A Decomposition Theorem for Task Systems and

Bounds for Randomized Server Problems *

Avrim Blum f Howard Karloff Yuval Rabani
Michael Saks ¥

November &8, 2000

Abstract

A lower bound of © (\/W) is proved for the competitive ratio of
randomized algorithms for the k-server problem against an oblivious adversary.
The bound holds for arbitrary metric spaces (having at least k + 1 points) and
provides a new lower bound for the metrical task system problem as well. This
improves the previous best lower bound of Q(loglogk) for arbitrary metric
spaces [KRR] and more closely approaches the conjectured lower bound of
Q(log k). For the server problem on k 4+ 1 equally-spaced points on a line,

which corresponds to a natural motion-planning problem, a lower bound of

QO (L85) is obtained.
loglogk

The results are deduced from a general decomposition theorem for a simpler
version of both the k-server and the metrical task system problems, called
the “pursuit-evasion game.” It is shown that if a metric space M can be

decomposed into two spaces My, and Mg such that the distance between them

*A preliminary version of this paper in the Proceedings of the 33rd IEEE Symposium on Foun-
dations of Computer Science, 1992.

tSchool of Computer Science, Carnegie Mellon University. E-mail: avrim@theory.cs.cmu.edu.
This work was supported in part by an NSF Postdoctoral Fellowship.

{College of Computing, Georgia Institute of Technology. E-mail: howard@cc.gatech.edu. This
author was supported in part by NSF grant CCR 9107349 and by DIMACS.

$Work done while a graduate student at Tel Aviv University Department of Computer Science.
Part of this work was done while visiting DIMACS. Present address: Computer Science Department,
Technion — IIT, Haifa 32000, Israel.

TDept. of Mathematics, Rutgers University and Dept. of Computer Science and Engineering,
UCSD. E-mail: saks@math.rutgers.edu. This work was supported in part by NSF grant CCR89-
11388 and AFOSR grants 89-0512 and 90-0008.

is sufficiently large compared to their diameter, then the competitive ratio for
this game on M can be expressed nearly exactly in terms of the ratios on each
of the two subspaces. This yields a divide-and-conquer approach to bounding

the competitive ratio of a space.

1 Introduction and Main Results

On-line computation is a setting in which randomization has been shown to have
a provable advantage over determinism (see, e.g., [BE]). An on-line computation
problem typically involves responding to a sequence of requests in order to minimize
some cost function. The standard measure of success is the competitive ratio [ST,
KMRS] which is, roughly, the maximum over all request sequences of the ratio of the
cost charged to the algorithm on a request sequence, to the optimal offline cost of
servicing that sequence. It is useful and customary to view the request sequence as
chosen by an adversary who knows the algorithm being used and seeks to force this
ratio to be large. Against a deterministic algorithm, the adversary can completely
predict the responses of the algorithm and this gives it great power for forcing the
algorithm to perform badly. Against a randomized algorithm the adversary knows
the algorithm, but not the random choices of the algorithm. Intuitively, this can be
interpreted by saying that after each successive request, the adversary “knows” only
a probability distribution over states of the algorithm rather than the precise state.
This restriction on the adversary provides the potential advantage of randomization.
(Note that here and throughout this paper we are discussing a version of the adversary
known as an “oblivious” adversary [BBKTW], [RS]. There are other, more powerful,

adversaries that are less vulnerable to randomization).

In the well known k-server problem, an algorithm controls k servers, each of which
occupies some point in a metric space M. At each time step the algorithm is given
a request, which is a point in M, and must serve it by moving a server to that
point if none is there already. The algorithm is charged a cost equal to the total
distance moved. It has been shown that for any metric space having at least & + 1
points no deterministic online algorithm can achieve a competitive ratio less than k
[MMS] (note that the problem is nontrivial only if there are at least k + 1 points).
The well-known k-server conjecture [MMS] says that for any metric space, there is
a deterministic online algorithm that can achieve a competitive ratio of k. In other
words, if we define the competitive ratio of a metric space to be the minimum ratio
achievable by any algorithm, then the conjecture is that for the k-server problem, the
deterministic competitive ratio of any metric space on at least k£ 4 1 points is exactly
k. A breakthrough result [KP] provided a deterministic algorithm with competitive
ratio 2k — 1, improving on the previous exponential upper bounds ([FRR],[Gro]).

The power of randomization in this setting was first demonstrated for the uniform
metric space on k + 1 points, U(k + 1), in which all pairs of distinct points are
equidistant. For this space there is an O(log k)-competitive algorithm, and indeed

this is a lower bound:

Theorem 1.1 ([FKLMSY],[MS],[BLS]) The k-server problem for U(k + 1) has

randomized competitive ratio exactly 1 + % + % 4+ 4 % ~Ink.

In fact, these bounds hold for uniform metric spaces of any size greater than k.

Various people have speculated on the following conjecture:

Conjecture 1.1 For any k and any metric space M on more than k points, the

randomized competitive ratio of the k-server problem on M is O(logk).

Unlike the deterministic case where the lower bound is relatively easy and only
the upper bound seems difficult, neither bound has been proved in the randomized

case. For the lower bound, the previous best result is the following:

Theorem 1.2 ([KRR]) Let k be a positive integer and M be a metric space with
at least k + 1 points. Then the k-server problem on M has randomized competitive

ratio Q(min{log k, loglog |M|}).

If M is sufficiently large (exponential in k) then the lower bound in Conjecture
1.1 holds. For arbitrary spaces, in particular those whose size is polynomial in k, the
lower bound is Q(loglog k). One of the main results of this paper is to improve this

lower bound:

Theorem 1.3 For any metric space M with at least k+1 points, the k-server problem
on M has randomized competitive ratio Q(,/ lolgoizk).

The competitive ratio of the k-server problem for M is at least as large as the
ratio for a subspace of M, as the adversary can restrict its requests to that subspace.
Thus, a lower bound on the competitive ratio of the k-server problem for the case
that the space has exactly k+ 1 points implies the same lower bound for every metric
space. One way to view this special case is to think of the algorithm as occupying
a single point of the space (corresponding to the unique location where there is no
server) and to think of the adversary as probing points of this space. When the
adversary probes the point on which the algorithm stands, the algorithm must move
to a different location. We call this the pursuit-evasion (PE) game and call the
adversary the Pursuer and the algorithm the Fvader. This paper is about this game.
It should be noted that the pursuit-evasion game bears a superficial resemblance to
the cat-and-mouse game of [CDRS], but that game models the case of randomized

algorithms against a more powerful adversary.

The pursuit-evasion game also models a problem in robotics. Imagine a robot

walking down a long hallway of some width n (e.g., if n = 3 then the robot may walk

either down the left side, the center, or the right side of the hallway). The hallway
contains rectangular obstacles, and when the robot meets an obstacle, it must go left
or right around it. Any algorithm at all must travel the length of the hallway, so
we will not charge for that. Instead we look at the left/right motion of the robot
and compare it to the least possible left /right motion by an algorithm that knew the
placement of the obstacles in advance. If the hallway has width n, then this is the

pursuit-evasion game for the metric space of n equally-spaced points on the real line,

a metric space we call £(n). The above lower bound of Q(,/%) applies, of

course, but for this case we have a better lower bound.

Theorem 1.4 The pursuit-evasion game on L(n) has randomized competitive ra-

tio Q(lolgol%‘n). Thus, if n > k the k-server problem on L(n) has competitive ratio

(logk)
loglogk /"~

This nearly matches the conjectured bounds.

For general spaces M, the special case of Conjecture 1.1 with & = |[M]| — 1 can
be stated as:

Conjecture 1.2 For any metric space M on n points, the randomized competitive

ratio of the pursuit-evasion game on M is O(logn).

As noted, the lower bounds of Conjecture 1.2 and Conjecture 1.1 are equivalent.
On the other hand, an upper bound for the pursuit-evasion game does not have
immediate application to the upper bound conjecture for the general k-server problem.
(In fact, there is some evidence that for k& = 2 the competitive ratio might be worse
for metric spaces with more than 3 points, see [LR].) In any case, we believe that a
solution to the pursuit-evasion game would be a major step towards the solution of
the more general problem and would also be interesting in its own right. (Since the
appearance of a preliminary version of the present work, significant progress on this
problem has been made. Bartal et al. [BBBT] gave a polylog(n) algorithm for the

pursuit-evasion game, and more generally for any metrical task system.)

Previously, Conjecture 1.2 was known to be true only for the case of uniform (or
nearly uniform) spaces mentioned earlier. Here, we establish Conjecture 1.2 for a dual
situation. If ' > 1, a metric space is C-unbalanced if for any three distinct points,
the ratio of the largest distance to the smallest nonzero distance is at least €. For

example, the metric space consisting of 4 points in a rectangle with side lengths 1

and C' is C-unbalanced.

Theorem 1.5 There is a polynomial p(n) such that for all n, the pursuit-evasion

problem on any p(n)-unbalanced metric space with n points has randomized competi-

tive ratio between Inn and 31nn.

It is worth mentioning that bounds on the competitive ratio of the pursuit-evasion
game carry over to the task system model of [BLS]. In particular, Theorems 1.3, 1.4

and 1.5 hold if we replace “the pursuit-evasion game on M” by “the task system on

M

1.1 Overview of the method

Theorems 1.3, 1.4 and 1.5 are proved as a consequence of a decomposition theorem
for the competitive ratio of the pursuit-evasion game. (Henceforth, when we say
“competitive ratio” we will mean the “randomized competitive ratio.”) The theorem
concerns metric spaces that can be split into two subspaces, where the diameter
of each subspaces is small relative to the overall diameter, and it asserts that the
competitive ratio of the pursuit-evasion game on the whole space can be expressed
almost exactly in terms of the competitive ratios of the games of the game on the two

subspaces.

To state this result, we need some notation. For a finite metric space M, §(M) de-
notes its diameter and A(M) denotes the competitive ratio of the associated pursuit-
evasion game. We use the convention that the competitive ratio of a one point space
is 0. A subspace N of M is said to be y-small in M, for v < 1 if §(N) < v5(M).
We say that M is bipartite if it can be split into two subspaces M, and Mg (called,
respectively, the left space and the right space) such that the diameters of M, and
Mg are each less than §(M)/2. We call (M, MRg) a bipartition of M. It is easy to
see that if a bipartition exists, then it is unique. If M is bipartite, then we say that
it is y-bipartite, for v < 1/2 if §(My) and §(Mp) are each y-small in M, and we call
(My, MR) a y-bipartition of M.

The precise statement of our result is a bit long and is given as Theorem 1.7.
We begin with a simpler version, useful when M and Mp have nearly the same

competitive ratio.

Theorem 1.6 For any € > 0, there exists a polynomial p such that the following
holds. Let M be a metric space with bipartition (Mp, Mg). If Amin and Apax are
real numbers such that Apin < A(Mp), A(Mp) < Anax and each part is p(Aiax)-small
in M then

)\min—l'l_eg)\(M)g)\max—l'l‘l’e-

In words, if Mp and My both have competitive ratio close to A then the com-
petitive ratio of M is close to 1 + A.

The decomposition theorem can be used to estimate the competitive ratio of the
pursuit-evasion game on a space by partitioning it into smaller spaces and applying
induction. The lower bound of the theorem can be applied to non-bipartite spaces
by applying it to a bipartite subspace A" and using A(N) < A(M). For example,
Theorem 1.4 can be derived as follows. Let € = 1/2 and let p() be the increasing
polynomial whose existence is given by Theorem 1.6. Let ¢ be the greatest integer
such that [p(logn)]* < n and let n’ = [p(logn)]’. Note that ¢ = Q(bl;]%)' Let
Jj = n'/[p(logn)] = [p(logn)|'~' and let My and Mpg be the leftmost j points
and rightmost j points of M = L(n') respectively. By choice of j, either A\(Mp) >
logn and we are done, or else the condition on § of Theorem 1.6 is satisfied. So,
AL(n)) > ML(n)) > M Mg UMpg) > A Mg)+ 1/2. We can continue on My,
letting j* = j/[p(logn)] and so forth until after ¢ steps we have run out of points.

The competitive ratio of £(n) is thus at least ¢/2, which is Q(l—lolg”—)
oglogn

The full decomposition theorem provides sharp bounds on A(M) even if My, and
Mg have different competitive ratios. Define the function Z(x) on non-negative reals
by Z(x) = /(" — 1) if + > 0 and Z(0) = 1. The theorem says that A(M) is well
approximated by max{A\(My), A\(Mg)} + Z(|A\(ML) — M(MRg)|).

Theorem 1.7 Let M be a metric space with at least three points, having bipartition
(Mp, Myp). Let ap,ar > 0 and set amax = max{ar, ar} and aug = |op — ar|. Let
§ = (M) and dmax = max{d(My),d(MRg)}. Suppose that cmax > 1 and that each
part is 1/max{324amax, @i, }-small in M. Then

max

1. if ap > AMMy) and ap > A(MRg), then A < omax + Z(aan)(1 + (), and

2. if o < AMMyp) and ap < AMMpg), then A > amax + Z (i) (1 — (),

where (= 23e™df Sﬁ%aﬁwx.

The proof of Theorem 1.7 consists of two parts. We introduce and completely
analyze a new game, called the Walker-Jumper game, which abstracts the essential
elements of the analysis of a decomposed problem. Then we formally demonstrate
that the competitive ratio of a decomposed problem can be tightly bounded by the

competitive ratio of an associated Walker-Jumper game.

Theorem 1.6 follows easily by applying the first part of Theorem 1.7 with oy =

R = Amax and the second part of the Theorem with a5 = ar = Anin.

6

Theorem 1.7 is combined with a Ramsey-type theorem for metric spaces to prove
Theorem 1.3. The cases of Theorem 1.7 needed are the case where M, and Mpg have
nearly the same competitive ratio, and the “highly unbalanced” case where My is
large and My is a single point. The Ramsey type theorem, which can be viewed as
an extension of a theorem from [KRR], says roughly that any metric space of n points

must contain at least one of the following three objects: (A) a roughly uniform space
of around 2V1ogn/leglogn 1, qingg (B) two highly separated spaces with small diameter,

4/lognloglogn

each having around n/2 points, or (C) one point very far from a small

diameter subspace containing nearly all the rest (around n —n/2V logn/loglogn points).

(For other Ramsey-like theorems for metric spaces, see [Mat].)

In Section 3, we present an informal discussion of the proof to motivate the con-
nection with the Walker-Jumper game. In Section 4 we define the Walker-Jumper
game and state a theorem which gives its exact competitive ratio, and describe and
prove the optimal strategies for each of the two players. The precise statement and
proof of the lemma connecting the Walker-Jumper game to the decomposition theo-
rem is given in Section 5. The applications of the decomposition theorem needed to
prove Theorems 1.3 and 1.5 are given in Section 6 which can be read independently of

the previous ones. It requires only the statement of the main decomposition theorem.

Section 5 is long and technical, although the underlying idea as sketched in Section
3 is fairly intuitive. Two technical lemmas stated in that section, Lemmas 5.2 and 5.3,
provide quantitative bounds on the additive constant that occurs in the definition of
competitive ratio, and may be of independent interest. The proofs of these lemmas

are deferred to the last section.

2 Online Games: Definitions and Preliminary Re-

sults

2.1 Notation

As usual, R and N denote, respectively, the sets of real numbers and the set of

nonnegative integers. The set {# € R: 2 > 0} U{oo} is denoted R...

We will need the following notation for sequences. Let X be a set. We denote
by X™ the set of sequences consisting of n terms from X and X* = {J,»; X". An
element of X* is denoted in boldface as x = (21, x2,...,2:); sequences are indexed

from 1 unless otherwise noted. The number ¢ of terms is called the term length of

z, and is denoted |x|. If j < ¢, then we use x’ to denote the sequence consisting of
the first j terms of x. If x and y are sequences such that x/ = y for some integer j
then we say that y is a prefir of x and that x is an extension of y. If x and y are

sequences, then xy denotes their concatenation.

If x is a sequence of real numbers of term length n, then Ax denotes the sequence

of differences: Azy = 2y and for 2 < 53 <n, Az; =2, —z;_;.

A metric space M consists of a set of points P and a symmetric nonnegative
valued distance function defined on P x P that satisfies the triangle inequality and
is zero only on the diagonal. We abuse notation and use M to denote both the
metric space and the underlying set of points P. The associated metric is denoted
by d = dpy. M is assumed to be a finite set unless otherwise noted. The diameter of

the space, § = §(M), is the maximum distance between any pair of points.

A sequence of points in a metric space is referred to as a walk in the space. The
domain of the distance function can be viewed as the set of walks of term length 2.
We extend the domain of d to the set of all walks by defining d(x) to be the sum of
the distances between successive pairs of points. We refer to this as the metric length

of the walk.

2.2 Two-Player Zero-Sum Games

The online algorithmic problems considered in this paper can be viewed as two-person
zero-sum games. We recall some basic definitions and results about such games. A
two-player zero-sum game G with players MAX and MIN is a triple (Syax, Sy, C)
where Syax and Swin are sets, and a cost function C' = CY, where C' : Sy X Smax —
R... An element of Syax (resp. Swmin) is called a pure strategy of MAX (resp. MIN).
The game is finite if Syax and Syn are finite sets. It will be convenient to use an
asymmetric notation: C,(r) denotes the value of this function for strategies ¢ € Syun
and r € Syax. The value Cy(r) is intuitively the cost to MIN given these two

strategies.

In a randomized instance of the game, each player selects a probability distribution
over its strategy set; such a distribution is called a mized strategy. The set of mixed
strategies for player X is denoted Sx. Similarly, we denote a mixed strategy by a

letter with a ~ over it.

The cost of two mixed strategies ¢ € Swin and 7 € Syax, denoted C;(7), is the
expected value of C,(r) with respect to the product distribution of the two strategies.

The value of a mixed strategy 7 € gMAX, denoted Vyrax(7), is the infimum of Cj(7)
overall ¢’ € SN (which may be 0.) Similarly, for § € gMIN, VMmin(§) is the supremum
of C;(7") over all € Syax (which may be +00.)

It is well known (and easy to show) that the value of a mixed strategy is determined

by its cost with respect to pure strategies for the other player:

Lemma 2.1 Let GG be a two-player zero-sum game.

1. For any mixzed strategy 7 for MAX, Vmax(F) is equal to the infimum of C,(7)

over all pure strategies ¢ € Sy .

2. For any mized strategy ¢ for MIN, Vuin(q) is equal to the supremum of Cy(r)

over all pure strategies r € Syax.

The supremum of Wax(7) over all 7 € Suax is called the MAX-value of game G,
and is denoted Vyiax (). A strategy 7 that attains this supremum is called an optimal
strategy for MAX. Similarly, the infimum of Vinn(§) over all § € SMIN 1s called the
MIN-value of game G, and is denoted Vann((G) and a strategy ¢ that attains this
infimum is called an optimal strategy for MIN. In general, optimal strategies may

exist for one, both or neither player.

The following elementary result is easily proved:
Lemma 2.2 For any game G, Vax(G) < Vann(G).

A game (is said to have the min-max property if (i) Viax(G) = Vuin(G) and (ii)
both players have an optimal strategy. For such a game, the common value is denoted
V(G') and is called the value of the game. The following fundamental theorem of two-

person games, known as the min-max theorem, was proved by von Neumann (see,

e.g., [VNM]):
Theorem 2.1 Any finite two-player zero-sum game has the min-max property.

A subgame of the game GG = (Swvax, Smin, C) is a game G' = (Tyax, Ty, C)
where Tyax € Swmax and Tvin € Syn. We say that G is equivalent to G if (i)
Wiax (G') = Viax (G), (i) Vun(G') = Vuin(G), and (iii) MAX (resp. MIN) has an
optimal strategy in G/ if and only if MAX (resp. MIN) has an optimal strategy in G.

A subset Tyax € Smax dominates Syax with respect to the game G if for any
strategy r € Smax, there is a strategy ' € Tymax such that C,(r") > Cy(r) for all
g € Syvin. Similarly, a subset Tygn € Syviny dominates Syny with respect to G if for
any strategy ¢ € Smin, there is a strategy ¢’ € Ty such that Cy(r) < Cy(r) for all
r € Sumax. We have:

PI‘OpOSitiOH 2.1 Let G = (SMA)(,SM[N,C) be a game, TMAX g SMAX and TMIN g

SMIN .

1. If Tyax dominates Syax relative to G then the subgame (Tyax, Smin, C) s

equivalent to the game G,

2. If Tvin dominates Sy relative to G then the subgame (Smax, Ty, C) is equiv-
alent to the game G,

Finally, we define the notion of the competitive ratio of a two-person game. Let G
be a game whose payoff function is nonnegative. A base-cost function Cgagg for the
game (i i1s an R -valued function defined on Syax. We say that the mixed strategy
G for MIN is k-competitive with respect to Cpgasg if there exists a constant A such
that for any strategy r for MAX:

CQ(T) S KJCBASE(T) + K.

The competitive ratio A = A ('), with respect to Cgasg, is the infimum over all

for which there is a k-competitive algorithm, with respect to Cpasg.

A natural choice for a base-cost function is the optimal cost function, Copr(r),
which is defined as the infimum of C,(r) over all MIN-strategies ¢. (Notice that
Copt(r) = Vmax(r).) In the context of online algorithms, the competitive ratio with
base-cost Copr(r) corresponds to the standard notion of the randomized competitive
ratio of the associated online problem. We call Copr the standard base-cost function.

In this paper, we will also have need to refer to non-standard base-costs.

The following result gives a criterion for upper bounding the competitive ratio

(which is slightly more general than the definition):

Proposition 2.2 Let G be a game with base-cost function Cgasg. Let £ > 0 and
f: R — R be a function such that lim,_, @ = k. Suppose that ¢ is a strategy
for MIN such that for any strategy r for MAX,

Ci(r) < f(Crasi(r))

Then A\(G) < k.

10

Proof: It is easy to check that the hypothesis of the proposition implies that ¢ is

k + € competitive for any positive ¢, which implies that A < k. |

The following result gives a criterion for lower bounding the competitive ratio.

Proposition 2.3 Let G be a game with base-cost function Cgasg. Let £ > 0 and
f: R — R be a function such that lim,_, ., @ = k. Suppose that {r; :1 € N} is a
sequence of mized strategies for MAX and {u; : 1 € N} is a sequence of real numbers

tending to oo, such that for each i, Ceasi(7i) < u; and for each pure MIN-strategy q:

Colri) = flui)
Then A(G) > k.

Proof: It suffices to show that if € > 0, there is no (k — €)-competitive algorithm 4.
Suppose, to the contrary that ¢ is (k — €)-competitive. Then there is a constant K

such that for any pure strategy r

CQ(T) < (li — G)CBASE(T) + K.

Now, by taking expectation with respect to the distribution 7; we get:

Cy(7:)

IA

(li — G)CBASE(Fi) + K
< (k—eu; + K.

For each ¢, there is a deterministic strategy ¢; such that C,, (%) < C;(7;). For
that strategy we have C (%) < (k — €)u; + K. Thus, by the hypothesis of the
proposition, f(u;) < (k — €)u; + K, for every ¢. This contradicts the hypothesis that

that lim, o @ =x. |

Taking u; = Cgasi(7;) in the above Proposition yields:

Corollary 2.1 Let G be a game with base-cost function Cgasg. Let £ > 0 and
f: R — R be a function such that lim,_, ., @ = k. Suppose that {r; :1 € N} is a
sequence of mized strategies for MAX such that Cpasg(7;) tends to oo and such that
for each v and for each pure MIN-strateqy q:

Co(75) > f(Crase(rs))
Then A(G) > k.

11

2.3 The Pursuit-Evasion Game: Definitions and Preliminary
Results

The Pursuit-Evasion game for a metric space M, denoted PE(M), is a two-person
zero-sum game between two players, the Pursuer (the MAX player) and the Evader
(the MIN player). Intuitively, the game is played as a sequence of rounds. At all times
the Evader is located at some point of the space. In each round, the Pursuer probes
some point of the metric space. If she picks the point containing the Evader then the
Evader must move to some other point; otherwise the Evader may stay where he is.
The cost to the Evader in responding to a sequence of probes is the total distance he

travels.

In the language of two-player zero-sum games, the set of pure strategies of the
Pursuer is the set M™ of all finite sequences from the metric space. Such sequences are
referred to as probe sequences. A sequence o is said to be a response sequence for the
probe sequence p if it has the same term length as p and o; # p; for all 7. The point
o; represents the location of the Evader at time 7. The pure strategies for the Evader
are called deterministic response algorithms or simply deterministic algorithms. A
response algorithm A maps each probe sequence p to a response sequence A(p) subject
to the following consistency requirement: for any probe sequence p and point a,
A(pa) extends A(p). The consistency requirement formalizes the intuition that the
algorithm determines the response sequence of the Evader in an on-line manner, i.e.,

the i*" response depends only on the first ¢ probes.

The cost function C'4(p) is defined to be d(A(p)), the metric length of the response
sequence generated by the algorithm A on input p. Copr(p) denotes the minimum of
Ca(p) over all algorithms A. It is easy to see that this is the same as the minimum
metric length of a response sequence for p. (Note that in our definition, the Evader
is allowed to choose his own starting point o; at no cost. Other authors specify a
starting point oy and charge the Evader an additional d(og,01). This is a matter of

convention that does not affect the results.)

A mixed strategy for the Pursuer is a probability distribution p over probe se-
quences. A mixed strategy for the Evader, called a randomized response algorithm is
a probability distribution A over response algorithms. Since the set of pure strategies
for the Evader is uncountable, a probability distribution can not be specified by sim-
ply by assigning a probability value to each strategy. The general approach to mixed
strategies on infinite strategy spaces requires measure theory; in our case the measure

theoretic definition can be restated in algorithmic terms: in a randomized algorithm

12

the s*" move of the Evader is chosen according to some probability distribution on M,
where the probability distribution may depend on the first s moves by the Pursuer
and the first s — 1 responses of the Evader.

We can define a randomized response algorithm formally via decision trees. Let
T = T denote the infinite rooted tree of degree | M| where the edges from each node
are in one-to-one correspondence with the points of M and the nodes are labeled as
follows: the root is labeled P (for pursuer), the children of the root are labeled E
(for evader), and the remaining nodes are labeled inductively P or E so that labels
alternate along each path from the root. We can represent a (randomized) on-line
response algorithm A by assigning to each F-node v a probability distribution on
M. i.e., a nonnegative function p, on M whose values sum to 1. On probe sequence
P1s P2, - - -5 Pr, the algorithm follows the branch labeled p; from the root. It chooses
its response according to the probability distribution p, for its node, and follows the
corresponding branch from v to the next P node. It then processes each successive

probe in the same way, following down the tree to depth 2k.

As in Section 2.2, we extend the definition of the cost function €' to randomized
strategies by defining C';(p) to be the expectation of C'4(p) with respect to the product
distribution of A and p. Also, Copr(p) is the expectation of Copr(p) with respect to
the distribution p. (It is important here to emphasize Copr(p) is not the same as the
minimum of C'4(p) over all A. In computing the former, we choose the best algorithm
for each deterministic p and average the cost with respect to p while in the latter we

choose the one algorithm that minimizes the average cost with respect to p.)

For s > 0, an s-block of M is a prefix-minimal probe sequence whose optimal cost
is at least s—4. In other words, p is an s-block if Copr(p) > s—4, but Copr(7) < s—4§
for any proper prefix 7 of p. In the nondegenerate case that M has at least two points,
an s-block p satisfies s — § < Copr(p) < s, since the last step can increase Copr by
at most . In the degenerate case that M consists of a single point p and we define

an s-block to be the singleton sequence.

Any probe sequence p can be parsed uniquely into subsequences pyps ... px Where
each successive p; except possibly the last is an s-block. We refer to this as the s-block

partition of p.

The competitive ratio of PE(M) is defined in terms of the standard base-function
Copt and is denoted A(M). For brevity, we often refer to this as the competitive
ratio of M. 1t is trivial that the competitive ratio of a 2 point space is 1. From the
previously noted result of [MMS] (which was proved for the deterministic competitive

ratio) we have:

13

Lemma 2.3 For any M, A(M) < |M]|—1.

The pursuit-evasion game on a 1-point space does not really make sense. However,
it will be convenient to adopt the convention that the competitive ratio of a 1-point
space 1s 0. With that definition, the main decomposition theorem will hold when one

or both spaces is a one-point space.

The following fact is both well known and easy to prove:

Proposition 2.4 For any metric space M and subspace N': A(M) > A(N).

3 An overview of the decomposition theorem

We are working in a space M with bipartition (M, Mp), which we call the left space
and the right space. In the present discussion, we assume that each space has at least
two points; the degenerate case that one of the spaces consists of a single point will
require special treatment, which we delay until later. The assumptions of the theorem
imply that the distances within each subspace are small relative to distances between

the two subspaces.

We want to express the competitive ratio of the big space in terms of the com-
petitive ratio of each of the two subspaces. The key idea is to abstract the behaviors
of the Pursuer and the Evader so as to focus on their movements between the spaces,
treating their movements within each space as a “black box”. This idea leads to
the formulation of a new game, called the Walker-Jumper game, which abstracts the
pursuit-evasion game for such a partitioned space. This game is defined and analyzed
in the next section, and the proof of the decomposition theorem is then completed in

the following section.

The proof is technical, but the underlying idea is natural. In this section we
provide intuition for the proof with an informal discussion that leads naturally to
the definition of the Walker-Jumper game. Throughout the section we make various
plausible but unjustified assumptions and approximations, which will be cleaned up

in the proof.

At each point in the game, the Evader is either “on the left” or “on the right”.
While the Pursuer probes the opposite space the Evader need do nothing. While the
Pursuer probes the subspace occupied by the Evader, it seems apparent that either
the Evader should follow his optimal randomized response algorithm for that space

(achieving, over that interval of moves, a competitive ratio equal to that for that

14

space) or he should move to the other space. By randomizing his choice of when to

switch between spaces, he can hope to “fool” the Pursuer as to his location.

We view the probe sequence of the Pursuer as a sequence of left phases and right
phases, where a left (resp. right) phase consists of moves in the left (resp. right)
space. When the Evader uses a randomized strategy, the Pursuer will only have a
probability distribution on the location of the Evader. In order to maximize the
competitive ratio, the Pursuer wants to construct a probe sequence that (i) has a
good chance of catching the Evader often, and (ii) has a low offline cost. For the first
goal, it would seem that she should always probe on the side with higher probability
of containing the Evader, while for the second goal, it would seem that she would do
well to avoid switching between spaces too often (this will make it easier for an offline
algorithm to “hide” safely in one space for long intervals of moves) and thus should

tend to make each phase long.

For s > 0, we defined an s-block to be a prefix-minimal probe sequence of cost at
least s — 4, and we observed that its cost is at most s. For some large integer D (to be
specified later) we define s = §/D where § is the diameter of M and define a left block
(resp., right block) to be a probe sequence which is an s-block with respect to the
space My, (resp., Mp). Note that an s-block for My or Mp is not an s-block with
respect to the entire space; indeed any such block has 0 optimal cost with respect to
the entire space since an offline Evader will respond by staying at one location on the

opposite space.

Recall that the s-block partition provides a canonical way to parse every probe
sequence from a space as a concatenation of sequences each of which, except possibly
the last, is an s-block. For a given probe sequence of M, parse each left phase
according to its s-block partition with respect to My and parse each right phase
similarly. It is reasonable to expect that if s is small relative to the typical cost of
a phase then we may ignore the “remainder” block of the phase and simply assume

that each left (resp., right) phase is a concatenation of left (resp., right) blocks.

With this assumption, we view the entire probe sequence as a sequence of left
and right blocks. If the Pursuer chooses to add a right block, it would seem natural
that she select the right block so that, assuming the Evader is on the right, the
expected cost to the Evader is maximized. This expected cost can not exceed sAp
(by much), since the Evader can follow his Agp-competitive strategy for the space
Mp. On the other hand, the Pursuer can force an Evader who stays on the right to
incur nearly this much (in expectation) by selecting her right block according to her

optimal randomized s-block strategy ps = ps(Mp). Similarly when the Pursuer picks

15

a left block, she can force an Evader who stays on the left to pay roughly sAy.

To summarize, when the Pursuer adds a block, if the Evader is on the opposite
side he pays nothing. If the Evader is on the same side, he either moves to the other
side immediately, paying roughly ¢ or he stays on the original side and incurs an
expected cost of sAp or sA;, depending on the side. We assume that ¢ is much larger
than both sAr and sAy so that it would not pay for him to move to the opposite side
at the beginning and back at the end the block.

Thus, we have a good approximation to the cost of each block to the Evader,
depending only on (i) the side from which each block is chosen by the Pursuer (ii)
the side on which the Evader finishes responding to each block.

We would like to get a similar estimate for the offline cost. For each probe sequence
p, define Cp(p) to be the minimum cost of a response sequence o whose last point
is on the left and Cr(p) in the analogous way. We refer to these respectively as the
left-optimal and right-optimal cost of p. The optimal cost of p is just the minimum of
these. Since they clearly differ by at most the diameter § of M, we may take Cr(p)
as a good estimate of Copr(p). We want to understand how €, and Cr change when
the Pursuer adds a left block or a right block. So, let p be the sequence constructed
so far and consider adding a right block 3. It is easy to see that Cp(p3) = CL(p), as
Cr(pB) = min{Cr(p),Cr(p)+46} and Cr(p) < Cr(p)+ 4. On the other hand, we can
estimate: Cr(pB) =~ min{Cr(p) + §, Cr(p) + s}, where the two terms correspond to
the two choices of the offline Evader: either finish the previous block on the left and
move right only at the end of or finish the previous block on the right and respond
to [on the right.

Let us summarize this discussion, by considering the evolution of the parameter
w = (Crp — Cr)/s. Note that w is always between —D and D. Each right block
increases w by (roughly) 1, subject to w < D and, similarly, each left block decreases
w by 1, subject to w > —D. It is useful to visualize the evolution of w as a walk on
the integer points between —D and D. A right step corresponds to w being increased
by 1, and CRr being increased by s. Similarly, a left step corresponds to w being
decreased by 1, and (7 being decreased by s.

Notice that if the Pursuer adds a right block that causes w to reach D then the
Pursuer may add an arbitrary number of right blocks without affecting C'r, Cr or w.
Let us assume that she does this, i.e., a right step from D — 1 to D corresponds to a
huge number of right blocks. The effect of this on the Evader is clear: on such a step
he must move to the left space (if he is not there already) or incur a huge cost. (Note

that the Evader can compute Cr, C, and w online and thus recognize this situation).

16

Similarly we may assume that a left step from 1 — D to —D corresponds to a huge

number of left blocks and the Evader must move to the right space.

Having associated the Pursuer’s probe sequence to a walk on the integer line we
now can make the following estimates of the offline cost and the Evader’s cost. The
offline cost is estimated by s times the number of steps to the right. The Evader’s
cost is 0 on any step that is taken in the direction opposite the space he occupies.
On a step taken in the direction of the space that he occupies, his cost is sD if he
chooses to move to the other space and is sAgr or sA;, (depending on his space) if he
chooses to stay in his space. Whenever a right (resp., left) step is taken that reaches
D (resp.,— D), the Evader must move to the left (resp., right) space.

This idealization suggests that we can model our problem by a game between two
players, the Walker who walks on the line (and corresponds to the Pursuer) and the
Jumper who jumps between the left and right side (and corresponds to the Evader).
In the next section we define this game precisely and analyze it. In the succeeding
section, we then formally show how to use the analysis of this game to establish the

decomposition theorem.

4 Walker-Jumper games

The Walker-Jumper game W .J[D, ag, ar] has parameters D, a positive integer, and
nonnegative real numbers ap and «y. The players are referred to as the Walker
(Wendy) and the Jumper (Jack). The game “board” is the set Ip = {—D,—D +
l,...,D—1,D}. At each integer time ¢ > 0, the position of the game is the ordered
pair (wy, J;), where wy € Ip is Wendy’s position and j; € {—D, D} is Jack’s location.

9.

The initial position for Wendy is wy = 0 and Jack can choose either 50 = —D or

jOZD.

At each time ¢, a legal move for Wendy consists of one step either to the left
(w; = wyi—g — 1) or to the right (w; = wy—q + 1). If |w] = D, Wendy has only one
legal move. Thus, the sequence Aw defined by (Aw); = w; — w;_; has entries in the
set {—1,1}. We refer to Aw; as the direction of move i. A move of —1 (resp. +1) will
be referred to as a left move (resp. right move). Also, for convenience of notation,

we sometimes use a_1, 1 in place of ay, ag.

Jack’s answer to request w; is either to stay where he is (j; = j;—1) or to jump to
his other allowed position (j; = —j;—1). Jack’s moves are subject to constraint that

Jt # wy, i.e., if Wendy arrives at Jack’s location (w; = j;—1), then Jack must jump

17

(J: = —wy).
If j; = (Aw):D, i.e., Wendy’s move at time ¢ brought her closer to the location

that Jack occupies after his move, then we say that Wendy hit Jack; it is a left hit or
a right hit depending on the direction of Wendy’s move.

Formally, a (pure) strategy for Wendy (a request sequence) is given by a sequence
w = (wg = 0,wy, ws,...) having entries in Ip and satisfying |w; — w,_1| = 1 for each
t > 0. A pure strategy for Jack is a function (algorithm) A that maps each finite
request sequence w = (0,wy,...,w,) to a sequence (Jo, j1,J2,-.-Js) in {—D, D}t
The map satisfies the constraint A(w);, # w; for each ¢, and it also satisfies the
consistency constraint that if w is an extension of v then A(w) is an extension
of A(v); this constraint means that A is an on-line algorithm. As usual, we also
consider randomized strategies for both players. A randomized strategy for Wendy
is a probability distribution W on request sequences and a randomized strategy for

Jack is a probability distribution A on algorithms.

The cost function for algorithm A on request sequence w, C4(w) (representing

the cost to Jack), is given as follows.

1. Each jump by Jack costs him D,
2. Each right hit by Wendy costs Jack ap,

3. Each left hit by Wendy costs Jack ay.

Thus the cost of step ¢ to Jack, (AC4(w)); = Ca(w®)—C4(w' 1), can be written:

(ACA(W)): = Dx(Jr = —Je—1) + (aw)) X (Je = (Aw) D),
where, for the predicate P, y(P) = 1if P is true and 0 otherwise.

As usual, if A and W are randomized strategies then C';(W) is defined to be the

expectation of C4(w) with respect to the distributions.

We are interested in the competitive ratio A = A(W.J[D, ag, ar]) of this game
with respect to a nonstandard base-cost function: Cgasp(w) is the total number of
steps to the right. Note that Casg(w) is within +D of |w|/2. Applying Proposition

2.2, we obtain the following criterion for upper bounding A:

Corollary 4.1 Let A be an algorithm for Jack. Suppose that b is a positive real such
that for all j € N and sequences w of term length j:

18

Ci(w) < j(b+9(5)),
where g(7) is a function that tends to 0 as j tends to oo. Then A < 2b.

Proof: Let ¢'(v) = max(s_p<i<pig(r + d). The hypothesis implies that for any w,
Ci(w) < (Cpase(w) + D/2)(b + ¢'(Crase(w))). So the corollary follows if we take
flz)=(x+ D/2)(b+ ¢'(x)), and ¢ = 2b in Proposition 2.2. O

Similarly, we get a criterion for lower bounding A from Corollary 2.1. Recall that

wi denotes the prefix of w up to w;:

Corollary 4.2 Let g(j) — 0 as j — oo. Let W be a distribution over infinite se-
quences for Wendy. Suppose that b is a positive real such that for any algorithm A
for Jack and 5 € N:

Ca(w) > j(b— g(5)),
then A > 2b.

An algorithm A for Jack is called lazy if Jack never jumps when Wendy moves
away from him, i.e., if (Aw); # ji—1/D then j, = ji_;. It is easy to show that any
nonlazy strategy is dominated by some lazy one in the sense that the lazy strategy
performs at least as well on any request sequence by Wendy. Thus we may assume

that Jack is restricted to lazy strategies.

We consider only the case that D is at least apa, = max{ag,ar}. To develop

some intuition for this game, let us first show that ap.x < A < ap + ap + 1.

To see the lower bound assume, without loss of generality, that a; > ap and
consider the following pure strategy for Wendy: move right D times to position D
and then alternately move between D —1 and D. Fach time Wendy moves from D to
D — 1, Jack must start at —D and pays amax (if he doesn’t move) or D (if he does).
Dawas) - Applying

After j steps by Wendy, Jack’s cost is at least a% = J(omex — o

Corollary 4.2 yields a lower bound of ap.x on the competitive ratio.

To see the upper bound of ay + ar + 1, consider the following pure strategy for
Jack: never jump unless a jump is required (because Wendy arrives at the same
location). On any j step sequence, Wendy takes at most j/2 + D steps in each
direction (since the number of left steps differs from the number of right steps by at
most D) and Jack jumps at most j/(2D) times (since he jumps at most once every

2D steps). Thus Jack’s cost can be bounded above by (ar + ar)(j/2 + D) + j/2.

19

Applying Corollary 4.1 implies an upper bound of ar 4+ ar + 1 on the competitive

ratio.

As we shall see, the trivial lower bound above is much closer to the truth than the
trivial upper bound. The main result of this section is an exact expression for the

competitive ratio A\(W.J[D, ar, ar]). Define fr =1 — ar/2D and B, =1 — a,/2D.

Theorem 4.1 For nonnegative real numbers ap and oy and positive integer D >

maz{ar, ar}, the competitive ratio A of the game W J[D, ag, ar] is given by:

\ ar+ Or if ap = ar,
= 2D__, pg2D
7%%17_;5 L ifap # af

Using elementary estimates and recalling that we defined Z(x) = a/(e” — 1) for
x>0 and Z(0) = 1 we obtain:

Corollary 4.3 For nonnegative real numbers ar and ay,, define ayax = max{ag, ar}

2
max

and g = |agp — ag|. Suppose that cpmax > 1. Let D > «
Then the competitive ratio A of WJ[D, ag,ar] satisfies:

be a positive integer.

Omax + Z (i) (1 — €) <A < amax + Z(ain) (1 + €)

2
4amax

where € =

We first deduce the Corollary from the Theorem.
Proof: (of Corollary 4.3).

The case ap = ay is trivial since Z(0) = 1. So assume ar # arp. From the

Theorem and simple algebraic manipulation we get:

\ — OéRﬁj%D - OéLﬁJQQD — 4 adifr
I%D o 6]2%D max (1 n 2Doidoifmx)2D -1

To prove the Corollary, we need to show that for € = 402, /D:

| 1 1 | < €
(1+ 72;_‘1;& 2P0 — 1 eoaim —] T eoair — 1’

or equivalently:

(1 4 gpit—)2P — eoam
(1_|_ adiff)2D_1 |§6

2D —omax

20

Note that (1+ #)QD > et by taking @ = (2D — aair) /aaisr in the inequality
(1 4+ 1/2)**t > e, which holds for all positive . Thus we may remove the absolute
value from the inequality to be proved. Replacing the denominator by a smaller

quantity it now suffices to show:

(1 4 —odiff)QD — eQaift

2D —amax < €
ediff — | -
__oqif)2D.
Next we upper bound (1 + QD_amX) :
og; agifr 2Dagif 2diff 2
(1+ % 2P = PPItspmans) < efPame < 040 2D —mmax
- amax
o Odiff @max . 200 max
C e B o), 200

(The last inequality uses the assumption o2 < D.) Thus it suffices to show:

max

e dift 2OzdiffOémax/l)

exdif — |

< e.

If evaiff < 2 then, since the denominator is at least agi, the expression on the left
is at most damay/D. If e¥4if > 2 then e*4iff /(e — 1) < 2, and the expression is at
most dagigOmax/ D < 402, /D.

max

We now return to the proof of Theorem 4.1. This is proved in two parts:

1. We analyze a specific randomized algorithm for Jack and use Corollary 4.1 to

obtain an upper bound on .

2. We analyze a specific randomized strategy for Wendy (a probability distribution

on request sequences) and use Corollary 4.2 to obtain a lower bound on A.

4.1 The upper bound: a strategy for the Jumper

We begin with an explicit description of a randomized strategy for Jack. The strategy

is simple but not particularly intuitive; we will motivate it as we analyze it.

Jumper Strategy.

21

1. The strategy is defined in terms of 2D + 1 parameters 0 = p_p < p_p11 <
p_pio < ... < pp_1 < pp = 1 which are specified below. Initially, Jack
chooses his initial position to be —D with probability pg. At round ¢ + 1, if
Wendy moves in the direction away from j;, Jack does not move. If j; = D and

Wendy moves rightward from w; = 3 — 1 to wyy; = j then Jack moves to —D
with probability pl]__p%. The probability of jumping from D to —D is chosen
i

so that if Jack occupied —D with probability p;_y, then Jack is now at —D
Pyj—Pj—1
1—p;j—1
leftward from w; = j 4+ 1 to wyy = j then Jack moves to D with probability
Pi+1—Pj

Pij+1

occupied —D with probability p;41, then Jack is now at —D with probability
Pit1 (1 -

with probability p;—1 4+ (1 — pj_1) = p,;. If 3y = —D and Wendy moves

Here, the probabiliity of jumping from — D to D is chosen so that if Jack

Pi+1—Py

Pyt1) = Pj-
Notice that this strategy ensures that at all times ¢, Jack is at — D with probabil-
ity py,: at the start, Wendy is at location 0 and Jack is at —D with probability

po; and, as noted above, this property is maintained inductively.

2. The parameters p; that are used are given by:

ﬁi 52D—i_ﬁ2D .
W lf aR % ay,
L R

pi:{%—l-ﬁ) if agp = ay,

For a given sequence w for Wendy, let N;;; = N, ;/(w) be the total number of
steps that Wendy takes from j to j' (which can be nonzero only if 7/ € {7 —1,7+1}).
Recall that each right hit costs Jack ag, each left hit costs Jack ap, and each jump
costs Jack D. So, each time Wendy takes a step from j to j + 1, Jack pays ar with
probability 1 — p;i1 (the probability Jack is at D after the step is taken), and pays D
with probability p;41 — p;. Similarly, each time Wendy moves from j + 1 to 7, Jack’s
expected cost is p;ar, + (pj41 — pj)D. Therefore, we can express the expected cost to

Jack of the sequence w as:

D-1

Ciw) = > Nijwi((1 = pigr)ar + (pjy1 — pj)D) + Njgrj(pior + (i1 — pj) D)
j=—D
D—1

< Y (N + D((1 = pj1)ar + pior + 2(pjs1r — pi) D).
j=—D

The inequality follows from the fact that N; ;11 +1 > Nj4q ;.

22

The expression r; = (1 — pjy1)ar + pjar + 2(pj+1 — pj) D that multiplies N; ;41
can be interpreted as the expected cost to Jack if Wendy makes a “round trip” from
J to 7+ 1. The specific definition of p; given in Jack’s strategy was chosen so that r;
is the same for all j. These values can be determined by introducing a parameter K,
setting the r; = K for each 7, solving the resulting linear recurrence relation for p;,

and then using >~ p; = 1 to determine K. As is easily verified, this yields:

orB2P—app2P

% OéR—I-ﬁR ifOéR:OéL,
= .
W lf aR 75 Qag,

As noted, Z?:__ID Njj+1 < 2lw|+ D . This leads to:

D-1
Cilw) < Z Njjy1 +1)r
-D
D—
S Z],]-I—l —I_ 1
<

§|w|K +3DK.

Applying Corollary 4.1, yields A < K as desired.

4.2 The lower bound: a strategy for the Walker

We now prove a matching lower bound by describing and analyzing a randomized
strategy for Wendy. As for the upper bound, the strategy is simple; we describe it
first and motivate it as we analyze it. Essentially, Wendy’s strategy is to follow a
biased random walk on the line, where the bias to the left or right depends on the

direction taken in the previous step.

Walker Strategy

1. The strategy is defined in terms of two parameters op and o, which are real
numbers between 0 and 1. If w; = D or wy = — D then w4 is forced. Otherwise
|wi| < D and Wendy moves as follows. If move ¢ was to the right (w; = w;—1+1)
then Wendy goes left at step ¢t + 1 with probability o7 and to the right with
probability 1 —oy. Similarly if move ¢t was to the left (w; = w;—1—1) then Wendy
goes right at step t+1 with probability or and to the left with probability 1 —op.

23

2. The parameters op and oy, are defined by op = «ar,/2D =1 — (1, and oy, =
OéR/QD =1- ﬁR-

The intuition behind this strategy is the following: We want to choose a strategy
for Wendy that guarantees that the ratio of Jack’s cost to the base-cost is at least
a certain value, regardless of what Jack’s algorithm is. This suggests that we seek a
strategy that has the property that the expected cost to Jack is essentially indepen-
dent of what Jack does. This was the guiding principle in designing this strategy.

Fix a lazy deterministic strategy A for Jack and define C'(w) = Cy(w). We
are interested in lower bounding the expectation of C'(w) with respect to the above
distribution for Wendy. It will be convenient to introduce a modified cost function,
C*(w) = C(w) + ¢(w), where the correction ¢ depends only on the final step: if
the last step by Wendy scored a hit on Jack (precisely, j; = D(ws — ws—y1)) then
Y(w) = D — ag if the hit was to the right and D — «y, if the hit was to the left.
Otherwise ¥)(w) = 0. Thus, C(w) > C*(w) — D.

The purpose of introducing this modified cost is that with respect to this cost
measure, the cost to Jack of any given step does not depend on what Jack does at
that step. More precisely, define Jack’s modified cost at step t to be (AC*)(w) =
C*(w®) — C*(w*1). Since we are assuming that Jack is following a lazy strategy,
Jack has an option to move only if j,_; = (Aw);D. In this case, if he does not jump
then his true cost increases by a(aw), while his modified cost increases by aaw), +
P(wh) — (w1 = D — op(wt 1), If he jumps at time ¢, then his true cost goes up
by D but his modified cost goes up by D + ¢p(w®) —p(w™1) = D —op(w'™1), which

is the same as if he did not jump. The reader can now check the following:

Lemma 4.1 For any fived lazy strategy A for Jack, the change (AC*)(w) in the
modified cost at time t is given by the following table:

(Aw): | (Aw)i—y | Je—1 | (ACT)i(w)
41 41 4D | ag

+1 +1 -D 1|0

—1 41 +D |agr—D
-1 +1 -D\|D

-1 -1 —-D | op

-1 —1 +D |0
41 —1 —D|la,—D
+1 -1 +D | D

|

24

Recall that if |w,_1| = D then, by the rules of the game, it must be the case
that jio1 = —wi—1, (Aw)i—y = wi—q/D,and (Aw)y = j:-1/D. Thus, in this case
(AC*)(w) = D.

If |wi—1] < D then when Wendy moves at time ¢, her move can depend on (Aw);_1,
the direction of her last move, but not on j;_;, which she does not know. So we try
a strategy for Wendy in which her probability of moving in each direction depends
on the direction of her last move. This motivates condition 1 in the definition of
the strategy. So consider a strategy satisfying this condition, with o and o, as yet
unspecified. We now can write down an expression in terms of w;_; and j;_q, for the
expectation (with respect to this randomized strategy) in the change of the modified

cost at time ¢, for the case |w,_1| < D.

ar — Doy, if (Aw)i—1,5i-1) = (+1,4D)
(ACT)(W) = SLUL_ Do z Ei :g;
DO‘R = (—1, —I-D)

By selecting o7, and op so that this expectation is independent of j;_;, we obtain

condition 2 of the strategy.

Having motivated Wendy’s strategy, we now continue with its analysis. The

change in the expected modified cost at time ¢ can now be written:

D ifhe| =D
(ACT) (W) =14 ar/2 if |wey| < D and (Aw),—y = +1
ap/2 if w1 < D and (Aw);—g = —1

To apply Corollary 4.2, we need to lower bound Jack’s expected cost against the
sequence w’ generated by the first j steps of Wendy’s strategy.

Wendy’s strategy can be described by a Markov chain with state space {L; : —D <
i < DYU{R; : =D < ¢ < D} where Wendy is in state L; at time ¢t — 1 if w,_y =1
and (A)i—1 = —1 (she is at point 7 and her last move was to the left) and Wendy is
in state R; at time ¢t — 1 if w;—y =7 and (A,)i—1 = +1 (she is at point ¢ and her last
move was to the right). For state U, let N;(U) denote the expected number of visits
to state U during the first j steps by Wendy. Also, let p(U) denote the steady state
probability for state U. For large j, N;(U) = p(U)j(1 4+ o(1)). Thus for a sequence
w of j steps chosen according to Wendy’s strategy:

25

(W) = D[N;(L_

= J(L 4 o(1)[D(p(L-

D-1

1
)—I—N RD 5 Z N] OéL—I-N(RZ')OéR]
i=1—
1 D-1
) +p(fip)) + 5 Y (p(Li)ar + p(Ri)ar)).
1=1-D

Applying Corollary 4.2, we obtain:

A > 2[D(p(L_

p)+p(Rp)) + 3 5 p(p(Li)ar + p(Ri)ar)].

We proceed to determine the steady state probabilities of the Markov chain. The

transition matrix of the chain yields the following equations for the steady state

probabilities:

)
p(Lp-1) = p(Bp),
p(RZ) = (1 — UL)p(Ri—l) + URp(Li—l) il —-D < < D,
p(Ri-p) = p(L-p).

Solving this system and recalling that r = 1 — ar/2D = 1 — oy, and (B =

1 — OéR/QD =

1 — op we get the following solution (which can be easily checked

against the defining equations):

where

is chosen so that the sum of the probabilities is 1. Notice that p(L;)

i and therefore 3°; p(L;)

on A\ as:

J Br

p(Li) = E(ﬁ—L)a (1)
WA = O)

J 1 if ap = ar,
= _ D .
LA farf o

= p(R;41) for all

= Y p(Rit1) = 1/2. Thus we can rewrite the lower bound

26

A = 2D(p(Lp) + p(Rp)) + (& — (o)L 4 (2 — p(Rp) 2

2 2 2 2
= 2[D(Brp(L-p) + Brp(Rp)) + aLZiaR]
= 3l GPT) + ar, + agl.

A routine calculation shows that this simplifies to the expression in the theorem.

5 Proof of the Decomposition Theorem

This section is devoted to the proof of Theorem 1.7. Recall the notation of the
theorem: M is a metric space partitioned into subspaces M and Mpg. Their re-

spective diameters and competitive ratios are denoted 4,67,dr and A, Ap, Ag. Also

(Smax = maX{5L,5R},)\max = max{)\L,)\R}, and)\diﬂ‘ = |)\L —)\R|

The overview of the proof in Section 3 developed the Walker-Jumper game as a
rough model for the pursuit-evasion game on a partitioned space. We now make this

connection precise.

Lemma 5.1 Let My, Mg be a partition of M such that & is at least 32. Let ap

and ay, be nonnegative numbers and amax be their mazimum. Let D be an integer

satisfying max{2Amax + 2,/ ﬁ} <D< 45iax'

1. If ap, > Ay, and ap > \p then:
A< AWJID, ar,ar])(1 + 1),
2. If ap, < A\ and ar < \g then:
A> AMWID, ap,ar])(1 —n),

where

Given Lemma 5.1 and the analysis of the Walker-Jumper game, the decomposition

theorem 1.7 is easily proved.
Proof of Theorem 1.7.

For the first part, we need to show:

— Umax 5max
o -1 S 23€adiﬁ 3

A
— — .
7 (adiﬂ) 5 max

Leaving D unspecified for now, let us abbreviate A(W.J[D, ag,ar]) by A(W.J).
Then, the left hand side may be written and upper bounded as follows:

AW T) — timax

—1
Z(ovaifr) |

A AVI) AWS) = amax A= AV)

Z(ovaifr) Z(ovaifr) — Z(oas) I+

We bound the two terms in the sum separately. Corollary 4.3 implies that, as long
as D is chosen larger than o? __, the second term is at most 4a2 __/D. The first term

is bounded using lemma 5.1, the trivial upper bound A(W.J) < 20max + 1 < 30max

observed early in section 4, and the fact that Z(x) > e~ for all nonnegative x:

|A—MWUM 3tmaxl]
Z(ovaifr) Z(ovaifr)
3amax -6 - 5maxD
<
Z(adig)é
1805max(smaxl)€adiﬁ
= 1)

Now set D to be an integer satisfying {/dcmax/0max < D < %\/5amax/5max. This
is possible because the hypothesis of the theorem implies that \/domax/dmax > 18. It
is easily verified that, under the hypothesis of Theorem 1.7, the resulting D satisfies

both the hypothesis D > o?

max

of Corollary 4.3 and the conditions in Lemma 5.1.
Summing the upper bounds on the two terms using this value of D yields an upper

bound of:

19€adiﬁ \/aﬁqax(smax _I_ 4\/aﬁ1ax(smax < 23eadiﬁ aﬁqax(smax
)) -) ’

as required for the first part of the Theorem.

28

For the second part of the theorem, either Apax > max + Z(casr)(1 — (), or else,

we must prove:

« — A)
max +1< 93 0dit max 3
Z(ovaifr) -

5 max’
The proof is similar to that of the first part. |

Thus 1t remains to prove Lemma 5.1. The proof of this follows the outline in
Section 3, but needs a lot of technical work which is divided into three subsections.
First, we state two technical results that bound the constants occuring in the definition
of the competitive ratio; the proofs of these lemmas are deferred until the end of the

paper. Then we prove the upper and lower bounds of the lemma.

5.1 Two technical lemmas

In the proof overview, we related a step to the left (resp. right) by the Walker in the
Walker-Jumper game, to the addition of an s-block for some appropriately chosen
s by the Pursuer in the Pursuit-Evasion game. In sketching how this works, we
approximated the cost of such a left block to the Evader by sA\r. When we formalize
this argument one of the things we will have to do is to bound the error in this
approximation. For this, we will need two lemmas concerning the existence of “good”

strategies for the pursuer and the evader in the pursuit-evasion game.

The competitive ratio for a 2-person game was defined in general as an infimum
over k for which there is a k-competitive algorithm. In general this infimum need
not be attained, i.e., if the competitive ratio is A, there need not be a A competitive
strategy for MIN. However, as we will see in the next lemma, for the pursuit-evasion
game there is always a randomized evader strategy that attains the competitive ratio.
Furthermore, we can also upper bound the constant K that occurs in the definition

of the competitive ratio.

Lemma 5.2 Let M be a metric space of diameter 6 and let X denote the competitive
ratio of its pursuit-evasion problem. Then there exists an algorithm A such that for

any probe sequence p:

Ci(p) < ACopr(p) + 0A.

Corollary 2.1 provides a criterion for lower bounding the competitive ratio of any
game. The sequence of strategies 7; in the hypothesis of the corollary can be viewed

as a witness to the fact that the competitive ratio is at least k. To prove tight lower

29

bounds on the competitive ratio, we would like to be able to find such a witness

sequence in the case ¢ = A.

Lemma 5.3 Let M be a metric space and A the competitive ratio of its pursuit-
evasion game. For any s > 0 there is a distribution ps on s-blocks such that for any

response algorithm A:

Calps) 2 AMs = 0) = 4.

The proofs require a somewhat tedious technical formulation, after which the
results follow from elementary analysis. So as not to distract from the flow of the

main argument we defer the proof to the last section of the paper.

5.2 The Upper Bound (proof of Lemma 5.1, Part 1)

We now proceed with the proof of Lemma 5.1. We assume for now that both the
left and right space have at least two points. In the case that one or both of them
is degenerate (has only one point), the proof is similar but requires some technical

modifications which we indicate at the end of the subsection.

The upper bound is proved by associating for each Jumper strategy J for WJ[D,ag,ar),
an Evader algorithm A(.J) for PE(M) that satisfies that if .J is x-competitive then
A(j) is k(1 4 n)-competitive. The evader algorithm A(j) must specify an online rule
for responding to a probe sequence. The idea will be to associate the incoming probe
sequence to a Walker sequence, apply J to that Walker sequence and then translate

the Jumper’s moves into moves for the FEvader.

We first describe a rule for associating a probe sequence p for M to a Walker
sequence w = w(p). View p as the interleaving of two probe sequences, one for Mp
(the right subsequence) and one for M, (the left subsequence). Define the parameter
S = (0 — 20max)/ D (the reader should think of this as approximating §/D). Parse
each of these subsequences separately into its so-block partition, as defined in Section
2.3. Now build w in the following online manner. Each time a right (resp. left) block
of p is completed, a right (resp., left) Walker step is added to w unless that step will
take the Walker outside the bounds [—D, D]. Let p denote the prefix corresponding
to the steps up to w;. Let k = |w| and let p be the portion of p coming after the last
sy-block of either subsequence; thus p = p*p.

Given the Jumper strategy J, the algorithm A(j) responds to the probe sequence

p as follows. As the sequence p is received, the Evader constructs w(p) and simulates

30

the response of J to this sequence. The Evader uses the position (left or right) of
the simulated Jumper to determine which space to be in; the response by J to a step
of w determines whether the Evader continues in the same space or moves to the
other. The times at which the Evader switches spaces delimits a sequence of left and
right intervals. During a right(resp. left) interval, the Evader ignores probes on the
other side and responds to the subsequence of right (resp.,left) probes by applying the
algorithm Ag(resp., Ar), where Ag (resp., Ap) is the Evader strategy for PE(Mpg)
(resp., PE(Myp)) that satisfies the conclusion of Lemma 5.2.

Now, supposing that .J is k-competitive, we need to verify that A(j) is k(1 4+ n)-

competitive. We will deduce this from:

Lemma 5.4 Let J be a Jumper strategy for WJ[D,ar,ar)]. Then for any probe
sequence p for PE(M),

1. Copr(p) > (52 = Omax)CBase(W(p)) — 9,

2. CA(j)(,o) < (824 20max)C5(W(p)) + K, for some constant K independent of p.

Using this lemma and the assumption that J is k-competitive we obtain that for

some constants H and H' independent of p:

Ciplp) < (524 20max)Ci(W(p)) + K
< (82 + 20max)kCBase(W(p)) + H
52 —I' 25max 7
< ————«xCopr(p) + H
So — 5max
3D6max ,
(1+ 5= (D+ 2)5max)/iCOPT(,0) + H
6 D6 max ,
< (L4 =2)rCopr(p) + ',

where the last inequality follows from § > 2(D + 2)dmax Which is an easy consequence
of the hypotheses of the lemma. This implies that A(.J) is (1 4 n)k-competitive, as

required to prove the upper bound.

So it remains to prove Lemma 5.4.

Proof of Lemma 5.4. Define C(i) (resp., Cr(7)), for 1 < i < E, to be the

minimum cost of a response sequence to p' whose last point is in My, (resp. Mpg).

31

Note that Copr(p) > Copr(p¥) = min{Cr(k), Cr(k)}. Since |Cp(i) — Cr(7)] < §, we
have COPT(p) 2 CR(]C) — (S

Lemma 5.5 Cgr(i) > (83 — dmax)(? + w;)/2 and Cp(1) > (82 — dmax) (2 — w;)/2.
Since Cpase(w) = (k + wy)/2, the first part of Lemma 5.4 follows.

Proof: We prove this by induction on ¢; the basis ¢ = 0 is trivial. Suppose 7 > 0.
Assume that (Aw); = +1; the case (Aw); = —1 is proved analogously. Thus p' marks
the end of a right block.

The induction step for Cp(7) follows from Cp(i) > Cr(v —1). For Cr(1), let j <
be the least index such that (Aw), = —1 for j < h < i. Thus either j = 0 and w; is
the first step to the right, or w; is the last step to the right prior to w;. It is easy to
see that this implies that ¢ + w; = 7 + w; + 2, and hence 3 > ¢+ w; — D — 2.

We need to show that any response sequence for p' that ends on the right costs at
least (83 — dmax)(w; +1)/2. Consider such a response sequence, written as o7 where

o is the portion that is a response sequence to p’.

Note that d(o) must be at least the minimum of Cr(j) and Cgr(j) which, by
induction and the above expression for j is at least ($2—dmax)(7—D)/2 > (S2—max) (1+
w;—2D—2)/2. Any move between the two spaces costs at least 6 —28,,0x = Ds2, which
can be shown to be larger than (s3 — dmax)(D + 1) using the hypotheses D > 1/ /dmax
of the theorem. Thus it follows that if there is any move between spaces subsequent
to o, then the total cost of the response sequence is at least (2 — dmax)(w; +1)/2, as

required.

So assume that after o there is no move between spaces. Then o ends on the right
and all steps of 7 are on the right. Since the portion of p between p and p' contains

a right s,-block, it follows that 7 has optimal cost at least sy — dpax. Thus:

d(or) > (52 = dmax)(w; + 7)/2 + 2 — dmax
= (53 — Omax)(w; + 7 +2)/2
= (S2 — Omax)(wi +1)/2,

as required. |

We now turn to the proof of the second part of Lemma 5.4. For this we want to
upper bound the expected cost incurred by A(j) on p, in terms of the expected cost
of J on w(p). Consider the cost incurred by the Evader during each interval that

begins after a move into one space and ends with the move out of that space, or, in

32

the case of the last such interval, with the end of the sequence p. We will compare the
Evader’s cost to the cost of the Jumper during the corresponding interval. Without
loss of generality, assume that the Evader is on the right during this interval and thus
the Jumper is at +D. This implies that the simulated Walker can not be at +D at
any step (except possibly the last one) during this interval.

First consider the case that the interval is not the last such interval. The Evader
responds only to the probes that occur on the right during that interval. In the
definition of the algorithm, the subsequence of right probes was partitioned into right
sg-blocks. Let m be the number of ss-blocks that end during this interval. By the
definition of w and the fact that the Walker is not at +D at any time during the
interval, it follows that the Walker took m right steps during the interval. Thus the

cost to the simulated Jumper is map for those steps, plus D for the final jump.

Now, consider the cost to the Evader corresponding to the interval. Since the
Evader is on the right, he responds only to the right probes that occur during the
interval. The subsequence of right probes has optimal cost (with respect to the right
space) at most m(ss + dg), since it is the concatenation of m sequences each with
optimal cost at most s,. Since the Evader uses algorithm Ay to respond, the expected
cost of responding is at most arm(se + 0r) + Ardr < apm(ss + 26gr). Adding the
cost of the final move to the left space, which is at most 4§, we obtain an upper bound

on the Evader’s cost for the interval of:

apm(sz+ 20r) +6 = arm(sy + 20R) + Dsay + 26max
aRm(SQ + 25]%) + D(SZ + 25max)
S (osz + D)(SQ + 25max)

IA

Thus the Evader’s cost on every interval except the last is at most (s3 + 2max)

times the simulated Jumper’s cost on the interval.

For the last interval, the cost to the Jumper is agm. To bound the expected cost
to the Evader we must include the portion u of p which occurs after the last step by
the simulated Walker. This could increase the optimal cost (with respect to the right
space) of the subsequence of right probes in this interval to (m+1)(s240g). Thus the
expected cost to the Evader within the interval is bounded above by agr(m + 1)(s3 +
dRr) + ardp, which is in turn bounded above (s3 4+ 20g) times the simulated Jumper’s

cost of map plus a constant that does not depend on p. |

33

We now indicate how to modify the proof in the case that one or both of the spaces
has exactly one point. First we have to modify the definition of the Walker sequence
w(p) associated to a probe sequence. As before, we view p as the interleaving of a
right and a left subsequence, and we parse each of these sequences into their sy-block
partitions. Recall that for one point spaces, we defined an sy-block partition to be the
partition into singleton blocks. As before, at the completion of a left or right block,
the next step of the Walker is generated. For a block corresponding to a nondegen-
erate subspace, the Walker step is generated as before. A block corresponding to a
degenerate subsequence, will correspond to not one, but a sequence of Walker steps
which take the Walker all the way to the corresponding endpoint (—D for a left block
and D for a right block). If this is the i"* completed block, then we abuse notation
by setting w; = D for a right block, and w; = —D for a left block; thus we compress

all of the Walker steps corresponding to a degenerate block into one step.

Lemma 5.4 can be extended to hold in this case. The definitions of C'(¢) and Cg(7)
need to be modified in Lemma 5.6: if the left (resp. right) space is degenerate and p®)
ends with a left (resp. right) block, then the definition of Cp(7) (resp. Cgr(7)) does not
make sense and we modify it by defining C(¢) = Cr(i)+ 9 (resp. Cr(i) = CL(¢)+9).

The proof of Lemma 5.6 is then routine.

In the proof of the second part of Lemma 5.4 we analyze intervals defined by
moves of the Evader from one space to the other. The case of an interval in which the
Evader occupies a degenerate space is different than those analyzed, but is actually
easier, since during the interval there are no requests inside the degenerate space
and the cost to the Evader is the cost of the move to the other space at the end of
the interval which is bounded above by 4. The cost to the Jumper during the same

interval is just D.

5.3 The Lower Bound (proof of Lemma 5.1, Part 2)

As with the upper bound, we prove the lower bound in the case that M and Mp
each have size at least two. Afterwards, we indicate how to modify the proof to handle

the degenerate case that one or both spaces has only one point.

The strategy of the lower bound is the “mirror image” of the upper bound proof.
That is, we will define a function which maps each Evader algorithm A for PE(M) to
a Jumper algorithm J(A) for W.J[D, ag, or] and has the following property: if A is
a k-competitive algorithm for the PE(M) then J(A) is a 1=, -competitive algorithm
for WJ[D, ag, ar], where n < 651“%17. This immediately implies the lower bound of

34

the lemma.

There are two main steps. Define the parameter s; = 6/D.

1. For each Walker strategy w for the game W.J[D, ag, ay], we define a distribution
fi(w) on probe sequences for the Pursuer in the pursuit-evasion game on M such
that

Cpase(W)(S1 + Omax) > Copr(f(W)) (4)

2. For each (randomized) Evader algorithm A we define a Jumper algorithm J(A)
for W.J[D, ag, ap] and show that for all Evader algorithms A and Walker strate-

gies wW:

Ci(i(w)) = Cja)(W)(s1 = 20max) (5)

(where the first cost function is with respect to PFE(M) and the second is with
respect to W.J[D, ag, ar]).

It follows immediately from these two steps that if A is k-competitive then there

is a real number K such that for any Walker sequence w,
(1 — 25maxD/(S)(1 — (SmaxD/(S)Cj(i) < KJCBASE(W) + K

and thus j([l) is

m — competitive, which will complete the proof.

For this proof, we define a left block (resp. right block) to be an s;-block of the
space My, (resp. Mpg). For a Walker sequence w = (wg = 0,wy, ..., wy) in the game
WJ[D, ar,ar] we say that probe sequence v for M is compatible with w if v is the

concatenation of k probe sequences vyvs ... vy satisfying:

1. For each ¢ such that |w;| # D, 14 is a single right block if (A,); = 1 and is a
single left block if (A,); = —1.

2. Let N be a large integer parameter to be specified later. If |w;| = D then 14 is
the concatenation of N right blocks if (A,); = 1 and is the concatenation of N
left blocks if (A,); = —1.

The sequences v; are referred to as segments and are designated as left or right

segments depending on whether they are from Mgz or M. A segment consisting of

35

a single block is called a small segment, and one consisting of N blocks is called a

large segment.

The distribution fi(w) will be a distribution over probe sequences compatible with
w. To define this distribution, we first need the following special case (actually, a

slight weakening) of Lemma 5.3:

Corollary 5.1 There exists a distribution pr on the set of left sy-blocks and a dis-
tribution pr on the set of right sy-blocks such that:

1. For any response algorithm A for My: Ca(pr) > arp(s1 —20r).

2. For any response algorithm A for Mp: Ca(pr) > ar(s1 — 20R).

The distribution ji(w) is now defined to be the distribution over probe sequences
compatible with w in which each left block is chosen independently from the distri-

bution pr, and each right block is chosen independently from the distribution pg.

Next, we relate the base-cost of w to the expected optimal cost fi(w). The base-
cost of w equals the number of right steps, which is equal to (k+wy)/2 where k = |w].
We will show that for any probe sequence v compatible with w, its optimal cost is
at most (81 4 dpmaz)(k +wy)/2. Since fi(w) is a distribution over such sequences, this
will imply inequality (4).

So fix v compatible with w. Denote by Cr(¢) (resp. Cg(z)) the minimum cost
of a response sequence for the first ¢ segments of v whose last point is in My, (resp.
Mpg). Note that |Cp(i) — Cr(2)] < 4. Then Copr(v) is then equal to the minimum
of Cr(k) and Cgr(k) and thus the desired upper bound on Copr(r) is an immediate

consequence of:
Lemma 5.6 Cgr(i) < (81 4 Omax) (1 + w;)/2 and Cp(1) < (81 + Smax) (2 — w;) /2.

Proof: We prove this by induction on ¢; the basis case ¢ = 0 is trivial. Now suppose
that + > 0 and that the result holds for ¢ — 1.

We assume (Aw); = +1; the case (Aw); = —1 is proved analogously. Thus v;

consists of one or N sy-blocks from M p.

To prove the induction step for Cr(7) it suffices to observe that Cpr(i) = Cp(v —1),
which is obvious since the definition of Cp(: — 1) implies that there is a response
sequence for vy ...14-1 that ends at some point y € My, that costs Cp(i — 1). This

sequence can be extended by remaining at y through 14 and the cost does not increase.

36

Next we prove the induction step for Cg(7). In the case that segment v; consists of
a single right block then by the definition of C'r(¢ — 1) there is a response sequence o
for 11 ... 14-1 ending at some point y € Mg that costs at most Cr(i—1). Since v; is an
s1-block for Mg, there is a response sequence 7 for 14 that costs at most s; and ends in
Mp. Then the sequence o7 costs at most Cr(i—1)+s1+d(y,71) < Cr(i—1)+ 314+ 6man
which is bounded by (s1 4 dnax) (¢ + w;)/2 by the induction hypothesis.

In the case that the segment v; consists of N right blocks, we must have w; = D.
Then we use the fact that Cr(i) < Cp(i) 4+ 9 to obtain Cr(1) < ($14 dmax) (i — D)/2+
51D < (81 4 Odmax) (1 + D) /2 as required. 1

Now we turn to the second and final step: the definition of j([l) and the verifi-
cation of inequality (5). Given an Evader strategy A, the Jumper strategy j(A) will
be defined as follows. On being presented Walker sequence w, J generates a probe
sequence according to the distribution fi(w). Note that this generation can be done
online with segment ¢ being generated given w;. At the same time, he simulates the

algorithm A on the sequence fi(w). At step 7, the Jumper responds to w; as follows:

L. if Jw;| = D then j; = —w; (which is forced by the rules of the game).

2. if |w;| < D and w; is in the direction opposite to j;_; (i.e., they have opposite

sign) then the Jumper does not move, i.e., j; = j;_1.

3. if Jw;] < D and w; is in the direction towards j;_; then j; = D if Ais in Mp

at the end of segment 7 and j; = —D otherwise.

[t remains to verify inequality (5) and it suffices to verify this inequality for de-
terministic algorithms A; the result for randomized algorithms will follows by taking
expectation with respect to the distribution over algorithms. So fix a deterministic

algorithm A.

We will say that the simulated FEvader and the Jumper are synchronized at step 1
if after the ¢th step of the Jumper the Jumper is at +0 and the Evader is either in
the left space or the Jumper is at —D and the Evader is in the right space.

For technical reasons, it will be useful to modify the cost to the Jumper by adding
D to his cost if at the last step he is not synchronized with the Evader. Obviously
this modified cost is an upper bound on the true cost, so it suffices to work with this
modified cost. What we will show is that the expected change in the cost incurred

by the Evader during segment ¢ is at least (s1 — 2dmax) times the expected change in

37

the modified cost incurred by the Jumper at step :. We assume that the Jumper is
on the right, j;_y = D; the other case is handled similarly.

If step ¢ of the Walker is to the left than the change in the Jumper’s actual cost
will be 0. His modified cost will go up by D if and only if the Evader was in Mpz and
moved to My, during segment ¢. In this case, the Evader’s cost increased by at least
§ — 20mar Which is at least (81 — 20m42)D.

Now consider the case that the 1*? step of the Walker is to the right. If the Jumper
and Evader were not synchronized at step ¢ — 1, then at the end of step i, there are
three possibilities: they both end on the left, they both end on the right, or they
switch places (this can happen only if w; = D so that the Jumper is forced to jump).
In the first two cases, the expected change in the modified cost of the Jumper is less
than or equal to 0, while the Evader always incurs a nonnegative cost, and the desired
inequality is trivial. In the third case, the Jumper’s modified cost increases by D,

while the Evader’s cost increases by at least § — 20,0y Which is at least (s1 — 28,,40) D.

So we may assume that the Jumper and Evader are both on the right after step
1 —1 and the next step is to the right. As the Evader is following a lazy algorithm, we
may assume that if the Evader moves left during the block, he does not move again

during the block.

We consider separately the cases that w; < D and w; = D. In the case that
w; < D, then by the definition of the Jumper’s strategy, they will still be synchronized
at step 1. So either they both stayed on the right, or they both moved to the left.
If they both end on the left then the Jumper’s modified cost increases by D and the
Evader’s cost increases by at least § — 20,ax which we have already noted is good
for us. If they both stay on the right then the Jumper incurs a cost of ar and we’d
like to say that the Evader incurs an expected cost of at least (s; — 2dg)ag. This
would seem to be true: the Pursuer chooses her si-block from the distribution pg,
and we know from Corollary 5.1 that any algorithm B incurs expected cost at least

(s1 — 20Rr)ap against this distribution.

However, there is a subtle flaw in this reasoning. The algorithm A does not have
to decide whether to move to the left at the beginning of the s;-block; it can start on
the right and at some point decide to move left. For example, suppose A stays on the
right as long as the cost he has incurred during that block is less than some value V.
The the conditional expectation of the cost incurred given that the algorithm finishes
the block on the right is at most V. Since V' can be chosen less than (s; — 20g)ar,

this demonstrates that the above argument is fallacious.

38

To argue correctly, we must consider that, conditioned on the probe sequence up
to the beginning of the current block, there is a probability p that A stays on the
right for the entire block. Thus, the expected increase in the Jumper’s modified cost
is par + (1 — p)D. We need to show that the expected increase in the Evader’s
cost is at least (s; — 20g) times this. The expected increase in the Evader’s cost is
(1 — p)(0 — 20max) plus the expected cost incurred in responding to probes while on
the right. Now, the key point is that when computing this expected cost, not only
must we consider the cost incurred when the Evader finishes on the right, but also,
in the case that the Evader finishes on the left, we must consider the cost incurred

by the Evader before moving to the left.

So let us consider the behavior of the algorithm A from the beginning of this
si-block until the point that it jumps to the left. We can think of this algorithm as
one for the game PF(Mpg) which has the the additional option of stopping the game
in the middle. Let us call such an algorithm a stopping algorithm.

Lemma 5.7 Let B be a stopping algorithm for PE(MRg). Let p be the probability
that B does not stop on input distribution pr. Let g denote the expected cost incurred
by B before it stops. Then g > pagr(sy — 26r) — (1 — p)or(3Ar + 1).

Proof: Define the (non-stopping) algorithm B’ for PE(Mp) as follows: respond
using B until B stops. Then switch to using the algorithm Ap, the algorithm that

satisfies the conclusion of Lemma 5.2.

Now, we upper bound Cg,(pr). This cost is at most ¢ plus the cost incurred after
switching to Apg. The probability of ever switching to Ap is 1 — p, and conditioned
on switching, Ap incurs a cost of at most dx for its first move and an expected cost
of at most Ag(s1 + dgr) for the rest of its moves since it is responding to an s; block
(or a subsequence of it). Thus Cz,/(pr) < ¢+ (1 — p)(Ar(s1 + dr) + dr). On the
other hand, by Corollary 5.1, Cz.(pr) > ar(s1 — 26r). We conclude, therefore, that
q > par(s1 —20r) — (1 —p)(BAr + 1)(6r). |

With Lemma 5.7 in hand, we now can lower bound the expected cost to the Evader

in responding to the s;-block by:

par(sy —20r) — (1 —p)orBBAr + 1) + (1 — p)(§ — 20max) >
par(st —26r) + (1 —p)(0 — (BAR + 3)0max) >
(81 = 20max) (par) + (1 — p) D(s1 — 20max),

where the last inequality is obtained by applying the hypotheses about D and s;. The

39

final term is (81 — 20mayx) times the change in the Jumper’s modified cost, as needed.

Finally, we consider the case that both the Jumper and Evader begin on the right,
w;—1 = D — 1 and the step by the Walker is to the right. As before, since the Evader
is following a lazy algorithm, either he stays on the right or he moves to the left at
some time and stays there. Let p be the probability that the Evader stays on the
right. The idea is that, since the segment corresponding to the last step of the Walker
consists of N right blocks, where N is a large integer, we want to conclude that either
p 1s extremely small, or the Evader incurs a very large cost. For 1 < 7 < N, define
p; to be the probability that the Evader is still on the right after j of the s;-blocks;
thus, for all j, p; > py = p. Note that the conditional probability that he is on the
right after block j given that he is on the right after block 7 — 1 is p;41/pj. Then,
by lemma 5.7, the expected cost incurred due to responding to requests on the right

during block j is at least p;(agr(s1 — 20r)) — (pj—1 — pj)0r(3AR + 1).

Summing this over j, we find that the expected cost incurred due to responses on
the right is at least pNag(s1 —20r) — (1 —p)or(3Ar+1). Adding in the expected cost
of the final move to the left, and simplifying we get a lower bound on the FEvader’s cost
of the form (1 — p)D(s1 — 26max) + pNT where T is a positive real number. We need
this to be at least ($; — 20max) times the expected change in the Jumper’s modified
cost, which is D + pD since he must move to the left. For this we need pNT' to be at
least 2pD(s1 — 26max) and this will hold as long as N was chosen large enough. 1

Finally, let us indicate how the above proof changes if one of the spaces, say Mp
has exactly one point p. The only change in the definitions of w(p) and j(A) comes
from a change in the definition of compatibility. The modification is that for a step
to the right (Aw); = 1, the segment 14 is defined to be empty if w; < D and is
equal to the single point p if w; = D. The analysis of this strategy involves similar

considerations to the given proof, and is left to the reader.

6 Applications of the Decomposition Theorem

In this section we use Theorem 1.7 to prove Theorems 1.3 and 1.5. (Theorem 1.4 was

already proved in the introduction).

Recall that a subspace A of space M is e-small relative to M if §(N) < e5(M).
We also say that M is e-uniform if the distance between any two points in M is at
least €6(M). The following easy consequence of Theorem 1.1 is left to the reader (see
also [KRR]).

40

Lemma 6.1 The competitive ratio of an e-uniform space on n points is between ¢lnn

and (2/¢)Inn.
It will be convenient to state three special cases of Theorem 1.7.

Corollary 6.1 Let M be a metric space of at least three points and let Mp, My
be a partition. Let ar and «p be nonnegative numbers with amax their marimum

and agg their absolute difference. Suppose that amax > 1 and that both spaces are
(et 2200)~-small in M.

1. If ap, > A, and ag > Ag then A < amax + 37 (0ainr) /2,

2. If ar, <A and ap < AR then A > amax + Z(0ain) /2.

Proof: Apply the bounds of Theorem 1.7, noting that the hypothesis of the Corollary
guarantees (< 1/2. 1

The special case where ap = ar, is worth noting:

Corollary 6.2 Let M be a metric space and let Mg, My be a partition into two
subspaces of size at least 2. Let 3 > 1 be a lower bound on both Agp and A\ and
suppose that both spaces Mp and My, are (22005%)~ -small. Then A > 3+ 1/2.

We also have:

Corollary 6.3 Let M be a metric space of at least three points and let N be a
subspace. Let 3> 1 be a lower bound on AM(N') and suppose that N is (27000€3)71-
small. Then A(M) > 3+ e~20,

Proof: Let z,y be points of M of distance . Then by the triangle inequality, one
of the spaces obtained by adding exactly one of # and y to N has diameter at least
§/2. Assume x is the point and let K be the union of Kgr = N and K1 = {z}. The
hypothesis of the Corollary guarantees that the ratio of §(N) to §(K) is at most 2267635
which is less than or equal % for any # > 1. Thus we may apply Theorem 1.7 to
the space K. with ag = [and ar = 0. We obtain a lower bound on the competitive
ratio of K of 3+ Z(8)(1 — ¢). Finally, note that Z(3) > 2¢72 for 3 > 1 and that

the hypothesis of the corollary guarantees that ¢ < 1/2. 1

6.1 Tight bounds for highly unbalanced spaces

Proof of Theorem 1.5.

41

We want to show that for some polynomial p(n), any p(n)-unbalanced metric
space has competitive ratio between Inn and 31nn. We prove only the upper bound
here, the lower bound proof is very similar. For n = 1,2 the result is trivial. Let
n > 2 and let M be a p(n)-unbalanced metric space on n points. Let = and y be
two points of distance 4, the diameter of the space. Then by the imbalance property,
every other point z is close to exactly one of the points = or y, i.e., its distance to
one of them is at most ﬁ. This yields a ﬁ—bipartition (Mg, Mg). Let ng =
|IMp| and np = |Mpg| and assume ny > ng. By induction, A(My) < 3In(ny) and
AMpg) <3In(ng). Calling these upper bounds ay, and ag, we have apmax = 31In(nyz)
and agg = 31n(np/ngr). By choosing p(n) to be a sufficiently large polynomial, the
conditions of Corollary 6.1 apply, and A < 3In(nz) + (3/2)Z(31In(ng/ng)). Thus it

suffices to show

3
3Inn > 3In(ng) + §Z(3ln(nL/nR)).

For nj, = ng, this reduces to In2 > 1/2. For ny, > ng, let p = ny/ng — 1, so that

p > 0. Rewriting the desired inequality in terms of p, we need:

1 3n(1 + p)

>
1—|-,0)_6,0—|—6,02—|-2,03

In(1 +

Using z > In(1+2) > x —2*/2 to lower bound the left hand side and upper bound
the right hand side, it is enough to show:

14+ 2p 3
> 2
2(1+p)* ~ 6+ 6p+2p°

which is easily checked by cross-multiplying. |

6.2 A lower bound for all metric spaces

In order to prove Theorem 1.3 we will need a structure lemma for finite metric spaces,
which says roughly that every finite metric space contains at least one of the following;:
(1) a small set of points whose removal reduces the diameter by a large fraction, or
(2) a roughly uniform subspace of large size, or (3) a bipartite subspace in which both

parts are large and have small diameter relative to their union.

Lemma 6.2 Let k > 0 be an integer and s > 1. Fvery finite metric space M has a

subspace satisfying at least one of the following conditions:

42

1. A 2'7%-small subspace of size at least (1 — %)|./\/l|,

2. A i-um’form subspace of size at least s,

3. A 2'"F_bipartite subspace, each of whose parts has size at least QLkLJrlQ

Proof: The first step in the proof is given by:

Proposition 6.1 Let k > 0 be an integer and s > 1 be real. Any finite metric space
M that has no i-um’form subspace of size at least s has a 27%-small subspace of size
at least Z\A—kl

Proof: We proceed by induction on k; the basis £ = 0 is trivial. Suppose k > 0 and
that M has no i—uniform subspace of size at least s. By the induction hypothesis there
is a subspace A of size at least S'ﬁ:”l and diameter at most §2' 7%, Let 1, 29,..., 24
be a maximal sequence of points in N such that d(x;,z;) > §(N)/4 for i # j. For
each 1 € {1,...,t} let X; ={y € N : d(y,x;) < §(N)/4}. By the maximality of ¢,
U;X; = N. The largest X; has size at least |A|/t > |M]/s* and has diameter at
most §(N)/2 < §(M)/25. 1

Proposition 6.2 Let k > 0 be an integer, s > 1 and v € (0,1). Any finite metric
space M has at least one of the following:

1. a 1/2-small subspace of size at least (1 —~)| M|,
2. a 1/4-uniform subspace of size at least s,

3. a 2'~F-bipartite subspace, each of whose parts has size at least &M

Proof: Assume that M has no 1/4-uniform subspace of size at least s. Define se-
quences Mo, My, ..., M, and NVi,..., N, as follows. My = M. Having constructed
M, if |IM;] < v|M| then stop and set u = i. Otherwise, the previous proposition
implies that M; has a 27%-small subspace of size at least |j:l—k’| > Slk|./\/l| Let Ni41 be
such a subspace and let M; ; = M; — N;;1.

The union A of the N; has size at least (1 — v)|M]|. If it is 1/2-small then we
have a space satisfying the first condition. Otherwise, there exist z,y € N with
d(z,y) > §/2. It N; and N are the parts containing « and y respectively, then their
union is a space satisfying the third condition. |

To complete the proof of Lemma 6.2, fix k,s as hypothesized. Let M be given

L

and assume that M has no 3

uniform subspace of size at least s and no 2'*-bipartite

43

subspace in which each part has size at least 7z |M|. We show that M has a 2!~
small subset of size at least (1 —)| M|. This is trivial if s = 1 so assume s > 1 and
set v = 1/s. We define a sequence of metric spaces Mg, My, My, ..., M|,), where
M has size at least (1 — iy)| M| and has diameter at most §27*. Then M, has the

desired properties.

To define the sequence, let My = M. For 0 < i < |s], having defined M, apply
Proposition 6.2 to it. Our assumption about M implies that neither conclusion
(2) nor conclusion (3) of Proposition 6.2 hold for M; (for this we need to observe
that since i < [s], [M;] > |M]/2.) M, has a 3-small subspace of size at least

(I —y)M;| > (1 = (@ + 1)y)|M]|, which we take to be M;1;. 1
Proof of Theorem 1.3.

Let g(n) denote the minimum competitive ratio over all n point spaces. Because
of the uniform space, g(n) < 2Inn. We derive a recurrence inequality for g(n). Let
M be an n point space. Fix s = s(n) and an integer k = k(n) to be specified
later and apply Lemma 6.2. If the second conclusion holds, then Lemma 6.1 implies
that the A\(M) > i + Ins. If the third conclusion of Lemma 6.2 holds, we want to
apply Corollary 6.2 with 3 = g([574z]) to conclude that A(M) > ¢([55z]) +1/2.
To apply Corollary 6.2 it suffices that 27% < 1/(2200(21nn)?) (using the fact that
g(n) < 2Inn)). So we choose k = [20 4+ 3logInn] < 20 + 6loglogn. Finally, if
the first conclusion of Lemma 6.2 holds, then we want to apply Corollary 6.3 with
B = g([n(l —1)]) to conclude A(M) > g([n(l — 1)) + e=20(n(1=2D . To apply
Corollary 6.3 it suffices that 2'7% < 1/(27000¢°"™) which holds if s > 6logn + 20.

Thus, under this assumption on s:

log s 1 1 n

() > min{=5= g([n(1 = L)1) 4 00D gty (6)

It now suffices to choose s(n) satisfying the above condition, guess a function that

lower bounds g(n) and use the recurrence to verify the lower bound.

We choose s(n) = 9Coy/logn/loglogn where () > 0 is a small constant to be chosen
later. We choose ng = ng(Co) so that for n > ng, s(n) > 6logn + 20. Finally set
h(n) = Cilog s(n), where C; > 0 is chosen to be at most 1/4 and also small enough
so that for 3 <n < ng, h(n) <1.

We claim that g(n) > h(n) for all n > 3, which suffices to prove the theorem. We

proceed by induction on n.

44

For n < ng, the result is trivial since g(n) > 1. So assume n > ng. Applying the
recurrence (6) and the induction hypothesis we get:

n

log s 1 (Tl 1
e | DR B

g(n) > min{ I

In substituting i for ¢ in the second term we observe that x + ¢™** increases with

x for x > IHTQ and is at most 1 for = € [0, IHTQ] Next, since h increases with n we can

drop the [-]:

n

log s 1 —2n(n(1-1 1
) + 2 S))vh(W)+§}' (8)

1 ,h(n(1

Now it suffices to show that each of the terms in the minimum is at least h(n).
This is true for the first term since C; < 1/4. For the second and third terms, we
bound h(n) — h(n/B) for B > 1 by following chain of inequalities:

B logn log(n/B)
hw—uwm-—@%%;é;—“%l%mmw>

g(n) > min{ ~ 3

< C\Cy |28 (1 18 B
log log n log n
< 00, logn log B
log log n log n

log B
Viog nloglogn’
To show that the second term in (8) is at least h(n) we take B = s/(s — 1) in the
. . . . 1
above inequality. The final expression is then at most C';C) oy e We need to

show that this is at most e=2Mn(1=1/9) Thig is true, as C1Ch——2A—— < 1/s <
sv/lognloglogn — -

1/s%61/In2 — g=2h(n) < =2h(n(1=1/5)) swhere the second inequality uses Oy < 1/4.

— 0100

To show that the third term in (8) is at least h(n) take B = 2stloglosn+22
in the above inequality. The final expression in the inequality is then at most

C1C3(6loglogn + 22)/log log n which is at most 1/2 for sufficiently small Cy. |

7 Proof of Technical Lemmas

In this section, we present the proofs of Lemmas 5.2 and 5.3. Throughout this sec-
tion M is a fixed finite metric space with distance function d and diameter . The

minimum distance between (distinct) points in M is denoted dpin.

45

We begin with some facts about the topological structure of the set of randomized
evader algorithms.! Recall from Section 2.3 that an algorithm can be defined as a
function that labels each E-node of T\ by a probability distribution on M. The set
P(M) of probability distributions on M can be viewed as a topological subspace of
Euclidean space RM, and so the set of randomized algorithms can be viewed as a

product of copies of this space (where the product is indexed by the F-nodes of T).

The topological facts we need are summarized in:

Proposition 7.1 1. Any sequence of randomized evader algorithms has a subse-

quence that converges.

2. Suppose that the sequence Ay, A,, ... of algorithms converges to algorithm A
in the product topology. If p is any probe sequence then the sequence of real
numbers Ay(p), Ay(p), ... converges to A(p).

Proof: The topological space of algorithms is equivalent to the product of a count-
able number of spaces isomorphic to P(M). Notice that P(M) is metrizable and
compact. By Tychonoff’s theorem (see [Kel][pp. 143-144]), the product of compact
topological spaces is compact with respect to the product topology. Moreover, the
product of a countable number of metrizable topological spaces is metrizable (see
[Kel][p. 122]). The first part follows from the fact that every sequence in a compact
metrizable topological space has a subsequence that converges to a point in the space
(see [Kel][pp. 138-139]). For the second part, we note that for a probe sequence p, the
mapping from the set of randomized algorithms to the reals, defined by A —» A(,o)

is continuous. |

We need a modification of the pursuit evasion game. Fix the metric space M and
let A denote the competitive ratio of the pursuit-evasion game. We define the modified
game for M to be a game whose strategy sets are the same as for the pursuit-evasion

game but whose cost function is fa(p) = Ca(p) — ACopr(p). For s > 0, let G5 (resp.

n the following discussion we use the following concepts from set topology (see, e.g., [Kel]): A
set system F is a topology iff the union of any number of elements of F is in F and the intersection of
a finite number of elements of F is in F. The pair (X, F), where X = UF € F, is called a topological
space. The elements of F are called open sets. If Y C X, then (Y,G), where G = {FNY; F € F},
is a topological subspace of (X, F). (Notice that a topological subspace is a topological space.) For a
metric space M = (X, d), the associated metric topology F is derived by putting F to be the set of all
the unions of open balls in M. A topological space that can be derived this way 1s metrizable. Any
subset of F whose union equals X is an open cover of the topological space (X, F). A topological
space is compact iff every open cover has a finite subset which is also an open cover. If (X, F)
and (Y, G) are topological spaces, then a function f : X — Y is continuous iff for every G € G,
I HG)erF.

46

Hy) denote the game obtained from the modified game by restricting the strategies
of the Pursuer to be probe sequences p satisfying Copr(p) < s (resp. satisfying
s —0 < Copr(p) < s). We will prove:

Lemma 7.1 For every s > 0,

1. The games G5 and H; have the min-max property.
2. The values of Gy and H satisfy:

S <V(H,) <V(Gy) <\

Assuming this lemma, it is easy to prove the two main technical lemmas.

Proof of Lemma 5.2: For s > 0, let A, denote an optimal strategy for G,.
By the first part of Proposition 7.1 there is a an infinite sequence 71 < 15 < ... of
positive integers such that the sequence %LJ converges to a limit algorithm A. If p
is any probe sequence, and j is chosen such that i; > Copr(p), the second part of
Lemma 7.1 implies CAi] (p) = ACop1(p) < V(Gy;) < X6, Letting 7; tend to oo yields
Cilp) — ACopr(p) < Ad, as required. 1

Proof of Lemma 5.3: Fix s > 0 and let p, denote an optimal strategy for the
Pursuer for the game H,. Then for any Evader algorithm A, we have Cilps) —
MCopt(p) > =0, 0or Ci(ps) > A(s — &) — 4, as required. |

The remainder of the section proves Lemma 7.1. To prove the first part of the
Lemma, it would be enough, by Theorem 2.1, to show that the set of pure strategies
is finite. Unfortunately, it is not in general true that the set of pure strategies is finite.
However, we will reduce these games to an analysis of games with finite strategy sets.
More precisely, we will define the notion of a standard probe sequence and a standard
Evader algorithm, and show that the restrictions of the games G5 and H; to these sets
are essentially finite games, and that the the analysis of Gy and H; can be reduced

to that of the restricted game.

As a preliminary restriction, we say that an Evader algorithm A is lazy if it does
not move unless it has to; i.e, the Evader moves from its current location only if the
Pursuer probes the location he occupies. It is easy to show and well known (see [BE])
that the set of lazy algorithms dominates the set of all algorithms in the sense of
Section 2.2. (Actually, the versions of this result that appear in the literature prove
the dominance with respect to the cost function C4(p) rather than f4(p), but it is
easy to show that the one result implies the other). Thus, applying Lemma 2.1 (2) it

suffices to restrict the Evader to lazy algorithms, which we do from now on.

47

By the definition of a lazy algorithm, if the Evader is at point a after probe
sequence p the Evader will move only if the next probe is to a. Thus for a lazy
deterministic algorithm A, each probe sequence p induces a transition function Alp]
mapping the metric space to itself where A[p](a) is the point the Evader moves to if

it is at a after p and the next probe is to a.

Before we can define the notion of standard algorithm and standard probe se-
quence, we need to review some basic facts about the pursuit-evasion game and the
function Copr. For the pursuit evasion game, Copr can be expressed as follows. For
probe sequence p and point p € M, let C'4(p;p) denote the cost incurred by A in re-
sponding to p and then moving to point p; this is C4(p) + d(a, p) where a is the final
point of A(p). Let Copr(p; p) denote the minimum of C4(p; p) over all algorithms A.
Then Copr(p) = min{Copr(p;p) : p € M}. For p equal to the empty string we have
Copt(p;p) = 0. For any p and any points a, p we have:

COPT(PG'}?) = COPT(p;p) fagp
’ ming, Copr(p; q) + d(q,a) ifa=p

For each p, Copr(p;p) is a function mapping p € M to the nonnegative reals.
This is the well known work function associated with this game (see, e.g., [BE]), and

will be denoted W F'[p].

It is easy to check that if 7 is an extension of p then W F[r] > W F|[p] where the
inequality of work functions is defined pointwise. 7 is a null extension of p if they
have the same work function. A point « is said to be null with respect to a sequence
p if pa is a null extension of p. Let N(p) denote the set of points that are null with
respect to p.

We state a few easy facts without proof:

Proposition 7.2 Let p = (p1,...,px) be an arbitrary probe sequence.

1. pr € N(p)

2. If T has the same work function as p then N(p) = N(7). In particular, a € N(p)
then N(pa) = N(p).
3. If a is any point that minimizes W F[p|(-) then a & N(p). In particular, there

is at least one point that s not null with respect to p.

A sequence p = (p1,...,pr) is said to be standard, if the work functions as-

sociated to its prefixes are all different, equivalently, for each ¢ between 2 and £

pi & N(p1,- .o pi-1)-

48

A standard algorithm A is a lazy algorithm that ignores null points. More precisely,
a standard algorithm never moves to a point that is null with respect to the current
sequence, and ignores requests to null points in the sense that its present and future

behavior is unaffected by such requests.

Let G’ (resp. H!) denote the game obtained from Gy (resp. Hj) by restricting to

standard probe sequences and standard Evader algorithms.

Proposition 7.3 For each s > 0 there is an integer t(s) with the property that any

standard probe sequence of optimal cost at most s has term length at most t(s).

Proof:

Let p = (p1,-..,p:) be astandard probe sequence. Let w* denote the work function
associated to the prefix p'. For each 7, w'(p) = w'™t(p) if p # p; and w'(p;) >
w(pi1). Let A; = w'(p;) —w' ™ (p;,_1). Induction on s yields S,wi(p) =i A
Since the maximum and minimum work function values associated to any probe
sequence differ by at most &, w'(p) > £(320_; A;) —d. Recall that i, is the minimum

distance between two distinct points in the metric space. We will show,
Claim. In any subsequence of n™ consecutive indices there is an 7 such that A; > ..

This implies that for any p of length ¢, w'(p) > | % |§min and so for any s > 0 we

can choose t(s) so that for |p| > ¢(s), the minimum work function value is at least s.

So we prove the claim. Fix an arbitrary ordering < on M. For each 7, let pt, ..., p!
denote the sequence of points ordered so that if w'(p.) < w'(pL,,) with ties broken
according to the ordering <. Let I'; denote the directed graph on vertex set M, with
arcs p —; q if w'(q) = w'(p) + d(p,q). (Note that a point p is null with respect to
p' precisely if its in-degree in [; is positive.) Define d' = (d|,...,d") with ' equal
to the outdegree of p' in I';, We will show that for each 7, if A; < &, then the
sequence d' is lexicographically greater than d'~'. Since there are at most n” distinct
out-degree sequences this will prove the claim and the proposition.

I'; differs from I';_; only on the arcs incident on p;. The in-degree of p; in I';_; is

=1 and is positive in I['; since p; is null with
respect to p'. Let h be an index such that p,~' —=; p; and let j be the index such

that p; = p;_l. By definition of I';, w'(p;) = w'(pi") +d(pi", pi) = w = (pi") + Smin-

0 since p; is non-null with respect to p

If h > j then w'=1(p;) < wi_l(pz_l) and we conclude w'(p;) — w1 (p;) > Smin-

So suppose h < j. For r < j, pi = p~! and all edges out of pi~' in I';_; are

49

present in T';. Thus d. > d'=!. For r = h we have strict inequality since d} —; p;.
This implies that d' is lexicographically greater than di='. |

An immediate consequence of Proposition 7.3 is that the number of standard probe
sequences of cost at most s is finite. Also, although the number of deterministic
Evader algorithms is infinite, if we call two algorithms equivalent if they respond
identically to any probe sequence of term length at most t(s), then the number of
equivalence classes is finite. Hence i/, (resp. H!) is essentially a finite game, and thus
by Theorem 2.1 it has the min-max property. We will show that the game G (resp.

Hy) is “essentially” the same as G (resp. H]), to prove the first part of Lemma 7.1.

S

For ease of notation, we refer only to GG in this argument. The argument holds as

well if we replace Gy by H; and G, by H..

For an Evader algorithm A we write VMIN(A) for the value of A in the game G,
i.e., the supremum over all probe sequences p of optimal cost at most s of f;(p). We
write Vl\’/HN(A) for the value of A in the game (.. Similarly for a randomized probe
sequence p we write Vyax (p) and Vjax(p) respectively for the value of § with respect
to the games G and G.

Proposition 7.4 For any randomized standard Evader algorithm A, VMIN(A) =
Vi (A).

Proof: Let p = (p1,...,px) be an arbitrary probe sequence. Write w' for the work
function associated to the prefix p'. We observed earlier that w! < w? < ... w*
(where the inequality is pointwise). Define the sequence of indices iy < iy < ... <4,
where 7, = 1, 1, is the least 7 such that w® # w' and, in general, 75 is the least 7 such
that wi # w1, It is easy to see that the sequence p = p;, p;, . . . pi; is standard and

has the same work function as p.

Now let A be a randomized standard algorithm. Since A ignores all probes to
null points, it behaves the same on p as it does on p. More precisely, the probability
that A responds to p with the sequence o0 . . .0; is equal to the probability that it

i2—1 __i3—1i2 ij=ty—1 _ntl—ij

responds to p with o7 05" ... 07, ;

, which has the same cost as 0y ...0;.

Given an analogous result for Pursuer strategies, the first part of Lemma 7.1 would
follow immediately. However, such a result is not true: if p is a randomized standard
Pursuer strategy, then since the Pursuer never probes null points, a non-standard

algorithm might be able to avoid the Pursuer by moving to null points.

So we need to prove something a little more subtle about Pursuer strategies.

The key property of a null point is that the Pursuer can probe a null point without

50

increasing the work function, and thus probes to a null point are “free” to the Pursuer.
Thus we can modify any standard Pursuer strategy so that it probes null points often
enough to ensure that it does not benefit the Evader to ever visit a null point. If
we modify the optimal standard Pursuer strategy in this way, we will get a strategy
whose value in the game G is the same as that of the optimal standard strategy in

the game G7.

We now make this argument precise. Let p = (p1,...,pr) be a probe sequence.
For 7 between 1 and k, Let 1; be some fixed ordering on N(p'), the set of points that
are null with respect to p’. For a nonnegative integer j, we define the j-fold inflation
of p to be the sequence pin1?pyng’ ... ppm’. It is trivial that the work functions

associated with a sequence and its j-fold inflation are identical.

If p is a randomized Pursuer strategy, i.e., a probability distribution over probe
sequences, then the j-fold inflation of p is the distribution obtained by selecting a
sequence according to p and applying j-fold inflation to it.

Proposition 7.5 For j a sufficiently large integer (depending on M and s) the
following holds. For any deterministic lazy Fvader algorithm A there is a deter-
ministic standard algorithm A such that for any randomized Pursuer strategy p in
the game Gy, if 6 is the j-fold inflation of p then Cz(p) < Ca(5). Consequently,
Winax () < Vmax(9)

Before proving the Proposition, let us see that it implies the first part of Lemma
7.1. Let A* and p* be the optimal strategies of Evader and Pursuer in the game G,
and let &* be the j-fold inflation of 5* (where j is large enough for Proposition 7.5).
From Proposition 7.4, Vann(A*) = Viun(A*). From Proposition 7.5, Vyjax(5*) <
Varax (7). Since G has the min-max property, we have that Vi (A*) = Viax (7).

Hence Varn(A*) < Vmax(6*), and combining this with Lemma 2.2 we conclude that

Vmin(A%) = Vuax(6%), i.e., G5 has the min-max property.
Proof: (of Proposition 7.5)

Fix j sufficiently large. Given A, we need to define A. The behavior of A on a
probe sequence p = (p1,...,px) is defined using an online simulation of A applied
to the j-fold inflation o = pyny? ... prm’ of p. Prior to the i-th request, A will have
processed py, ..., p;_1 and responded with oo, ...0;_1. It will also have simulated A
on the j-fold inflation of py, ..., p;—1. Upon receipt of p;, it continues the simulation by
giving A the sequence p;n;’. Let 7; denote the final point A occupies after processing

that sequence.

A then chooses its response o; according to the following rule. If 0,_1y # p; then

51

o; = 0,1 (following laziness). Otherwise, if 7; is not null with respect to py...p;
then o; = 7, else A moves to any non-null point (say the least one under some

predetermined ordering).

It is immediate that A is a standard algorithm. We claim that C;(p) < Ca(o).

This then extends by linearity to the case of randomized Pursuer strategies.

We say that A is well-behaved on py, pa, ..., pr provided that for each 7, the point
7; is not null with respect to p;...p;. By the definition of A (and the fact that A

itself is lazy), if A is well-behaved then the response sequence oy, ..., 0 of A is just
T, T2, ..., 7k and is thus a subsequence of A’s response sequence. Hence Cjz(p) <
Ca(o).

If A is not well-behaved then for some 1, 7; is null with respect to p; ... p;. Consider
the responses of A to pmf. If A ever responded with a point that is not null with
respect to py...p; then since A is lazy and all requests appearing in 7; are null, A
would have ended in a non-null point. So it must be that each of A’s responses to
this subsequence was a null point. Now, since 7; contains each null point once, A
was forced to move at least j times. Thus c4(0) > 7émin. Taking j large enough
(depending on M and s ensures that this is at least C'5(p). 1

This completes the proof of the first part of Lemma 7.1. We proceed to the proof
of the second part. We state without proof a routine fact concerning the function

C1OPT .

Lemma 7.2 Let M be a metric space of diameter 6 and let py,pa, ..., pw be probe

sequences. Then:

Z Copr(pi) < Copr(pipz .- pw) < Z Copt(pi) + (w — 1)4.
=1 =1
Furthermore, the inequalities extend to the case that the p; are replaced by ran-

domized probe sequences p;.

(Recall that the definition of Copr allows the evader to choose its own starting
point. So, if each p; misses some point in M, then >_"; Copr(pi) = 0, and if all p;
miss the same point in M, then Copr(p1pz...pw) =0.)

We now prove the second part of Lemma 7.1. The middle inequality is trivial,
since the only difference between G5 and H; is that the Pursuer strategy set in Hy is
a subset of that in G.

Consider the first inequality and suppose for contradiction that there is a s > 0
and € > 0 such that V(Hs) = —0 —e. Let BS denote an optimal Evader algorithm

52

for H,. We define an Evader algorithm B for the original Pursuit-Evasion game as
follows: for probe sequence T determine its s-block partition, 717z ... 7, which can be
parsed online. The algorithm B is performed by applying B, to each 7. We obtain
a contradiction by showing that B is XN-competitive for some X < A. There is some
absolute upper bound K on the cost incurred by B, on a sequence of optimal cost at

most s. We have:

Colr) £ D(Cplm)+9)+C5,()

Z()\COPT(Ti) — 6) + K

IA

< DY (A- E)COPT(Ti) + K

=1

N
—

< (A= E)COPT(T) + K,

where the first and last inequalities follow from Lemma 7.2, the second inequality
follows from the optimality of B, for H, and the third inequality follows from the
fact that each 7, has optimal cost at most s. We conclude that that B is (A—%)-

competitive, a contradiction that completes the proof of the first inequality.

Turning to the third inequality, we suppose, for contradiction that thereisa s > 0
and € > 0 such that V(G5) > Ad + €. Let ps be the optimal Pursuer strategy for
Gs. Then for any algorithm B, Cg(ps) > MCopr(ps) + 6) + €. For each 5 € N,
define the distribution 7j on probe sequences obtained by concatenating j sequences
generated independently from ps. Then, by Lemma 7.2, Copr(7;) is bounded above
by u; = 7(Copr(ps) +). We will obtain a contradiction by showing that there exists
a real number v > 0 such that for any deterministic algorithm A, C'4(7) > u;(A+7),
which by Proposition 2.3 would imply that the competitive ratio is greater than A++~.

Let A be a deterministic algorithm and consider the cost of Aon 75. By Lemma 7.2,
we can lower bound this cost by the sum of costs that are incurred in responding to
each of the j blocks. Note that the way that A responds to the ¢-th block depends
on the previous ¢ — 1 blocks, and we can view A’s behavior on the i-th block as a

randomized algorithm B; where the randomization comes from the previous i — 1

blocks. Thus,

CalFy) > jzlchﬁs)

33

> JIMCopr(ps) +9) + ¢
= U;)\ —I_ ~ s~ ~N , /)
il COPT(,OS)—I-5)
where the second inequality follows from the optimality of ps. Thus we have the

desired contradiction, which establishes the claim and the lemma.

8 Acknowledgement

We would like to thank the anonymous referees for the many useful comments in their

reports, which helped improve the presentation of our results.

References

[BBKTW] S. BeNn-DaviD, A. BoroDIN, R.M. Karp, G. TARDOS, AND
A. WIGDERSON. On the Power of Randomization in Online Algorithms.
Algorithmica, 11:2-14,1994.

[BBBT] Y. BartaL, A. BrumMm, C. BURCH, AND A. TOMKINS A polylog(n)-
competitive algorithm for metrical task systems In Proc. of the 29rd Ann.

ACM Symp. on Theory of Computing, pages 711-719, May 1997.

[BLS] A. BORODIN, N. LINIAL, AND M. SAKS. An Optimal On-Line Algorithm
for Metrical Task Systems. Journal of the ACM, 39:745-763, 1992.

[BE] A. BORrRODIN AND R. EL YANIV Online computation and competitive anal-
ysis Cambridge University Press, 1998.

[BRS] A. BrLum, P. RAGHAVAN, AND B. SCHIEBER. Navigating in Unfamiliar
Geometric Terrain. In Proc. of the 23rd Ann. ACM Symp. on Theory of
Computing, pages 494-504, May 1991.

[CDRS] D. CopPERSMITH, P. DOYLE, P. RAGHAVAN, AND M. SNIR. Random
Walks on Weighted Graphs and Applications to On-line Algorithms. Journal
of the ACM, 40(3):421-453, 1993.

[FKLMSY] A. Fiat, R.M. Karp, M. LuBy, L.A. McGEOCH, D.D. SLEATOR,
AND N.E. YOUNG. Competitive Paging Algorithms. Journal of Algorithms,
12:685-699, 1991.

[FRR] A. FiaT, Y. RABANI, AND Y. RaviD. Competitive k-Server Algorithms.
Journal of Computer and Systems Sciences 48(3):410-428, 1994.

54

[Gro]

[KMRS]

[KRR]

[Kel]

[KP]

[MMS]

[Mat]

E. GROVE. The Harmonic k-Server Algorithm is Competitive. In Proc. of
the 23nd Ann. ACM Symp. on Theory of Computing, pages 260-266, May
1991.

A.R. KARLIN, M.S. MANASSE, L. RuboLpPH, AND D.D. SLEATOR. Com-
petitive Snoopy Caching. Algorithmica, 3(1):79-119, 1988.

H.J. KARLOFF, Y. RABANI, AND Y. RAvVID. Lower Bounds for Ran-
domized k-Server Algorithms. SIAM Journal on Computing, 22(2):293-312,
1994.

J.L. KELLEY. General Topology New York: American Book Company,
1955.

E. KouTtsouprias AND C. PAPADIMITRIOU. On the k-Server Conjecture.
In JACM, 42:971-983, 1995.

C. LuNnD AND N. REINGOLD. Linear Programs for Randomized On-Line
Algorithms. In Proc. of the 5th Ann. ACM-SIAM Symp. on Discrete Algo-
rithms, pages 382-391, January 1994.

M.S. MaNasse, L.A. McGEocH, AND D.D. SLEATOR. Competitive
Algorithms for On-line Problems. Journal of Algorithms, 11:208-230, 1990.

J. Matousek. Ramsey-like Properties for bi-Lipschitz Mappings of Finite
Metric Spaces. Commentationes Mathematicae Univ. Carolinae, 33(3):451—
463, 1992.

L.A. McGEocH AND D.D. SLEATOR. A Strongly Competitive Random-
ized Paging Algorithm. Algorithmica, 6:816-825, 1991.

P. RAGHAVAN AND M. SNIR. Memory versus Randomization in On-Line
Algorithms. In Lecture Notes in Computer Science 372, pages 687-703,
Springer-Verlag, 1989.

H. SAGAN. Advanced Calculus Boston:Houghton-Mifflin, 1974.

D.D. SLEATOR AND R.E. TARJAN. Amortized Efficiency of List Update
and Paging Rules. Communication of the ACM, 28(2):202-208, 1985.

J. VON NEUMANN AND O. MORGENSTERN Theory of Games and Fconomic
Behavior, 2nd Ed. Princeton: Princeton University Press, 1947.

35

