
Simulating Quadratic Dynamical Systems is PSPACE-complete

(preliminary version)

Sanjeev Arora∗

UC Berkeley
Yuval Rabani†

MIT
Umesh Vazirani‡

UC Berkeley

Abstract

Quadratic Dynamical Systems (QDS), whose defi-
nition extends that of Markov chains, are used to
model phenomena in a variety of fields like statis-
tical physics and natural evolution. Such systems
also play a role in genetic algorithms, a widely-
used class of heuristics that are notoriously hard
to analyze. Recently Rabinovich et al. took an
important step in the study of QDS’s by showing,
under some technical assumptions, that such sys-
tems converge to a stationary distribution (similar
theorems for Markov Chains are well-known). We
show, however, that the following sampling prob-
lem for QDS’s is PSPACE-hard: Given an initial
distribution, produce a random sample from the
t’th generation. The hardness result continues to
hold for very restricted classes of QDS’s with very
simple initial distributions, thus suggesting that
QDS’s are intrinsically more complicated than Markov
chains.

∗Supported by an IBM Graduate Fellowship and partly
under NSF grant CCR-9310214. Email:
arora@cs.berkeley.edu.

†Work done while at ICSI, Berkeley, and supported
in part by a Rothschild postdoctoral fellowship. Email:
rabani@theory.lcs.mit.edu.

‡Supported by NSF grant CCR-9310214. Email:
vazirani@cs.berkeley.edu.

1 Introduction

Quadratic dynamical systems (QDS) have recently
attracted some interest in the computer science
community, particularly as a model for genetic al-
gorithms. They were classically used to model var-
ious natural phenomena in physics and biology.
Like a Markov chain (a linear system), a QDS maps
a probability distribution D on a state space S into
another probability distribution D′ (on S). The
map is quadratic in that two random samples are
picked independently from D to produce a random
sample fromD′ according to some fixed mating rule
β.

A classical use of the QDS model in physics is
Boltzmann’s treatment of the kinetic gas model of
Maxwell (see [Rei]). The result of collisions be-
tween pairs of molecules can be described by a
mating rule derived from the laws of Newtonian
mechanics. By assuming that the velocities of the
molecules of gas in a chamber are independent (a
problematic assumption, which leads to the entropy
paradox), Boltzmann gave a QDS description of
the dynamics of the gas, and derived the famous
Maxwell-Boltzmann distribution for the steady state.

The QDS model also forms the basis of the
Hardy-Weinberg approach for describing the evo-
lution of a population (see [CB]). The state space
is the set of individuals (represented by their geno-
type), and the mating rule is based upon the laws
of genetics. (It might also incorporate the survival
probability in the given environment, the muta-
tion rate, etc.) The crucial assumption which al-
lows the use of the QDS formulation is that mating
pairs are chosen randomly and independently. An-
other application in this vein is Volterra’s model of

a predator-prey ecological system (see [HS]).
It has been proposed that the QDS formula-

tion captures the essential features of genetic algo-
rithms, a class of heuristics to solve optimization
problems. Our results clarify this connection, and
we discuss these implications in the next section.

Classical research on QDS’s often focusses on
the study of fixed points i.e., distributions in equi-
librium. However, computational applications re-
quire upper bounds on the rate of convergence to
equilibrium. For instance, applications of Markov
chains in computer science [AKS, JS, DFK] were
made possible by new techniques for analyzing con-
vergence rates.

By contrast, QDS’s do not necessarily converge
to a stationary distribution. However, many QDS’s
arising in applications use a symmetric mating rule
(see the next subsection for definitions). For such
systems, Rabinovich, Sinclair and Wigderson [RSW]
showed – using ideas from statistical physics – con-
vergence to a stationary distribution. (Some tech-
nical assumptions need to be made about the initial
distribution, and the stationary distribution may
depend on the initial distribution.) Furthermore,
spurred by the use of Markov chains in applications
like approximating the number of matchings in a
bipartite-graph, or 0/1 permanent [JS], the authors
suggested similar applications of QDS’s. They an-
alyzed the equilibrium distributions and the rate
of convergence of a QDS related to the problem of
counting matchings in trees.

Another such result is Rabinovich and Wigder-
son’s analysis of a QDS (bitwise independent mat-
ing) that optimizes linear functions over the do-
main of n-bit strings [RW]. They analyze the rate
of convergence of the QDS, which is used in [Rab]
to obtain a polynomial time algorithm for the prob-
lem. This polynomial time algorithm does not work
by faithfully simulating the quadratic operator, as
one would expect, but by simulating some key prop-
erties of it.

As we will see, this is but one example of a more
general problem with QDS’s: we will show that
given a symmetric mating rule that is polynomial
time computable, and a simple initial distribution
D0 (say, one that concentrates all probability in
one state) it is PSPACE-hard to produce a ran-
dom sample according to Dt, the distribution after

t generations (the t used in our reductions is small,
so Dt is not the equilibrium distribution).

1.1 Definitions and Results

A Quadratic Dynamical System (QDS) consists of
a state space S, and a mating operator
β : S4 → <+ ∪ {0}. Following convention, we de-
note β(i, j, k, l) by βijkl. We assume β has been
normalized, so that

∑
k,l βijkl = 1. In addition, β

is said to be symmetric if ∀i, j ∈ S, βijkl = βjikl,
and ∀i, j, k, l ∈ S, βijkl = βklij ; in other words, β is
locally reversible.

A population is a probability distribution on S.
The mating operator describes the evolution of the
population (in discrete time steps) according to the
following algorithm.

Evolution Rule The following is the algorithm
to go from the distribution at time t, Dt, to the
distribution at time t+ 1, Dt+1.

Take two independent samples i and j from Dt.
Construct two samples k, l ∈ S according to the
following probability distribution.

Pr[(k, l)] = βijkl.
Output k.
STOP.

The sequence D0,D1, . . . ,Dt, . . . of points in the
|S|-dimensional simplex is called a trajectory.

The following is an explicit formula for Dt+1 in
terms of Dt.

Dt+1(k) =
∑
i,j,l

Dt(i)Dt(j)βijkl.

Quadratic Dynamical Systems get their name from
the quadratic nature of the above expression. Note
that Markov chains are linear dynamical systems,
in contrast.

An algorithm is said to sample from a distribu-
tion D if it outputs a random element x according
to the distribution D (i.e. x is output with prob-
ability D(x)). We consider sampling algorithms to
be efficient if their expected running time is poly-
nomial in the length of the samples. Sometimes
we allow the sampling algorithm to output sam-
ples from a distribution D′ whose `1-distance from

the desired distribution D is at most ε (for a given
error parameter ε), that is:

|D − D′|1 =
∑
x

|D(x)−D′(x)| ≤ ε.

Any notion of efficient sampling from a QDS makes
sense only for QDS’s (and initial distributions) that
are themselves computable in poly(n) time, where
n = log |S|. We say that a QDS β is succinctly-
defined if there is a probabilistic polynomial time
machine Tβ which, on input (i, j), can produce a
sample (k, l) according to the distribution Pr[(k, l)] =
βijkl.

We assume for now that the initial distribution
D0 is polynomial time samplable. It will be seen
that the actual D0 used in our reduction is just
the point distribution: it assigns a probability 1
to some specific element of S and probability 0 to
everything else.

Definition. Sampling Problem:
INPUT: |S| (in binary notation); a succinctly-defined
QDS β, given as a Turing machine Tβ; an ini-
tial distribution D0, given as a Turing Machine;
1t (string of t 1’s); and an error parameter ε.
OUTPUT: A sample x ∈ S according to a distri-
bution D′, such that |D′ −Dt|1 ≤ ε.

A machine is said to simulate the QDS if it
solves the corresponding sampling problem. A re-
duction from sampling problemA to sampling prob-
lem B is a polynomial time transformation from A
to B, such that simulating B (with the new distri-
bution) allows a simulation of A. Our result that
simulating symmetric QDS’s is PSPACE-hard fol-
lows easily (in Section 4) from the following more
general reduction.

Theorem 1 Sampling an arbitrary QDS (i.e., even
a non-symmetric one) with a poly-time samplable
initial distribution can be reduced to sampling some
symmetric QDS with an initial distribution that is
a point distribution.

This theorem, which will be proved in Section 3,
is somewhat surprising since removing the symme-
try condition from β is known to result in systems
with extremely complex behavior [HS]. For in-
stance, the convergence theorem in [RSW] is known
to not hold then.

An interesting corollary of Theorem 1 is that
simulating a general k-adic dynamical system (i.e.,
one with k-ary interactions instead of binary ones)
also reduces to the simulation of a symmetric QDS.
Such systems have found some applications in com-
puter science. For instance, Valiant [Val] uses a
nonlinear system with 4-way interactions to gener-
ate, and thus show the existence of, small sized
monotone circuits for majority. Clarkson et al.
[CEMST] give algorithms for approximating the
center point of a set of points in IRd. They use,
in effect, a simulation of a (d + 2)-adic dynamical
system that converges to the desired result.

2 Why Simulating a QDS is Hard:
Intuition and Examples

This section explains the basic intuition why sim-
ulating a QDS is a non-trivial problem, whereas
simulating Markov chains is not. The casual reader
might read this section to get a flavor of the reduc-
tions in the remaining sections. The discussion in
this section also ties in to some research on Genetic
Algorithms, a field in which QDS’s (or similar sys-
tems) fit in naturally. We will restrict attention
to QDS’s and Markov chains that are succinctly-
defined by polynomial time Turing machines. Also,
for the purposes of this section, the initial distribu-
tion D0 is required to be merely polynomial-time
samplable.

To sample from Dt for a Markov chain, we can
just generate one sample from Dt−1, and apply one
step of the chain to it. Unrolling the recursion
implicit in the previous statement, the following
simple algorithm is obtained: Generate a sample
from D0 and take it through t steps of the chain.

For a QDS, producing a sample from Dt seems
to require two independent samples fromDt−1. Un-
rolling the implicit recursion yields the following
algorithm: Generate 2t samples — or 2t−1 pairs of
samples — from D0. Apply the mating operator to
each pair to obtain 2t−1 independent samples from
D1. Go on like this for t − 1 steps until a single
sample from Dt remains.

It is easy to see that one can covert the above
algorithm to run in polynomial space. The follow-
ing procedure does that.

L0, L1, L2, . . . , Lt := ∅.
While Lt = ∅ do

Generate a sample from D0 and add it to L0.
For i := 0 to t− 1 do

If |Li| = 2 then
Mate the two samples in Li and
add the child to Li+1.
Li := ∅.

Output Lt.
STOP.

Actually, this simulation can be done for a wider
class of QDS’s. We only need that mating can be
done by a polynomial space bounded Turing ma-
chine. If mating is done in linear space, the simu-
lation runs in linear space.

Does one inherently need 2t samples from D0 to
produce a sample from Dt? It is easy to verify that
for a D0 given as a “black box” (which generates
samples from D0 for us) this bound is tight. The
following example (a weaker form of our results)
shows that the sampling problem is NP-hard even
when D0 is polynomial-time samplable.

An NP-hard Sampling Problem. Let ϕ be a
SAT instance with n variables. We define the fol-
lowing symmetric QDS.
S = {0, 1}. β0000 = 1, β0101 = 1/3, β0111 = 1/3
(other values of β can be determined using symme-
try). D0 is defined as Pr[1] = 2−n·| {x : x is a satisfying assignment to ϕ} |,
and Pr[0] = 1− Pr[1].

D0 is polynomial time samplable, since a ma-
chine could just generate a random assignment,
and output 1 iff it satisfies ϕ. The operator β can
be described in words as follows: When a 0 and a
1 mate, they produce a (1, 1) with probability 1/3.
When a 1 and a 1 mate, they produce a 0 and a 1
with probability 1/3. In every other case, there is
no change. Clearly, this system tends to equalize
the probability of 1’s and 0’s. More specifically, if
pt is the probability of 1 in Dt, then

pt+1 =
2
3
p2

t +
4
3
pt(1− pt) =

2
3
pt(2− pt).

If ϕ is not satisfiable, p0 = 0, hence pt = 0 ∀ t. If ϕ
is satisfiable, then p0 ≥ 2−n, and ∀t, if pt ≤ 1

4 , then
pt+1 ≥ 7

6pt. Therefore pt increases geometrically,
and for t ≥ 5n, pt ≥ 1/4. Thus a random sample

from D5n allows us to decide the satisfiability of ϕ
with probability 1/4.

2.1 Implications for Genetic Algorithms

The number of samples from D0 required to pro-
duce a sample in Dt is related to the notion of pop-
ulation size encountered in the context of genetic
algorithms (GAs). Such algorithms try to find bet-
ter and better solutions to an optimization prob-
lem (say, Traveling Salesman Problem) by “mat-
ing” solutions that have already been found. The
algorithm maintains a set of of possible solutions
(a given solution may occur with a certain mul-
tiplicity) and at every iteration, repeatedly mates
two randomly-chosen solutions to create the next
generation of solutions. In an effort to imitate evo-
lution in nature, the mating operator is augmented
using rules that ensure the “survival of the fittest”
and “mutations.”

The maximum number of solutions kept around
by the GA is called its population size. When the
population size is infinite the action of the mating
operator on the population defines exactly a QDS,
and the distribution of solutions after the tth it-
eration is Dt. But infinite (or even very large)
population sizes are infeasible in real genetic al-
gorithms. GAs with finite population sizes are
not true quadratic systems, but Markov chains,
as pointed out in [NV]. However, in an attempt
to link real GAs (i.e. those with finite popula-
tion sizes) with quadratic systems it was shown
[Vos] that with a “large enough” population size, a
real GA behaves like the corresponding QDS for a
“long” time.

We must point out however (and this is a sim-
ple exercise), that to correctly simulate the QDS
used in GAs for t steps in general requires a popu-
lation size of 2O(t). This suggests a need for a fresh
look at whether the QDS model is appropriate for
real GA’s. (In fact we can show that simulating the
fitness operator in genetic algorithms is NP-hard,
using ideas similar to the above toy example.) Even
in our above example, note that when p0 = 2−n,
we need an initial population of size 2n — i.e. this
many samples from D0 – to have a good probability
of including 1’s in the population. A much smaller
starting population will never exhibit any 1’s, and

will therefore diverge from the true Dt exponen-
tially fast. Later we will see examples of systems
where the initial population can be small (even of
size 1) but a faithful simulation of later genera-
tions requires large population sizes unless BPP =
PSPACE.

3 Simulating General Quadratic
Systems by Symmetric Systems

Let β be a succinctly-defined QDS. Given any time
interval t, and error parameter ε, we show how to
transform β into another succinctly-defined QDS
β̂, such that β̂ is symmetric, and for any initial
distribution D0, the distributions after t steps un-
der β and β̂, Dt and D̂t respectively, are within
l1-distance at most ε.

Let S be the state space of β. Let m ≥ |S|.
The state space of β̂ is Z = ∪t

j=0S × [m]j , where
[m] = {1, . . . ,m}. If a state α ∈ Z is an element of
S × [m]j , we shall say that level(α) = j, and write
α = (α0, . . . , αj).

The transition probabilities of the new QDS are
defined as follows: If level(α) 6= level(α′), then
β̂α,α′,α,α′ = 1/2, and β̂α,α′,α′,α = 1/2.

If level(α) = level(α′) = k, then let α0 = s,
and α′0 = s′. Let states u, u′ ∈ S be such that
βs,s′,u,u′ = p.

The forward transitions of β̂ are defined as fol-
lows: Let µ, µ′ ∈ Z satisfy level(µ) = level(µ′) =
k + 1, and µ0 = u, and µi = αi for 1 ≤ i ≤ k,
µ′0 = u′, and µ′i = α′i for 1 ≤ i ≤ k. Then
β̂α,α′,µ,µ′ = p(1− (|S|/m)2)/m2.

If k = 0, then the transitions are completed by
adding a self-loop of probability (|S|/m)2 for each
pair. i.e. β̂α,α′,α,α′ = (|S|/m)2.

If k ≥ 1, there are both reverse transitions and
self-loops: The probability of a reverse transition,
from a pair of level k+1 states to a pair of level k
states, is defined to be exactly equal to the proba-
bility of the corresponding forward transition (from
the pair of level k states to the pair of level k+1
states). The self-loop for a pair of states has prob-
ability (|S|/m)2 minus the sum of the probabilities
of the reverse transitions from that pair.

It is clear from the definition that β̂ is symmet-
ric.

Lemma 2 β̂ is succinctly-defined.

Proof. (sketch) Let α and α′ be level k states for
k ≥ 1. Let s, s′ be as defined above. Then Tβ̂[α, α′]
can be computed as follows:

• With probability 1− (|S|/m)2: let Tβ [s, s′] =
u, u′. Define a pair of level K+1 states µ, µ′ as fol-
lows: µ0 = u, and µi = αi for 1 ≤ i ≤ k, and µk+1

is chosen uniformly at random in [m]. Similarly,
µ′0 = u′, and µ′i = α′i for 1 ≤ i ≤ k, µ′k+1 is chosen
uniformly at random in [m]. Output µ, µ′.

•Otherwise, with probability 1−(|S|/m)2: choose
a pair of states q, q′ ∈ S uniformly at random. If
Tβ [q, q′] = s, s′ then (reverse transition) define a
pair of level k − 1 states ν, ν ′, with ν0 = q, νi = αi

for 1 ≤ i ≤ k − 1, and ν ′0 = q′, ν ′i = α′i for
1 ≤ i ≤ k − 1. Output ν, ν ′. Else if Tβ[q, q′] 6= s, s′

(self-loop), output α, α′.
• Otherwise (self-loop) output α, α′.
It is easy to complete the definition of proce-

dure Tβ̂ for the remaining values of α and α′. Also,
it is readily verified that if Tβ is a polynomial time
procedure, then so is Tβ̂ .

LetD0 denote the initial distribution from which
we wish to simulate the quadratic system β for t
steps. We now analyze the behavior of the new
quadratic system β̂ on the same initial distribution
(note: S ⊆ Z). Let D̂k denote the distribution af-
ter k steps under β̂.

Lemma 3 Under the distribution D̂k:
• The probability of any state whose level is

larger than k is 0.
• The total probability of level k states is

(1− (|S|/m)2)2
k

.
• The conditional distribution of the first coor-

dinate of the level k states is exactly Dk.

Proof. (sketch) The first statement is obvious.
The second statement follows by induction on k,
and the observation that the total probability of
forward transitions from any pair of states is (1 −
(|S|/m)2). The third statement follows by induc-
tion on k and the fact that when restricted to the
first coordinate, the forward transitions from any

pair of states under β̂ exactly mimic the transition
probabilities according to β̂.

Proof of Theorem 1. Let β be an arbitrary
QDS and D0 a polynomial time samplable distri-
bution. By adding a new state, whose sole interac-
tion is a (irreversible) transformation to the other
states according to D0, we can assume w.l.o.g. that
the initial distribution is concentrated on only one
state. Using the above notation, we wish to sample
from Dt.

As in the above reduction we define β̂ with
m = |S|2t. The size of the state space for β̂ is
at most max{|S| · (|S|2 + 1)t, |S| · (2t + 1)t}, so a
state can be coded using (2t2 + 1)dlog |S|e bits at
most. Since the probability of level t states under

the distribution D̂t is at least
(
1− 1

22t

)2t−1
≥ e−1,

by taking an expected O(1) samples according to β̂
at the t’th generation we will obtain a sample from
the t’th generation of β.

Corollary 4 Let p(x) be a polynomial. Consider
the family of k-adic dynamical systems, where k ≤
p(log |S|). The simulation of this family polynomi-
ally reduces to the simulation of symmetric quadratic
dynamical systems.

Proof. We reduce the simulation of k-adic sys-
tems to the simulation of quadratic systems. By
Theorem 1 this is sufficient to prove the claim.

For every k-adic system considered, we con-
struct the following quadratic system. The state
space consists of all 2i multisets of states in S,
where 0 ≤ i ≤ dlog ke − 1. So each state can be
coded using log |S| · p(log |S|) bits at most. There
are two types of transitions. The first kind of tran-
sitions mate, for every i, 0 ≤ i < dlog ke − 1, two
2i multisets that produce their union — a 2i+1

multiset. The second kind of transitions mate two
2dlog ke−1 multisets, in which case a subset of size k
of their union is chosen uniformly at random and
the outcome of the mating of these k states un-
der the original dynamical system is produced. So,
each step of the original system is simulated by
dlog ke − 1 steps of the quadratic system.

4 PSPACE-Hardness

In this section we show that simulating general
QDS’s (i.e. those with no constraints on β) is
PSPACE-hard. Combining this result with the one
in the previous section about symmetric QDS’s be-
ing able to simulate general QDS’s, we conclude
that simulating symmetric QDS’s is PSPACE-hard.
The PSPACE-complete problem we use in this sec-
tion is the language of True Quantified Boolean
Formulae (TQBF) [SM].

TQBF = {ψ :
ψ = ∃x1∀x2 . . . Qnxnφ(x1, x2, . . . , xn),
φ is a 3SAT formula}.

Let ψ = ∃x1∀x2 . . . Qnxnφ(x1, x2, . . . , xn) be an in-
stance of TQBF . By “unrolling” ψ we can define a
circuit with the following properties, in the obvious
way.

1. There are n+1 levels numbered 0 to n. Level
i has 2i gates, each labeled by a unique i-
bit binary string. Each gate has fanin 2 and
fanout 1 (except for gates at level n, whose
values we set, and the top gate, which pro-
duces the output).

2. Gates at level n are set to 0 or 1 as fol-
lows: gate b1b2 . . . bn (bi ∈ {0, 1}), is 1 iff
φ(b1, b2, . . . , bn) = 1.

3. All gates at level i are AND’s if the i’th quan-
tifier in ψ, Qi, is ∀, and are OR’s other-
wise. The inputs to the gate b1 . . . bi at level
i (i < n) are from gates b1 . . . bi0 and b1 . . . bi1
of level i+ 1.

4. The top gate evaluates to 1 iff ψ is true. (This
follows from 1 through 3.)

.
Let G be the set of gates in the above circuit.

The QDS we define will emulate the operation of
the circuit.

S = G× {0, 1} .

The initial distribution, D0, is the uniform distri-
bution on the following set of size 2n

{(g, b) : g is a gate at level n and b is its assigned value} .

The mating operator β is such that ∀i, j, k, l ∈ S4,
βi,j,k,l is either 1 or 0. We use the notation (i, j) →
(k, l) to denote βi,j,k,l = 1.

Rules for Mating.

1. ((g1, b1), (g2, b2)) → ((g3, b3), (g3, b3)) if gates
g1, g2 are inputs to gate g3, and b3 is g3(b1, b2)
(note: g3 is either AND or OR).

2. ((g1, b1), (g2, b2)) → ((g1, b1), (g1, b1)) if gate
g1 is at a higher level in the circuit than g2.
Likewise ((g1, b1), (g2, b2)) → ((g2, b2), (g2, b2))
if g2 is at a higher level.

3. ((g1, b1), (g2, b2)) → ((g1, b1), (g2, b2)) if nei-
ther of the previous conditions is true for g1
and g2.

The basic idea of how the QDS simulates the
circuit should be clear: D0 corresponds to the leaves
of the circuit getting assigned correctly. Pairwise
interaction of states according to Rule 1 performs
computation at an inner gate g3; this is how the
correct values filter up the circuit. Interaction ac-
cording to Rule 2 boosts the probability of the gate
that’s closer to the output; this makes the proba-
bilities go up the circuit very fast. Interaction ac-
cording to Rule 3 leaves the states unchanged. The
following lemma is immediate.

Lemma 5 If at any time t, Pr[(g, b)] > 0, then b
is the correct value of gate g.

Therefore Pr[(g, b)], if it is nonzero, may unam-
biguously be called Pr[g].

Lemma 6 If g1, g2 are gates at the same level,
then for all times t ≥ 0, Pr[g1] = Pr[g2].

Proof. The claim is true at t = 0. Suppose
it is true ∀t ≤ k. We will show that it is then
true for t = k + 1, whence the lemma follows by
induction. But the interactions in Rules 1 through
3 treat all gates at the same level identically. So
if probabilities do not vary within a level at time
k, rules 1 through 3 will not change probabilities
within any level at time k + 1.

Let pi,t denote the probability of a level-i gate
at time t. Then Rule 1 implies

pi,t+1 ≥ 2p2
i+1,t (1)

The probability of all gates at or below level i at
time t, denoted as P≥i,t, is 2npn,t + 2n−1pn−1,t +
· · · + 2ipi,t. Since both Rules 1 and 2 move prob-
ability upward but never downward, P≥i,t is non-
increasing in t. More specifically since a state at
a level ≥ i is produced only by mating two states
from level ≥ i, we have the following expression.

P≥i,t+1 ≤ P 2
≥i,t. (2)

Lemma 7 For t = 3ni+ 1, i ≤ n,

P≥n−i+1,t ≤ 2−n.

Proof. We first prove the claim true for i = 1.
Recall from the description of D0 that P≥n,0 = 1.
Then Equation 1 implies that at t = 1, some of
the probability moves up, so that P≥n,1 ≤ 1− 1

22n .
Now equation 2 implies that

P≥n,t ≤ (1− 1
22n

)2
t−1
,

and so P≥n,3n+1 ≤ e−n.
Now assume the claim is true for i ≤ n+ 1− k,

and let j = n+ 1− k. Then

P≥k,3jn+1 ≤ 2−n.

Since there are 2k−1 gates at level k− 1, Lemma 6
implies that pk−1,t ≤ 1

2k−1 for any time t, and in
particular for t = 3jn+1. Then Equation 1 implies
that in one step, some of this probability moves up
to level k−2, and pk−1,3jn+2 ≤ (1− 1

2k−1)pk−1,3jn+1.
Therefore

P≥k−1,3jn+2 ≤ (1− 1
2k−1

+
1
2n

).

Again, Equation 2 shows that

P≥k−1,t ≤ (P≥k−1,t−3jn+2)2
t−3jn−2

,

which for t = 3(n+ 2− k)n+ 1 gives the required
conclusion.

This means that after time t = 3n2+1, the out-
put gate has probability ≈ 1, and a random sam-
ple from D3n2+1 enables us to determine whether
or not the circuit accepts.

5 Conclusions

We have exhibited symmetric QDS’s whose simu-
lation is PSPACE-hard. An interesting question is:
What is the class of QDS’s that can be simulated
in polynomial time? Our reductions use systems
that display chaotic behavior, i.e., two very close
(in `1-norm) initial distributions diverge rapidly as
they evolve. We initially suspected this chaotic
behaviour was the reason why QDS’s are hard to
simulate. However, Moni Naor has recently noted
that our NP-hard system of section 2 can be modi-
fied into a non-chaotic one [Nao]. We do not know
whether the same is true for the PSPACE-hard sys-
tem given later.

In some independent work, Pudlak [Pud] has
also shown the PSPACE-hardness of simulating non-
symmetric QDS’s (this corresponds to our Section 4).
He does not extend the result to symmetric QDS’s,
however.

An interesting question (which Pudlak also in-
vestigates) is whether the QDS’s used in genetic
algorithms are hard to simulate. One component
of their mating operator, the crossover operator,
can be easily simulated in polynomial time (this
follows from the Hardy-Weinberg law of genetics).
However, other components like fitness are non-
symmetric, and we can show that simulating them
is at least NP-hard. In general, we suspect that
hard-to-simulate QDS’s are more the norm than
the exception. For instance, the fitness operator
used in [RSW] in the QDS on tree-matchings is also
NP-hard to simulate (with initial distribution that
are polynomial time samplable). Proofs of these
observations will appear in the final draft.

acknowledgments

Thanks to Steven Omohundro and Alistair Sinclair
for helpful discussions and to Yuri Rabinovich for
providing [Rab]. We thank the STOC ’94 program
committee members for bringing to our attention
[Val] and [CEMST].

References

[AKS] M. Ajtai, J. Komlós, and E. Sze-

merédi. Deterministic simulation in
LOGSPACE. In Proc. of the 19th Ann.
ACM Symp. on Theory of Computing,
page 132, 1987.

[CB] L. L. Cavalli-Sforza and W. F. Bod-
mer The Genetics of Human Populations
W. H. Freeman, San Francisco, 1971.

[CEMST] K.L. Clarkson, D. Epp-
stein, G.L. Miller, C. Sturtivant,
and S.H. Teng. Approximating cen-
ter points with iterated Radon points.
In Proc. of the 9th Ann. ACM Symp.
on Computational Geometry, pages 91–98,
1993.

[DFK] M. Dyer, A. Frieze, and R. Kannan.
A random polynomial time algorithm for
approximating the volume of convex bod-
ies. In Proc. of the 21st Ann. ACM Symp.
on Theory of Computing, pages 375–381,
1989.

[HS] M. Hirsch and S. Smale. Differential
Equations, Dynamical Systems, and Lin-
ear Algebra. Academic Press, New York,
1974.

[JS] M. Jerrum and A. Sinclair. Approxi-
mating the permanent. SIAM Journal on
Computing 18:1149–1178, 1989.

[Nao] M. Naor. Private communication.

[NV] A.E. Nix and M.D. Vose. Modelling ge-
netic algorithms with Markov chains. In
Annals of Mathematics and Artificial In-
telligence, vol. 5, pages 79-88, 1992.

[Pud] P. Pudlak. Private communication.

[Rab] Y. Rabinovich. Draft of Ph.D. disserta-
tion.

[RSW] Y. Rabinovich, A. Sinclair, and
A. Wigderson. Quadratic dynamical
systems. In Proc. of the 33rd Ann. IEEE
Symp. on Foudations of Computer Sci-
ence, pages 304–313, 1992.

[RW] Y. Rabinovich and A. Wigderson.
Analysis of a simple genetic algorithm.
In Proc. of the 4th International Confer-
ence on Genetic Algorithms, pages 215–
221, 1991.

[Rei] L.E. Reichl. A Modern Course in Sta-
tistical Physics. University of Texas Press,
Austin, 1980,

[SM] L.J. Stockmeyer and A.R. Meyer.
Word problems requiring exponential
time. In Proc. of the 5th Ann. ACM Symp.
on Theory of Computing, pages 1–9, New
York, 1973.

[Val] L.G. Valient. Short monotone formu-
lae for the majority function. Journal of
Algorithms 5:363–366, 1984.

[Vos] M.D. Vose. Modeling simple genetic al-
gorithms. In Foundations of Genetic Algo-
rithms 2, ed. Whitley, Morgan Kaufmann,
pages 63–73, 1993.

