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Abstract

We prove new lower bounds for nearest neighbor search in the Hamming cube. Our lower
bounds are for randomized, two-sided error, algorithms in Yao’s cell probe model. Our bounds
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should be contrasted with the upper bound of O(log log d) for approximate search (and O(1)
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∗Computer Science Department, Technion — IIT, Haifa 32000, Israel. Work partially supported by the Milton
and Lillian Edwards Fellowship. Email: omerb@cs.technion.ac.il.

†Computer Science Department, Technion — IIT, Haifa 32000, Israel. This work was supported by grant number
386/99-1 of the Israel Science Foundation founded by the Israeli Academy of Sciences and Humanities, by the
N. Haar and R. Zinn Research Fund, and by the Fund for the Promotion of Research at the Technion. Email:
rabani@cs.technion.ac.il.



1 Introduction

Problem definition and motivation. This paper is concerned with nearest neighbor search

(NNS), a fundamental problem in computational geometry, with applications to a variety of ar-

eas [15, 20, 17, 33, 16, 22, 14, 32, 19, 23, 34, 8, 21]. The problem is defined as follows: In some

vector space endowed with a distance function (typically a d-dimensional Euclidean space), we are

given a set of n points (called the database). Given any other point (called a query), we must

find the closest point to it in the database. We have to pre-process the database efficiently and

create a data structure that will support efficient search. More specifically, the trivial data structure

storing the unprocessed list of points allows us to search spending O(nd) arithmetic operations. A

challenging goal is to design a similar sized data structure reducing the search time to poly(d, log n)

(or, in fact, to anything polynomial in d and sub-linear in n).

The problem (in Euclidean space) is a special case of point location in an arrangement of

hyperplanes. As such, it has been studied extensively, especially in low dimension, where good

solutions are known (see, for example [9]). However, the combinatorial complexity of arrangements

grows exponentially with the dimension, rendering the problem seemingly intractable. Indeed,

following a long list of contributions [18, 12, 36, 28, 1, 29], currently the best algorithms can

find a nearest neighbor in time poly(d, log n), but they need exponential (nΘ(d)) storage. On the

other hand, there is little evidence in the form of concrete lower bounds to support the curse

of dimensionality conjecture [13]; i.e., the belief that in high dimension the problem is indeed

intractable (see below for more details).

Our results. We present here significant improvements over recently discovered lower bounds

for nearest neighbor search [10]. Specifically, our main concern is nearest neighbor search in the

d-dimensional Hamming cube. As previously observed [10], lower bounds for the cube imply lower

bounds for geometric settings, such as `d
p (IRd with distances measured by the Lp norm) for all

1 ≤ p < ∞, as well as for related geometric problems. We prove lower bounds in Yao’s cell probe

model [35]. In this model, the database is pre-processed into s cells, each containing b bits. A

search algorithm sequentially (and possibly adaptively) reads the contents of at most t cells to get

the correct answer. In [10] it is proven that a randomized two-sided error cell probe algorithm that

is restricted to use poly(n, d) cells of size poly(d, log n) each, must probe at least Ω(log d) cells.

Here, we improve this bound to Ω(d/ log n). In fact, as in [10], we actually show tradeoffs among

the three parameters s, b, and t, as follows.
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Theorem 1. Assuming d ∈ ω(log n) ∩ no(1),1 for any cell probe algorithm for NNS in the d-

dimensional Hamming cube that uses s cells of size b each, and probes at most t cells, the following

holds: either s = 2Ω(d/t); or, b = nΩ(1)/t.

We note that similar bounds were shown in [10] for deterministic algorithms.

Our results are best contrasted with the bounds for approximate nearest neighbor search in the

cube. In this version of the problem, the search algorithm is required to find a database point

whose distance to the query is within a factor of 1 + ε of the distance to a nearest neighbor, where

ε > 0 is a predefined value. The best available (randomized) algorithm, following a long line of

work [5, 13, 6, 26, 25, 27], uses (for an arbitrary constant ε, when stated in terms of the cell probe

model) poly(n, d) cells of size O(d) each, and searches probing O(log log d) cells. This randomized

upper bound nearly matches a recent deterministic lower bound of Ω(log log d/ log log log d) [11],

which holds even for very poor approximation. It is worth noting that better upper bounds hold for

approximate λ-neighbor (λN), a decision version of nearest neighbor search. In this problem, the

search algorithm should answer “yes” iff there is a database point within distance at most λ from the

query. In the approximate version, if the nearest neighbor is at distance in (λ, (1 + ε)λ), then the

algorithm may answer either “yes” or “no,” and otherwise it should behave as in the exact version.

The above-mentioned upper bounds for approximate nearest neighbor search work by reduction

to algorithms for approximate λ-neighbor that probe O(1) cells. Our lower bounds (like those

in [10]) are proven for λ-neighbor. Thus, we exhibit a very sharp contrast of Ω(d/ log n) versus O(1)

between the search time complexity of randomized, two-sided error, algorithms for exact λ-neighbor

versus approximate λ-neighbor, respectively. We further note that by probabilistic arguments one

can show the existence of a data structure with poly(n, d) cells, each with poly(d, log n) bits, that

allows us to find an approximate nearest neighbor deterministically in poly(d, log n) probes [27, 24].

Unlike the randomized lower bound in [10], our results do not hold for exact partial match. In

this problem queries may contain “don’t care” bits (marked by ∗) that match both a zero and a

one. A search should find a database point that precisely matches the query. There is an easy

reduction from exact partial match to NNS (but not necessarily the other way around). We do,

however, extend our results to partial match λ-neighbor. In this problem the search should find

whether or not there is a database point within distance λ of a partial match query. Obviously, a

lower bound for λN implies a lower bound for this problem, because queries may be void of don’t

cares. We show that our lower bounds hold even if the number of exposed bits k (i.e., bits 6= ∗) is

fixed to any value in Ω(d). We get

1Notice that if d is outside this range, the problem in the cube becomes trivial.
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Theorem 2. For every constant ρ, 0 < ρ ≤ 1, assuming d ∈ ω(log n) ∩ no(1) and k = ρd, there

exists λ such that for any cell probe algorithm for partial match λ-neighbor that can handle queries

with exactly d − k don’t cares, which uses s cells of size b each, and probes at most t cells, the

following holds: either s = 2Ω(d/t); or, b = nΩ(1)/t.

The hidden constants in the lower bound decrease as k decreases. Indeed, notice that the problem

with k = ρ1d can be reduced to the problem with k = ρ2d, for ρ1 ≤ ρ2 (see section 4.2).

Our methods. We prove our cell probe lower bounds via lower bounds in the asymmetric com-

munication complexity model. In this model the input is split between two communicating parties,

Alice and Bob. Alice gets the query, and Bob gets the database. Their goal is to compute a func-

tion of the entire input, the result of λN in our case. To do that, they may exchange bits. The

complexity measure is the total number of bits communicated by each side. A protocol where Alice

sends a bits and Bob sends b bits is called an [a, b]-protocol. In a randomized protocol, Alice and

Bob have access to a source of random bits, which may affect the protocol.

The connection between the communication complexity model and the cell probe model is given

by the following lemma due to Miltersen [30]:

Lemma 3 (Miltersen [30]). For any boolean function, if there is a (randomized) solution in the

cell probe model with parameters s, b and t, then there is a (randomized) [tdlog se, tb]-protocol for

the communication problem.

Thus, in order to prove lower bounds in the cell probe model, we exhibit lower bounds for the

communication complexity of λN. For that, we appeal to the richness technique of [31]. It calls

for showing that while a large fraction of the possible inputs produce a one value, every large sub-

matrix of the communication matrix contains many zero values. As previously observed [10], the

communication matrix for λN contains many large one-monochromatic sub-matrices, regardless of

the value of λ. However, we show that for a judicious choice of λ, this is not the case for the

complement function. The main idea underlying the proof is that if we take two query points that

are about d/2 apart (in Hamming distance), then for a random database point the two distributions

of the distances to the query points behave somewhat independently. (The precise bound, as well

as the details of the richness technique, appear below in Section 2.) We note that our cell probe

time lower bounds are asymptotically the best possible to derive using communication complexity.

(Yet our communication complexity lower bounds could still be improved on the database side.)
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As observed in [31], proving stronger lower bounds in the cell probe model would imply non-linear

lower bounds for Boolean branching programs. The converse is not necessarily true; and, to the

best of our knowledge, recent breakthroughs in branching programs lower bounds [7, 2, 3] do not

seem to apply directly to our problem.

Additional remarks. For a more comprehensive survey of the relevant literature, including pre-

vious lower bounds in algebraic and other concrete settings, as well as previous results on the cell

probe model, see [10] and the references therein.

2 Preliminaries

Let Cd denote the d-dimensional binary cube {0, 1}d. For p, q ∈ Cd, let H(p, q) denote the Hamming

distance between p and q (i.e., the number of coordinates in which they differ).

Definition. Let λ ∈ [0, d]. Let p, q ∈ Cd. We say that q is a λ-neighbor of p (and vice-versa) iff

H(p, q) ≤ λ. Let D ⊆ Cd. We say that q is a λ-neighbor of D iff there exists p ∈ D such that q is

a λ-neighbor of p. For q ∈ Cd, we denote by Bλ(q) the set of all λ-neighbors of q.

A two-party boolean (asymmetric) communication problem is specified by two input sets X and

Y , and a boolean function f : X×Y → {0, 1}. Informally, one party (Alice) gets an element x ∈ X,

and the other party (Bob) get an element y ∈ Y . Their goal is to compute f(x, y) by exchanging

as few bits as possible according to a specified protocol. The communication complexity of the

problem is the number of bits transmitted by each side. In a probabilistic protocol, the sides can

use random bits to determine the protocol. For every input, the output is correct with a certain

probability. A two sided error protocol returns the correct output with probability at least 2/3. An

[a, b]-protocol for the communication problem is a sequence of bit transmissions alternating between

Alice and Bob, where the total number of bits Alice sends is at most a and the total number of bits

Bob sends is at most b. It is convenient to specify a communication problem by its communication

matrix. The rows of the matrix are labeled by the elements of X, and the columns are labeled by

the elements of Y . An entry labeled (x, y) has value f(x, y).
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We are interested in the λ-neighbor problem (λN), where X = Cd, Y is the set of all n-tuples

(y1, y2, . . . , yn) ∈ Cn
d ,2 and for x ∈ X, y ∈ Y , f(x, y) = 1 iff x is a λ-neighbor of y. We call an

element of X a query, and an element of Y a database. Abusing notation, we denote the function f

by λN. We denote the complement of λN by nλN (again, abusing notation, this is both a problem

and a function). Notice that for two sided error protocols, lower bounding the communication

complexity of a problem is equivalent to lower bounding the communication complexity of the

complement problem. In order to derive asymptotic bounds, we consider an infinite sequence of

such problems, for increasing values of n and d = d(n). We assume that d ∈ ω(log n) ∩ no(1).

In order to derive our lower bounds, we use the following definition and lemma due to Miltersen

et al. [31].

Definition. A communication problem f : X × Y → {0, 1} is α-dense if

|{(x, y) ∈ X × Y ; f(x, y) = 1}|
|X × Y |

≥ α.

The following lemma presents the richness technique of Miltersen et al. for two sided error

protocols.

Lemma 4 (Miltersen et al. [31]). Let α, β > 0. Let f : X×Y → {0, 1} be an α-dense problem.

If f has a randomized two sided error [a, b]-protocol, then the communication matrix for f contains

a sub-matrix M of dimension at least

|X|
2O(a)

× |Y |
2O(a+b)

,

such that the fraction of zero entries in M is at most β. (The hidden constants depend only on α

and β.) 2

3 Lower Bounds for λ-Neighbor

The purpose of this section is to prove the following lower bound on the communication complexity

of nλN. This, in turn, implies Theorem 1 giving time/space tradeoffs for nearest neighbor search.

2We allow multiple copies of the same point in order to simplify the analysis. Our results hold without substantial
changes if the n points must be distinct.
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In what follows we denote γ = 2
ln 2

≈ 2.885, and put λ = d
2
− C

√
d log n, where C ≈ 1√

γ
is defined

below.

Theorem 5. If there is a two sided error [a, b]-protocol for nλN; then, either a = Ω(d) or b =

Ω(nδ), where δ is any constant less than 1
8
.

The rest of this section is devoted to the proof of this theorem. The main idea of the proof is to

show that every large set of queries contains large subsets of queries that are mutually far apart.

For queries that are almost λ apart, nλN behaves “somewhat independently” on random databases.

We begin with some properties of balls and intersections of balls in the cube.

Claim 6. Let q ∈ Cd. Then,

n−(γ+ν)C2

2d ≤ |Bλ(q)| ≤ n−(γ−ν)C2

2d,

ν = ν(n) is monotonically decreasing in n, and moreover limn→∞ ν(n) = 0.

For intuition, consider a uniform distribution over Cd. If p is a random point from this distri-

bution, then the expected distance H(p, q) is d
2
. Hence, by the Chernoff bound (see, e.g., [4]),

Pr[H(p, q) ≤ λ] = Pr

H(p, q) ≤ d

2
− C

√
2 log n

√
d

2

 ≤ e−(C
√

log n)2 ≤ n−C2

,

and therefore |Bλ(q)| ≤ n−C2
2d. Proving the tighter bounds stated in the claim requires estimating

the binomial distribution directly (using Stirling’s formula).

Proof. We first prove the lower bound.

|Bλ(q)| =
λ∑

i=0

(
d

i

)
≥
(

d

λ

)

Recall that by Stirling’s formula
√

2πk(k/e)k ≤ k! ≤ (1 + 1/4k)
√

2πk(k/e)k. Thus we have

(
d

λ

)
=

d!

λ! (d− λ)!

6



≥

√
2πd

(
d
e

)d

√
2πλ

(
1 + 1

4λ

) (
λ
e

)λ
·
√

2π(d− λ)
(
1 + 1

4(d−λ)

) (
d−λ

e

)d−λ

=
2(d+1/2) log d−(λ+1/2) log λ−(d−λ+1/2) log (d−λ)

√
2π
(
1 + 1

4λ

) (
1 + 1

4(d−λ)

)
≥ 2(d+1/2) log d−(λ+1/2) log λ−(d−λ+1/2) log (d−λ)−4. (1)

We now explore the exponent. Because λ = d
2
− C

√
d log n,

log λ = log

(
d

2
− C

√
d log n

)

= log

d

2

1− 2C

√
log n

d


= log

(
d

2

)
+ log

1− 2C

√
log n

d

 .

Using the Taylor expansion for ln(1− x) we have

ln

1− 2C

√
log n

d

 = −2C

√
log n

d
− 2C2 log n

d
− o

(
log n

d

)
,

where the last term follows from the fact that d ∈ ω(log n).

Similarly,

log(d− λ) = log

(
d

2
+ C

√
d log n

)
= log

(
d

2

)
+ log

1 + 2C

√
log n

d

 ,

and

ln

1 + 2C

√
log n

d

 = 2C

√
log n

d
− 2C2 log n

d
+ o

(
log n

d

)
.

Assigning into the exponent in (1) we get(
d +

1

2

)
log d−
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(
d

2
− C

√
d log n +

1

2

)log

(
d

2

)
− γC

√
log n

d
− γC2 log n

d
− o

(
log n

d

)−
(

d

2
+ C

√
d log n +

1

2

)log

(
d

2

)
+ γC

√
log n

d
− γC2 log n

d
+ o

(
log n

d

)− 4 =

d log d +
1

2
log d− d log

(
d

2

)
− log

(
d

2

)
− γC2 log n + o(log n) =

d− γC2 log n− 1

2
log d + o(log n).

Because d ∈ no(1), there exists ν > 0, where ν → 0 as n →∞, such that

1

2
log d− o(log n) ≤ νC2 log n

Hence, the term in (1) is at least

2d−γC2 log n−(1/2) log d+o(log n) ≥ 2d−(γ+ν)C2 log n.

Hence,

|Bλ(q)| ≥ n−(γ+ν)C2

2d.

On the other hand a similar argument gives the upper bound. In this case, we use

|Bλ(q)| =
λ∑

i=0

(
d

i

)
≤ λ

(
d

λ

)
.

By the Stirling formula,

λ

(
d

λ

)
= λ

d!

λ! (d− λ)!

≤ d

2

(
1 + 1

4d

)√
2πd

(
d
e

)d

√
2πλ

(
λ
e

)λ
·
√

2π(d− λ)
(

d−λ
e

)d−λ

≤ 2log(d/2)2(d+1/2) log d−(λ+1/2) log λ−(d−λ+1/2) log (d−λ).

Using similar arguments as for the lower bound, and the fact that we can set ν so that

1

2
log d + o(log n) ≤ νC2 log n,
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we get,

λ

(
d

λ

)
≤ 2d−(γ−ν)C2 log n.

Hence,

|Bλ(q)| ≤ λ

(
d

λ

)
≤ n−(γ−ν)C2

2d.

2

Lemma 7. Let 0 < ν < γ. For all sufficiently large n there exists C, 1/
√

γ + ν ≤ C ≤ 1/
√

γ − ν,

for which 2d/n ≤ |Bλ(q)| < 2d+1/n. (Recall that λ depends on C.)

Proof.

By Claim 6, for C = 1√
γ−ν

,

n−(γ+ν)/(γ−ν)2d ≤ |Bλ(q)| ≤ n−12d;

and for C = 1√
γ+ν

,

n−12d ≤ |Bλ(q)| ≤ n−(γ−ν)/(γ+ν)2d.

If we could claim for continuity of the size of Bλ(q) we could claim that there is a C for which the

size is exactly n−12d. Instead, we show that by increasing the radius of a ball by one, the volume

will not increase by more than twice, and from that the lemma follows.

We show that if we increase the radius by one to be d
2
−x, with x = o(d), the volume of the ball

at most doubles, as (
d

d
2
− x− 2

)
+

(
d

d
2
− x− 1

)
≥
(

d
d
2
− x

)
.

To see this, notice that(
d

2
− x− 1

)(
d

2
− x

)
+

(
d

2
+ x + 2

)(
d

2
− x

)
≥
(

d

2
+ x + 1

)(
d

2
+ x + 2

)
,

as
d2

2
− o(d2) ≥ d2

4
+ o(d2)
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for sufficiently large d. Thus,

1(
d
2

+ x + 1
) (

d
2

+ x + 2
) +

1(
d
2
− x− 1

) (
d
2

+ x + 1
) ≥ 1(

d
2
− x

) (
d
2
− x− 1

) ,

which completes the proof. 2

In what follows we set C to the value guaranteed by Lemma 7, thus setting the value of λ =
d
2
− C

√
d log n. We denote the size of Bλ(q) as ξ 2d

n
, where 1 ≤ ξ < 2. Notice that, although C is

not constant, for all n large enough, because ν → 0, we have C ≈ 1/
√

γ ≈ 0.5887.

Definition. Let ε > 0, and let q1, q2 ∈ Cd. We say that q1 and q2 are ε-close iff H(q1, q2) ≤(
1
2
−
√

ε
)
d. Otherwise, we say that q1 and q2 are ε-far.

Lemma 8. For every ε, 1
36

> ε > 0,3 there exists δ > 0 such that the following holds for all n

sufficiently large. If q1, q2 ∈ Cd are ε-far, then∣∣∣Bλ(q
1) ∩Bλ(q

2)
∣∣∣ ≤ ξ

n1+δ
|Cd|.

Proof. Consider a uniform probability distribution over Cd, and let p be a random point from

this distribution. We show that Pr[p ∈ Bλ(q
2) | p ∈ Bλ(q

1)] ≤ n−δ. As Pr[p ∈ Bλ(q
1)] = ξ

n
, the

claim follows.

To see that, notice that choosing p uniformly at random in Bλ(q
1) is equivalent to the following

experiment: Choose a distance r, 0 ≤ r ≤ λ, with probability
(d

r)
|Bλ(q1)| . Then, for a given r, choose

sequentially, uniformly, without replacement, a set of r coordinates I = {i1, i2, . . . , ir}. Finally, put

pj = 1− q1
j for all j ∈ I, and pj = q1

j otherwise.

Define pt by pt
j = 1 − q1

j for all j ∈ {i1, i2, . . . , it}, and pt
j = q1

j otherwise. (Thus p0 = q1 and

pr = p.) For a fixed r, we define the following sequence of random variables:

Xt = E[H(p, q2)|pt].

As Xt = E[Xt+1|pt], the sequence is a martingale, in which Xr = H(p, q2). As for the value of X0,

from linearity of expectation

X0 = E[H(p, q2)] = r
(
1−H(q1, q2)/d

)
+ (d− r)H(q1, q2)/d =

3The upper bound 1
36 is a somewhat arbitrary constant that can be improved.
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d

2
+
(

1

2
− r

d

) (
2H(q1, q2)− d

)
>

d

2
−
(

1

2
− r

d

) (
2d
√

ε
)
,

where the last inequality follows from the fact that

H(q1, q2) > d/2− d
√

ε.

We consider two cases, according to the value of r.

Case 1:
d

2
− 3C

√
d log n ≤ r ≤ d

2
− C

√
d log n = λ.

(The constant 3 could be reduced to be close to
√

9/8, yielding a wider range for ε.) In this case,

X0 ≥
d

2
−
(

1

2
− r

d

) (
2d
√

ε
)
≥ d

2
− 6C

√
εd log n.

We have

Pr[H(p, q2) ≤ λ] = Pr [Xr ≤ λ]

= Pr

[
Xr ≤

d

2
− C

√
d log n

]

= Pr

[
Xr ≤

d

2
− 6C

√
εd log n− SC

√
d log n

]
,

for some 0 < S < 1 (recall that ε < 1
36

). We need the following

Fact 9. The martingale {Xt} satisfies the Lipschitz condition |Xt−Xt+1| ≤ 2, for all 0 ≤ t ≤ r−1.

Proof. Consider an arbitrary step t of the process of choosing coordinates. Let Wt denote the

set of coordinates that have not been chosen by step t. Let Vt ⊆ Wt be the subset where q1 and q2

agree, and let Ut ⊆ Wt be the subset where q1 and q2 differ. Let vt = |Vt|, and let ut = |Ut|. Let Pt

denote the probability of a coordinate in Wt to be chosen in step t + 1. (I.e., Pt = (r − t)/(d− t).)

Finally, denote by Xv
t+1 the value of Xt+1 in case we choose in step t + 1 out of Vt, and denote by

Xu
t+1 the value of Xt+1 in case we choose in step t + 1 out of Ut.

Notice that the expected distance after step t is

Xt = d−H(q1, q2)− vt + ut + Ptvt − Ptut.

Also

Xv
t+1 = d−H(q1, q2)− (vt − 1) + ut + Pt+1(vt − 1)− Pt+1ut,
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and

Xu
t+1 = d−H(q1, q2)− vt + ut − 1 + Pt+1vt − Pt+1(ut − 1).

Therefore

Xv
t+1 −Xu

t+1 = 2(1− Pt+1) ≤ 2. (2)

Now, Xt is a convex combination of Xv
t+1 and Xu

t+1, so |Xt −Xt+1| ≤ 2. 2

We proceed to get

Pr[H(p, q2) ≤ λ] ≤ Pr
[
Xr ≤ X0 − SC

√
d log n

]

= Pr

Xr ≤ X0 − SC
√

2 log n

√
d

2


≤ Pr

[
Xr ≤ X0 − SC

√
2 log n

√
r
]

= Pr
[
1

2
Xr ≤

1

2
X0 −

1

2
SC

√
2 log n

√
r
]

≤ e−
1
4
S2C2 log n = 2−

1
4
S2C2 log e log n

= n−
1
8
γS2C2

,

where the first inequality follows from X0 ≥ d/2− 6C
√

εd log n, the second inequality follows from

r < d
2
, and the third inequality follows from applying Azuma’s Inequality to the martingale {1

2
Xt}.

Case 2:

r <
d

2
− 3C

√
d log n.

In this case we use Claim 6 to bound

|Br(q
1)| ≤ n−(γ−ν)9C2

2d, and |Bλ(q
1)| ≥ n−(γ+ν)C2

2d. Therefore,

Pr

[
r <

d

2
− 3C

√
d log n

]
≤ |Br(q

1)|
|Bλ(q1)|

< n−8γC2+10νC2 ≤ n−7,

for all sufficiently large n.

Summing up the two cases, we get

Pr[H(p, q2) ≤ λ] ≤ n−
1
8
γS2C2

+ n−7 ≤ n−δ,
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for all sufficiently large n, and for every δ which is slightly smaller than γS2C2/8. 2

Notice, as ε → 0, S → 1, and as n →∞, C → 1√
γ
. So, we get δ ≈ 1

8
. For sufficiently large n, we

can set δ as a function of ε alone. In what follows δ = δ(ε) denotes the δ guaranteed by Lemma 8.

Consider the graph Gε with node set Cd, and edges connecting pairs of points which are ε-close.

Definition. Let I ⊆ Cd. We say that I is ε-apart iff I is an independent set in Gε (i.e., iff all the

pairs q1, q2 ∈ I, q1 6= q2, are ε-far).

Claim 10. Let R ⊆ Cd, |R| ≥ 2nδ|Cd|2−εd. Then, assuming n is sufficiently large, there exists

I ⊆ R, |I| = 2nδ, such that I is ε-apart.

Claim 11. For every q ∈ Cd, the degree of q in Gε (i.e., the number of points which are ε-close to

q) is strictly less than |Cd| · 2−εd.

Proof. By standard Chernoff bounds (see, e.g., [4]), the probability that a point q′ chosen

uniformly at random in Cd has H(q, q′) ≤ d
2
− d

√
ε is at most e−εd. Thus, for every q ∈ Cd, the

degree of q in Gε is strictly less than ∆ = |Cd| · 2−εd. Obviously, this is also true in the subgraph of

Gε induced by R. Therefore, R must contain an independent set of size at least

|R|
∆

≥ 2nδ,

for n sufficiently large. (The greedy algorithm will output such a set.) 2

We are now ready for

Lemma 12. Let R ⊆ Cd, |R| = 4nδ|Cd|2−εd. Then there exist disjoint ε-apart subsets I1, I2, . . . , Iz ⊆
R whose union contains at least half of the points in R, such that the cardinality of each subset is

2nδ, and the number of subsets z = 2no(1)
.

Proof. Repeatedly apply Claim 10 to get an ε-apart subset of the remainder of R. This can

be done as long as the remaining set has cardinality at least 2nδ|Cd|2−εd. The number of subsets

z is clearly upper bounded by |R|/2nδ = 2|Cd|2−εd. As we assume that d ∈ no(1), the bound on z

follows. 2

Lemma 13. Let I ⊆ Cd be an ε-apart set, |I| ≥ nδ. Let p be chosen uniformly at random in Cd.

Then, Pr[p is a λ-neighbor of I] ≥ ξ
2n1−δ .

13



Proof. Assume |I| = nδ. (Otherwise, take a subset of I of cardinality nδ.) Using Lemmas 7

and 8, and the Bonferroni Inequalities,

Pr[p is a λ-neighbor of I] ≥ |I|
(

ξ

n

)
−
(
|I|
2

)
ξ

n1+δ

=
ξ

n1−δ
− ξnδ(nδ − 1)

2n1+δ

≥ ξ

2n1−δ
.

2

We are now ready for bounding the communication complexity of nλN.

Lemma 14. nλN is α-dense for some constant α.

Proof. We show that in each row of the communication matrix of nλN at least a constant

fraction of the entries are 1. Fix q ∈ Cd. Choose a database D uniformly at random in Cn
d . If

p ∈ Cd is chosen uniformly at random, then

Pr[H(p, q) ≤ λ] =
ξ

n
.

Thus,

Pr[nλN(q, D) = 1] = Pr[∀p ∈ D; H(p, q) > λ] =

(
1− ξ

n

)n

≥ e−ζ

for some constant ζ > ξ. 2

Claim 15. Let I ⊆ Cd, such that |I| = 2nδ and I is ε-apart. Then the number of databases in

Cn
d such that nλN(q, D) = 1 for less than a fraction of 1

20
of the queries in I is at most 2nd−nδ/32.

Proof. Consider a database chosen uniformly at random in Cn
d . We think of the database as

being chosen point by point. Let x1, x2, . . . , xn be the (random) points of the database, in the order

they are chosen. Let Di = {xin1−δ+1, . . . , x(i+1)n1−δ}, for 0 ≤ i ≤ nδ − 1.

Let M0, M1, M2, . . . ,Mnδ be the following (random) subsets of I:

M0 = ∅

14



Mi+1 =

{
Mi ∪ {q} if ∃q ∈ I \Mi, q is a λ-neighbor of Di;

Mi otherwise.

(If more than one such q exists, pick one of them arbitrarily.) Denote Z = |Mnδ |. (Notice that this

is a random variable.) Define a sequence of random variables X0, X1, . . . , Xnδ as follows.

Xi = E[Z | Mi].

As Xi = E[Xi+1 | Mi], the sequence is a martingale. Notice that |Xi−Xi−1| ≤ 1 and that Xnδ = Z.

Furthermore, for every i, |I \ Mi| > nδ. Therefore, by Lemma 13, the probability that a random

database point is a λ-neighbor of I \ Mi is at least ξ
2n1−δ . Hence the probability that none of the

points of Di are λ-neighbors of I \Mi is at most

(
1− ξ

2n1−δ

)n1−δ

≤ e−ξ/2 ≤ e−1/2.

Therefore, by linearity of expectation, X0 ≥ (1− e−1/2)nδ.

We use Azuma’s Inequality to get

Pr[Xnδ < 2nδ/20] ≤ Pr[Xnδ < (1− e−1/2 − 1/4)nδ] ≤

Pr[Xnδ < X0 − (1/4)nδ/2nδ/2] ≤ e−nδ/32.

2

Now, we can show that there are no large nearly monochromatic sub-matrices in the communi-

cation matrix of nλN.

Lemma 16. For all sufficiently large n, in any nδ2(1−ε)d+2 × 2nd−nδ/33 sub-matrix of the commu-

nication matrix of nλN a fraction of at least 1
80

of the entries are zeros.

Proof. Consider a sub-matrix A×B of the specified dimensions. Partition at least half of A into

sets I1, I2, . . . , Iz, as in Lemma 12. By Claim 15, for every Ij, 1 ≤ j ≤ z, the number of databases

D ∈ B such that less than 1
20

of the points in Ij are λ-neighbors of D is at most 2nd−nδ/32. Hence,

the number of databases D ∈ B such that there exists j for which less than 1
20

of the points in Ij

are λ-neighbors of D is at most

z · 2nd−nδ/32 ≤ 2nd−nδ/32+no(1) ≤ 2nd−nδ/33−1,
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for n sufficiently large. Therefore, since at least half of the databases in B have at least 1
20

of the

points in any Ij as λ-neighbors (i.e., at least half of the databases in B have as λ-neighbors at least
1
40

of the points in A), the fraction of zero entries in A×B is at least 1
80

. 2

We are now ready to prove Theorem 5, using the Miltersen et al. richness technique.

Proof of Theorem 5: By Lemma 14, nλN is α-dense. By Lemma 16, every sub-matrix of size

nδ2(1−ε)d+2 × 2nd−nδ/33 has a fraction of at least β = 1
80

of zero entries. Applying Lemma 4, we get

that if there is an [a, b]-protocol for nλN, then, either

|Cd|
2O(a)

< |Cd|2−εd+2nδ,

or
|Cn

d |
2O(a+b)

< |Cn
d |2−nδ/33.

The first inequality implies that a = Ω(εd−δ log n) = Ω(d) (as d = ω(log n)). The second inequality

implies that a + b = Ω(nδ). Assuming that a = o(d), this gives b = Ω(nδ) (as d = no(1)). 2

Proof of Theorem 1: Suppose there is a cell probe algorithm for NNS using s cells of size b

each and at most t probes. In particular, this algorithm solves nλN. By Lemma 3 this implies a

[tdlog se, tb]-protocol for nλN. By Theorem 5, either tdlog se = Ω(d), or tb = Ω(nδ). 2

4 Lower bounds for Partial λ-Neighbor

In this section we discuss partially specified queries and prove Theorem 2. The problem we consider

here generalizes the λ-neighbor problem in the cube. As in Section 3, the database consists of n

points in Cd. The queries are taken from a set Qd,k, defined as

Qd,k =
{
q ∈ {0, 1, ∗}d : |{i : qi 6= ∗}| = k

}
.

The character ∗ stands for “don’t care”, and it matches both a 0 and a 1. The entries of the query

which are not ∗ are called the exposed bits of the query. Given p ∈ Cd and q ∈ Qd,k, we define

H ′(p, q), the distance between q and p, as follows:

H ′(p, q) = |{i : qi 6= ∗ ∧ qi 6= pi}|.

Partial λ-neighbor (PλN) is the problem of deciding for a query q ∈ Qd,k whether or not there is a

database point at distance at most λ from q. We denote by nPλN the complement problem.
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4.1 Lower Bounds for Communication Complexity of PλN

In this section we give lower bounds on the communication complexity of PλN which imply the

trade-off lower bound for the cell probe model in Theorem 2. We give here a lower bound for the

case in which the set of possible queries is Qd,ρd (when ρ ≤ 1 is a rational constant. For a given ρ

we consider only d-s for which ρd is an integer.4

Recall from Section 3 that γ = 2
ln 2

. Using C ≈
√

ρ
γ

to be defined later, we put λ = ρd
2
−C

√
d log n.

We define Bλ(q) = {p ∈ Cd : H ′(p, q) ≤ λ}. We prove the following theorem.

Theorem 17. If there is a two sided error [a, b]-protocol for nPλN; then, either a = Ω(d) or

b = Ω(nδ), where δ is any constant less than ρ
8(2−ρ)

.

The proof of this theorem is similar to the proof of the analogous Theorem 5 from Section 3. Hence,

we show in detail only the arguments where there is a major difference between the two proofs.

The following claim is an easy modification to Claim 6.

Claim 18. Let q ∈ Qd,ρd. Then

n−(γ+ν)C2/ρ2d ≤ |Bλ(q)| ≤ n−(γ−ν)C2/ρ2d,

ν = ν(n) is monotonically decreasing in n, and moreover limn→∞ ν(n) = 0. 2

Lemma 7 can be modified to give:

Lemma 19. Let 0 < ν < γ. For all sufficiently large n there exists C,√
ρ

γ + ν
≤ C ≤

√
ρ

γ − ν
,

for which 2d/n ≤ |Bλ(q)| < 2d+1/n. 2

We will set C to the value of guaranteed by the above lemma. This sets λ = ρd
2
− C

√
d log n. We

denote the size of Bλ(q) as ξ 2d

n
, where 1 ≤ ξ < 2. Notice that, although C is not a constant, for all

n large enough, C ≈
√

ρ/γ.

4More generally, our argument can be extended to handle the case of queries taken from Qd,g(d) such that
ρ = lim g(d)

d = const. We omit the details.
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Definition. Let q1, q2 ∈ Qd,ρd. Then their overlap, denoted h(q1, q2), is defined by

h(q1, q2) = |{i : q1
i 6= ∗ ∧ q2

i 6= ∗}|.

The distance between q1 and q2, denoted H ′(q1, q2), is defined by

H ′(q1, q2) = |{i : q1
i 6= ∗ ∧ q2

i 6= ∗ ∧ q1
i 6= q2

i }|.

Definition. Let ε > 0, and let q1, q2 ∈ Qd,ρd. We say that q1 and q2 are ε-close iff one of the

following two conditions holds:

1. h(q1, q2) ≥ ρ2d + d
√

2ε; or,

2. h(q1, q2) < ρ2d + d
√

2ε and H ′(q1, q2) ≤ h(q1,q2)
2

− d
√

2ε.

Otherwise, we say that q1 and q2 are ε-far.

Lemma 20. For every ε, ρ2

72
> ε > 0, there exists δ > 0 such that the following holds for all n

sufficiently large. If q1, q2 ∈ Qd,ρd are ε-far, then

∣∣∣Bλ(q
1) ∩Bλ(q

2)
∣∣∣ ≤ ξ

n1+δ
|Cd|.

Proof. As q1, q2 are ε-far, we have h(q1, q2) < ρ2d + d
√

2ε and H ′(q1, q2) > 1
2
h(q1, q2) −

d
√

2ε. Consider a uniform probability distribution over Cd, and let p be a random point from this

distribution. We show that

Pr[p ∈ Bλ(q
2) | p ∈ Bλ(q

1)] ≤ n−δ.

As Pr[p ∈ Bλ(q
1)] = ξ

n
, the claim follows.

To see that, notice that choosing p uniformly at random in Bλ(q
1) is equivalent to the following

experiment: Let Iq1 = {i : q1
i = ∗}, and let Ic

q1 be the indices of the remaining entries. De-

note the elements of Iq1 by i1, i2, . . . , i(1−ρ)d. Choose a distance r, 0 ≤ r ≤ λ, with probability
(ρd

r )
|Bλ(q1)| . For the chosen r, choose sequentially, uniformly, without replacement, a set of r coordi-

nates I = {i(1−ρ)d+1, . . . , i(1−ρ)d+r} from Ic
q1 . For every j ∈ Iq1 , choose pj to be 0 or 1 uniformly and

independently. For every other index j, put pj = 1− q1
j if j ∈ I and pj = q1

j otherwise. Define pt by
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pt
j = pj for all j ∈ {i1, i2, . . . , it}, and pt

j = q1
j otherwise. (Thus p0 = q1 and p(1−ρ)d+r = p.) Notice

that pt is not in Cd for any t < (1− ρ)d.

For a fixed r, we define the following sequence of random variables:

Xt = E[H ′(p, q2)|pt].

As Xt = E[Xt+1|pt] the sequence is a martingale, in which X(1−ρ)d+r = H ′(p, q2). We now examine

the value of X0. Divide the exposed bits of q2 into three parts (see figure 1): The first part (A) has

no overlap with the exposed bits of q1. Its size is ρd− h(q1, q2). The second part (B) is where q2 is

identical to q1. Its size is h(q1, q2)−H ′(q1, q2). The third part (C) is where q2 differs from q1. Its

size is H ′(q1, q2).

Figure 1: Overlap and Equivalence Segments

As X0 = E[H ′(p, q2)], we notice that the expected contribution of the coordinates in (A) to the

distance is 1
2
|A|. Similarly, the expected contribution of (B) is r

ρd
|B|, and the expected contribution

of (C) is
(
1− r

ρd

)
|C|. Hence, by the linearity of expectation,

X0 = E[H ′(p, q2)] =
1

2

(
ρd− h(q1, q2)

)
+

r

ρd

(
h(q1, q2)−H ′(q1, q2)

)
+

(
1− r

ρd

)
H ′(q1, q2)

=
ρd

2
+

(
1

2
− r

ρd

)(
2H ′(q1, q2)− h(q1, q2)

)
>

ρd

2
+

(
1

2
− r

ρd

)(
−2d

√
2ε
)
,

where the last inequality follows from the fact that H ′(q1, q2) > 1
2
h(q1, q2)− d

√
2ε.
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We consider two cases, according to the value of r.

Case 1:
ρd

2
− 3C

√
d log n ≤ r ≤ ρd

2
− C

√
d log n = λ.

(The constant 3 could be reduced to be close to
√

16−7ρ
16−8ρ

, yielding a wider range for ε.) In this case,

X0 ≥
ρd

2
+

(
1

2
− r

ρd

)(
−2d

√
2ε
)
≥ ρd

2
− 6C

ρ

√
2εd log n. (3)

Notice that

Pr[H ′(p, q2) ≤ λ] = Pr
[
X(1−ρ)d+r ≤ λ

]
= Pr

[
X(1−ρ)d+r ≤

ρd

2
− 6C

ρ

√
2εd log n− SC

√
d log n

]
, (4)

for some 0 < S < 1 (recall that ε < ρ2

72
).

We need the following technical claim. Its proof appears at the end of Section 4.1.

Claim 21. The martingale {Xt} satisfies, for all 0 ≤ t ≤ (1− ρ)d + r− 1, the Lipschitz condition

|Xt −Xt+1| ≤ 2.

Using the above, we get

Pr[H ′(p, q2) ≤ λ] ≤ Pr
[
X(1−ρ)d+r ≤ X0 − SC

√
d log n

]

= Pr

[
X(1−ρ)d+r ≤ X0 − SC

√
log n

1− ρ/2

√
(1− ρ

2
)d

]

≤ Pr

[
X(1−ρ)d+r ≤ X0 − SC

√
log n

1− ρ/2

√
(1− ρ)d + r

]

= Pr

[
1

2
X(1−ρ)d+r ≤

1

2
X0 −

1

2
SC

√
log n

1− ρ/2

√
(1− ρ)d + r

]

≤ e−
S2C2 log n
8(1−ρ/2) = 2−

S2C2 log e log n
8(1−ρ/2) = n−

γS2C2

8(2−ρ) ,

where the first inequality follows from Equation 4 and Inequality 3, the second inequality follows

from r < ρd
2
, and the third inequality follows from applying Azuma’s Inequality to the martingale

{1
2
Xt}.
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Case 2:

r <
ρd

2
− 3C

√
d log n.

In this case we use Claim 18 to bound

|Br(q
1)| ≤ n−(γ−ν)9C2/ρ2d,

and

|Bλ(q
1)| ≥ n−(γ+ν)C2/ρ2d.

Therefore,

Pr

[
r <

ρd

2
− 3C

√
d log n

]
< n−8γC2/ρ+10νC2/ρ ≤ n−7

for all sufficiently large n.

Summing up the two cases, we get

Pr[H ′(p, q2) ≤ λ] ≤ n−
γS2C2

8(2−ρ) + n−7 ≤ n−δ,

for all sufficiently large n, and for every δ which is slightly smaller than γS2C2

8(2−ρ)
.

Notice that as ε → 0, S → 1, and as n → ∞, C →
√

ρ
γ
. So, we get δ ≈ ρ

8(2−ρ)
. For sufficiently

large n, we can set δ as a function of ε and ρ alone. In what follows δ = δ(ε, ρ) denotes the δ

guaranteed by Lemma 20.

Consider the graph G′
ε with node set Qd,ρd, and edges connecting pairs of points which are

ε-close.

Claim 22. For every q ∈ Qd,ρd, the degree of q in G′
ε (i.e., the number of points which are ε-close

to q) is strictly less than |Qd,ρd| · 2−εd.

Proof. Choose q̃ ∈ Qd,ρd uniformly at random. This is equivalent to the following random

experiment: Choose sequentially, uniformly, without replacement, a set of ρd coordinates I =

{i1, i2, . . . , iρd}. For every coordinate j ∈ I choose q̃j to be either 0 or 1 with equal probability.

For every other coordinate j, set q̃j = ∗. For every t, 0 ≤ t ≤ ρd, define q̃t as q̃t
j = q̃j for all

j ∈ {i1, i2, . . . , it}, and q̃t
j = ∗ otherwise. (Thus q̃ρd = q̃.)

We first analyze the probability that q and q̃ are ε-close because h(q, q̃) ≥ ρ2d + d
√

2ε. Define a

sequence of random variables Xt as follows.

Xt = E[h(q, q̃)|q̃t].
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As Xt = E[Xt+1|q̃t] this sequence is a martingale. Moreover, X0 = ρ2d and Xρd = h(q, q̃). Notice

that |Xt −Xt−1| ≤ 1 and therefore by Azuma’s inequality:

Pr
[
h(q, q̃) ≥ ρ2d + d

√
2ε
]

= Pr

[
Xρd ≥ X0 +

√
2εd

ρ

√
ρd

]

≤ e
−εd

ρ ≤ 2−4/3εd.

Now consider the case that q and q̃ are ε-close because h(q, q̃) < ρ2d + d
√

2ε and H ′(q, q̃) ≤
h(q,q̃)

2
− d

√
2ε. In this case, we are only concerned with the values that are assigned to the h(q, q̃)

places in q̃ that overlap those of q. We have h(q, q̃) independent trials with the expectation of

H ′(q, q̃) being h(q,q̃)
2

. Therefore, by standard Chernoff bounds we have

Pr[H ′(q, q̃) <
h(q, q̃)

2
− d

√
2ε] ≤ e−

2εd2

h(q,q̃) ≤ 2−2εd.

Summing over the two cases we get that the probability that a random q̃ is ε-close to q is at

most

2−2εd + 2−4/3εd < 2−εd,

for sufficiently large d.

We are now ready to prove Theorem 17, using the Miltersen et al. richness technique.

Proof of Theorem 17: Arguing as in Section 3, using Lemmas 19 and 20, and Claim 22, and

assuming that ρ > ε, one can show that for all sufficiently large n, in any
(

d
ρd

)
nδ2(ρ−ε)d+2×2nd−nδ/33

sub-matrix of hte communication matrix for nPλN, a fraction of at least 1
80

of the entries are zeros.

Also, arguing as in Section 3, it is not difficult to show that nPλN is α-dense for some constant α.

Applying Lemma 4, we get that if there is an [a, b]-protocol for nλN, then, either

|Qd,ρd|
2O(a)

< |Qd,ρd|2−εd+2nδ,

or
|Cn

d |
2O(a+b)

< |Cn
d |2−nδ/33.

This implies the theorem. 2

Proof of Claim 21: We prove that |Xt − Xt+1| ≤ 2 for the two different cases, considering the

value of t. Consider an arbitrary step t of the process of choosing coordinates and their value. First
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assume t + 1 ≤ (1 − ρ)d. This means that the exposed bits of pt+1 are still equal to the exposed

bits of q1. Denote by wt the number of coordinates that were assigned a value which differs from

the matching coordinate of q2, by step t. Then,

Xt = wt +
1

2
((1− ρ)d− t) +

r

ρd

(
h(q1, q2)−H ′(q1, q2)

)
+

(
1− r

ρd

)
H ′(q1, q2),

and then either

Xt+1 = wt +
1

2
((1− ρ)d− (t + 1))

+
r

ρd

(
h(q1, q2)−H ′(q1, q2)

)
+

(
1− r

ρd

)
H ′(q1, q2);

or,

Xt+1 = wt + 1 +
1

2
((1− ρ)d− (t + 1))

+
r

ρd

(
h(q1, q2)−H ′(q1, q2)

)
+

(
1− r

ρd

)
H ′(q1, q2).

In both cases, |Xt −Xt+1| = 1
2
≤ 2.

Now assume t ≥ (1− ρ)d, which means that pt ∈ Cd. Denote by Wt the set of coordinates that

have not been chosen by step t, by Vt the subset where q1 and q2 agree, and by Ut the subset where

q1 and q2 differ. Let vt = |Vt|, let ut = |Ut|, and let t′ = t− (1− ρ)d. Let Pt be the probability that

a coordinate in Wt is chosen in step t + 1 (i.e., Pt = (r− t′)/(ρd− t′)). Denote by Xv
t+1 the value of

Xt+1 in case we choose in step t + 1 out of Vt, and by Xu
t+1 the value of Xt+1 in case we choose in

step t + 1 out of Ut. Finally, let wt be the number of coordinates of Iq1 that were assigned a value

that differs from the matching coordinate of q2, by step t. (See figure 2.) Notice that the expected

distance after step t is

Xt = wt + h(q1, q2)−H ′(q1, q2)− vt + ut + Ptvt − Ptut.

Also

Xv
t+1 = wt + h(q1, q2)−H ′(q1, q2)− (vt − 1) + ut + Pt+1(vt − 1)− Pt+1ut,

and

Xu
t+1 = wt + h(q1, q2)−H ′(q1, q2)− vt + ut − 1 + Pt+1vt − Pt+1(ut − 1).
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Figure 2: Notation of the Chosen Segments

Therefore

Xv
t+1 −Xu

t+1 = 2(1− Pt+1) ≤ 2. (5)

As Xt is a convex combination of Xv
t+1 and Xu

t+1, we have |Xt −Xt+1| ≤ 2. 2

4.2 Reductions for Different Rates of Exposed Bits

In this section we show that the partial λ-neighbor problem does not become less difficult as ρ

increases.

Lemma 23. Let 0 < ρ ≤ ρ′ ≤ 1, ρ′ ≤ 3ρ, and let C ′ > 0. Then, for all sufficiently large n, for

all d ∈ ω(log n), there exist λ, n′ > n, and λ′ = 2ρ′d − 2C ′√d log n′, and there exist efficiently

computable functions φ1 : Qd,ρd → Q4d,ρ′4d and φ2 : Cn
d → Cn′

4d, such that for every q ∈ Qd,ρd and

D ∈ Cn
d , q is a λ-neighbor of D iff φ1(q) is a λ′-neighbor of φ2(D).

Proof. Put n′ = dn4ρ/ρ′e.5 Let C = C ′
√

ρ
ρ′

, and let λ = ρd
2
− C

√
d log n.

Given q ∈ Qd,ρd and D ∈ Cn
d we define the functions q′ = φ1(q) and D′ = φ2(D) as follows.

Let I = {i1, i2, . . . , it} be the first t coordinates of q which are ∗, where t = (ρ′ − ρ)d. For

5For the sake of simplicity, we will omit the ceiling notation from the rest of the proof. The reader can verify
easily that this does not affect the validity of the argument.
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i ∈ {1, 5, 9, . . . , 4d− 3} define,

q′iq
′
i+1q

′
i+2q

′
i+3 =



qdi/4eqdi/4eqdi/4eqdi/4e qdi/2e 6= ∗;

0011
(
qdi/4e = ∗

)
∧ (di/4e ∈ I) ;

∗∗∗∗ otherwise.

As for φ2, first apply the transformation φ1 to each of the n points of the database D. Then, add

the n′− n first (in lexicographic order) points with the property that for all 0 ≤ i ≤ 2(d− 1) either

p2i+1p2i+2 = 10 or p2i+1p2i+2 = 01.6 Denote this subset of D′ by D′′.

We now claim that q is a λ-neighbor of D iff q′ = φ1(q) is a λ′-neighbor of D′ = φ2(D). First

notice that

∀p ∈ D′′ : H(p, q′) = 2ρ′d > 2ρ′d− 2C ′
√

d log n′ = λ′.

I.e., q′ is a λ′-neighbor of D′ only if it is a λ′-neighbor of D′ \D′′.

As for p ∈ D′ \ D′′, notice that the coordinates in I contribute to the distance exactly 2t.

Furthermore, the coordinates where q 6= ∗ contribute to the distance a factor of four times their

original contribution. Hence, for p ∈ D,

H(φ1(p), φ1(q)) = 2t + 4H(p, q).

Therefore, H(p, q) ≤ ρd
2
− C

√
d log n = λ iff 2(ρ′ − ρ)d + 4H(p, q) ≤ 2ρ′d − 4C

√
d log n iff 2t +

4H(p, q) ≤ 2ρ′d − C
√

ρ′

ρ

√
16 ρ

ρ′
d log n iff H(φ1(p), φ1(q)) ≤ ρ′4d

2
− C ′√4d log n′ = λ′. (Recall that

n′ = n4ρ/ρ′ , so log n′ = 4 ρ
ρ′

log n.)

Corollary 24. Let 0 < ρ ≤ ρ′ ≤ 1. For every C ′ > 0, for all sufficiently large n, for all d ∈
ω(log n), there exist λ, n′ = poly(n), d′ = poly(d), and λ′ = 2ρ′d − 2C ′√d log n′, and an efficient

reduction from the partial λ-neighbor problem with the parameters ρ, n, and d, to the partial

λ′-neighbor problem with parameters ρ′, n′, and d′.

Proof. This follows from lemma 23, which claims the same for ρ′ ≤ 3ρ. If this is not the case,

perform the reduction shown in Lemma 23 a constant number of times.

Notice that we can take C ′ to be the constant stipulated by Lemma 19 for the parameters ρ′,

n′, and d′.

6Notice that there are 22d such vectors, because as d ∈ ω(log n′), then n < 22d. Furthermore, ρ/ρ′ ≥ 1/3 and
thus n′ > n.
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