
Multi-way Clustering Using Super-symmetric Non-negative
Tensor Factorization

Amnon Shashua, Ron Zass and Tamir Hazan
School of Engineering & Computer Science, Hebrew University, Jerusalem, 91904 Israel

{shashua,zass,tamirr}@cs.huji.ac.il

ABSTRACT
We consider the problem of clustering data into k ≥ 2 clusters
given complex relations — going beyond pairwise — between the
data points. The complex n-wise relations are modeled by an n-
way array where each entry corresponds to an affinity measure over
an n-tuple of data points. We show that a probabilistic assignment
of data points to clusters is equivalent, under mild conditional inde-
pendence assumptions, to a super-symmetric non-negative factor-
ization of the closest hyper-stochastic version of the input n-way
affinity array. We derive an algorithm for finding a local mini-
mum solution to the factorization problem whose computational
complexity is proportional to the number of n-tuple samples drawn
from the data. We apply the algorithm to a number of visual in-
terpretation problems including 3D multi-body segmentation and
illumination-based clustering of human faces.

1. INTRODUCTION
We address the fundamental problem of grouping feature vectors

(points) on the basis of multi-wise similarity or coherency relation-
ships among n-tuples of points. The case of pairwise (n = 2)
relationships has drawn much attention in statistical, graph theoret-
ical and computer vision literature. For example, a clustering task
of a collection of points x1, ..., xm in Euclidean space Rn may be
induced by a symmetric ”affinity” matrix Kij = e−‖xi−xj‖2/σ2

which would serve as the input to a process aimed at assigning
the m points into k ≥ 2 classes — either ”hard” assignments (a
point ending up assigned exclusively to one class) or ”soft” as-
signments by generating a probability gr,s = P (ys = r | xs) of
point xs being assigned to class (cluster) Cr where ys ∈ {1, ..., k},
s = 1, ..., m, are the corresponding (unknown) labels. The desired
membership probabilities form an m × k non-negative ”partition”
matrix G = [g1, ..., gk], where a hard clustering entails G>G = I .
Therefore, the clustering process based on a (symmetric) pairwise
similarity relationship starts with an input m ×m matrix K with
the goal of finding a stochastic m× k matrix G ≥ 0, and if a hard
clustering is desired then in addition one should have G>G = I .
The greatly popular ”spectral” clustering technique, for example,
relaxes the non-negativity constraint and looks for the k leading
eigenvectors of a normalized version of K as a new coordinate
system which in ideal settings would map the original coordinates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted provided that copies bear this notice
and the full citation on the first page.
Hebrew University, Computer Science Technical Report, Sep. 30, 2005,
Copyright 2005 Hebrew University.

of the points to k points in Rk, one per each cluster [10, 11].
Graph theoretical methods perform normalization on the affinity
matrix (producing the Laplacian of K) whereby the second small-
est eigenvector splits the points into two clusters [15, 8], and more
recently it was shown that conditionally independent statements
yi⊥yj | xi, xj and yi⊥xj | xi lead to the finding that K = GG>

which also underlies the k-means formulation of clustering [20].
It has been recently pointed out by a number of authors [1, 5,

21] that for many computer vision and machine learning applica-
tions a pairwise affinity relationship among points does not capture
the complexity of the problem. For example, if a parametric model
requires d points for a definition, then n ≥ d + 1 points can be
used to provide an affinity value by taking the square residual error
∆2 of the least-squares fit of the n points to the model and trans-
lating it into a probability value κ(xi1 , ..., xin) = e−∆2/σ2

, where
1 ≤ i1, ..., in ≤ m. The affinities form an n-way (tensor) super-
symmetric array Ki1,...,in = κ(xi1 , ..., xin) which like as above
is the input for a clustering of the m points into k ≥ 2 clusters,
i.e., of forming the m × k stochastic matrix G ≥ 0. Computer
vision applications for parametric models include (i) 3D-from-2D
multi-body segmentation where under an affine model one would
need n ≥ 5 points to determine an affinity value [17] and under a
perspective model n ≥ 9 points are required [9]; (ii) segmenting
3D objects taken from the same pose but under varying illumina-
tion conditions — for matte surfaces ignoring self-shadowing one
would need n ≥ 4 pictures for determining an affinity, i.e., the
likelihood that the four pictures are of the same 3D surface [13],
and (iii) multi-model selection in general. Non-parametric appli-
cations include clustering articles into different topics on the basis
of authors alone where the affinity degree n is determined by the
maximal number of articles written by a single author [21].

We address in this paper the problem of clustering m points into
k ≥ 2 clusters given an n-way super-symmetric affinity array K ∈
[m]× ..× [m] = [m]×n. We will first describe the state of the art
in this domain and then proceed to describe our contribution.

1.1 Previous Work on n-way Clustering
Clustering from an n-way affinity array is new to computer vi-

sion and machine learning (existing publications are few months
old [1, 5, 21]) but has been a topic of extensive research in VLSI
and PCB clustering placement since the early 70s. A convenient
representation of the problem is given by a hypergraph where the
vertices correspond to the points (circuit elements in VLSI) to be
clustered into k ≥ 2 parts and the hyper-edges (nets connecting cir-
cuit elements) correspond to subsets of vertices where the degree
n of an edge is the number of vertices spanned by it. An edge can
also be associated with a weight. Thus a complete hypergraph with
m vertices and uniform degree n has mn hyper-edges and if the
hypergraph is undirected then there are only

`
m
n

´
different hyper-

edges (the order of vertices spanned by an edge does not matter).
Fig. 1a illustrates the one-to-one mapping between a uniform

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
1
v

2
v

3
v

4
v

5
v

6
v

7

v
1

v
2

v
3

v
4

v
5

v
6

v
7

+
+

+
=

(a) (b) (c)

Figure 1: (a) the hypergraph and tensor representations of a triadic affinity relation (see text); (b,c) the projection paradigm forming a graph from the
original hypergraph (see text).

degree hypergraph (of degree three) and 3-way array K. A hyper-
edge spans three vertices 1 ≤ i1, i2, i3 ≤ 7 and corresponds to the
entry Ki1,i2,i3 of the tensor. If the hyper-edges are weighted then
Ki1,i2,i3 is equal to the weight, otherwise the entries of K are bi-
nary. An undirected hypergraph corresponds to a super-symmetric
tensor Ki1,i2,i3 = Kσ(i1,i2,i3) where σ(i, j, k) is a permutation of
three letters S3. In fact we only need to store the entries 1 ≤ i1 <
i2 < i3 ≤ 7 — but this would be addressed later in the technical
sections.

The techniques employed by the VLSI/PCB community for hy-
pergraph partitioning into clusters are largely heuristic in nature.
The techniques center around two main paradigms: (i) local up-
date of a given clustering solution by means of vertex swapping —
known as the FM and KL techniques [6, 3], and (ii) a multilevel
paradigm which proceeds by generating a sequence of successively
coarser (by means of vertex mergers) hypergraphs followed by a
clustering of the coarsest hypergraph (which contains only k ver-
tices). The clustering result from the coarsest hypergraph is pro-
jected to the next finer level and is subjected to the local KL/FM
refinement update and projected upwards again — for a review see
[2].

The recent work coming out from the vision and machine learn-
ing communities [1, 5, 21] are all very similar to each other and
take the approach of finding an approximate graph that best resem-
bles the original hypergraph. For example, if H is the m ×

`
m
n

´
hypergraph incident matrix, then [5] computes the graph adjacency
m ×m matrix HH> whose entries Hij correspond to the sum of
all hyper-edges weights which are incident to vertices vi, vj of the
hypergraph, whereas [21] performs a multiplicative normalization
with the vertices degrees (the sum of weights incident to a ver-
tex) as part of creating a Laplacian of the hypergraph. Both are
consistent with graph theoretical research which define hypergraph
Laplacians by summing up all the weights incident to pairs of ver-
tices [12]. Once a graph has been created the authors then perform
the clustering using graph techniques — the popular being spectral
clustering or normalized cuts.

The idea of projecting the hypergraph onto a graph is not with-
out merit. The basis for doing so lies in the assumption that it is
possible to define a pairwise affinity given higher-order affinities.
Consider, for example, clustering lines. Since any two points de-
fine a line we would need to rely on a 3rd-order affinity relation-
ship Ki1,i2,i3 thus the affinity between points xi and xj would be
Ai,j =

P
i3

Ki,j,i3 (see Fig. 1b). If the line passing through xi, xj

is dense with points and the number of lines (clusters) in the data

is relatively small then indeed one should expect Ai,j to be high —
and vice versa if xi, xj are not supported by a line of data points
then Aij should be low. What in fact is being performed is a pro-
jection of the 3D cube along one of its axis (any axis will do since
the cube is super-symmetric) to form a 2D array (see Fig. 1c).

Naturally, the projection from a high-order affinity array to a
pairwise affinity would have a high SNR for simple problems. Prob-
lems with a small number of clusters having a high number of
points per cluster relative to the affinity degree would benefit from
the projection approach. Generally, however, a projection induces
information-loss and the pairwise affinities will get increasingly ob-
scured with increasing affinity degree — and since we have here a
”curse of dimensionality” effect, a rapid decline of pairwise affinity
SNR is expected with increasing problem complexity.

1.2 Contribution of our Approach
Rather than performing a projection we work with the full affin-

ity tensor. Our approach enables us to define any affinity degree
we desire — including one obtained by projection of the original
tensor to a lower degree one, and in particular to a pairwise affin-
ity. Starting from a super-symmetric tensor K of any degree, we
show that a general probabilistic argument on conditional indepen-
dence introduces a simple connection between K and the desired
m × k partition matrix G ≥ 0. The connection is two fold (i)
the ”balancing” requirement on the cluster sizes requires K to be
hyper-stochastic, and (ii) G is obtained by a super-symmetric non-
negative factorization (SNTF) of K. The algorithm we derive for
performing the SNTF is based on a positive-preserving gradient
descent scheme. The scheme also supports partial sampling of the
affinity tensor which is necessary since it is practically impossible
to fill in, or even store, a full high-degree affinity array. The com-
plexity of the update step is O(mkp) where p ≤

`
m
n

´
is the number

of samples.
The work presented here is an outgrowth of our algebraic treat-

ment of pairwise affinity clustering showing that K is completely
positive [20] and of a general treatment of tensor ranks and condi-
tional independence with latent variables [14].

2. PROBABILISTIC CLUSTERING FROM
N-WAY AFFINITY ARRAYS

Let xi ∈ Rd, i = 1, ..., m, be points which we wish to assign to
k clusters C1, .., Ck and let yi ∈ {1, ..., k} be the associated (un-
known) labels. We assume that we have a way to measure the prob-
ability, which for now is simply an affinity measure in the range

[0, 1], that any n-tuple of points xi1 , ..., xin , 1 ≤ ij ≤ m, belong to
the same cluster. For example, if we know that the clusters are de-
fined as n− 1 dimensional subspaces, then k(xi1 , ..., xin) = e−∆,
where ∆ is the volume defined by the n-tuple, would be a reason-
able measure of n-tuple affinity because k(·) = 1 when the points
are linearly dependent (i.e., live in an l < n dimensional subspace)
and approaches zero as the volume increases.

Given the affinities k(xi1 , ..., xin), which form an n-way array
K indexed by Ki1,...,in , we wish to assign a probability gr,s =
P (ys = r | xs) of point xs belonging to cluster Cr . The desired
membership probabilities form an m × k matrix G = [g1, ..., gk],
thus our goal is to find G given K. We will derive below an alge-
braic constraint on the n-way array K and relate it, by means of
factorization and linear constraints, to the desired matrix G.

Consider the labels yi as hidden variables and assume that

y1⊥...⊥ym | x1, ..., xm,

i.e., that the labels are independent of each other given the data
points, and that

yi⊥{x1, ..., xi−1, xi+1, ..., xm} | xi,

namely that given xi its label yi is independent from all other data
points1. The probability that xi1 , ..., xin belong to cluster Cr , P (yi1 =
r, ..., yin = r | xi1 , ..., xin) is factorized:

P (yi1 = r, ..., yin = r | xi1 , ..., xin) = P (yi1 = r | xi1)···P (yin = r | xin).

The probability that the n-tuple are clustered together is given by
marginalization:

Ki1,...,in =
kX

r=1

P (yi1 = r | xi1)···P (yin = r | xin) =

kX
r=1

gr,i1 ···gr,in ,

which translate to the fact that K should be a rank=k super-symmetric
tensor:

K =

kX
r=1

g⊗n
r , gr ≥ 0,

where g⊗n denotes the rank-1 tensor g ⊗ g ⊗ ... ⊗ g. In other
words, the cluster assignment probabilities are related to a non-
negative super-symmetric factorization of the input n-way array K.
To complete the algebraic relation between K and G we need to
consider the constraints on K such that the n-way affinity array
will indeed represent a distribution:

PROPOSITION 1. Given uniform priors on the distribution of
data points and labels, i.e., P (xi) = 1/m and P (yi = j) = 1/k
for all i = 1, ..., m, j = 1, ..., k, the n-way array K must be
hyper-stochastic:X

i1,..,ij−1,ij+1,...,in

Ki1,...,in =
“m

k

”n−1

1, j = 1, ..., n

where 1 is the m-dimensional vector (1, ..., 1).

Proof: From the definition of G we have that the rows sum to
1:

P
r P (ys = r | xs) =

P
r grs = 1. Using Bayes rule and the

uniform prior assumption we can see that the columns sum to m/k:
nX

i=1

P (yi = r | xi) =
m

k

X
i

P (xi | yi = r) =
m

k
.

1We will later see that these assumptions underly the existing spec-
tral pairwise (n = 2) clustering approaches, therefore we are not
loosing any power of expression conventionally employed in the
pairwise affinity case. Also weaker conditional independence as-
sumptions would suffice — those defined on n-subsets, however
for purposes of clarity we will stay with the stronger version

The rows and columns sums propagate to a (scaled) hyper-stochastic
constraint on K:X

i1,..,ij−1,ij+1,...,in

Ki1,...,in

=

kX
r=1

gr,ij

X
i1,..,ij−1,ij+1,...,in

gr,i1 · · · gr,ij−1gr,ij+1 · · · gr,in

=

kX
r=1

gr,ij (
X
i1

gr,i1) · · · (
X
ij−1

gr,ij−1)

(
X
ij+1

gr,ij+1) · · · (
X
in

gr,in)

=
“m

k

”n−1
kX

r=1

gr,ij =
“m

k

”n−1

Note that the hyper-stochasticity constraint is ”balanced parti-
tions” in disguise. The uniform prior assumption in fact constraints
the dataset to form k ”balanced” clusters. Combining the two re-
sults above suggests the following optimization procedure: (i) find
a hyper-stochastic approximation F to the input affinity array K,
and (ii) given F , perform a super-symmetric non-negative tensor
factorization (SNTF), i.e., find g1, ..., gk ≥ 0 that minimize the
Frobenius2 norm ‖F −

P
r g⊗n

r ‖
2.

Finding a hyper-stochastic approximation to K can be done by
repeating a normalization step which is an extension of the sym-
metrized Sinkhorn [16] rows and columns normalization procedure
for matrices. The following proposition forms a normalization al-
gorithm which converges to a super-symmetric hyper-stochastic ar-
ray:

PROPOSITION 2. For any non-negative super-symmetric n-way
array K(0), iterating the process:

K
(t+1)
i1,...,in

=
K

(t)
i1,...,in

(ai1 · · · ain)1/n
,

where

ai =
X

i2,...,in

Ki,i2,...,in , i = 1, ..., m

converges to a hyper-stochastic array.

Proof: See Appendix B.
Before we proceed to derive the SNTF algorithm it may be in-

structive to examine the pairwise, n = 2, affinity case, i.e., K
is a non-negative symmetric matrix. Our results above say that
K = GG> and that prior to factorizing K we should normalize it
by replacing it with F = D−1/2KD−1/2 where D is a diagonal
matrix holding the row sums of K. If we iterate this normaliza-
tion procedure we will obtain a doubly-stochastic approximation
to K. This is consistent with [20] which argues that the condi-
tional independence statements yi⊥yj | xi, xj and yi⊥xj | xi lead
to the finding that K = GG> which also underlies the k-means,
spectral clustering and normalized cuts approaches. To be con-
crete, the symmetric factorization F = GG> can be represented as
maximizing trace(FGG>) = trace(G>FG). If we would like
a ”hard” clustering, i.e., each point must belong to one and only
cluster then we should add G>G = I and if we ignore the non-
negativity constraint we obtain the result that the columns of G are
2entries with repeating indices can be ignored — we will come
back to that later and define a reduced semi-norm.

the k leading eigenvectors of D−1/2KD−1/2. In other words, the
conditional independence assumptions we made at the start are al-
ready built-in into the conventional pairwise affinity treatment —
we have simply acknowledged them and extended them beyond
pairwise affinities.

3. THE SNTF ALGORITHM
We are given a n-way affinity array K ∈ [d1]×× [dn] with

di = m being the number of data points to be clustered. An entry
Ki1,...,in with 1 ≤ ij ≤ m denotes the (un-normalized) prob-
ability of the n-point tuple xi1 , ..., xin to be clustered together.
The tensor K is super-symmetric because the probability Ki1,...,in

does not depend on the order of the n points. Furthermore, we can
ignore entries with repeating indices and focus only on the case
i1 6= ... 6= in (this is crucial for the success of the algorithm).
For practical reasons, we would like to store only a single repre-
sentative of each n-tuple (instead of n! entries), thus we focus only
on the entries i1 < i2 < ... < in. Accordingly, we define the
order-restricted Frobenius (semi) norm:

‖K‖2o =< K, K >o=
X

1≤i1<i2<...<in≤m

K2
i1,...,in

,

where < A, B >o is the inner-product (restricted to strictly as-
cending order) operation. Note that when K is super-symmetric
then

‖K‖2o =
1

n!

X
i1 6=...6=in

K2
i1,...,in

which is the restriction of the Frobenius norm to non-repeating in-
dices. As mentioned in the previous section, we pass K through a
normalization process and obtain a normalized version denoted by
F . Our goal is to find a non-negative matrix Gm×k whose columns
are denoted by g1, ..., gk such as to minimize the following func-
tion:

f(G) =
1

2
‖F −

kX
j=1

g⊗n
j ‖

2
o,

We derive below a positive-preserving update rule: gr,s ← gr,s −
δrs∂f/∂gr,s. We start with the derivation of the partial derivative
∂f/∂gr,s. The differential df is derived below:

df = d
1

2
< F −

kX
j=1

g⊗n
j , F −

kX
j=1

g⊗n
j >o

=<

kX
j=1

g⊗n
j − F , d(

kX
j=1

g⊗n
j) >o

=<

kX
j=1

g⊗n
j − F ,

X
j

(dgj)⊗ g⊗(n−1)
j + ... + g⊗(n−1)

j ⊗ dgj >o

The partial derivative with respect to gr,s (the s’th entry of gr) is:

∂f

∂grs
=<

kX
j=1

g⊗n
j − F , es ⊗ g⊗(n−1)

r + + g⊗(n−1)
r ⊗ es >

where es is the standard vector (0, 0, .., 1, 0, ..0) with 1 in the s’th
coordinate. It will be helpful to introduce the following notation:
let 1 ≤ i2 < ... < in ≤ m and let 1 ≤ s ≤ m be different from
i2, ..., in, then s → i2, .., in is an ascending n-tuple index (i.e.,
s is inserted into i2, ..., in in the appropriate position). Thus, for
example:

< F, a⊗b⊗b+b⊗a⊗b+b⊗b⊗a >o=
X

i1 6=i2<i3

Fi1→i2,i3ai1bi2bi3

Using the above short-hand notation, the partial derivative becomes:

∂f

∂gr,s
=

kX
j=1

gj,s

X
s 6=i2<...<in

nY
q=2

gj,iq gr,iq

−
X

s 6=i2<...<in

Fs→i2,..,in

nY
q=2

gr,iq (1)

We will be using a ”positive preserving” gradient descent scheme
grs ← grs − δrs∂f/∂grs. Following [7] we set the gradient step
size δrs as follows:

δrs =
grsPk

j=1 gj,s

P
s 6=i2<...<in

Qn
q=2 gj,iq gr,iq

(2)

After substitution of eqn. 2 into the gradient descent equation we
obtain a multiplicative update rule:

grs ←
grs

P
s 6=i2<...<in

Fs→i2,..,in

Qn
q=2 gr,iqPk

j=1 gj,s

P
s 6=i2<...<in

Qn
q=2 gj,iq gr,iq

(3)

The update rule preserves positivity, i.e., if the initial guess for G
is non-negative and F is super-symmetric and non-negative, then
all future updates will maintain non-negativity. The proof that the
update rule reduces f(G) and converges to a local minima is pre-
sented in Appendix A.

There are a couple of noteworthy points to make. First, by re-
moving from consideration entries in F that correspond to repeated
indices makes the energy function f(gr,s) be quadratic (when all
other entries of G are fixed) which in turn is the key for the update
rule above to reduce the energy at each step. Second, each sam-
ple of n points corresponds to n! entries of the affinity tensor K
which makes any algorithm for processing K unpractical as simply
recording the measurements is unwieldy. The scheme we presented
above records only the

`
m
n

´
entries 1 ≤ i1 < ... < in ≤ m instead

of mn in return for keeping a lexicographic order during measure-
ment recording and during the update process of gr,s (access to
Fs→i2,...,in).

Next, for large arrays, the need to sample all the possible (or-
dered) n-tuples out of m points introduces an excessive computa-
tional burden. In fact, it is sufficient to sample only a relatively
small fraction of all n-tuples for most clustering problems. The
sampling introduces vanishing entries in K that do not correspond
to low affinity of the corresponding n-tuple but to the fact that the
particular tuple was not sampled — those should be weighted-out
in the criteria function f(G). A ”weighted” version of the scheme
above requires merely a straightforward modification of the update
rule as described next.

3.1 Weighting-out Unsampled Entries
Let Wi1,...,in ≥ 0, i1 < ... < in, be a weight associated

with the entry Ki1,...,in . In particular we are interested in the bi-
nary weighting scenario where the weight is zero if the n-tuple
xi1 , ..., xin was not sampled and ’1’ otherwise. We define the (re-
duced) weighted norm:

‖K‖2w =< K, K >w=
X

1≤i1<i2<...<in≤m

Wi1,...,inK2
i1,...,in

.

The partial derivative then becomes:

∂f

∂gr,s
=

kX
j=1

gj,s

X
s 6=i2<...<in

Ws→i2,...,in

nY
q=2

gj,iq gr,iq

−
X

s 6=i2<...<in

Ws→i2,...,inFs→i2,..,in

nY
q=2

gr,iq

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

6

8

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

hyperedges %

e
rr

o
r

ra
te

 %

(a) (b)

2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

error rate %

s
ig

m
a

2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

n

e
rr

o
r

ra
te

 %

(c) (d)

Figure 2: Synthetic study of clustering m = 200 points arranged in k = 5 3rd-order curves (i.e., affinity degree is n = 5). See text for details on each
display.

and the update rule becomes:

grs ←
grs

P
s 6=i2<...<in

Ws→i2,...,inFs→i2,..,in

Qn
q=2 gr,iqPk

j=1 gj,s

P
s 6=i2<...<in

Ws→i2,...,in

Qn
q=2 gj,iq gr,iq

(4)

3.2 Summary: the n-way Clustering Algorithm
The n-way clustering algorithm is summarized as follows: We

are given points x1, ..., xm and an affinity measure 0 ≤ κ(xi1 , ..., xin) ≤
1 that operates on an n-tuple of points. Our goal is to obtain a prob-
abilistic measure gr,s = P (ys = r | xs) where s = 1, ..., m and
r = 1, ..., k and ys ∈ {1, ..., k} is the label associated with point
xs.

1. Construct K: sample n-tuples xi1 , ..., xin , i1 < ... < in,
and set Ki1,...,in = k(xi1 , ..., xin). Set Wi1,...,in = 1.

2. Normalize K: apply the iterative normalization scheme which
generates F (Prop. 2).

3. Factor F : starting with an initial guess for G ≥ 0, iteratively
update the entries gr,s one at at a time using eqn. 4 until
convergence is reached.

Note that only sampled entries participate in the algorithm, there-
fore the complexity of each update step (eqn. 4) is a constant fac-
tor of the number of samples. The complexity of the algorithm is

O(mkp) where p ≤
`

m
n

´
is the number of samples (number of

non-vanishing entries of W).

4. EXPERIMENTS
We begin by studying the performance of the SNTF algorithm on

synthetic data compared to the graph projection methods [1, 5, 21].
A comparative study of graph projection against outlier rejection
algorithms (like RANSAC) and the multi-level hypergraph parti-
tioning algorithms used in the VLSI community was presented in
[1] showing a significant advantage to graph projection. Therefore
we will focus our comparative study on the performance relation-
ship between SNTF and graph projection.

The graph projection approximates the original hypergraph with
a graph followed by spectral clustering. In practice, when the affin-
ity degree n is large one needs to use sampling, i.e., during the
projection (clique expansion and clique averaging in [1]) not all
hyper-edges are used since their number grows exponentially with
the affinity degree ([5] addressed the sampling issue). We expect
the graph projection to work well when the problem is ”simple”,
i.e., when a projection from

`
m
n

´
hyper-edges to

`
m
2

´
edges can be

done with minimal information loss – in those cases it is worth-
while to reduce the problem size from a hypergraph to a graph
rather than working directly with the full affinity tensor. On the
other hand, when the number of points is large or when the affin-
ity degree is high, one would expect a significant information-loss

(a) (b) (c)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) (d) (e)

Figure 3: 3D-from-2D motion segmentation. (a) shows a picture with 76 points over four separate bodies, (b,c) show the resulting four columns of the
partition matrix G using SNTF with a 9-way affinity array. The bottom row shows the results after projecting the affinity array onto a matrix. The projection
resulted in significant information-loss which caused performance degradation.

during projection with a resulting degraded performance.
In our first experiment we generated m = 200 points in the 2D

plane laying on k = 5 3rd-order polynomials with added Gaussian
noise. The number of hyper-edges (entries of the affinity tensor
K) is

`
200
5

´
and since a 3rd-order 1D polynomial is determined

by four coefficients we have n = 5. We ran SNTF, graph projec-
tion using Normalized-Cuts (NC) and graph projection using SNTF
(i.e., the same algorithm described in this paper but for n = 2).
We varied the runs according to the sampling percentage ranging
from 0.02% − 2.5% of sampled hyper-edges. Fig. 2a shows the
input data and Fig. 2b shows the clustering error percentage of the
three runs per sampling (upper graph corresponds to NC, middle to
SNTF with n = 2, lower to SNTF on the original affinity tensor).
The error of the SNTF is indeed higher than the graph projection
when the sampling is very low (0.02%), i.e., when the affinity ten-
sor is very sparse and thus the projection onto a graph (matrix) does
not suffer from information-loss. As the sampling rate increases
the performance of the SNTF on n = 5 original affinity tensor sig-
nificantly outperforms both graph projection runs and reaches per-
fect clustering much earlier (0.2% compared to 1.5% sampling).
Fig. 2c compares the error rate of SNTF and graph projections (NC
and SNTF with n = 2) using 0.15% sampling rate while varying σ

used in computing the affinity from the residual ∆, i.e., e−∆2/σ2
.

One can see that the SNTF on the original affinity degree n = 5
consistently outperforms clustering over graph projections — re-
gardless of the clustering technique (NC upper graph and SNTF
middle graph).

It is possible to use the SNTF framework in coarse-to-fine man-
ner by generating affinity tensors of degree q = 2, 3, ..., n by means

of projection. Starting from q = 2 (graph) we recover the partition
matrix G and use it as the initial guess for the SNTF of level q + 1
and so forth. In other words, the SNTF framework allows the flex-
ibility to work with projections of the original affinity tensor, but
instead of being limited to a projection onto a graph we could work
with any affinity degree. Fig. 2d shows the percentage of error on
the same data but with 0.02% sampling (where we have seen that
the graph projection has the upper-hand) using the coarse-to-fine
approach. One can see that the error remains fixed compared to an
increasing error for each projection level when the SNTF does not
use the resulting partition matrix of the previous level as an initial
guess. This also confirms that there is a tradeoff between the com-
plexity of the energy landscape introduced in high-degree affini-
ties and the information loss introduced by aggressive projections.
Ideally, one should work with a projection to the smallest affinity
degree with minimal information loss. The advantage of the SNTF
framework is that we are free to choose the affinity degree, whereas
with graph projection the affinity degree is set to n = 2.

We move next to a 3D motion segmentation experiment. Fig. 3a
shows a frame from ”Matrix Reloaded” where we track 76 points
arranged on four different moving bodies: the background (moving
due to camera motion) and three separate people moving indepen-
dently from the background motion. The points were tracked across
two successive frames and our task is to perform a segmentation
(clustering) of the points and assign each point to the proper mov-
ing body. It is well known that under perspective projection each
pair of matching points pi, p

′
i in the image plane represented in ho-

mogenous coordinates satisfy a bilinear constraint: p′>i Fpi = 0
where F is a 3× 3 matrix iff the corresponding 3D points are part

Figure 4: Segmenting faces under varying illumination conditions. See text.

of a single moving object [9]. Therefore, in the affinity ”language”
we would need n = 9 points in order to obtain an affinity mea-
surement, i.e., the likelihood that the 9-tuple arise form the same
moving object. The affinity tensor has

`
76
9

´
entries and we sam-

ple roughly 10, 000 entries from it with a proximity bias, i.e., once
a point is sampled the next point is biased towards close points
according to a Normal distribution. We ran SNTF with k = 4
clusters on the 9-degree (sampled) affinity tensor. Fig. 3b,c shows
the four columns of the partition matrix G. Recall that the en-
tries of each column represent the assignment probability of the
corresponding point to the cluster associated with the column. A
successful clustering (if the data is not ambiguous) will induce a
distribution of values in G such that each row has a single maximal
point. Once can clearly see that the values of G induce a clear-cut
segmentation of the points to four separate bodies and the assign-
ments are shown in Fig. 3a as varying color and shape (circles,
crosses, squares and pluses). This particular segmentation problem
is sufficiently challenging both for the graph projection approach
and to the geometric-specific methods of [19, 18]. With regard to
graph projection, the projection from a 9-degree affinity to a pair-
wise affinity is very aggressive with significant information-loss.
Fig. 3e,f shows the four columns of G recovered from SNTF with
n = 2 (followed by a projection) — one can see that one of the
moving bodies got lost.

Finally we ran an experiment on segmenting faces under varying
illumination conditions. It is well known that under certain sur-
face property assumptions (Lambertian) the space of pictures of a
3D object ignoring cast-shadows lie in a 3D subspace [13]. In the
affinity ”language” we would need a 4th-degree affinity measured
over quadruples of pictures. Fig. 4 shows a sequence of pictures
of a person under varying illumination conditions adopted from the
AR dataset. We had 21 pictures spanning three different persons
and we ran SNTF using 4-degree affinity tensor with k = 3 clus-
ters. The three columns of the partition matrix G are shown in
the bottom display. The pictures are unambiguously assigned to
the correct person. Similar results of comparable quality were also
obtained by graph projection.

Acknowledgments
We thank Alex Samorodnitsky for assistance in proving Proposi-
tion 2.

5. REFERENCES
[1] S. Agrawal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, and

S. Belongie. Beyond pairwise clustering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2005.

[2] C.J. Alpert and A.B. Kahng. Recent directions in netlist partitioning.
The VLSI Journal, 19(1-2):1–81, 1995.

[3] C.M. Fiduccia and R.M. Mattheyses. A linear time heuristic for
improving network partitions. In Proc. of the 19th IEEE Design
Automation Conference, pages 175–181, 1982.

[4] I.M. Gelfand, M.M. Karpanov, and A.V. Zelevinsky. Discriminants,
Resultants and multidimensional determinants. Birkhauser Boston,
1994.

[5] V.M. Govindu. A tensor decomposition for geometric grouping and
segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2005.

[6] B.W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. The Bell System Technical Journal, 49(2), 1970.

[7] D. Lee and H. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401:788–791, 1999.

[8] T. Leighton and S. Rao. An approximate max-flow min-cut theorem
for uniform multicommodity flow problems with applications to
approximate algorithms. In Proceedings Symposium on Foundations
of Comp. Sci., 1988.

[9] H.C. Longuet-Higgins. A computer algorithm for reconstructing a
scene from two projections. Nature, 293:133–135, 1981.

[10] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In Proceedings of the conference on Neural
Information Processing Systems (NIPS), 2001.

[11] P. Perona and W. Freeman. A factorization approach to grouping. In
Proceedings of the European Conference on Computer Vision, 1998.

[12] J.A. Rodriguez. On the Laplacian eigenvalues and metric parameters
of hypergraphs. Linear and Multilinear Algebra, 50(1):1–14, 2002.

[13] A. Shashua. Illumination and view position in 3D visual recognition.
In Proceedings of the conference on Neural Information Processing
Systems (NIPS), Denver, CO, December 1991.

[14] A. Shashua and T. Hazan. Non-negative tensor factorization with
applications to statistics and computer vision. In Proceedings of the
International Conference on Machine Learning (ICML), 2005.

[15] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8),
2000.

[16] R. Sinkhorn. A relationship between arbitrary positive matrices and
doubly stochastic matrices. Ann. Math. Statist., 35:876–879, 1964.

[17] S. Ullman and R. Basri. Recognition by linear combination of
models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13:992–1006, 1991.

[18] R. Vidal, Y. Ma, S. Soatto, and S. Sastry. Two-view multibody
structure from motion. International Journal of Computer Vision,
2004.

[19] L. Wolf and A. Shashua. Two-body segmentation from two
perspective views. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Hawaii, Dec. 2001.

[20] R. Zass and A. Shashua. A unifying approach to hard and
probabilistic clustering. In Proceedings of the International
Conference on Computer Vision, Beijing, China, Oct. 2005.

[21] D. Zhou, J. Huang, and B. Scholkopf. Beyond pairwise classification
and clustering using hypergraphs. Technical report, Max Planck
Institute for Biol. Cybernetics, TR-143, August 2005.

APPENDIX
A. PROOF OF CONVERGENCE: THE UP-

DATE RULE
Let f(grs) be the energy as a function of grs (all other entries of G

remain constant) and let g′rs be the updated value according to eqn. 3. We
wish to show that if we make a gradient descent with a step size δrs given
by eqn. 2 (which as we saw leads to a positive-preserving update), then
f(g′rs) ≤ f(grs). They key is that δrs is smaller than the inverse second
derivative:

PROPOSITION 3. The update scheme g′rs = grs − δrs∂f/∂grs, with
δrs given by eqn. 2 and the partial first derivative is given by eqn. 1, reduces
the optimization function, i.e., f(g′rs) ≤ f(grs).

Proof: The second derivative is:

∂2f

∂grs∂grs
=

X
s 6=i2<...<in

nY
q=2

g2
r,iq

,

and the step size δrs satisfies:

δrs =
grsPk

j=1 gj,s
P

s 6=i2<...<in

Qn
q=2 gj,iq gr,iq

≤
grs

·gr,s
P

s 6=i2<...<in

Qn
q=2 g2

r,iq

=
1

∂2f/∂grs∂grs

The Taylor expansion of f(grs + h) with h = −δrs∂f/∂grs is:

f(g′rs) = f(grs)− δrs(
∂f

∂grs
)2 +

1

2
δ2
rs(

∂f

∂grs
)2

∂2f

∂grs∂grs
,

from which follows:

f(grs)− f(g′rs) = δrs(
∂f

∂grs
)2(1−

1

2
δrs

∂2f

∂grs∂grs
) ≥ 0,

since δrs∂2f/∂grs∂grs ≤ 1.
We apply the update rule in a Gauss-Seidel fashion according to a lexico-

graphic scan of the entries of G. Since the energy is lower-bounded, twice
differentiable, and is monotonically decreasing via the update rule, yet can-
not decrease beyond the lower bound (i.e., positive preserving), then the
process will converge onto a local minimum of the optimization function
1
2
‖F −

Pk
j=1 g⊗n

j ‖2 with entries with repeated indices ignored.

B. PROOF OF CONVERGENCE: NORMAL-
IZATION SCHEME

We prove the following proposition:

For any non-negative super-symmetric n-way array K(0), without vanish-
ing slices, iterating the process:

K
(t+1)
i1,...,in

=
K

(t)
i1,...,in

(ai1 · · · ain)1/n
, (5)

where
ai =

X
i2,...,in

Ki,i2,...,in , i = 1, ..., m

converges to a hyper-stochastic array.

Proof: we define the hyper-permanent (following the definition of hyper-
determinant [4]):

hperm(K) =
X

σ2∈Sm

· · ·
X

σn∈Sm

mY
i=1

Ki,σ2(i),...,σn(i),

where Sm is the permutation group of m letters. Let K′ be the n-way array
following one step of the normalization step described in eqn. 5. We have:

mY
i=1

(a1aσ2(i) · · · aσn(i))
1/n =

mY
i=1

(an
i)1/n =

mY
i=1

ai,

from which we can conclude that:

hperm(K′) =
1Qm

i=1 ai
hperm(K).

To show that the normalization scheme monotonously increases the hyper-
permanent of the n-way array we need to show that

Qm
i=1 ai ≤ 1. From

the arithmetic-geometric means inequality it is sufficient to show that
Pm

i=1 ai ≤
m. From the definition of ai we have:

mX
i=1

ai =
X

i,i2,...,in

Ki,i2,...,in

1

(aiai2 · · · ain)1/n
. (6)

From the arithmetic-geometric means inequality (
Qm

i=1 xi)
1/m ≤ (1/m)

P
i xi,

replace xi with 1/ai (recall that ai > 0) and obtain:

1

(a1a2 · · · am)1/m
≤

1

m

mX
i=1

1

ai
,

and in general for any n-tuple 1 ≤ i1 < ... < in ≤ m:

1

(ai1 · · · ain)1/n
≤

1

n
(

1

ai1

+ ... +
1

ain

). (7)

By substituting the inequality eqn. 7 into eqn. 6 while noting that:X
i,i2,..,in

Ki,i2,...,in

1

aij

=

mX
ij=1

1

aij

X
i,i2,...,ij−1ij+1,...,in

Ki,i2,...,ij−1ij+1,...,in

= m,

we obtain that
P

i ai ≤ m as required. Therefore, we conclude so far that
each step of the normalization scheme increases the hyper-determinant of
the previous step. The hyper-permananet is bounded from above since:

hperm(K) ≤
mY

i=1

ai ≤ 1,

therefore the process must converge. The process converges when hperm(K′) =
hperm(K) which can happen only of a1 = ... = am = 1.

