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Abstract

It is well known that computing the fundamental matrix of two uncal-
ibrated cameras requires at least seven corresponding points. We present
a method to compute the fundamental matrix between two cameras with
only two pairs of corresponding points. Given these two points, we show
how to find three pairs of corresponding epipolar lines, from which the
fundamental matrix can be computed.

Two pairs of epipolar lines, incident to the two pairs of corresponding
points, are found by maximizing stereo consistency between lines; corre-
sponding epipolar lines yield a good stereo correspondence. These two
epipolar lines intersect at the epipoles, giving a third pair of correspond-
ing points. A third pair of matching epipolar lines, needed to compute
the fundamental matrix, is found from lines incident to the epipoles.

We validate our method using real-world images and compare it to
state-of-the-art methods. Our approach is more accurate by a factor of
five compared to the standard method using seven corresponding points,
and its accuracy is comparable to the 8-points algorithm.

The proposed two-point algorithm needs much fewer trials when can-
didate point correspondences also include erroneous matches. The prob-
ability to sample two correct correspondences, as needed for our method,
is much higher than the probability to sample seven or eight correct cor-
respondences.

1 Introduction

The fundamental matrix is a basic building block of multiple view geometry
and its computation is the first step in many vision tasks. The computation is
usually based on pairs of corresponding points. Matching points across images
is error prone and many subsets of points need to be sampled until a good
solution is found. In this work we address the problem of robustly estimating
the fundamental matrix from only two corresponding pairs of points.

The best-known algorithm, adapted for the case of fundamental matrix, is
the eight points algorithm by Longuet-Higgins [I]. It was made practical by
Hartley [2]. The overall method is based on normalization of the data, solving a
set of linear equations and enforcing the rank 2 constraint [3]. The requirement
of eight point correspondences can be relaxed to seven. This results in a cubic



equation with one or three real solutions. The estimation from 7 points is very
sensitive to noise. These methods are often followed by a non-linear optimization
step.

The fundamental matrix can also be computed from three matching epipolar
lines [4]. Given three such correspondences, the one dimensional homography
between the lines can be recovered and the epipolar lines in each of the images
intersect at the epipoles. The three degrees of freedom for the 1D homography
together with the four degrees of freedom of the epipoles yield the required
7 degrees of freedom needed to compute the fundamental matrix. The main
challenge of such methods is finding corresponding epipolar lines. While most
image points have a correspondence in the other image, most lines in the image
are not even epipolar lines.

We present a method to robustly compute the fundamental matrix from only
two corresponding pairs of points. This is achieved by the following steps: (a)
Finding corresponding epipolar lines incident to the points based on the bright-
ness consistency (stereo matching) that exists between corresponding epipolar
lines. (b) Estimating the fundamental matrix based on three corresponding
epipolar lines instead of seven or eight corresponding points.

In all approaches, computing the fundamental matrix from points correspon-
dences starts with the computation of corresponding points, which normally has
many outliers. Using a RANSAC approach, multiple subsets of points are sam-
pled, hoping that one selected subset will not include any outlier. Using only
2 points as needed in our method substantially reduces the number of samples.
For example, if 50% of correspondences are outliers, and we require a proba-
bility of 99% that one subset will have no outliers, we will need to select 1,177
8-point subsets, 588 7-point subsets, and only 17 subsets of 2-points.

2 Previous Work

2.1 Computing the Fundamental Matrix

The fundamental matrix is a 3 x 3 homogeneous rank two matrix, with seven
degrees of freedom. There are various formulations that have been considered
to produce a minimal parameterization with only seven parameters [4].

The most common parameterization is from the correspondences of seven
points and can be computed as the null space of a 7x9 matrix. The rank two
constraint leads to a cubic equation with one or three possible solutions.

The method we will follow is based directly on the epipolar geometry enti-
ties. The fundamental matrix is represented by the epipoles and the epipolar line
homography. Each of the two epipoles accounts for two parameters. The epipo-
lar line homography represents the 1D-line homography between the epipolar
pencils and accounts for three degrees of freedom.



2.2 Stereo Matching Along Epipolar Lines

Depth from two stereo images is traditionally computed by matching along
corresponding epipolar lines. Our conjecture is that stereo matching will be
more successful when applied to corresponding epipolar lines, rather than to
random, unrelated lines. The success of stereo matching along two lines will be
our indicator whether these two lines are corresponding epipolar lines.

Many different stereo matching methods exist (see Scharstein and Szeliski
[5] for a survey). The stereo matching methods can be roughly divided to global
and local methods. Since we are not interested in estimating an accurate per-
pixel disparity, but only in line-to-line matching, we used dynamic programming
stereo methods. Dynamic programming is the simplest and fastest global stereo
algorithm, is relatively robust, and it gives the optimal solution for scanline
matching.

3 Fundamental Matrix From Two Points

Given a pair of images of the same scene captured from two different view-
points, together with two pairs of corresponding points, we wish to compute the
fundamental matrix between the two images.

3.1 Problem Formulation

Given two images I, I, with two pairs of corresponding points (p1,p2) and
(¢1,q2), we want to estimate the fundamental matrix F' between these images.

We start by seeking epipolar lines for each pair of corresponding points, using
the consistency of the intensities along the lines. This consistency is computed
from an optimal stereo matching along these lines. Each corresponding pair of
points gives us an epipolar line in each images, and two pairs of corresponding
points give us two epipolar lines in each image. Once we find the epipolar
lines for the two pairs of corresponding points, the intersections in each image
of the two epipolar lines gives the epipole. The third epipolar line needed for
computing F' is found from lines incident to the recovered epipoles.

In the next subsection we introduce the cost function for stereo matching
along lines. In later subsections we introduce an iterative approach to compute
the fundamental matrix using a RANSAC based algorithm for finding epipolar
lines and epipoles.

3.2 Similarity Between Lines Using Stereo Matching

Given two images I, I, every point in each image resides on an epipolar line.
The epipolar lines through a pair of corresponding points p; € I; and ps € I
are also corresponding epipolar lines. Given p; € I; and py € Is our goal is
to find the epipolar lines I; € I} and [, € I through p; and ps. We assume
that the intensities along corresponding epipolar lines can be related through
stereo disparities. This assumption is traditionally used in stereo, where depth
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Figure 1: Matching epipolar lines using stereo matching. (a-b) Matching epipo-
lar lines across two view. Computed epipolar lines by our method (green) are
very close to the ground truth (blue). (c¢) The intensity profile of the two cor-
responding lines found by our approach. (d) Intensity profile after warping due
to stereo correspondence.

is computed by matching points along corresponding epipolar lines. The sim-
ilarity between two lines, [y, [s, is therefore defined as their optimal intensity
correspondences (stereo matching) with an additional smoothness constraint.

Let x; be the 2D coordinates of equidistant points along line /1, and let y; be
the 2D coordinates of equidistant points along line l5. The similarity between
the two lines is based on their intensity similarities. It is formulated by the well
known stereo matching equation [B] [0, [7] given the two lines I; and ls, and the
disparity d; for every point x; on ly:

C(d;lh,l2) = Z¢(di§r) +Z¢(di;aa A) (1)
i=1 i=2
where ¢(d;;7) is the data term, given as the truncated Lo
¢(disr) = min{(Li(z:) — L2 (yita,))? 7}
and r = 50? [5]. The smoothness term 1) is over the disparities d; given by:
Y(disa, \) = min(\ - (d; — di_1)?%, ).

where in our implementation we selected A = 2 and o = 3. The distance
between two lines is the optimal disparity, d*:

d* = argjreliZI}L {C(d;1l1,12)}, (2)

Since we find the optimal disparities d} in Eq. using dynamic programming,
the order constraint commonly used in stereo matching, d;+1 > d;, is naturally
obtained.
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Figure 2: The Two-Points algorithm. (a) Given a pair of corresponding points,
p1 in Image 1 and ps in Image 2, we examine a pencil of lines incident to
each point. (b) Each line from the pencil p1, together with the line from the
pencil of po, having the best stereo matching score, is selected as a possible
corresponding pair of epipolar lines. (¢) A pair of corresponding epipolar lines,
passing through the second pairs of corresponding points, ¢; and g3, is selected
in the same manner. Their intersection in each image gives the third point -
the epipole (which may be outside the image). (d) A bisector epipolar line is
selected in Image 1, and a corresponding epipolar lines is searched for in the
pencil of lines incident to the epipole in Image 2. (e) The last stage of the
process gives us three corresponding epipolar lines, from which the epipolar line
homography is computed.

3.3 Computation of Epipolar Line Homography

In this section we describe the steps taken for the computation of the epipolar
line homography between two images, when two corresponding pairs of points
in two images, (p1,p2) and (g1, g2), are given. The process is outlined in Fig.

1. Through each pair of the selected points we generate a set of pairs of

epipolar line candidates {l;‘,1 , l;2 1. l;l and l;2 will be considered candidates
only if the second (I7,,) is closest to the first (I} ) and the first is closest to



the second (mutual best matches), using the intensity similarity of Eq.
with the optimal disparities if Eq. Following this step we have two
sets of pairs of lines, one set for (p1,p2) and another set for (q1,¢2). See

Fig. Qa.

2. Following steps are iterated:

(a) A candidate pair of epipolar lines is sampled from each set generated
in Step 2, see Fig. b. Their intgrsections in each image, e; = [}, X1},
in Image 1, and ey = [}, x [7 in Image 2, are the hypothesized
epipoles, see Fig. 2]c.

(b) A third corresponding pair of epipolar lines, {l.,, e, }, is found. The
line incident to the epipole e; in image [; is taken as the bisector
of the two lines that generated the epipole. The corresponding line,
incident to the epipole e in image I, is found by searching the closest
line, in terms of stereo distance, from the pencil of lines incident to
the epipole in Image 2. This is shown in Fig. Pld. The epipolar
line homography H from Image 1 to Image 2 is computed from the
three pairs of corresponding epipolar lines, {l;l,lf,z}, {lgl,lgz}, and
{leysles}-

(c) Another corresponding pair of epipolar lines is found, but this time
a bisector epipolar line is selected in Image 2, and a corresponding
epipolar lines is searched for in the pencil of lines incident to the
epipole in Image 1. The epipolar line homography G from Image 2
to Image 1 is now computed. See Fig.

(d) The above epipolar line homographies will be correct only if H =
G~1, and each epipolar line in Image 1 should satisfy {I* ~ GHI'}.
This can be checked by computing the area between I; and GHI; as
in Fig. 4 To validate G and H we sum the above area for all lines.

3. From all homographies computed in the previous step, we further examine
only the 5% having the highest validation score. For these highly-ranked
homographies we perform a full validation process.

4. Final Validation: Given the best homographies from the previous stage,
we want select the the one that maximizes the quality of the stereo corre-
spondences for many pairs of epipolar lines across the image. We sample
a large number of epipolar lines through the epipole in one image and
transfer them to the other image using the epipolar line homography. For
each pair of epipolar lines we measure the stereo correspondence score
according to Eq. [l| and sum over all lines.

5. Given the best homography H from the previous step, we compute the
fundamental matrix: F = [ea] H L.
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Figure 3: Initial validation of the epipolar line homogarphy. (a) The first image.
The blue lines are the generating lines of the epipole and the red line is the third
epipolar line, the angle bisector between them. The best correspondence to the
red line is found in Image 2, and from these three lines the homography H
from Image 1 to Image 2 is computed. (b) The second image. The red line is
the bisector, for which a best correspondence is found in Image 1. This gives
an independently estimated homography G from Image 2 to Image 1. (c) The
composite homography GH should map epipolar lines to themselves. The red
lines in the first image are transferred forward and backward using the composite
homography. In an ideal case these lines should overlap.
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Figure 4: The epipolar area measure. (a) The epipolar distance of one point.
(b) Considering all the point on the line and evaluating their symmetric epipo-
lar distance is the area between the two lines. (c) The total epipolar area is
evaluated for several sampled epipolar lines.

3.4 Remarks

e To increase robustness by increasing the number of candidates, instead
of examining only pairs of lines that are mutual best matches, we only
require them to be in the top 2 matches of each other.

e If 3 (instead of 2) corresponding point matches are given, the algorithm
can be significantly accelerated.

e The stereo matching is computed with an O(N) time dynamic program.

e In the case where the original 2 point pair correspondences are not certain,
this process can be embedded in an auxiliary RANSAC process sampling
pairs of correspondences.



3.4.1 Complexity Analysis

Let the image sizes be N x N. Through each point we sample O(N) lines.
We compare, using stereo matching, O(N), each sampled line with the O(N)
lines sampled at its corresponding point. After O(N?) comparisons we are left
with O(N) candidate pairs of epipolar lines. As we are given two points in
each image, each points generates O(N) candidate epipolar lines, we get O(N?)
possible intersections of epipolar lines, each such intersection is an hypotheses
for the epipoles, e; and es.

For the third pair of corresponding epipolar line we select lines through the
epipoles. In I; we select the bisector of the two epipolar lines that generated
e1. We find the best match for this line in I by comparing it to O(N) lines
through es. This step can be skipped if there is a third pair of corresponding
points 71 and 72, then 71 X e; and r9 X e5 is the third epipolar line pair.

Validation is carried out by taking the epipolar area measure (See Fig. [4]) of
a fixed number of epipolar line in I; through ey, {I1;, GHI’;} with a complexity
of O(1).

For two points finding the possible pairs of epipoles together with finding
the third line pair and validation takes O(N?) steps. When the algorithm is
based on 3 pairs of corresponding points it requires at most O(NN?3) steps.

In practice, after filtering lines with little texture, a much smaller number
of iterations is required.

4 Experiments

Figure 5: The house dataset from VGG is used for real data experiments. The
dataset includes 10 images with various angles. Ground truth points and camera
matrices are available.

We evaluated our method using stereo images of the house dataset by VGG,
Oxford university [8]. The house dataset includes 10 images, representing dif-



ferent angles. The images are presented in Figure |5} We used every consecutive
pair of images as a stereo pair, which results in 9 pairs. The size of the images
is 768 x 5H76.

The quality of the computed fundamental matrices was evaluated using the
symmetric epipolar distance [4] with respect to the given ground truth points.
The baseline method is the 7-points algorithm. The 7-points method returns
3 possible solutions. In all experiments we selected for comparison the solu-
tion with the lowest symmetric epipolar distance. We also compared with the
8-points algorithms, which returned high-quality solutions after data normaliza-
tion. Both the 7-points and 8-points algorithm were computed using the VGG
toolbox[9].

For each pair of images we repeatedly executed 10 iterations. In each iter-
ation we randomly sampled two pairs of corresponding points as input to our
approach, seven pairs of corresponding points to use as input to the 7-point
method and eight pairs of corresponding points to use as input to the 8-point
method. The points were sampled so that they were at least 30 pixels apart
to ensure stability. We computed the fundamental matrix using our method,
the 7-point method, and the 8-points method. The symmetric epipolar distance
was computed for each method. The points were sampled so that they were at
least 30 pixels apart to ensure stability.

Table [I] shows the resulting fundamental matrix for each pair of images.
Our method significantly outperforms the the 7-point algorithm. In 66% of
the cases the symmetric epipolar distance is less than 3 pixels. The median
error in our approach is 2.54. For the 8-points algorithm the median is 2.77
while the median in the 7-point algorithm is 25.8. Our approach depends on
global intensity matching rather than on the exact matching of the points. Pairs
7,8 introduce a challenging stereo matching and as a result the quality of our
method is effected. The global intensities in pairs 1-6 can be accurately matched
and as a result the quality of the estimated fundamental matrix is high. Fig. [f]
shows an example of rectification using our estimated fundamental matrix for
pair number 1. Each horizontal line in the images is a pair of epipolar lines.
Corresponding feature points are placed on the same epipolar lines.

5 Conclusions

We presented a method for estimating the fundamental matrix based on only
two point correspondences, compared to traditional methods that need a 7 or
8 point correspondences. Two points are sufficient since we don’t use only
the point locations, but use them to search for corresponding epipolar lines.
The correspondence of epipolar lines is determined by stereo matching using
intensities along the entire lines. This is a powerful correspondence measure,
as it is a global measure, and not a local measure as used for finding point
correspondences.

Our 2-point method is very robust: Traditional approaches find a fundamen-
tal matrix that has a perfect match to the given corresponding points. Instead,



Image Pairs 7-Points | 8-Points | 2-Points
1 27.11 3.27 2.54
2 25.80 2.11 291
3 27.14 2.02 2.01
4 27.11 2.5 2.04
5 25.47 2.00 2.34
6 14.67 2.77 4.12
7 18.87 3.7 5.76
8 18.97 4.22 5.66
9 26.13 5.89 2.30

Table 1: The symmetric epipolar distance of the estimated fundamental matrix
using the 7-points/8-points algorithm, and our 2-points algorithm. The distance
is with respect to ground truth points. Accuracy of our 2-points algorithm is
substantially higher than the 7-points algorithm and slightly better than the
8-points algorithm. The median error of our algorithm is 2.54. For the 8-points
algorithm the median is 2.77 while for the 7-points it is 25.8.

our goal is to find a fundamental matrix that globally improves the stereo match-
ing of the entire images.

In stereo reconstruction, intensity matching along epipolar line implies the
matching of 3D points. In our approach we use the opposite direction. We
assume that good correspondence of 3D points will give good stereo correspon-
dences along epipolar lines. As far as we know, this is the first time that such
an assumption has been demonstrated to be valid.

The need to for only two correct point correspondences makes an efficient
RANSAC process. For example, if 50% of correspondences are outliers, and we
require a propability of 99% that one subset will have no outliers, we will need
to select 1,177 subsets of 8-points, 588 subsets of 7-points, and only 17 subsets
of 2-points.
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Figure 6: Rectification example using our 2-points method. The images are
rectified after estimation of the fundamental matrix using our approach from
only two pairs of corresponding points. Each horizontal line in the images is a
pair of epipolar lines. Corresponding feature points are on the same epipolar
lines.
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