e While R # P do
1. Pick (s,t) € P — R.

2. Route (s,t) through B°, i.e. route from
s to s? and from ¢ to t°.
Set R:= RU{(s,t)}.
3. Find (s',t') € P, such that ¢ = Pair(¢)
(then (¢',¢') € R). Route (s',¢') through
B'.
Set R:= RU{(s,t)}.
4. Find (s,t) € P such that s = Pair(s’). If
(s,t) € R then goto 2.
Since for each ¢ there is exactly one Pair(t), and for
s exactly one Pair(s’), it follows that the procedure
completes with each request routed exactly once.
By construction, the induced patterns on BY and
B*' are sparse. This is because we see to it that
if (s,t) are routed through, say B°, then both
(Pair(s), ') and (s', Pair(¢)) are routed through B*.
Thus, by definition, s° and t°, are not used in
the routing. Thus, the pattern on B° is sparse.
Similarly for B?.

Thus, we proved that any sparse pattern can
be routed using sparse paths. l.e. at each layer,
the set of nodes used for routing is sparse. Thus, if
u is used then u is not used. If two edges, e and €,
are crossing edges, and e = (u,v) then € = (u,v’).
Thus, an sparse routing uses at most one of any
pair of crossing edges. It thus remains to show
how, given a full permutation pattern P, to split it
into two sub-permutation each of which is sparse.
This is done in analogy to the inductive procedure
presented above. (The full permutation P can be
viewed as an sparse pattern on a network of one
dimension larger. The details are omitted). [ |
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Appendix

Proof of Lemma 5.1: For a node u = (7, z),
denote © = (4,!!). Let X be a set of nodes. We
say that X is sparse if

veEX=>ugX.

Say a communication pattern P = {(s;, %)} is
sparse if the sets {s;} and {t;} are both sparse.
A set of paths is sparse if the set of nodes used in
the paths is sparse. We first show how to route any
sparse pattern using sparse paths.

The proof proceeds by induction of d, the
dimension of the network (B, is the network with
2d+1 layers). For d = 1 by inspection. Assume for
d — 1, we prove for d. Let P be a communication
pattern for B;. W.l.o.g. assume |P| = 2971, Thus,
for each wu of the first layer either u € {s;}, or w €
{s;}. Similarly, for v of the last layer and the set
{t;}. If one removes layers d and —d of By, then one
is left with two copies of By_;, an upper copy and
a lower copy, denoted BY and B'. We split P into
two subsets Py and P;. Subset P, is routed through
B°, and P; through B'. We guarantee that the
induced patterns on B° and B! are both sparse.
By induction, we can then complete the routing of
the patterns on their respective networks.

For z = (z4,...,24) € {0,1}" denote z||0 =
(z1,...,24-1,0) and z||1 = (21,...,24-1,1). For
(Svt) = ((—d,x),(d,y)) denote s’ = (_d + 17$Hb)

and t* = (d — 1,z||b), b = 0,1. Consider the set
P ={(s;,t;)}. For s; denote

. def . T
Pair(s;) = s; s.t. 3t; with (s;,¢;) € P and s} = s}
Since P is sparse, there is at most one s; € {s;}
such that s§ = s{. Since P is of maximal size, there
is always one such s;. Thus, the function Pair(-) is
well defined. Similarly, for ¢; let

Pair(t;) € t; s.t. 3s; with (s;,1;) € P and =10

The routing of P to B® and B! is performed using
the following procedure:

o Set R:=1.



realize Rgo using six wavelengths, and Ry, using
two additional wavelengths. A symmetric argu-
ment allows to realize R,; with six additional wave-
lengths, and Ry, with two additional wavelengths,
thus proving the theorem.

Denote Hy = {a € H:2y=0} and H; =
{r € H:2y=1}. Consider Ry;. To realize this
set, we first embed the (2d —1)-layer Benés network
in the hypercube, with the nodes of H, as the
input nodes of the network, and those of H, as the
output nodes. The embedding is straight forward:
the first d layers are mapped to the corresponding
nodes in H, and the last d layers mapped to H;.
Note that the nodes in the middle layer of B are
mapped twice. For each such node, there is a
single edge connecting its two copies. FEdges of
B directly translate to H, either as corresponding
edges in Hy and H,, or else both ends of the edge
are mapped to the same node. For the middle layer,
the edges that connect it to the previous layer are
mapped to edges in Hg. The edges that connect
it to the next layer are mapped to edges in H;.
This embedding has edge congestion two, because
every pair of crossing edges of the Benés network
is mapped to a single edge of the hypercube.

On the Benés network, any input-output per-
mutation can be routed using node disjoint paths,
and any 2-relation can be routed using edge dis-
joint paths. In order to overcome the edge con-
gestion two in the above embedding, we require a
somewhat different routing scheme on the Benés
network, provided by Lemma 5.1. We show there
that any permutation can be partitioned into two
sub-permutations, each of which can be routed on
the Benés network so that at most one of every pair
of crossing edges is used.

We route Ry; on the hypercube using the em-
bedded Benés network by applying Lemma 5.1 (no-
tice that the lemma applies trivially to a sub-
permutation). Rg, is thus partitioned into two
batches, each routed using a separate wavelength.
Since at most one path in each batch passes
through any middle layer node in the Benés net-
work, we can use the edge connecting the two copies
of such a node to cross the two parts of the hy-
percube. This completes the determination of the
routes for the Ry, connections.
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The Ry, connections are routed as follows.
First, complement the most significant bit of each
destination (so it becomes a 1). Then, route all
connections to these new destinations using the
same method as for Ry;. Now, the routes still have
Only the
most significant bit has to be corrected. For this,
the edges connecting H; to Hy are used again. It
is easy to see that for each of the two batches, any
path may intersect at most two other paths. (All
the intersections occur on the edges connecting H
and H,. A path may intersect some other path
on its way across the Benés network, and another
path when it corrects the most significant bit of its
destination.) Therefore, the paths in each batch
can be colored using 3 colors (wavelengths), so that
no two paths with the same color share an edge.

to connect to the correct destination.
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these wavelengths there must be at least one which

routes at least kg(olg)” requests. [

Higher dimension arrays are treated similarly.
Again, the full array is divided into boxes of equal
side-length, for lengths 1,2.4,...,n'% The main
technical problem is constructing a small cross-
bar between neighboring boxes. We do this using
a routing algorithm of Kunde [Kun91] for multi-
dimensional arrays. A straight-forward implemen-
tation would give an additional factor of 20(¢logd)

for the d-dimensional array. With some extra ef-
fort, this factor can be reduced to 2°(%. The details
are deferred to the full version of the paper.

4.2 From Throughput to Realization
Provided a procedure to approximate the through-
put, the following algorithm obtains a full realiza-
tion:

o Set A=R

o While A #

1. Realize an €(1/logn) fraction of the
maximum throughput of A using one
wavelength. Denote the set thus realized
by A’.

2. A= A-A.

THEOREM 4.2. Assume that R can be realized
using k wavelengths, then the above algorithm real-
izes R using at most O(klog|R|logn) wavelengths.

Proof: Since R can be realized with k
wavelengths, so can any subset of B. Thus, for any
subset A C R, there must be one wavelength which
routes at least 1/k of the requests of A. Thus, for
each subset A of R, the maximum throughput of A
is at least |A|/k. The procedure from the previous
section provides an O(logn) approximation for the
throughput. Thus, at each round of the algorithm,
the size of A decreases by at least a Q(ifgkn) factor.
Hence, after at most O(klog | R|logn) iterations all
requests are realized. ]

5 Routing on the Hypercube

By using the standard embedding of the Benés
network in the hypercube, one can route any
permutation with edge congestion four. However,
since every path may intersect as many as O(logn)

other paths, it may be required to use that many
wavelengths. In order to obtain a realization
of any permutation with a constant number of
wavelengths, we use a different embedding of the
Benés network.

THEOREM 5.1. Any permutation on the hyper-
cube can be realized using O(1) wavelengths.

For the proof, we need a technical lemma. Let
By = (V,F) be the 2d + 1 layer Benés network,
with

V= {(i,x):ie {—d,...,0,...d},z € {o,1}d},
and EB = ESUED,

Es={((i.2),(i+ 1,2)): —d < i< d}

Ep ={((i,2),(i—1,2")): 1 < i < d}
U{((¢,2), (i + 1,2l)) : —d < i <0},

(where 27 is the string  with the j-th bit comple-
mented). We call the nodes {(7,2)} the -th layer
of the network. The set Fg we call straight edges,
and Fp diagonal edges. For each layer, we group
the diagonal edges leaving the layer in pairs. Edge
((i,2),(i+ 1,27)) is paired with ((¢,27), (z,2)) (i.e.
the pairs match edges which connect the same pair
of rows). The edges of a pair we call crossing edges.
LEMMA 5.1. Let B be a Benés network, and
let P be a permutation pattern, with sources in
the first layer of B, and destinations in the last.
Then, P can be efficiently separated into two sub-
permutation patterns Py and P, such that each P,
can be efficiently routed in B using node disjoint
paths which use at most one edge of each pair of
crossing edges.
The proof appears in the appendix.

Proof of Theorem 5.1: Consider a
d-dimensional hypercube, H. Use the standard
representation of the nodes of H, as binary d-
tuples. Let R be a permutation pattern for H.
For a node =z, let x; be the first bit in the
representation of z. Partition R into four sub-
permutations, Ko, Ro1, Rig, and Ry, where R, =
{(z,y) € R: 2o =a, yo =b} . Each R, is a sub-
permutation on (d — 1) tuples. We show how to



t;, and finally, within 7', to »; on the boundary
(see Figure 2). Call w; the inlet node of the
path, and w; the outlet node. We use the path
P, to determine the route between s; and ¢; in the
original graph . Specifically, within S the route
follows the corresponding segments of P;, from s;
to w;. Similarly, within T, from »; to ¢;. Since fisa
flow, by definition, the path segments within .5 and
T, for all (s;,t;) € A, are edge disjoint. Hence, they
can all use the same wavelength. It thus remains to
determine the path segments between the outlets
and the inlets.

Let B(S,T) be the set of edges of distance at
most 2-2° from SUT. The region B(S,T)—(SUT)
forms a crossbar structure between the set of nodes
on the boundary of S and those on the boundary
of T. Thus, all inlet-outlet pairs can be routed
simultaneously within B(S,7') using edge disjoint
paths. ]

LEMMA 4.2. Assume k requests of R(S,T') can

be routed using edge disjoint paths. Then there
exists an integral flow f, for the corresponding
graph Xsr, such that |f| = k.
Proof: Let A C R(S,T),|A| = k, be a set
of requests that can be routed with edge disjoint
paths. Let P be the set of paths for routing A, with
P, € P routing (s;,t;) € A. The routes of P are
edge disjoint. In particular, the segments within 5
and T are disjoint. Accordingly, we construct the
following flow in Xgp. For each P; € P put a unit
flow on the path segment within 5, and a unit flow
on the segment within 7. Let the flow run from
the boundary of 5 to the s;, and from ¢; to the
boundary of T'. In addition, put a unit flow on the
edge (s;,t;). This is a legal flow of size |A| = k.
|

COROLLARY 4.1. For any S and T,
can route efficiently the mazximum throughput of
R(S,T) using edge disjoint paths.

Proof: Solve the corresponding integer max-
flow problem and use Lemma 4.1 to find the routes.
By Lemma 4.2 this is a maximum set. [ ]

one

The same holds also for set of requests from 5
to U, the square 2 columns to the right of S (see
Figure 1). In a similar manner we can also route
the maximum throughput for the set of requests
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between S5 and its diagonal neighboring square,
denoted by V', and to the square W, on the other
diagonal.

Consider the set &, of all squares in the (-th
level division. For each 5 € S, let Ts,Ug, Vs, Wy,
be the 2 above, 2° to the right, left diagonal and
right diagonal squares, respectively. Set I'(\S) =
{Ts,Us,Vs,Ws}. Consider the set (of sets)

Set Ry = Ugs,xjer, B(5, X). We call R, the (-th
level requests.

LEMMA 4.3. Let k be the mazimum number of
requests in R, which can be routed simultaneously
using edge disjoint paths. At least k requests of R,
can be realized efficiently using O(1) wavelengths.
Proof:  Foreach R(S,X) € R, we can efficiently
route the maximum throughput using edge disjoint
paths, and hence one wavelength. Denote the set
thus routed by A(S,X). The routes for A(S,X)
remain within a 2 - 2¢ distance from S U X. Thus,
the routes for A(S, X ) overlap with the routes of at
most a constant number of other sets A(S", X') C
R(S5",X"), R(S",X') € R,. Hence, all sets A(5,X)
can be realized simultaneously using at most O(1)
wavelengths. Let M C R, be the maximum set
of requests which can routed with one wavelength.
Clearly,

Uses[,xer(s) A(SvX)‘ > |M|=k.

We thus obtain:

THEOREM 4.1. Let G be an n node torus and
R a communication pattern for G. Assume that
k requests of R can be routed simultaneously using
edge disjoint paths. Then, one can deterministi-
cally and efficiently (in polynomial time) find a set
A C R, |A|l = Qk/logn) and edge disjoint routes
for all requests in A.
Proof: There are log\/n = O(logn) divisions
S,. Each request (s,t) € R appears in one and only
one of the request sets R,. Thus, there must be at
least one set R,, for which the maximum through-
put of R, is at least k/logn. By Lemma 4.3, the
maximum throughput of the set can be efficiently
realized with a constant number of wavelengths. Of
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other communication paths. Thus, using greedy
wavelength assignment, O(log” n/3%) wavelengths
suffice to realize all the requests. ]

4 Bounded Dimension Arrays

Let G be an n node d dimensional array, and let
R=A(s1,t1),...,(Sm,1m)} be aset of communica-
tion requests for . Define the mazimum through-
put of R to be the maximum subset A C R which
can be realized concurrently with one wavelength,
using edge disjoint paths. First we present
an O(logn) approximation algorithm for the max-
imum throughput. We then show that this yields
an O(log nlog | R|) approximation algorithm for the
number of wavelengths necessary to realize the en-
tire set R.

l.e.

4.1 FEdge Disjoint Paths

First we present the algorithm for the two dimen-
sional case. For simplicity we describe the algo-
rithm for the torus. The modification for the mesh
is straight forward.

Let G be an /n x /n torus. For ( =
0,1,...,log\/n, divide G into squares of side-
length 2¢. Consider one such division and a square
S in the division, as depicted in Figure 1. Let T be

Figure 1: A division, a sub-mesh S and its neigh-
boring area.

the square 2¢ rows above S, as depicted in Figure
1. Let R(S,T) be the set of requests with one end-
point in in S and the other in 7. W.l.o.g. assume
all sources are in S and all destination in T'. We
now show how to route the maximum throughput
of R(S,T) with edge-disjoint paths.

Let § = (V,, E) and T = (V;, E}). Consider
the graph X = Xgp = (V,, E,) with V, =V, UV},
and £, = ;U E, U R(S,T) (we use R(S,T) both
as a set of requests and as a set of edges). The
graph X is the union of the graphs § and T, with
an additional edge drawn between the source and
sink of each communication request in R(S,T).
Consider the following integer (single commodity)
max-flow problem on X. Direct all the edges of
R(S,T) (in X) from S to T. All other edges are
undirected. Assign capacity one to all edges. Let
the boundary nodes of S be source nodes for the
flow, and boundary nodes of 7" the sink nodes (this
can be done by adding a source node s connected
with infinite capacity edges to all boundary nodes
of 5, and a sink node ¢ connected with infinite
capacity edges to all boundary nodes of T').

LEMMA 4.1. Let f be an integer flow in X
and | f| be the amount of flow in f. Given f one
can efficiently find a realization for |f| requests
of R(S,T) using edge-disjoint paths. The paths
remain within a distance of 2-2° from SUT.

Proof:  Flow f defines edge disjoint paths in X.
Any such path uses exactly one edge of the form
(si,1;). Moreover, each such edge is used at most
once. Let A be the set of edges of the from (s;,1;)
used in f. Then |A| = |f|. The set A naturally
corresponds to a set of communication requests.
We show how to realize all requests in A using one
wavelength.

7

G

Cross-Bar Region

raph
«gAP

Figure 2: The paths from 5 to T.

Consider a path P, € f, which uses the edge
(si,t;). Path P; starts at w;, on the boundary of
S, continues within S to s;, then through (s;, ;) to



R is said to be an h-relation, if no node is a source
or a sink to more than h requests. A 1-relation
is a permutation (note that in this formulation,
a permutation need not be complete). Suppose
R is an h-relation. Then, R can be partitioned
into O(h) permutations. Thus, a realization of
any permutation in w wavelengths, provides a
realization for R in O(h - w) wavelengths. We
note that in the worst case, one cannot hope to do
better for an h-relation than to realize it as O(h)
permutations, but in particular instances this may
not be the best solution.

Let R be a communication pattern, and let
Wopt be the least number of wavelengths necessary
for realizing R. A realization of R is said to be
an a-approximation, if it uses w wavelengths, with

o= =0(a).
" We say that an algorithm is efficient if it
terminates in polynomial time.

The edge expansion of a graph G, denoted
B(G), is the minimum over all subsets of nodes
that contain at most half the nodes in G, of the
ratio of the number of edges that have exactly one

endpoint in that subset to the size of the subset.

3 Bounded Degree Networks

In this section we present a near optimal realiza-
tion of permutations in arbitrary bounded-degree
networks. Consider a network G = (V, ), and let
[ be the edge expansion of G. Let R be a per-
mutation communication pattern for . Consider
the following multicommodity flow problem. For
each 7, = (s;,%;) € R there is a unit demand for
commodity ¢ from source s; to sink ;. Assign unit
capacity to each edge. An integer multi-flow for
this problem provides paths for realizing R. The
congestion, ¢, of the flow is the maximum number of
paths using an edge. The dilation, d, of the flow is
the maximum length of a path from source to sink.
Leighton and Rao [LR88, Theorem 2], show how to
obtain an integer flow for the above problem, with
maximum congestion and dilation both O(logn/3).
Use these paths for routing the requests. Consider
the conflict graph ', with a node for each path and
an edge between any two paths that share an edge.
The graph ' has degree at most cd, and can thus
be colored with at most ed + 1 = O(log” n/3?) col-
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ors in a greedy fashion. The colors determine the
wavelengths. We thus obtain:

ProprosiTION 3.1. For any bounded degree
graph G, and permutation pattern R, the pattern
R can deterministically and efficiently be realized
using w = O(log” n/ %) wavelengths.

This almost matches the ©(1/3%) lower bound
established in [RU94].

3.1 Local Path Selection

The above algorithm necessitates a full global con-
trol for determining the paths and the wavelengths
assignment. With an additional O(log” n) factor a
more local algorithm can be obtained.

Let B = (Vg, Ep) be a wrapped butterfly graph
on N nodes, with 3n > N > n. Consider a map-
ping f of the nodes of B onto the nodes of G, with
the property that at most 3 nodes of B map to
any particular node of G. By a corollary from
[LR88, Theorem 2], any such f can be efficiently
extended to an embedding of the edges of B in G,
such that the maximum dilation and congestion of
the embedded paths are both O(logn/f3). Deter-
mining the embedding is performed once, off-line,
when setting up the network. Given such an em-
bedding, future communication patterns are routed
as if on B, using the fixed embedding. Routing
on B (a butterfly) is performed using random two
phase routing. This allows the source processor to
determine the path locally. Once the path is de-
termined, the wavelength is determined by picking
a wavelength which is not already used along the
path. We note that choosing the wavelength still
requires some coordination between requests.

ProrosiTION 3.2. With the above algorithm,
with high probability, any permutation is realized
using at most O(log" n/3?) wavelengths, and all
paths are determined locally at the source proces-
sors.

Proof: Each path on the butterfly is of length
O(logn) and with high probability meets at most
O(logn) other paths. Each edge of the butterfly is
mapped to a path in G of length O(logn/3). This
path overlaps with the paths assigned to at most
O(logn/j3) other edges. Thus, in total, the length
of a communication path assigned to a request is

at most O(log”n/f) and meets with O(log” n/3)
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Our result for the hypercube does not explic-

itly use flow techniques. However, it continues the
theme of relying on a solution to the maximum dis-
joint paths problem. We use the classical result of
Benés [Ben65, Wak68] that constructs a rearrange-
able network, i.e. a network where every permuta-
tion can be routed along edge disjoint paths. We
use a non-standard embedding of the Benés net-
work onto the hypercube, and a variation on the
routing algorithm for the Benés network, to get
the O(1) wavelengths result.
Previous related work. Optical routing in ar-
bitrary networks was considered by Raghavan and
Upfal [RU94]. They prove an existential Q(37?)
lower bound on the number of wavelengths nec-
essary to realize a permutation. For the upper
bound, [RU94] present an algorithm which routes
any permutation in O (log n?/ log” /\) wavelengths
with high probability, where A is the second largest
eigenvalue (in absolute value) of the transition
matrix of the standard random walk on G. In
terms of the edge expansion, the algorithm obtains
a worst case performance of O(log”n/3%), with
O(log” n/3*) obtained for some graphs. For de-
gree d arrays, [RU94] present an algorithm with an
O(dn*/?/logn) worst case performance. The ran-
domization of the algorithm results in worst case
performance for all patterns. For trees, [RU94]
present a 3/2 approximation.

Pankaj [Pan92] considers routing in hypercube
based networks. For the hypercube, the shuffle
exchange, and the deBruijn networks, he shows
that routing can be achieved with O(log® n) wave-
lengths. Aggrawal, Bar-Noy, Coppersmith, Ra-
maswani, Schieber and Sudan [ABCt94], show
that O(logn) wavelengths are sufficient for the
routing in this class.

Lower bounds where considered in [BH92,
BH93], [PS93], and [Pan92]. Pankaj [Pan92],
proves a (logn) worst case lower bound on the
number of wavelength necessary for routing a per-
mutation in a bounded degree network. Barry and
Humblet [BH92, BH93] give bounds for routing in
passive (switchless) networks. An almost match-
ing upper bound is presented in [ABC*94]. Peiris
and Sasaki [PS93], consider bounds for elementary
switches. The connection between packet routing

and optical routing is discussed in [ABCT94].

A problem related to ours is that of integral
mutlicommodity flow [LR88, GVY93]. (See also
[KLPS90, Sch93] and references therein.) This
problem has also been discussed in the context
of on-line algorithms [GGK*93, AAP93, ABFR94,
AGLRY4].

Jon Kleinberg has informed us that he and
Eva Tardos have obtained an improved bound of
O(logn) to the approximation of the number of
rounds required to realize a communication pattern
on bounded dimension arrays [Kle94].

2 Terminology and Definitions

Let G = (V,E) be a graph. A communication
request, r, on GG is a pair r = (s,t) € V x V.
Node s is called the source of r, and ¢ the sink. A
communication pattern is a (multi-)set of requests.
A request is realized by determining a route, from
source to sink, and sending the message along the
route, using a fixed wavelength. At any given time,
distinct routes sharing the same edge must use
different wavelengths. Let R be a communication
pattern. We are interested in realizing all requests
in R. Realizing R may be performed in rounds,
with separate requests realized in different rounds.
All rounds share the same bound on the number of
wavelengths, but there are no further restriction on
path selection and wavelengths assignment across
rounds. In conclusion, a realization assigns to each
request a triplet: (i) a route (ii) a wavelength,
and (iii) a round. Denote the number of distinct
wavelengths used in realizing R by w, and the
total number of rounds by 7. We are interested
in minimizing 7" and w. Consider a realization
which uses w; wavelengths and 7T rounds. Given
such a realization, it is easy to construct another
realization which uses at most wy - T} wavelengths,
and completes in one round. Conversely, it is
also possible to construct a realization with one
wavelength, and w; - 77 rounds. In fact, any
realization with w -7 = O(w; - 1}), can easily be
obtained. Thus, from now on, we discuss only the
number of wavelengths necessary for one round,
and omit explicit reference to T'.

Consider a communication pattern R. A single
node may participate in several requests. The set



RU94]. Generalized switches, on the other hand,
are capable of switching incoming steams based on
their wavelength [Che90, ABC*94, RU94]. Using
acousto-optic filters, the switch splits the incoming
signals to the different steams associated with
the various wavelengths, and may direct them to
separate outputs. In both cases, on any given link
different messages must use different wavelengths.
The switch may not route to the same link different
messages which are using the same wavelength.
We are interested to allow communication be-
tween nodes of the network. A communication re-
quest is a (source, destination) pair of nodes. A
communication pattern is a set of communication
requests. A communication pattern is realized by
assigning wavelengths to the messages, and setting
the switches in accordance. Generally, the length
of a path is an insignificant factor. The impor-
tant measures are the number of wavelengths that
the system must be able to handle, and the num-
ber of rounds necessary to complete the transfer
of all messages. Algorithmically, the challenge is
to devise a method which, given a communication
pattern, finds a wavelength assignment to the mes-
sages and a setting for the switches, which mini-
mizes these measures.
This work. In this paper we focus on the routing
problem with generalized switches. Our results also
give improved results for the elementary switches.
We consider the case where all nodes of the network
are occupied by sending and receiving terminals,
as well as switches. In this work we present a near
optimal realization algorithm for bounded degree
networks. In addition we present improved realiza-
tion algorithms for routing in bounded dimension
arrays and for hypercubes. We obtain:

1. An algorithm which for any bounded de-
gree graph G and permutation pattern R,
gives a realization of R in one round us-
ing O(log”®n/3%) wavelengths, where 3 is the
edge expansion of G, and n the number of
nodes. This almost matches the existential

lower bound of Q(1/5%) of [RU94].

2. For any bounded dimension array, any given
number of wavelengths, and pattern R, an
algorithm which realizes R using at most
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O(log nlog |R|- Ty (R)) rounds, where T, (R)
is the minimum number of rounds necessary to
realize R.

3. For the hypercube, an algorithm which real-
izes any permutation pattern using O(1) wave-
lengths in one round.

(In Section 2 we show that in all results the role of
rounds and wavelengths is interchangeable).

Note that the array result (item 2), gives a per-

instance approximation. Previous results for arrays
obtain a performance which is good only with re-
gards to the worst-case pattern. No better per-
formance is guaranteed for “easier” patterns. For
example, a given pattern on the mesh may be re-
alizable using single round, but the previous algo-
rithms will still necessitate O(y/n) rounds. Our
algorithm, in contrast, approximates the number
of rounds per-instance. For each pattern R the al-
gorithm produces a realization which approximates
the number of rounds necessary to realize the given
pattern, to within an O(log|R|logn) factor. The
only previously known approximation algorithm is
for trees, for which [RU94] give a 3/2 approxima-
tion algorithm.
Methods. Previously is was argued that flow
techniques are ill-suited for tackling the optical
routing problem [RU94]. We show to the contrary.
The result for general networks is directly derived
from results in integral multicommodity flow of
[LR8S8].

The problem of approximating the number of
wavelengths required to realize a communication
pattern can be reduced to the problem of finding
the maximum number of edge disjoint paths be-
tween source-destination pairs. That is, if one can
approximate the number of requests in a pattern R
that can be connected by edge disjoint paths, then
one can also approximate the number of rounds
required to realize R. The second approximation
entails an additional O(log|R|) factor. Our per-
instance approximation for arrays is derived from
an O(logn) approximation algorithm for the max-
imum edge disjoint paths problem on arrays. This
approximation algorithm may be of independent
interest. The algorithm uses (integral) single com-
modity flow.
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Abstract

We consider the problem of routing in networks em-
ploying all optical routing technology. In these net-
works, messages travel in optical form and switching is
performed directly on the optical signal. By using %if—
ferent wavelengths, several messages may use the same
edge concurrently, However, messages assigned the same
wavelength must use disjoint paths, or else be routed at
separate rounds. No buffering at intermediate nodes is
available. Thus, routing in t%”uis setting entails assign-
ing wavelengths, paths, and time slots for the different
messages.

For arbitrary bounded degree networks, we show
that any permutation can be routed efficiently in one

round using at most O(log® n/3?) wavelengths, where
[ is the edge expansion of the network. This improves
a quadratic factor on previous results, and almost
matches the Q(1/8?) existential lower bound. We
consider two of the more popular architectures for
parallel computers. For bounded dimension arrays
we give the first per-instance approximation algorithm.
Given a limited number of wavelengths and a set of
messages to be routed, the algorithm approximates to
within polylogarithmic factors the optimal number of
rounds necessary to route all messages. Previous results
for arrays give only worst—case performance. Finally,
we show that on the hypercube any permutation can
be routed using only a constant number of wavelengths.
The previous known bound was O(logn).

1 Introduction

Motivation. Optical communication technology
allows for very high data transmission rates, ex-
ceeding those of traditional electronical technol-
ogy by several orders of magnitude. Optics is
thus emerging as a key technology in state-of-
the-art communication networks, and are expected
to dominate many applications. The high data
transmission rate is achieved, in part, using wave-

length division multiplexing (WDM). By WDM,
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multiple data streams may be transferred concur-
rently along the same fiber-optic, with the different
streams assigned separate wavelengths. The cor-
responding input and output terminals are mod-
ulated to omit and receive the signal on the pre-
scribed wavelength. In large scale networks switch-
ing must be allowed. In order to retain the high
data transmission rate it is necessary that the
switching is performed directly on the optical sig-
nal, without translation into electronic form (see
[SM93]). Such optical switches are currently in de-
velopment. Optical switches do not modulate the
wavelengths of the signals passing through them.
Rather, the switch directs the incoming wave to
one or more of its outputs. Buffering is generally
not available in these networks. Thus, optical com-
munication introduces a new routing environment,
with distinct characteristics. By nature, packet-
routing algorithms are ill-designed for this setting.
It is thus necessary to devise new algorithms, and
algorithmic methodology, for optical network com-
munication.

The Model. An optical network consists of
nodes, interconnected by point-to-point fiber optic
links. FEach of the fiber-optic links supports a
given number of wavelengths. The nodes may be
occupied either by terminals, switches, or both.
Terminals send and receive signals. Switches direct
the input signals to one or more of the output
links. Several types of optical switches exist (or are
in development), An elementary switch is capable
of directing the signals coming along each of its
input links to one or more of the outputs. The
elementary switch cannot, however, differentiate
between the different wavelengths coming along the

same link. Rather, the entire signal is directed
to the same output(s) [BT91, KG92, ABC*t94,



