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Abstract. Estimating the parameters of a pencil of lines is addressed.
A statistical model for the measurements is developed, from which the
Cramer Rao lower bound is determined. An estimator is derived, and its
performance is simulated and compared to the bound. The estimator is
shown to be asymptotically efficient, and superior to the classical least
squares algorithm.

1 Introduction

Identifying straight lines and estimating their common point of intersection is a
frequent task in image processing applications. The particular problem of esti-
mating the parameters of a single line from two dimensional measurements has
been studied in [1], [4], [8]. When multiple lines are known to intersect at a com-
mon point, however, parameter estimates for a given line can be improved owing
to the common information available from the other lines. Moreover, the struc-
ture of the estimator changes from that presented in [1] and [8]. It is the purpose
of this paper to present the line parameter estimation problem by providing a
parameterized statistical model of the measurements, analyzing the limitations
imposed by this model on the line parameter estimates, and finally by proposing
an estimator for the line parameters.

The analysis begins in Section 2, where the measurements of points on a
line are statistically modelled by the parameters of interest. In Section 3, pa-
rameter estimation is addressed by using the parameterized statistical model of
Section 2 to determine the Fisher information matrix for the line parameters.
From the Fisher information matrix, the Cramer-Rao lower bounds for line pa-
rameter estimates are determined explicitly in terms of the line parameters and
the statistical parameters influencing the measurements. Section 4 addresses the
problem of estimating line parameters from a pencil of lines when each of these
lines is modelled according to Section 2. The methods of Section 3 are used to
find the Fisher information matrix for the totality of line parameters and their
point of intersection. The performance benefit attained by using a mutual point
of intersection is reflected in the Cramer Rao lower bound, which is compared
with the results of Section 3. An estimator for the point of intersection and the
respective line parameters is then developed in Section 5. In Section 6 the perfor-
mance of this estimator is simulated and compared with the Cramer Rao lower
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bounds from Sections 3 and 4. In addition, the proposed estimator is compared
with the least squares estimator for the point of intersection when the lines are
parameterized independently of each other.

2 The Line Data Model

One method for fitting two dimensional point measurements to a line is proposed
by Ponce and Forsyth in [1]. The N line measurements (xn, yn), n = 1, . . . , N in
the coordinate system (x, y) are modelled as a rotation by φ of points (χn, γn),
n = 1, . . . , N in an initial coordinate system (χ, γ). In (χ, γ) coordinates, a
line is assumed to be described by γ = A, although the measurements γn are
perturbed from A by zero mean noise νn. Thus, line modelling begins with the
transformation by coordinate rotation

[

xn
yn

]

=

[

cosφ sinφ
− sinφ cosφ

] [

χn
γn

]

=

[

b a
−a b

] [

χn
A+ νn

]

= −S

[

χn
c− νn

]

(1)

where the rotation matrix S is given by

S =

[

−b a
a b

]

(2)

and




a
b
c



 =





sinφ
cosφ
−A



 (3)

In this notation, a line is described in (x, y) coordinates by ax+ by + c = 0.
In order to model the points (xn, yn) statistically, it is sufficient to charac-

terize χn and νn, as (xn, yn) are related to these by the linear transformation
(1). For simplicity of analysis, assume the noise samples νn to be zero mean,
independent, and identically distributed Gaussian random variables with vari-
ance σ2

ν , and denote this distribution by νn ∼ N(0, σ2
ν), n = 1, . . . , N . Similarly,

the coordinates χn are assumed to be independent and identically distributed
samples from a Gaussian distribution having mean µχ and variance σ2

χ, such
that χn ∼ N(µχ, σ

2
χ), n = 1, . . . , N . As σ2

ν is the measurement noise and σ2
χ the

spread of the points on the line, it must be that σ2
χ >> σ2

ν .
As the two random variables νn and χn are Gaussian and independent, they

are jointly Gaussian [3]. Thus, the vector zn =
[

xn yn
]T

has Gaussian distri-
bution zn ∼ N(µz, Cz) with mean vector µz = E {zn} found from (1) as

µz = −S

[

µχ
c

]

(4)
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The correlation matrix Cz is found from equations (1) and (4), and by noting
that by the independence of χn and νn, E {(χn − µχ) νn} = E {χn − µχ}E {νn} =
0.

Cz = E

{

S

[

χn − µχ
−νn

] [

χn − µχ
−νn

]T

ST

}

= S

[

σ2
χ 0
0 σ2

ν

]

ST

= SΛST (5)

Since the matrix S is unitary and diagonalizes Cz, it holds the eigenvectors of
Cz. From (2) and (5), the eigenvector [a b]T of S is associated with the eigenvalue
σ2
ν , the variance of the measurement noise.
The joint statistics of zn can be expressed succinctly in terms of the con-

catenation vector Z given by

Z =
[

zT1 z
T
2 · · · z

T
N

]T
(6)

The measurements zn are jointly Gaussian, so the vector Z has Gaussian dis-
tribution Z ∼ N(µZ , CZ). The mean µZ = E {Z} is given by the 2N × 1
vector

µZ =
[

µTz . . . µ
T
z

]T
(7)

By virtue of the independent and identically distributed nature of the ran-
dom variables νn and χn, E {νnνm} = σ2

νδn−m and E {(χn − µχ) (χm − µχ)} =
σ2
νδn−m, where δn is the Dirac function. The 2N × 2N covariance matrix CZ is

then given by

CZ =











Cz 0 · · · 0
0 Cz 0
...

. . .
...

0 0 · · · Cz











(8)

3 Cramer Rao Bounds for Line Parameter Estimates
Given a Single Line

Having statistically characterized the joint distribution of the samples (xn, yn),
n = 1, . . . , N , the influence of this statistical model on parameter estimates can
be determined. First, note from equations (2), (4) and (5) that the mean vector
µz and covariance matrix Cz are seen to be functions of the parameters φ, c,
µχ, σ

2
χ, and σ

2
ν , denoted by the vector θ as

θ =
[

φ c µχ σ
2
χ σ

2
ν

]T
(9)
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Since the random vectors zn have the Gaussian distribution zn ∼ N(µz (θ) ,
Cz (θ)) for any choice of θ, the random vector Z, by (7) and (8), is also sta-
tistically parameterized as Z ∼ N(µZ (θ) , CZ (θ)). The random vectors zn,
n = 1, . . . , N and Z are therefore called Generalized Gaussian random vectors
[2]. The significance of this characterization lies in the fact that the parameters
θ are assumed deterministic and unknown, like the line parameters in (3), for
example, which are being estimated. Estimates of fixed parameters, like the com-
ponents of θ, have their minimum variance bounded by the Cramer Rao Lower
Bound (CRLB), which is determined by relating the K ×K covariance matrix

C
θ̂
of the K unbiased parameter estimates θ̂ to the inverse Fisher information

matrix I−1 (θ) as [2]

C
θ̂
≥ I−1 (θ) (10)

So that for each estimate θ̂i of the true parameter θi, the variance σ
2
θ̂i

is given by

C
θ̂
(i, i), and the CRLB by I−1 (θ) (i, i). For the case of a Generalized Gaussian

random vector X ∼ N (µX (θ) ,CX (θ)), the elements of I (θ) are given by [2],
equation (3.31)

[I (θ)]ij =

[

∂µX (θ)

∂θi

]T

C−1
X (θ)

[

∂µX (θ)

∂θj

]

+
1

2
tr

[

C−1
X (θ)

∂CX (θ)

∂θi
C−1
X (θ)

∂CX (θ)

∂θj

]

(11)

where tr [D] denotes the trace of the matrix D, and ∂µX (θ) /∂θj is the partial
derivative of every element in the mean vector µX (θ) with respect to the jth

element of the parameter vector θ, just as ∂CX (θ) /∂θi is the partial derivative
of every component of the covariance matrix CX (θ) with respect to the ith

element of θ.
Applying (11) to the measurements Z ∼ N (µZ (θ) ,CZ (θ)) with (7) and

(8), then the elements [I (θ)]ij are found as

[I (θ)]ij = N

[

∂µz (θ)

∂θi

]T

C−1
z (θ)

[

∂µz (θ)

∂θj

]

+
N

2
tr

[

C−1
z (θ)

∂Cz (θ)

∂θi
C−1
z (θ)

∂Cz (θ)

∂θj

]

(12)

Equation (12) states that the Fisher information matrix for N measurements zn
is that for a single measurement scaled by N .

Noting from (2) that ST = S, the following identities from (5) make deter-
mining the components of (11) straightforward

∂Cz

∂φ
=
∂S

∂φ
ΛS+ SΛ

∂S

∂φ
(13)

SST = STS =

[

1 0
0 1

]

(14)
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S
∂S

∂φ
=

[

0 −1
1 0

]

(15)

∂S

∂φ
S =

[

0 1
−1 0

]

(16)

C−1
z = SΛ−1S (17)

By applying the identities (13) through (17) in (12) for all combinations of the
parameter elements in (9), it can be shown that the Fisher information matrix
takes the form

I (θ) =

[

I (φ, c, µχ) 0

0 I
(

σ2
χ, σ

2
ν

)

]

(18)

The block diagonal structure of (18) implies that the inverse of (18) is similarly
block diagonal, so that to find the bounds on estimating the line parameters φ,
c, and µχ, one need only consider the Fisher information matrix I (φ, c, µχ). This
matrix is found as

I (φ, c, µχ) =
N

σ2
νσ

2
χ





σ2
χµ

2
χ + c2σ2

ν +
(

σ2
ν − σ

2
χ

)2
µχσ

2
χ −cσ

2
ν

µχσ
2
χ σ2

χ 0
−cσ2

ν 0 σ2
ν



 (19)

and the inverse is given by

I (φ, c, µχ)
−1

=
1

N
(

σ2
ν − σ

2
χ

)2





σ2
χσ

2
ν −µχσ

2
χσ

2
ν cσ2

χσ
2
ν

−µχσ
2
χσ

2
ν κ1 −cµχσ

2
χσ

2
ν

cσ2
χσ

2
ν −cµχσ

2
χσ

2
ν κ2



 (20)

where κ1 = σ2
ν

[

σ2
χµ

2
χ +

(

σ2
ν − σ

2
χ

)2
]

and κ2 = σ2
χ

[

c2σ2
ν +

(

σ2
ν − σ

2
χ

)2
]

. From

(20), the CRLB for any estimate φ̂ of the rotation angle φ is given by the first
diagonal entry

CRLB
(

φ̂
)

=
σ2
νσ

2
χ

N
(

σ2
χ − σ

2
ν

)2 (21)

To find the CRLB for the parameter estimates of a = sinφ, b = cosφ, and
c = c from (3), we use [2] p45 (3.30)

I−1 (g (θ)) =
∂g (θ)

∂θ
I−1 (θ)

∂g (θ)

∂θ

T

(22)

which determines the inverse of the Fisher information matrix for estimating
the functions g (θ) =

[

g1(θ) g2(θ) · · · gr(θ)
]

of the parameter vector θ from the
inverse of the Fisher information matrix for θ itself. The matrix ∂g (θ) /∂θ in
(22) is the r × p Jacobian matrix

∂g (θ)

∂θ
=















∂g1(θ)
∂θ1

∂g1(θ)
∂θ2

· · · ∂g1(θ)
∂θp

∂g2(θ)
∂θ1

∂g2(θ)
∂θ2

· · · ∂g2(θ)
∂θp

...
...

. . .
...

∂gr(θ)
∂θ1

∂gr(θ)
∂θ2

· · · ∂gr(θ)
∂θp















(23)
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Letting g (θ) =
[

a b c
]

as in (3), then substitution into (23) yields

∂
[

a b c
]

∂θ
=





cosφ 0 0
− sinφ 0 0

0 1 0



 (24)

Applying (22) with (20) and (24) and noting (21) yields

I−1 (a, b, c) = CRLB
(

φ̂
)







cos2 φ − sinφ cosφ −µχ cosφ
− sinφ cosφ sin2 φ µχ sinφ

−µχ cosφ µχ sinφ µ2
χ +

σ2
ν

NCRLB(φ̂)






(25)

The terms along the main diagonal in (25) are the Cramer Rao lower bounds on

the variance of the line parameter estimates â, b̂, and ĉ, respectively.





σ2
â

σ2
b̂

σ2
ĉ



 ≥











b2CRLB
(

φ̂
)

a2CRLB
(

φ̂
)

µ2
χCRLB

(

φ̂
)

+
σ2
ν

N











(26)

4 Cramer Rao Bounds for Line Parameter Estimates
Given a Pencil of Lines

The results of the previous section can be extended to find the influence of a
common point of intersection (x0, y0) on line parameter estimates for a pencil
of L lines. In this case, each line `, ` = 1, . . . , L has associated with it a distinct
group of data Z` of the form (6), each having N` two dimensional data points
zn` . The fact that the data families Z`, ` = 1, . . . , L are all distinct means that
the noise models that generate them, as in (1), are all independent. The vectors
Z`, ` = 1, . . . , L are jointly Gaussian with

E
{

(Z` − µZ`
) (Zk − µZk

)
T
}

= δ`−kCZ`
(27)

where CZ`
, ` = 1, . . . , L are of the form (8). A vector Q defined as the concate-

nation of the measurements Z`, ` = 1, . . . , L such that

Q =
[

ZT
1 · · · Z

T
L

]T
(28)

is therefore distributed as Q ∼ N(µQ, CQ) with mean vector µQ = E {Q}

µQ =
[

µTZ1
· · · µTZL

]T
(29)

and, using (27), the covariance matrix CQ is

CQ =











CZ1
0 · · · 0

0 CZ2
0

...
. . .

...
0 0 · · · CZL











(30)
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By substitution of Q in (11), and using (29) and (30), its not hard to show that
the elements of the Fisher Information matrix are given by

[I (ϑ)]ij =

L
∑

`=0

N`

[

∂µz` (ϑ)

∂ϑi

]T

C−1
z`

(ϑ)

[

∂µz` (ϑ)

∂ϑj

]

+
N`

2
tr

[

C−1
z`

(ϑ)
∂Cz` (ϑ)

∂ϑi
C−1
z`

(ϑ)
∂Cz` (ϑ)

∂ϑj

]

(31)

where µz` and Cz` are from (4) and (5). The parameter vector ϑ holds the
parameter vectors θ` defined in (9) for each family of line data ` = 1, . . . , L. This
parameter space is reduced for the pencil of lines by noting that the common
point of intersection (x0, y0) lies on each of the L lines, and thus satisfies a`x0 +
b`y0 + c` = 0, ` = 1, . . . , L. Thus, c` = −a`x0− b`y0 and the parameter vector ϑ
is given by

ϑ =
[

φ1 µχ1
σ2
ν1
σ2
χ1
· · · φL µχL σ

2
νL
σ2
χL

x0 y0
]

(32)

It should be clear from (31) and the definitions (4) and (5) that ∂µzi/∂ϑj = 0
and ∂Czi/∂ϑj = 0 for i 6= j where ϑj are the line parameters of the jth line,
excluding x0 and y0. By applying the identities (13) through (17) in (31), it’s
straightforward to show that parameter estimates of φ`, µχ` , x0 and y0 are
independent of those for σ2

ν`
and σ2

χ`
, ` = 1, . . . , L, exactly as for (18). The

Fisher information matrix for the reduced parameter vector ϑ′

ϑ′ =
[

φ1 µχ1
· · · φL µχL x0 y0

]

(33)

is then given by

I (ϑ′) =

























Iφ1,φ1
Iφ1,µχ1

0 · · · 0 0 Iφ1,x0
Iφ1,y0

Iµχ1
,φ1

Iµχ1
,µχ1

0 · · · 0 0 Iµχ1
,x0

Iµχ1
,y0

0 0
. . .

...
...

...
...

...
... IφL,φL IφL,µχL IφL,x0

IφL,y0
0 0 0 · · · IµχL ,φL IµχL ,µχL IµL,x0

IµχL ,y0
Ix0,φ1

Ix0,µχ1
Ix0,φ2

· · · Ix0,φL Ix0,µχL
Ix0,x0

Ix0,y0

Iy0,φ1
Iy0,µχ1

Iy0,φ2
· · · Iy0,φL Iy0,µχL Iy0,x0

Iy0,y0

























(34)

where the elements of (34) are given by Iφ`,φ` = N`(
(µχ`−b`x0+a`y0)

2

σ2
ν`

+ (a`x0+b`y0)
2

σ2
χ`

+

(σ2
ν`
−σ2

χ`
)
2

σ2
ν`
σ2
χ`

), Iφ`,µχ` = Iµχ` ,φ` = N`
a`x0+b`y0

σ2
χ`

, Iφ`,x0
= Ix0,φ` = N`

a`(b`x0−a`y0−µχ`)
σ2
ν`

,

Iφ`,y0 = Iy0,φ` = N`
b`(b`x0−a`y0−µχ`)

σ2
ν`

, Iµχ` ,µχ` = 1
σ2
χ`

, Iµχ` ,x0
= Ix0,µχ`

=

Iµχ` ,y0 = Iy0,µχ` = 0, Ix0,x0
=
∑L

`=1
a2
`

σ2
ν`

, Ix0,y0 = Iy0,x0
=
∑L

`=1
a`b`
σ2
ν`

, and

Iy0,y0 =
∑L

`=1
b2`
σ2
ν`

.
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The Fisher information matrix for line parameter estimates of a`, b`, ` =
1, . . . , L and (x0, y0) is found from (22) using the transformation g (ϑ′) of the
parameter vector ϑ′ given by

g (ϑ′) =
[

sinφ1 cosφ1 sinφ2 cosφ2 · · · sinφL cosφL x0 y0
]

(35)

Then

I−1 (g (ϑ′)) =
∂g (ϑ′)

∂ϑ′
I−1 (ϑ′)

∂g (ϑ′)

∂ϑ′

T

(36)

where I−1 (ϑ′) is from (34), and the matrix ∂g (ϑ′) /∂ϑ′ is determined by apply-
ing (23) to (35) in the same manner as was done for (24). The bounds afforded
by (36) can be compared to the bounds of (26) for unassisted line parameter
estimation. Figure 1 illustrates the improved performance of joint estimation by
plotting the minimum variance σ2

â1
as a function of the number of lines L using

(36) and (26). The simulation parameters are x0 = 1000.0, y0 = 0, N = 64,
µχ = 0, σ2

ν = 1, σ2
χ = 16, and ∆φ = π/6.

0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

Number of Intersecting Lines

σ a 12

σ
a

1

2 , CRLB for Joint Parameter and Intersection Estimation

σ
a

1

2 , CRLB for Single Line Parameter Estimates            

Fig. 1. Comparison of CRLBs from (36) and (26) for estimating parameter a1 from a
pencil of L lines.

5 A Point of Intersection Estimator

To motivate an estimator for the point of intersection (x̂0, ŷ0) of L lines, consider
a particular line `, whose measurements are of the form (1), such that

[

xn,`
yn,`

]

=

[

cosφ` sinφ`
− sinφ` cosφ`

] [

χn,`
γn,`

]

(37)
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Multiplying both sides of (37) by a test vector
[

sin φ̂` cos φ̂`
]

yields

sin φ̂`xn,` + cos φ̂`yn,` = sin
(

φ̂` − φ`

)

χn,` + cos
(

φ̂` − φ`

)

γn,` (38)

The variance of the left hand side of (38) is the same as the variance of the right
hand side of (38), which is given by

sin2
(

φ̂` − φ`

)

σ2
χ,` + cos2

(

φ̂` − φ`

)

σ2
ν,` (39)

As σ2
ν,` < σ2

χ,` by assumption, (39) is minimized when φ̂` = φ`. Thus, defining

[â` b̂`] = [sin φ̂` cos φ̂`] and a constant ĉ` for ` = 1, . . . , L, then these are line
parameters as in (3), with the constraint

â2
` + b̂2` =

[

â` b̂`
]

[

â`
b̂`

]

= 1 (40)

In addition, these lines are constrained to intersect at (x̂0, ŷ0)

â`x̂0 + b̂`ŷ0 + ĉ` = 0 (41)

Now, the likelihood function pΘ (Q), where Q is from (28), can be expressed

pΘ (Q) = C0e
−
∑

L

`=1

∑

N`

n=1

(a`xn`+b`yn`+c`)
2

2σ2
ν`

+
(−b`xn`+a`yn`−µχ`)

2

2σ2
χ` (42)

with Θ = [a1 b1 c1 . . . aL bL cL x0 y0]. Given the variance (39), the constraint
(40), and the assumption σ2

ν`
< σ2

χ`
, choosing Θ to minimize the double sum

over the first squared term in the exponent of (42) will maximize pΘ (Q). Thus,
a suitable cost for an estimator of Θ is

C(Q) =

L
∑

`=1

N
∑̀

n=1

(

â`xn,` + b̂`yn,` + ĉ`

)2

2σ2
`

+

L
∑

`=1

λ`

(

â`x̂0 + b̂`ŷ0 + ĉ`

)

+

L
∑

`=1

ρ`

(

â2
` + b̂2` − 1

)

(43)

To decouple the parameter estimates for the separate lines in the minimization
of (43), the point of intersection (x̂0, ŷ0) is viewed as a known parameter. The

minimization of (43) with respect to the parameters â`, b̂`, and ĉ` of line ` is
then

A`

[

â`
b̂`

]

= −
2σ2

`ρ`
N`

[

â`
b̂`

]

−
λ`σ

2
`

N`

[

(x̂0 − x`)
(ŷ0 − y`)

]

(44)

As in [1], A` is the modal matrix of the data associated with the `th line.

A` ≡





(

x2
` − x`

2
)

(y`x` − x̄`ȳ`)

(y`x` − x̄`ȳ`)
(

y2
` − y`

2
)



 (45)
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where the notation z means

z =

∑K
k=1 zk
K

(46)

Clearly, A` tends asymptotically to Cz` from (8). In addition, note the identity

ĉ` = −â`x` − b̂`y` −
σ2
`λ`
N`

(47)

which is the result of minimizing (43) with respect to ĉ`, and helps to realize the
form (44).

To complete the solution for â`, b̂`, denote the (column) eigenvectors of A`

by ψ0` and ψ1` , and the matrix Ψ` = [ψ0` ψ1` ] such that

A` = Ψ`Λ`Ψ
T
` (48)

where Λ` is the associated diagonal matrix whose entries are the eigenvalues β0`

and β1` of A`. The relevant parameters can all be defined then as
[

(x̂0 − x`) (ŷ0 − y`)
]T

= Ψ`d` (49)

[ â` b̂` ]
T = Ψ`f ` (50)

Using (50) and (49), equation (44) may be written

Ψ`Λ`f ` = α`Ψ`f ` −
λ`σ

2
`

N`

Ψ`d` (51)

where α` = −2σ2
`ρ`/N`. By multiplying both sides of (51) by ΨT

` , noting that
ΨT
` Ψ` = I2×2 and then rearranging, its not hard to show that the solution for

(â`, b̂`) is given by
[

â`
b̂`

]

= −
λ`σ

2
`

N`

Ψ`

[

1
β0,`−α`

0

0 1
β1,`−α`

]

d` (52)

The Lagrangian multipliers α` and λ` in (52) must now be determined. α` is
found from backwards substitution of (52) into (41). Using (47) and after some
manipulation, it can be shown that

d2
0,`

(β0,` − α`)
+

d2
1,`

(β1,` − α`)
= −1 (53)

Equation (53) yields the Lagrangian multiplier α`

α` =
1

2

(

β0,` + β1,` + d2
0,` + d2

1,`

)

±
1

2

√

(

β0,` + β1,` + d2
0,` + d2

1,`

)2

− 4
(

d2
0,`β1,` + d2

1,`β0,` + β0,`β1,`

)

(54)

=

(

β0,` + β1,` + d2
0,` + d2

1,`

)

2
±

√

(

β0,` − β1,` + d2
0,` − d

2
1,`

)2

+ 4d2
0,`d

2
1,`

2
(55)

=
1

2
ς` ±

1

2
ξ` (56)
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where (55) shows that the discriminant is always positive, so that α` is always
real and positive.

The second Lagrangian multiplier λ` is found from the constraint (40) which
can be rewritten using (52) as

λ2
`

[

(

d0,`

(β0,` − α`)

)2

+

(

d1,`

(β1,` − α`)

)2
]

=
N2
`

(σ2
` )

2 (57)

This yields λ` as

λ` = ±
N`

σ2
`

(β0,` − α`) (β1,` − α`)
√

d2
0,` (β1,` − α`)

2
+ d2

1,` (β0,` − α`)
2

(58)

The denominator of (58) can be put in a more useful form substituting (53) into
(57) for each of the ratios in d0 and d1. After some algebra, and substituting
(58) for λ`, it can be shown that

d2
0,` (β1,` − α`)

2
+ d2

1,` (β0,` − α`)
2
= ± (β0,` − α`) (β1,` − α`) ξ` (59)

with ξ` from (56). The parameters (â`, b̂`) in (52) can then be rewritten with
(58) and (59) as

[

â`
b̂`

]

=

Ψ`

[

d0,` (β1,` − α`)
d1,` (β0,` − α`)

]

√

(β0,` − α`) (β1,` − α`) ξ`
(60)

Returning to the cost (43) and observing that (â`, b̂`) implicitly satisfy the
constraints, its not hard to show that

C(Q) =

L
∑

`=1

N`

[

â`
b̂`

]T
(

A` +

[

(x̄` − x̂0)
(ȳ` − ŷ0)

] [

(x̄` − x̂0)
(ȳ` − ŷ0)

]T
)

[

â`
b̂`

]

2σ2
m

(61)

Substituting (60) into (61), noting (48) and (49) and making prudent use of
equation (53), it can be shown that this cost reduces to

C(Q) =

L
∑

`=1

N`

2σ2
`

α` (62)

The α` which minimize (62) are found from (54) by subtracting the radical.
To find the point of intersection (x̂0, ŷ0), (62) can be minimized using Newton
Raphson, but an initial guess for (x̂0, ŷ0) is required. Noting from (55) that for
any d` given by (49), min (β0,`, β1,`) ≤ α` ≤ max (β0,`, β1,`), the choice of d`
such that α` = min (β0,`, β1,`) occurs when the vector [(x̂0 − x̄`) (ŷ0 − ȳ`)] from
(49) projects entirely onto the eigenvector ψmax corresponding to the maximum
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eigenvalue βmax. To minimize C (Q), this condition should be satisfied for as
many lines as possible, so that if [ã` b̃`] are the components of the eigenvector
ψmin corresponding to the minimum eigenvalue βmin, then ã`(x̂0 − x̄`) + b̃`(ŷ0 −
ȳ`) = 0. A point (x̂0, ŷ0) that seeks to minimize every α` is thus found from











ã1 b̃1
ã2 b̃2
...

...

ãN b̃N











[

x̂0

ŷ0

]

= −











c̃1
c̃2
...
c̃N











(63)

where c̃` = −ã`x̄` − b̃`ȳ`. Since ã`, b̃`, and c̃` minimize α` and (62) for L = 1,
the parameter estimators of a single line from [1] are in fact a special case of the
current approach.

With the initial guess (x̂0, ŷ0), the Newton-Raphson method computes [2]

[

x̂0[n+ 1]
ŷ0[n+ 1]

]

=

[

x̂0[n]
ŷ0[n]

]

−















∂2C(Q)
∂x̂2

0

∂2C(Q)
∂x̂0∂ŷ0

∂2C(Q)
∂ŷ0∂x̂0

∂2C(Q)
∂ŷ2

0





−1
[

∂C(Q)
∂x̂0

∂C(Q)
∂ŷ0

]











x̂0=x̂0[n],ŷ0=ŷ0[n]

(64)

An algorithm for the point of intersection estimator is given by

1. Estimate the initial point of intersection (x̂0[0], ŷ0[0]) from (63)
2. Compute the modal matrices A` from (45) and the resulting eigen-

vectors Ψ` and eigenvalues β0,`, β1,` for each family of line data
` = 1, . . . , L.

3. Determine d` from (49) using (x̂0[n], ŷ0[n])
4. Compute C (Q) from (62) and its partial derivatives in terms of α`

from (54) to construct (64).
5. Repeat from 3. until (62) is minimum

6 Simulation and Discussion

In keeping with the figures of Section 4, simulations are performed with the same
parameters: σ2

ν = 1, σ2
χ = 16, µχ = 0, x̂0 = 1000, ŷ0 = 0, and 10, 000 iterations.

When multiple lines intersect at (x̂0, ŷ0), they do so by equally dividing an
angle of π/6. Figure 2 illustrates the error variance of the proposed intersection
estimator (64) for the estimate of coordinate x̂0 when only two lines intersect,
one coincident with the x axis and the second with angle of intersection π/6.
As seen from the figure, for N as low as 16, the simulated variance is within
an order of magnitude of the CRLB from (36). Moreover, the estimator (64) is
seen to asymptotically attain the CRLB, consistent with the expected behavior
of maximum likelihood estimators [2].

The line parameter estimate â1 from the pencil is found by substituting the
point of intersection estimate (x̂0, ŷ0) from (64) into (60) using (54) for α`. The
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Fig. 2. Simulated σ2
x̂0
, as estimated from (64) and CRLB from (36) versus number of

points N .

curves of figure 3 depict simulations of the estimator variance σ2
â1
, σ2

ã1
and the

CRLB from (36) as a function of the number of intersecting lines L. As can
be seen from the figure, â1 provides a clear improvement over the alternative
of estimating the line parameter ã1 from its line data alone, confirming the
predictions of figure 1. The number of points per line in the simulation is N = 64.

The performance of (64) using the least squares estimate of (x̂0, ŷ0) from (63)
is simulated in figure 5 as a function of the subtending angle ωs

ωs = max
{

ω`,k = cos−1 (a`ak + b`bk) , `, k = 1, . . . , L
}

(65)

The simulation parameters are L = 16, N` = 64, σ2
ν`

= 1, σ2
χ`

= 16 and ωs is
equally divided by the L intersecting lines. It is apparent from the figure that
as ωs becomes increasingly small, the performance of the method degrades. The
large variance σ2

x̂0
of the estimator results from a small number of very large

outliers. These outliers result both from increasingly poor estimates afforded by
the initial guess (63), and the existence of local minima to which (64) converges.
It may be possible to improve performance by using several initial points (x̂0, ŷ0),
each obtained from the intersection of different groups of line parameters ã`, b̃`,
and c̃`, but further investigation is required to present a definitive solution. Note
that the simulated variance σ2

x̂0
is within an order of magnitude of the CRLB

for ωs/π = 1/32, or about 1.4 degrees.
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