G-path metric on T ,
is at most λn lg lg n (and there is a polynomial-time algorithm which computes
a solution to the 0-extension problem of cost at most λn lg lg n).

Proof sketch. For the first part, choose a family of expanders of maximum degree
at most ∆. Given k, choose an n and an n-node expander from the family such that
k is approximately equal to n(lg lg n)/ lg n. Now we modify the proof of Theorem 4.1.
Instead of choosing h1, h2, ..., hk to be any k nodes, choose k nodes with minimum
pairwise distance Ω(lg lg n), as follows. Choose the first node arbitrarily and choose
the jth node to be at distance Ω(lg lg n) from the j − 1 previously chosen nodes. The
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iterative choices are possible since for some suitable constant c, the number of nodes
within distance at most c lg lg n from j − 1 given points is at most j∆1+c lg lg n < n.
Call the k nodes 1, 2, ..., k, and make them the terminals. The 0-extension instance is
now defined on this graph G, relative to its shortest path metric. It is clear that the
optimal value of (MET) is O(n).

Given any vertex v of G, arguing as in the proof of Lemma 4.2, there are at least
k/2 terminals in G whose distance from v is at least a, with a being Ω(log n).

Now we study cases 1 and 2 from the proof of Theorem 4.1. In case 1, we have
d(f(u), f(v)) = d(i, j) which is Ω(log log n), so the total cost is Ω(n log log n).

The argument of case 2 applies as before: there are at least αk/2 (which is
Ω(n(log log n)/ log n)) paths, each contributing at least a (which is Ω(log n)), or
Ω(n log log n) in total.

For the second part of Theorem 4.4, let ∆, α be positive and let G = (V,E) be
an n-node expander of maximum degree at most ∆ and expansion constant at least
α. Let T = {1, 2, ..., k} ⊆ V be the set of terminals. Note that there is a constant
C = C(∆, α) such that C lg n bounds the diameter from above.

Consider the 0-extension instance defined by G, T , and the G-path metric on T .
There are two cases.

• If k ≤ n/ lg n, set f(v) = 1 for all v ∈ V − T . The number of edges {u, v}
that are cut is at most ∆ · k, and for each, d(f(u), f(v)) ≤ C lg n. Hence the
total cost is at most C∆k lg n ≤ C∆n.
• If k > n/ lg n, add a dummy source s which is adjacent to all (and only)

the terminals. Do a breadth-first search starting from s until there are no
more than n/ lg n unreached vertices. Since ∆, α are constant, the number
of reached nodes increases by a constant factor in each BFS step, until the
number of reached nodes exceeds n/2. Afterward, the number of unreached
nodes drops by a constant factor in each BFS step. Altogether, where d
is the number of BFS steps needed, d is O(lg lg n) (because ∆, α are con-
stant). Now assign f(v) for nonterminals v as follows. If v is unreached,
set f(v) = 1. Otherwise, set f(v) equal to the terminal nearest to v. Now
consider

∑
c(u, v)d(f(u), f(v)). If u, v are both reached, the contribution

c(u, v)d(f(u), f(v)) ≤ d + 1 + d, which is O(lg lg n). If u, v are both un-
reached, the contribution is 0. There are at most ∆n/ lg n edges {u, v} with
u reached and v not, and each contributes at most C lg n, or at most ∆Cn in
total for these edges. Hence the overall total is O(n lg lg n).
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