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ABSTRACT
Exascale machines have a small mean time between failures, ne-

cessitating fault tolerance. Out-of-the-box fault-tolerant solutions,

such as checkpoint-restart and replication, apply to any algorithm

but incur significant overhead costs. Long integer multiplication is

a fundamental kernel in numerical linear algebra and cryptography.

The naïve, schoolbookmultiplication algorithm runs inΘ
(
𝑛2

)
while

Toom-Cook algorithms runs in Θ
(
𝑛log𝑘 (2𝑘−1)

)
for 2 ≤ 𝑘 . We ob-

tain the first efficient fault-tolerant parallel Toom-Cook algorithm.

While asymptotically faster FFT-based algorithms exist, Toom-Cook

algorithms are often favored in practice on small scale and on su-

percomputers. Our algorithm enables fault tolerance with negligi-

ble overhead costs. Compared to existing, general-purpose, fault-

tolerant solutions, our algorithm reduces the arithmetic and com-

munication (bandwidth) overhead costs by a factor of Θ
(

𝑃
(2𝑘−1)

)
(where 𝑃 is the number of processors). To this end, we adapt the

fault-tolerant BFS-DFS method of Birnbaum et al. (2020) for fast

matrix multiplication and combine it with a coding strategy tai-

lored for Toom-Cook. This eliminates the need for recomputations,

resulting in a much faster algorithm.
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• Theory of computation → Parallel algorithms; Communica-
tion complexity; • Mathematics of computing→ Coding theory.
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1 INTRODUCTION
Long integer multiplication algorithms are fundamental compu-

tational kernels in numerous applications, ranging from crypto-

graphic systems to neural networks. They serve as primitives for

many elementary functions, including power, square root, and great-

est common divisor. Toom-Cook algorithms are often used in poly-

nomial multiplication as well. The naïve, schoolbook multiplication

algorithm has a complexity of Θ
(
𝑛2

)
, where 𝑛 ∈ N is the size of

the input. Faster algorithms, such as the Toom-Cook family, are

based on polynomial convolution and scales as 𝑂

(
𝑛log𝑘 (2𝑘−1)

)
[16, 40, 72], where 2 ≤ 𝑘 ∈ N is a parameter of the algorithm.

Asymptotically faster FFT-based methods (cf. [22, 27, 33]) exist.

However, they often suffer from large hidden constants and limited

applicability. Thus, Toom-Cook algorithms are often favored for

a large range of inputs (cf. [11, 29–31, 41, 44, 48, 58, 85]), and are

widely used by major libraries (cf. [29]).

A major scalability hurdle is faults. The evolving hardware land-

scape, characterized by machine up-scaling and reduced operating

voltage, has led to an increased susceptibility to errors. Exascale

machines have small mean time between failures [3, 12, 68], em-

phasizing the urgent need for fault-tolerant solutions. Faults are

categorized into two: i) hard faults - when a processor stops work-

ing, and ii) soft faults - when a processor miscalculates. Delay faults,

in which the processor’s average time per arithmetic operation in-

creases, are sometimes addressed as a third category. We focus

here on the first category, hard faults. Our algorithm can easily be

adapted for soft faults (see Section 7 for more details).

The standard solutions for dealingwith hard faults are checkpoint-

restart (cf. [25, 42, 59, 62, 79]), which periodically saves data and

state and reverts to the last checkpoint upon error detection, and

replication (cf. [1, 2, 13, 20, 28, 38, 75–77]), which divides com-

putations into tasks and run them simultaneously on multiple

processors. These solutions are general purpose and easy to em-

ploy but entail significant overheads and exhibit poor resource

utilization, even in the absence of errors. More efficient, algorithm-

specific solutions have emerged, known as algorithm-based fault-

tolerant techniques (cf. [8–10, 23, 26, 32, 35, 36, 39, 45–47, 49–

51, 54, 55, 57, 64, 67, 69, 71]). These specialized approaches leverage

specific knowledge of the algorithm’s structure to achieve substan-

tial speedups compared to general-purpose solutions. This paper

delves into constructing an algorithm-based, high-performance,

fault-tolerant algorithm for parallel fast integer multiplication.

1.1 Previous Work
Long Integer Multiplication: A Toom-Cook algorithm is defined

by a split number 𝑘 ∈ N, a set of evaluation points 𝑆 , and a sequence
of elementary operations called inversion sequence, which specify
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Table 1: Fault-tolerant solutions for Toom-Cook algorithm in the unlimited memory case
(
𝑀 = Ω

(
𝑛

𝑃
log(2𝑘−1) 𝑘

))
.

Algorithm Arithmetic cost Bandwidth cost Latency cost Fault Tolerance Additional Processors

Parallel Toom-Cook

𝐹 = Θ
(
𝑛log𝑘 (2𝑘−1)

𝑃

)
𝐵𝑊 = Θ

(
𝑛

𝑃
log(2𝑘−1) 𝑘

)
𝐿 = Θ (log 𝑃) − −

[[18], extended here]

Toom-Cook with Replication

𝐹 (1 + 𝑜 (1)) · 𝐵𝑊 (1 + 𝑜 (1)) · 𝐿 𝑓 𝑓 · 𝑃
[analyzed here]

Fault-Tolerant Toom-Cook (1 + 𝑜 (1)) · 𝐹 (1 + 𝑜 (1)) · 𝐵𝑊 (1 + 𝑜 (1)) · 𝐿 𝑓 𝑓 · (2𝑘 − 1)
[here]

𝐹 , 𝐵𝑊 , and 𝐿 denote the arithmetic bandwidth and latency costs of the parallel Toom-Cook algorithm with unlimited memory. 𝑃 denotes the

number of processors, 𝑛 denotes the input size, and 𝑓 denotes the number of faults the algorithm can tolerate. The first row is for our

parallel Toom-Cook algorithm, which is not fault-tolerant. The second row presents the parallel Toom-Cook with the Replication solution.

The third row presents our fault-tolerant parallel Toom-Cook algorithm. See Section 5 for the full analysis.

Table 2: Fault-tolerant solutions for Toom-Cook algorithm in the limited memory case
(
𝑀 = 𝑂

(
𝑛

𝑃
log(2𝑘−1) 𝑘

))
.

Algorithm Arithmetic cost Bandwidth cost Latency cost Fault Tolerance Additional Processors

Parallel Toom-Cook

𝐹 = Θ
(
𝑛log𝑘 (2𝑘−1)

𝑃

)
𝐵𝑊 = Θ

( (
𝑛
𝑀

)
log𝑘 (2𝑘−1) · 𝑀

𝑃

)
𝐿 = Θ

( (
𝑛
𝑀

)
log𝑘 (2𝑘−1) · log𝑃

𝑃

)
− −

[[18], extended here]

Toom-Cook with Replication

𝐹 (1 + 𝑜 (1)) · 𝐵𝑊 (1 + 𝑜 (1)) · 𝐿 𝑓 𝑓 · 𝑃
[analyzed here]

Fault-Tolerant Toom-Cook (1 + 𝑜 (1)) · 𝐹 (1 + 𝑜 (1)) · 𝐵𝑊 (1 + 𝑜 (1)) · 𝐿 𝑓 𝑓 · (2𝑘 − 1)
[here]

𝐹 , 𝐵𝑊 , and 𝐿 denote the arithmetic bandwidth and latency costs of the parallel Toom-Cook algorithm with limited memory𝑀 . The

parameters 𝑃 , 𝑛, and 𝑓 are defined as in Table 1. The rows of this table are similar to Table 1. See Section 5 for the full analysis. See Section 5

for the full analysis.

how to invert the interpolation matrix. Extended versions of the

Toom-Cook family include algorithms with an unbalanced splitting

of the input integers, such as Toom-Cook-(3, 2) (also known as

Toom-Cook-2.5) [85] or in general, Toom-Cook-(𝑘1, 𝑘2). Several
sets of evaluation points have been proposed for Toom-Cook algo-

rithms (cf. [16, 72, 84, 86]), where the most commonly used set for

Toom-Cook-3 is {0, 1,−1, 2,∞} (cf. [11, 22, 31, 63, 84, 86]).
Many studies have focused on optimizing the Toom-Cook algo-

rithm. Bodrato and Zanoni [11] proposed the Toom-Graph tech-

nique, a heuristic to find a fast inversion sequence relative to the

cost of different elementary linear operations. Zanoni [85] proposed

a technique to compute the evaluation stage faster by reusing the

outcome of repeated computations. Bermudo et al. Karmakar, and

Verbauwhede [6] proposed the "Lazy Interpolation" method, which

uses pre-computations to reduce repeated computations. Other

studies addressed performance enhancement in diverse platforms

(cf. [11, 60, 84]).

Bilardi and De Stefani [7] introduced lower bounds on the I/O

complexity of Toom-Cook algorithms in sequential and parallel

settings. De Stefani [19] later extended these bounds to hybrid

algorithms, combining standard and fast integer multiplication al-

gorithms. Moreover, De Stefani [18] presented near tight upper

bounds for parallel schoolbook multiplication and parallel Karat-

suba’s (Toom-Cook-2) integer multiplication. His parallel algorithm

is based on the BFS-DFS parallelization method of [4, 21, 52, 56]

Algorithm-based fault-tolerance: Huang and Abraham [35]

introduced an algorithm-based fault-tolerant solution for classical

matrix multiplication. Further refinements include [9, 14, 15, 57].

Erasure-based coding strategies have been applied to matrix-vector

and classical matrix-matrix multiplication tasks (cf. [23, 45–47, 64,

67]). Polynomial codes are often favored in coded matrix-matrix

multiplication (cf. [24, 34, 61, 70, 78, 82, 83]). Despite their effective-

ness in these areas, such methodologies typically do not apply to

recursive algorithms. Birnbaum et al. [8] proposed a fault-tolerant

algorithm for fast matrix multiplication based on the BFS-DFS paral-

lelization technique (cf. [4, 21, 52, 56]). Their coding strategy enables

efficient fault-tolerance in the encoding and decoding phases of

fast matrix multiplication, but requires expensive recomputations

for faults in the multiplication phase.

1.2 Our Contribution
We propose high-performance fault-tolerant parallel Toom-Cook

algorithms. Our algorithms reduce the arithmetic and bandwidth

overhead costs by a factor of Θ (𝑃) compared to existing general-

purpose alternatives (where 𝑃 is the number of processors). We

summarize our results in Tables 1,2. We start by extending the

parallel Toom-Cook-2 of [18] to the general case (Toom-Cook-

𝑘). We use the BFS-DFS parallelization technique (cf. [4, 21, 52,

56]) to deal with the recursive nature of Toom-Cook. We apply a

mixed coding strategy that combines the linear coding technique

of [8] with a polynomial coding technique tailored to the unique

structure of Toom-Cook. More precisely, we apply a linear erasure

code to deal with faults in the evaluation and interpolation phases

(similar to [8]). Linear codes are not generally preserved through the

multiplication phase and hence, require expensive recomputations
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(cf. [8]). Instead, we propose a polynomial code that integrates with

the Toom-Cook’s structure in the form of redundant interpolation

points.

1.3 Paper Organization
Section 2 provides preliminaries regarding our machine model

and Toom-Cook algorithm. In Section 3, we present the parallel

Toom-Cook algorithm. In Section 4, we propose a fault-tolerant

parallel Toom-Cook algorithm. Section 5 analyzes and compares

our algorithm with existing ones. Finally, Section 7 discusses our

results and future work.

2 PRELIMINARIES
2.1 Model and architecture
We consider a parallel model (cf. [5, 37, 74]), where a peer-to-peer

communication network connects 𝑃 identical processors. Each pro-

cessor holds a local memory of size𝑀 (words). We denote by 𝐹 , 𝐵𝑊 ,

and 𝐿 the number of arithmetic operations, words, and messages,

counted along the critical path as defined in [81]. We model the

total run-time by𝐶 = 𝛼 ·𝐿 + 𝛽 ·𝐵𝑊 +𝛾 · 𝐹 , where 𝛼 , 𝛽 , and 𝛾 are the

latency for a single message, the bandwidth cost for a single word,

and the time of a single arithmetic operation, respectively. We de-

note by 𝑓 the maximum number of faults the algorithm can tolerate.

We address hard errors wherein, upon a fault occurrence, the af-

fected processor ceases operation, loses its data, and is subsequently

replaced by an alternative processor.

2.2 Toom-Cook algorithms
Toom-Cook [16, 40, 72] is a family of fast integer multiplication

algorithms based on polynomial multiplication. It is often applied

recursively and on long integers. Toom-Cook involve three main

stages: evaluation, multiplication and interpolation. Toom-Cook-

𝑘 works as follows: Let 𝑎, 𝑏 ∈ N denote two 𝑛 ∈ N bit integers.

The two inputs are split into 𝑘-digit numbers 𝑎(𝐵) = 𝑎0, · · · , 𝑎𝑘−1,
𝑏 (𝐵) = 𝑏0, · · · , 𝑏𝑘−1 using a shared base 𝐵 where

𝐵 = 2

max

( ⌊
log

2
𝑎

𝑘

⌋
,

⌊
log

2
𝑏

𝑘

⌋ )
+1

Let 𝑝𝑎 ,𝑝𝑏 denote the 𝑘 − 1 degrees homogeneous polynomials with

𝑎(𝐵), 𝑏 (𝐵) as coefficients:

𝑝𝑎 (𝑥, ℎ) = 𝑎0ℎ
𝑘−1 + 𝑎1𝑥ℎ

𝑘−2 + · · · + 𝑎𝑘−1𝑥
𝑘−1

𝑞𝑏 (𝑥, ℎ) = 𝑏0ℎ
𝑘−1 + 𝑏1𝑥ℎ𝑘−2 + · · · + 𝑏𝑘−1𝑥𝑘−1

Notice that 𝑝𝑎 (𝐵, 1) = 𝑎0 + 𝑎1𝐵 + · · · + 𝑎𝑘−1𝐵𝑘−1 = 𝑎, and similarly

𝑝𝑏 (𝐵, 1) = 𝑏. Thus, 𝑎 · 𝑏 = 𝑝𝑎 (𝐵, 1) · 𝑝𝑏 (𝐵, 1) = (𝑝𝑎 · 𝑝𝑏 ) (𝐵, 1). The
polynomial 𝑟𝑎,𝑏 (·) = 𝑝𝑎 (·) · 𝑞𝑏 (·) is of degree 2𝑘 − 2 and hence,

one can compute its coefficients using 2𝑘 − 1 evaluation points. The

two polynomials, 𝑝𝑎 and 𝑝𝑏 , are therefore evaluated at 2𝑘−1 points,
and the two evaluations at each point are multiplied by each other.

We then use interpolation to obtain the coefficients of (𝑝𝑎 · 𝑝𝑏 ).
Finally, we evaluate 𝑝𝑎 · 𝑝𝑏 at the point (𝐵, 1), to obtain the product

𝑎 · 𝑏.

Theorem 2.1 (Interpolation Theorem [16, 72]). Let 𝑘 ∈ N and
𝑆 be a set of 𝑘 distinct evaluation points. The 𝑘-evaluation matrix of
𝑆 is invertible.

The bilinear form of Toom-Cook-𝑘 with the evaluating points

{(𝑥𝑖 , ℎ𝑖 )}2𝑘−1𝑖=1
is defined as follows. Let 𝑈 ,𝑉 ∈ Q(2𝑘−1)×𝑘

and

𝑊 ∈ Q(2𝑘−1)×(2𝑘−1)
be the following matrices:

𝑈 = 𝑉 =

©«

ℎ𝑘−1
0

𝑥0
0

ℎ𝑘−2
0

𝑥1
0

· · · ℎ0
0
𝑥𝑘−1
0

ℎ𝑘−1
1

𝑥0
1

ℎ𝑘−2
1

𝑥1
1

· · · ℎ0
1
𝑥𝑘−1
1

.

.

.
.
.
.

. . .
.
.
.

ℎ𝑘−1
2𝑘−2𝑥

0

2𝑘−2 ℎ𝑘−2
2𝑘−2𝑥

1

2𝑘−2 · · · ℎ0
2𝑘−2𝑥

𝑘−1
2𝑘−2

ª®®®®®®®®®¬

(𝑊𝑇 )−1 =

©«

ℎ2𝑘−2
1

𝑥0
1

ℎ2𝑘−3
1

𝑥1
1

· · · ℎ0
1
𝑥2𝑘−2
1

ℎ2𝑘−2
2

𝑥0
2

ℎ2𝑘−3
2

𝑥1
2

· · · ℎ0
2
𝑥2𝑘−2
2

.

.

.
.
.
.

. . .
.
.
.

ℎ2𝑘−2
2𝑘−1𝑥

0

2𝑘−1 ℎ2𝑘−3
2𝑘−1𝑥

1

2𝑘−1 · · · ℎ0
2𝑘−1𝑥

2𝑘−2
2𝑘−1

ª®®®®®®®®®¬
Then, the bilinear form of Toom-Cook-𝑘 is defined by Algorithm 1.

Algorithm 1 Recursive Toom-Cook-𝑘 Algorithm ⟨𝑈 ,𝑉 ,𝑊 ⟩
1: Input: 𝑎, 𝑏 ∈ Z
2: Output: 𝑐 ∈ Z where 𝑐 = 𝑎 · 𝑏
3: Parameters: 𝑠 ∈ N is the hardware’s max integer operation

size, namely 𝑎 · 𝑏 can be computed using one operation if

|𝑎 |, |𝑏 | ≤ 𝑠 .

4: Split 𝑎 and 𝑏 into 𝑘 digits numbers using a shared base 𝐵.

5: Let 𝑎, 𝑏 ∈ Z𝑘 be the 𝑘 digits of 𝑎 and 𝑏, respectively.

6: 𝑎′ = 𝑈 · 𝑎 // Evaluating 𝑝𝑎
7: 𝑏′ = 𝑉 · 𝑏 // Evaluating 𝑝𝑏
8: for 𝑖 = 1 to 2𝑘 − 1 do
9: if [𝑎′]𝑖 > 𝑠 or [𝑏′]𝑖 > 𝑠 then
10: Recursively compute [𝑐′]𝑖 = [𝑎′]𝑖 · [𝑏′]𝑖
11: else
12: [𝑐′]𝑖 = [𝑎′]𝑖 · [𝑏′]𝑖
13: end if
14: end for
15: 𝑐′ =𝑊𝑇 · 𝑐′

16: 𝑐 =
2𝑘−1∑
𝑖=1

( [𝑐′]𝑖𝐵𝑖−1) // Compute the carry

17: return 𝑐

Remark 2.2. Weuse the homogeneous notation proposed by Zanoni
[84] which bypasses the declaration of an∞ evaluation point, com-
monly used in the non-homogeneous notation. Both notations describe
the same algorithm.

Bodrato and Zanoni [11] introduced the Toom-Graph technique,

which optimizes the interpolation phase by finding the fastest se-

quence of linear operations that is equivalent to multiplying by

𝑊𝑇
. The method utilizes the property that𝑊𝑇

is an invertible ma-

trix and thus finds a short sequence of row operations that maps

(𝑊𝑇 )−1 to the identity matrix.
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Definition 2.3 (Toom-Graph [11]). Let𝑊 ∈ 𝐹𝑘×𝑘 denote the
interpolation matrix of Toom-Cook-𝑘 over some field 𝐹 . The Toom-
Graph𝐺 of𝑊 is a weighted graph where: i) each vertex is a matrix in
𝐹𝑘×𝑘 , and ii) there is an edge from a vertex 𝑢 to a vertex 𝑣 if and only
if there is a row operation 𝑒 such that 𝑒𝑢 = 𝑣 . The weight of each edge
is the cost of the row operation. Let 𝐼 denote an inversion sequence of
𝑊 , namely, a sequence of elementary operations specifying how to
invert the interpolation matrix. Then the operations in 𝐼 are equivalent
to a path in the𝐺 from the vertex corresponding to𝑊 −1 to the vertex
corresponding to the identity matrix. The algorithm finds the sequence
with the minimal aggregated cost.

2.3 Toom-Cook with Lazy Interpolation
Bermudo et al. [6] proposed the Lazy Interpolation technique, a vari-

ation of the Toom-Cook algorithm that enables predetermination of

the mid-computations (see Algorithm 2 for a pseudo-code). In the

standard implementation, the values of Toom-Cook’s sub-problems

cannot be predetermined due to carry computations. In the Lazy

Interpolation technique, the carry computations are postponed to

the end of the recursion by splitting the input for all recursive

steps in advance. As Bermudo et al. showed, this does not affect

the algorithm’s correctness or change its arithmetic complexity.

Algorithm 2 Recursive Toom-Cook-𝑘 Algorithm ⟨𝑈 ,𝑉 ,𝑊 ⟩ With

Lazy Interpolation

1: Input: 𝑎, 𝑏 ∈ Z
2: Output: 𝑐 ∈ Z where 𝑐 = 𝑎 · 𝑏
3: Parameters: 𝑠 ∈ N is the hardware’s max integer operation

size, namely 𝑎 · 𝑏 can be computed using one operation if

|𝑎 |, |𝑏 | ≤ 𝑠 . The parameters 𝑛, 𝑙 ∈ N are 𝑛 = max

(
log𝑠 𝑎, log𝑠 𝑏

)
,

and 𝑙 = log𝑘 𝑛.

4: Split 𝑎 and 𝑏 into 𝑘𝑙 digits numbers using a shared base 𝑠 .

5: Let 𝑎, 𝑏 ∈ Z𝑘𝑙 be the 𝑘𝑙 digits of 𝑎 and 𝑏, respectively.

6: 𝑎′ = 𝑈 · 𝑎 // For every 𝑗 = 1, . . . , 𝑘 , the sequence of (𝑎[𝑘𝑙−1 ·
( 𝑗 − 1)+1], . . . , 𝑘𝑙−1 𝑗 is a block and the multiplication is between
a matrix and a block vector.

7: 𝑏′ = 𝑉 · 𝑏 // Same as above.
8: for 𝑖 = 1 to 2𝑘 − 1 do
9: if 𝑙 > 1 then
10: Recursively compute [𝑐′]𝑖 = [𝑎′]𝑖 · [𝑏′]𝑖
11: else
12: [𝑐′]𝑖 = [𝑎′]𝑖 · [𝑏′]𝑖
13: end if
14: end for
15: 𝑐′ =𝑊𝑇 · 𝑐′

16: 𝑐 =
2𝑘−1∑
𝑖=1

( [𝑐′]𝑖𝐵𝑖−1) // Compute the carry

17: return 𝑐

We next show that recursive Toom-Cook-𝑘 with Lazy Interpolation

with recursive depth 𝑙 is equivalent to multivariate polynomial

multiplication.

Claim 2.1. Let𝐴 be a Toom-Cook-𝑘 algorithm with lazy interpola-
tion and the evaluation points 𝑆 = {(𝑥𝑖 , ℎ𝑖 )}𝑖≤2𝑘−1. Denote by𝐴𝑙 the
algorithm with 𝑙 recursive depth. Then, 𝐴𝑙 computes a multiplication

between two polynomials with 𝑙 variables such that each variable has
a power of at most 𝑘 − 1. In addition, the algorithm 𝐴𝑙 uses 𝑆𝑙 as
evaluation points.

Proof. Let 𝑖 ≤ 𝑙 . Denote by 𝑦𝐼 the variable used for the split in

the 𝑖′𝑡ℎ depth of the recursion in 𝐴𝑙
. Then, each coefficient of 𝑦𝐼 is

split into 𝑘 coefficients for the variable 𝑦𝑖+1. Thus, 𝐴𝑙
splits each

input into a multivariate polynomial such that the power of every

variable is at most 𝑘 − 1. The evaluation points are 𝑆𝑙 since in every

recursive depth 𝑖 , for each assignment of 𝑦1, . . . , 𝑦𝑖−1, the variable
𝑦𝑖 is assigned all the elements of 𝑆 . □

Multivariate polynomial multiplication has evaluation points in

𝐹 𝑙 . In the following claim, we describe a sufficient condition for

constructing evaluation points in 𝐹 𝑙 .

Definition 2.4. Let 𝑙, 𝑟 ∈ N. Denote by 𝑃𝑜𝑙𝑦𝑟,𝑙 be the set of
polynomials with 𝑙 variables such that the power of the 𝑖’th variable
in each monomial is no more than 𝑟 − 1.

Claim 2.2. Let 𝑙, 𝑘, 𝑛 ∈ N. Let 𝑆 be a set of 𝑛 evaluation points
for multivariate polynomials with 𝑙 variables. The set 𝑆 produces a
bilinear multivariate polynomial multiplication algorithm between
elements in 𝑃𝑜𝑙𝑦𝑘,𝑙 if and only if the evaluation matrix for the product
polynomial is injective.

To prove Claim 2.2 we need the following claim:

Claim 2.3. Let Let 𝑙, 𝑘, 𝑛 ∈ N. Let 𝑆 be a set of 𝑛 evaluation points
for multivariate polynomials with 𝑙 variables. Let 𝐸 be the evaluation
map of 𝑆 for polynomials in 𝑃𝑜𝑙𝑦

2𝑘−1,𝑙 . Let

𝑃𝑜𝑙𝑦′
2𝑘−1,𝑙 = {𝑝 ∈ 𝑃𝑜𝑙𝑦

2𝑘−1,𝑙 |∃𝑎, 𝑏 ∈ 𝑃𝑜𝑙𝑦𝑘,𝑙 s.t. 𝑝 = 𝑎 · 𝑏}

Let𝐸 |𝑃𝑜𝑙𝑦′
2𝑘−1,𝑙

be themap𝐸 reduced to 𝑃𝑜𝑙𝑦′
2𝑘−1,𝑙 . If there is ⟨𝑈 ,𝑉 ,𝑊 ⟩

bilinear multivariate polynomial multiplication algorithm such that
𝑈 and 𝑉 are the evaluation matrix of 𝑆 for elements in 𝑃𝑜𝑙𝑦𝑘,𝑙 , then
𝑊𝑇 ◦ 𝐸 |𝑃𝑜𝑙𝑦′

2𝑘−1,𝑙
is the identity map.

Proof. Let 𝑝 ∈ 𝑃𝑜𝑙𝑦′
2𝑘−1,𝑙 . Let 𝑎, 𝑏 ∈ 𝑃𝑜𝑙𝑦𝑘,𝑙 be polynomials

such that 𝑎 · 𝑏 = 𝑝 . Let 𝑎, 𝑏, and 𝑝 be the corresponding coefficient

vectors of 𝑎, 𝑏, and 𝑝 , respectively. Since𝑈 and𝑉 are the evaluation

matrix of 𝑆 and 𝑝 = 𝑎 · 𝑏, then (𝑈𝑎) ⊙ (𝑉𝑏) is the evaluation of 𝑝

at the points 𝑆 , where ⊙ is the Hadamard product. Thus,

𝑊𝑇 (𝐸 |𝑃𝑜𝑙𝑦′
2𝑘−1,𝑙

(𝑝)) =𝑊𝑇 ((𝑈𝑎) ⊙ (𝑉𝑏))
= 𝐴𝐿𝐺⟨𝑈 ,𝑉 ,𝑊 ⟩ (𝑎, 𝑏)
= 𝑎 · 𝑏 = 𝑝

□

Next we prove Claim 2.2.

Proof of Claim 2.2. Assume that 𝑆 produces a bilinear multi-

variate polynomial multiplication algorithm ⟨𝑈 ,𝑉 ,𝑊 ⟩. Let 𝐸 be the

evaluation matrix of 𝑆 for the product polynomial. Namely, the

matrix 𝐸 is the evaluation map of 𝑆 for polynomials in 𝑃𝑜𝑙𝑦
2𝑘−1,𝑙 .

Assume by contradiction that 𝐸 is not injective. Then there is a vec-

tor 𝑝 such that 𝐸 · 𝑝 = 0. Let 𝑝 be the polynomial that its coefficient

vector is 𝑝 . Let 𝐼 be the set of all the subsets of {1, . . . , 𝑙}. For each
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𝐼 ∈ 𝐴𝑙 let 𝑋𝐼 =
∏

𝑖∈𝐼 𝑥
𝑘−1
𝑖

where 𝑥1, . . . , 𝑥𝑙 are the variables. For

each 𝐼 ∈ 𝐴𝑙 let 𝑎𝐼 ∈ 𝑃𝑜𝑙𝑦 (𝑘, 𝑙) be such that

𝑝 =
∑︁
𝐼 ∈𝐴𝑙

(𝑎𝐼 · 𝑋𝐼 )

Since for each 𝐼 ∈ 𝐴𝑙 , 𝑎𝐼 , 𝑋𝐼 are in 𝑃𝑜𝑙𝑦 (𝑘, 𝑙):

0 = 𝐸 (𝑝) = 𝐸 (
∑︁
𝐼 ∈𝐴𝑙

(𝑎𝐼 · 𝑋𝐼 ))

=
∑︁
𝐼 ∈𝐴𝑙

𝐸 (𝑎𝐼 · 𝑋𝐼 )

=
∑︁
𝐼 ∈𝐴𝑙

𝐸 |𝑃𝑜𝑙𝑦′
2𝑘−1,𝑙

(𝑎𝐼 · 𝑋𝐼 )

According to Claim 2.3,

0 =𝑊𝑇 · 0 =𝑊𝑇
∑︁
𝐼 ∈𝐴𝑙

𝐸 |𝑃𝑜𝑙𝑦′
2𝑘−1,𝑙

(𝑎𝐼 · 𝑋𝐼 )

=
∑︁
𝐼 ∈𝐴𝑙

𝑊𝑇 𝐸 |𝑃𝑜𝑙𝑦′
2𝑘−1,𝑙

(𝑎𝐼 · 𝑋𝐼 )

=
∑︁
𝐼 ∈𝐴𝑙

(𝑎𝐼 · 𝑋𝐼 ) = 𝑝

Thus, 𝐸 is injective.

For the other direction, let 𝐸 be the evaluation map of 𝑆 for

polynomials in 𝑃𝑜𝑙𝑦
2𝑘−1,𝑙 . Assume that 𝐸 is injective. Thus, there

is a map𝑊𝑇
such that𝑊𝑇 ◦ 𝐸 is the identity map. Let𝑈 ,𝑉 be the

evaluation matrix of 𝑆 for polynomials in 𝑃𝑜𝑙𝑦𝑘,𝑙 . Let 𝑎, 𝑏 ∈ 𝑃𝑜𝑙𝑦𝑘,𝑙 .

The values 𝑈 (𝑎) and 𝑉 (𝑏) are the evaluations of 𝑎 and 𝑏 at the

points in 𝑆 , respectively. Thus, 𝑈 (𝑎) ⊙ 𝑉 (𝑏) is the evaluation of

𝑎 · 𝑏 at points in 𝑆 , where ⊙ is the Hadamard product. Namely,

𝑈 (𝑎) ⊙ 𝑉 (𝑏) equals 𝐸 (𝑎 · 𝑏). Therefore,

𝑊𝑇 (𝑈 (𝑎) ⊙ 𝑉 (𝑏)) =𝑊𝑇 ◦ 𝐸 (𝑎 · 𝑏) = 𝑎 · 𝑏

Therefore, ⟨𝑈 ,𝑉 ,𝑊 ⟩ is a multivariate polynomial multiplication

algorithm produced by 𝑆 . □

2.4 Collective communication operations
Collective communication operations, such as broadcast and reduce,

are frequently used in parallel algorithms. Sanders and Sibeyn [66]

introduced an efficient way to perform collective communicators.

Birnbaum and Schwartz [9] extended their results to multiple si-

multaneous reduce operations (referred to as 𝑡-reduce or all-reduce

when 𝑡 = 𝑃 ). Their technique can easily be generalized to broadcast

operation (we similarly denote 𝑡-broadcast and all-broadcast). We

summarize the results in the following lemmas:

Lemma 2.5 (𝑡-reduce ([9])). 𝑡 simultaneous reduce operations on
data of size𝑊 between 𝑃 processors cost: 𝐹 = 𝑡 ·𝑊 , 𝐵𝑊 = 𝑡 ·𝑊 , and
𝐿 = 𝑂 (log 𝑃 + 𝑡).

Corollary 2.6 (𝑡-broadcast). 𝑡 simultaneous broadcast opera-
tions on data of size𝑊 between 𝑃 processors cost: 𝐹 = 0, 𝐵𝑊 = 𝑡 ·𝑊 ,
and 𝐿 = 𝑂 (log 𝑃).

2.5 Linear erasure code

Definition 2.7. An (𝑛, 𝑘, 𝑑)-code is a linear transformation 𝑇 :

R𝑘 → R𝑛 with distance 𝑑 , where distance 𝑑 means that for every
𝑥 ≠ 𝑦 in R𝑘 ,𝑇 (𝑥) and𝑇 (𝑦) have at least 𝑑 coordinates with different
values in R𝑛 . The generator matrix of 𝑇 is an 𝑛 × 𝑘 matrix 𝐺 such
that 𝑇 (𝑥) = 𝐺 · 𝑥 .

A systematic code preserves the original word and adds redundant

letters. Formally it codes a word 𝑥 of length 𝑘 to a word 𝑦 of length

𝑛 using 𝑛 − 𝑘 additional letters such that 𝑦𝑘+𝑖 =
∑𝑛

𝑗=1 𝐸𝑖, 𝑗 · 𝑥 𝑗 for
some (𝑛 − 𝑘) × 𝑘 matrix 𝐸. That is, its generating matrix is of the

form:

𝐺 =

(
𝐼𝑘

𝐸𝑛−𝑘,𝑘

)
and every minor of 𝐸 must be invertible. A common choice of 𝐸 is

the Vandermonde matrix (cf. [17, 23, 43, 65]). In this setting, matrix

𝐸 look as follow:

𝐸
𝑓 , 𝑃

𝑘
=

©«

1 𝜂0 𝜂2
0

· · · 𝜂
𝑃
𝑘
−1

0

1 𝜂1 𝜂2
1

· · · 𝜂
𝑃
𝑘
−1

1

.

.

.
.
.
.

. . .
.
.
.

1 𝜂𝑓 −1 𝜂2
𝑓 −1 · · · 𝜂

𝑃
𝑘
−1

𝑓 −1

ª®®®®®®®®®®®¬
where {𝜂𝑖 ∈ N}𝑓 −1𝑖=0

are a distinct set of integers.

3 PARALLEL TOOM-COOK
Toom-Cook-𝑘 is a recursive long integer multiplication algorithm.

At each recursive step, it splits two integers into 𝑘 parts, constructs

2𝑘 − 1 sub-multiplications, and uses polynomial interpolation to

assemble the output. We present a parallel Toom-Cook algorithm

based on the BFS-DFS parallelization technique (cf. [4, 21, 52, 56]).

Our algorithm generalizes the parallel Karatsuba’s algorithm (Toom-

Cook-2) of [18]. We follow the sequential algorithm with some

adjustments to the parallel setting (recall Toom-Cook’s algorithm

in Section 2.2 and Algorithm 1). Consider the recursive tree of Toom-

Cook-𝑘 . The root corresponds to the task of multiplying 𝑎 by 𝑏. The

2𝑘 − 1 children of the root stand for the 2𝑘 − 1 sub-multiplications,

and so on. The parallel algorithm traverses the recursive tree in

parallel as follows: At each tree level, the algorithm proceeds in

either a BFS step or a DFS step. A BFS step divides the 2𝑘 − 1 sub-

problems among the processors, such that
1

2𝑘−1 of the available

processors at that point work on each sub-problem independently

and in parallel. A DFS step uses all available processors at that point

to solve each sub-problem sequentially. As shown in [4], a DFS step

requires less memory but eventually increases the communication

cost compared to a BFS step.We provided a cost analysis in Section 5.

The recursion stops when a single processor is assigned to each

sub-problem. Thus, the algorithm performs a total of log(2𝑘−1) 𝑃
BFS steps.

Lemma 3.1. The number of DFS steps a parallel Toom-Cook algo-
rithm must perform is at least

𝑙𝐷𝐹𝑆 = log𝑘

(
𝑛

𝑃
log(2𝑘−1) 𝑘

· 1

𝑀

)
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Proof. Each recursive step reduces the problem size by a factor

of 𝑘 , which reduces the memory footprint of each sub-problem by a

factor 𝑘 . In a DFS step, the sub-problems are computed sequentially,

while in a BFS step, the 2𝑘 − 1 sub-problems are computed in

parallel. Hence, a DFS step reduces the memory footprint for a

single processor by a factor of 𝑘 , while a BFS step increases it

by a factor of
2𝑘−1
𝑘

. Recall that the algorithm performs exactly

log(2𝑘−1) 𝑃 BFS steps, which increases the memory footprint by a

factor of(
2𝑘 − 1

𝑘

)
log(2𝑘−1) 𝑃

=
𝑃

𝑘
log(2𝑘−1) 𝑃

=
𝑃

𝑘

log𝑘 𝑃

log𝑘 (2𝑘−1)

=
𝑃

𝑃
1

log𝑘 (2𝑘−1)
=

𝑃

𝑃
log(2𝑘−1) 𝑘

= 𝑃
1−log(2𝑘−1) 𝑘

Let 𝑙 denote the minimal DFS steps required to satisfy the memory

constraints. This means that,

𝑀 ≥ 𝑛

𝑃
·
(
1

𝑘

)𝑙
·
(
2𝑘 − 1

𝑘

)
log(2𝑘−1) 𝑃

=
𝑛

𝑃
· 𝑃1−log(2𝑘−1) 𝑘 · 1

𝑘𝑙
=

𝑛

𝑃
log(2𝑘−1) 𝑘

· 1

𝑘𝑙

Resulting with

𝑙 =

⌈
log𝑘

(
𝑛

𝑃
log(2𝑘−1) 𝑘

· 1

𝑀

)⌉
□

A similar analysis is presented in [52] for fast matrix multiplica-

tion. Ballard et al. [4] showed that performing sufficient DFS steps

(to fit memory limitations) followed by all BFS steps is optimal.

Notice that when 𝑀 = Ω
(

𝑛

𝑃
log(2𝑘−1) 𝑘

)
the algorithm can execute

the multiplication with only BFS steps. This is often called the un-

limited memory case, as additional memory does not benefit the

algorithm. We assume that 𝑛 is a power of 𝑘 and 𝑃 is a power of

2𝑘 − 1 (otherwise, we can add padding or use fewer processors). We

follow a similar data partitioning as in [4, 53] for parallel fast ma-

trix multiplication, with the necessary adaptions to the Toom-Cook

algorithm. We label the processors using log(2𝑘−1) 𝑃-digit strings,
signifying their index in base (2𝑘 − 1). We arrange the processors

in a two-dimensional grid of dimensions
𝑃

2𝑘−1 × (2𝑘 − 1). At each
BFS step, we reposition the processors in the grid such that at the

𝑖′𝑡ℎ BFS step, processors in the same row align in all coordinates

except the 𝑖𝑡ℎ , and the 𝑖𝑡ℎ digit points to the column. At the begin-

ning (resp. end) of the run, the input (resp. output) is distributed

on all processors. Let 𝑙𝑡𝑜𝑡𝑎𝑙 denote the algorithm’s total number of

recursive steps. We use a one-dimensional block-cyclic data layout

on blocks of size
𝑛
𝑃
· 1

𝑘𝑙𝑡𝑜𝑡𝑎𝑙
. This setting minimizes communication

cost as shown in [53]. A BFS step involves communication only

within rows of the grid (2𝑘 − 1 processors), and a DFS step does not

involve communication at all. The rest of the algorithm is similar

to the standard Toom-Cook algorithm.

𝑃/(2𝑘 − 1)

2𝑘 − 1

𝑓

Figure 1: Fault-Tolerant Toom-Cook algorithm with 𝑓 ·
(2𝑘 − 1) additional code processors (highlighted in green),
encoded using a linear code. Each code processor encodes a
single column. Communication occurs only within the rows.

4 FAULT-TOLERANT TOOM-COOK
In this section, we propose a fault-tolerant Toom-Cook algorithm

based on the parallel version of Toom-Cook (Section 3). We pro-

pose a tailored code for each stage of the algorithm. We follow

[8] and apply a linear erasure code that enables fault-tolerance

throughout the evaluation and interpolation stages. We then use

a polynomial code to enable fault-tolerance in the multiplication

stage, leveraging the unique structure of Toom-Cook. In contrast,

in fast matrix multiplication, Birnbaum et al. [8] cannot use a code

for the multiplication stage and require recomputations to recover

from faults at that stage. Integrating our code with Toom-Cook’s

multiplication stage reduces the overhead costs of our fault-tolerant

algorithm. We next present the application of the codes, starting

from our linear coding. We follow the notations in Section 3.

4.1 Linear coding
We follow the parallelization and data partitioning of Parallel Toom-

Cook. We arrange the processors in a similar two-dimensional grid

of size
𝑃

2𝑘−1 ×(2𝑘 − 1) and add 𝑓 additional rows of code processors
(a total of 𝑓 · (2𝑘 − 1) code processors) at the bottom of the grid,

as shown in Figure 1. We denote by 𝑃𝑠
𝑖, 𝑗

the processor in the 𝑖′𝑡ℎ
row and the 𝑗 ′𝑡ℎ column of the two-dimensional grid at the 𝑠′𝑡ℎ
BFS step.

Code creation: We encode the data at each column of standard

processors on the 𝑓 code processors in their column, using (2𝑘 − 1)
identical codes of size

(
𝑃

(2𝑘−1) + 𝑓 , 𝑃
(2𝑘−1) , 𝑓 + 1

)
, as shown in Sec-

tion 2.5. Namely, each code processor holds a weighted sum of the

data in its column processors. Let 𝐴𝑠
𝑖, 𝑗
, 𝐵𝑠

𝑖, 𝑗
denote the parts of 𝑎, 𝑏

stored at 𝑃𝑠
𝑖, 𝑗
. Following the notations of Section 2.5, we get that
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∀𝑖 ∈ [0, · · · , 𝑓 − 1], 𝑗 ∈ [0, · · · , 2𝑘 − 2],
𝑙 ∈ [0, · · · , log(2𝑘−1) 𝑃 − 1] :

𝐴𝑠
𝑃+𝑖, 𝑗 =

∑︁
𝑙∈[0,· · · , 𝑃

𝑘
−1]

𝜂𝑙𝑖 · 𝐴
𝑠
𝑙, 𝑗
, and

𝐵𝑠𝑃+𝑖, 𝑗 =
∑︁

𝑙∈[0,· · · , 𝑃
𝑘
−1]

𝜂𝑙𝑖 · 𝐵
𝑠
𝑙, 𝑗

Each BFS step initiates a new code creation process (after proces-

sors’ repositioning). The rest of the algorithm is similar to Parallel

Toom-Cook. The code processors mimic the behavior of the pro-

cessors in their columns.

Fault recovery: When a fault occurs, the data in that processor

is lost, and the processor is replaced by a new processor (recall

Section 2.1). When the remaining processors in the column finish

their computations, they reconstruct its output using the code pro-

cessors in their column. This is done using a reduce operation to

the newly allocated processor.

Correctness:We next show why the code is preserved through-

out the run. After the code creation process, each code processor

holds a linear sum of the data at the processors in its column. Due to

our data partitioning strategy, a DFS step involves only local com-

putations. Since processors in the same column, code processors

included, perform the same local operations, the code is preserved.

A BFS step involves communication between processors in the same

row. However, since all processors, code processors included, per-

form the same communication operations between processors in

their row, the code is preserved. This code is not preserved during

the multiplication stage, as the local computations involve inner-

data multiplications. To recover from faults in the multiplication

phase, one must recompute the output of the faulty processor. This

recovery is very costly compared to the on-the-fly recovery of faults

in other stages.

4.2 Polynomial coding
To maintain efficient recovery throughout the entire algorithm, one

must combine a different coding strategy for the multiplication

stage. We propose a polynomial coding strategy that utilizes the

algorithm’s structure.

We arrange the processors in a two-dimensional grid, similar to

Parallel Toom-Cook, and add 𝑓 additional columns of code proces-

sors (a total of 𝑓 · 𝑃
(2𝑘−1) code processors) at the right-hand side of

the grid, as shown in Figure 2.

Code creation: Let 𝑆 = {(𝑥𝑖 , ℎ𝑖 )}2𝑘−2𝑖=0
denote the set of evalua-

tion points of Toom-Cook. We add 𝑓 redundant evaluation points,

i.e., a total of 2𝑘 − 1 + 𝑓 evaluation points, denoted by 𝑆
′
= {𝑃𝑖 =

(𝑥𝑖 , ℎ𝑖 )}2𝑘−2+𝑓𝑖=0
. The evaluation matrices 𝑈

′
,𝑉

′
are defined as fol-

lowing:

𝑃/(2𝑘 − 1)

2𝑘 − 1 𝑓

Figure 2: Fault-Tolerant Toom-Cook algorithmwith 𝑓 · 𝑃
(2𝑘−1)

additional code processors (highlighted in green), encoded
using a polynomial code.

𝑈
′
= 𝑉

′
=

©«

ℎ𝑘−1
0

𝑥0
0

ℎ𝑘−2
0

𝑥1
0

· · · ℎ0
0
𝑥𝑘−1
0

ℎ𝑘−1
1

𝑥0
1

ℎ𝑘−2
1

𝑥1
1

· · · ℎ0
1
𝑥𝑘−1
1

.

.

.
.
.
.

. . .
.
.
.

ℎ𝑘−1
2𝑘−2+𝑓 𝑥

0

2𝑘−2+𝑓 ℎ𝑘−2
2𝑘−2+𝑓 𝑥

1

2𝑘−2+𝑓 · · · ℎ0
2𝑘−2+𝑓 𝑥

𝑘−1
2𝑘−2+𝑓
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The rest of the algorithm is similar to Parallel Toom-Cook but

with a new set of evaluation points 𝑆
′
. After the first recursive

step, the algorithm proceeds with the standard Parallel Toom-Cook

algorithm.

Fault recovery: There is no fault recovery mechanism. When a

fault occurs, we halt the execution of the remaining processors of

its column.

Correctness: Notice that the interpolation stage only requires

the output of 2𝑘 − 1 sub-problems. Since there are at most 𝑓 faults,

at least 2𝑘 − 1 sub-problems finish, and the interpolation stage

proceeds as planned. The only difference from Parallel Toom-Cook

is that the interpolation matrix is calculated on the fly according to

the evaluation points of the finished sub-problems.

4.3 Multi-step traversal
The polynomial coding strategy often requires more code proces-

sors to withstand each fault (
𝑃

(2𝑘−1) compared to 𝑘). To improve

that, we combine multiple BFS steps into a single large one. Let

𝑙 ∈ [1, · · · , log(2𝑘−1) 𝑃] denote the number of combined steps. We

divide the 𝑃 original processors into a two dimensional grid of size

𝑃

(2𝑘−1)𝑙
× (2𝑘 − 1)𝑙 . We add 𝑓 additional columns of processors (a

total of 𝑓 · 𝑃

(2𝑘−1)𝑙
additional processors) at the right-hand side of

the two-dimensional grid as shown in Figure 3. The rest of the algo-

rithm is similar to Fault-tolerant Toom-Cook-𝑘𝑙 with polynomial

code.

Allowing multi-step traversal in Toom-Cook with fault tolerance

requires finding redundant evaluation points. We leave that for

future work.
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𝑃/(2𝑘 − 1)𝑙

(2𝑘 − 1)𝑙 𝑓

Figure 3: Fault-Tolerant Toom-Cook algorithmwith 𝑓 · 𝑃

(2𝑘−1)𝑙
additional code processors (highlighted in green), encoded
using a polynomial code.

Remark 4.1. The Toom-Graph technique [11] (for optimization of
the interpolation stage) is applicable to our algorithm.

5 COST ANALYSIS AND COMPARISON
This section analyzes the costs of Parallel Toom-Cook, Fault-tolerant

Toom-Cook, and Toom-Cook with replication.

5.1 Parallel Toom-Cook
Theorem 5.1. Let 𝑃 , 𝑀 , and 𝑛 denote the number of processors,

memory size, and input size. Denote by 𝐹 , 𝐵𝑊 , and 𝐿 the arithmetic,
bandwidth, and latency costs of Parallel Toom-Cook, respectively.
Then,

𝐹 = Θ

(
𝑛log𝑘 (2𝑘−1)

𝑃

)
𝐵𝑊 = Θ

(
max

(( 𝑛
𝑀

)
log𝑘 (2𝑘−1)

· 𝑀
𝑃
,

𝑛

𝑃
log(2𝑘−1) 𝑘

))
𝐿 = Θ

(
max

(( 𝑛
𝑀

)
log𝑘 (2𝑘−1)

· log 𝑃
𝑃

, log 𝑃

))
Proof. Unlimited-memory case: In this case, the algorithm

only performs BFS steps. In a BFS step, the evaluation and inter-

polation stages involve local computations and data exchanges

between processors in the same row. The data exchanges are per-

formed using an all-reduce operation. For a data of size
𝑛
𝑃
, this costs

(𝐹𝐵𝐹𝑆 , 𝐵𝑊𝐵𝐹𝑆 , 𝐿𝐵𝐹𝑆 ) =
(
Θ

(
𝑛
𝑃

)
,Θ

(
𝑛
𝑃

)
,Θ (1)

)
(Lemma 2.5). Each

BFS step increases the data size by a factor of
2𝑘−1
𝑘

. Summing the

costs of all BFS steps, we get that:

𝐹𝐵𝐹𝑆 =

log(2𝑘−1) 𝑃∑︁
𝑖=1

Θ

(
𝑛

𝑃
·
(
2𝑘 − 1

𝑘

)𝑖 )
= Θ

(
𝑛

𝑃
log(2𝑘−1) 𝑘

)
𝐵𝑊𝐵𝐹𝑆 =

log(2𝑘−1) 𝑃∑︁
𝑖=1

Θ

(
𝑛

𝑃
·
(
2𝑘 − 1

𝑘

)𝑖 )
= Θ

(
𝑛

𝑃
log(2𝑘−1) 𝑘

)
𝐿𝐵𝐹𝑆 =

log(2𝑘−1) 𝑃∑︁
𝑖=1

Θ (1) = Θ (log 𝑃)

The multiplication phase involves 𝑛log𝑘 (2𝑘−1)
scalar multiplica-

tions, performed by 𝑃 processors. Hence,

𝐹𝑚𝑢𝑙 = Θ

(
𝑛log𝑘 (2𝑘−1)

𝑃

)
, 𝐵𝑊𝑚𝑢𝑙 = 𝐿𝑚𝑢𝑙 = 0

Overall, we get that

𝐹 = Θ

(
𝑛log𝑘 (2𝑘−1)

𝑃

)
𝐵𝑊 = Θ

(
𝑛

𝑃
log(2𝑘−1) 𝑘

)
(1)

𝐿 = Θ (log 𝑃)

Limited-memory case: In this case, the algorithm performs

𝑙𝐷𝐹𝑆 = log𝑘

(
𝑛

𝑃
log(2𝑘−1) 𝑘

· 1

𝑀

)
DFS steps before switching to BFS

steps (Lemma 3.1). Each DFS step reduces the problem size by a

factor of 𝑘 but increases the number of problems by a factor of

2𝑘 − 1. Thus, the limited-memory case is similar to running the

unlimited-memory case 𝑡𝑢𝑚 times for inputs of size 𝑛𝑢𝑚 , where

𝑡𝑢𝑚 = (2𝑘 − 1)
log𝑘

(
𝑛

𝑃
log(2𝑘−1) 𝑘

· 1

𝑀

)

= 𝑘
log𝑘 (2𝑘−1) ·log𝑘

(
𝑛

𝑃
log(2𝑘−1) 𝑘

· 1

𝑀

)

=

(
𝑛

𝑃
log(2𝑘−1) 𝑘

· 1

𝑀

)
log𝑘 (2𝑘−1)

=

( 𝑛
𝑀

)
log𝑘 (2𝑘−1)

· 1
𝑃

and

𝑛𝑢𝑚 =
𝑛

𝑘𝑙𝐷𝐹𝑆
=

𝑛

𝑛

𝑃
log(2𝑘−1) 𝑘

· 1

𝑀

= 𝑃
log(2𝑘−1) 𝑘 ·𝑀

From Equation (1), we have

𝐹𝑢𝑚 = Θ

(
𝑛
log𝑘 (2𝑘−1)
𝑢𝑚

𝑃

)
= Θ

©«
(
𝑃
log(2𝑘−1) 𝑘 ·𝑀

)
log𝑘 (2𝑘−1)

𝑃

ª®®¬
= Θ

(
𝑃 ·𝑀 log𝑘 (2𝑘−1)

𝑃

)
= Θ

(
𝑀 log𝑘 (2𝑘−1)

)
𝐵𝑊𝑢𝑚 = Θ

(
𝑛𝑢𝑚

𝑃
log(2𝑘−1) 𝑘

)
= Θ

(
𝑃
log(2𝑘−1) 𝑘 ·𝑀
𝑃
log(2𝑘−1) 𝑘

)
= Θ (𝑀)

𝐿𝑢𝑚 = Θ (log 𝑃)

Overall, we get that

𝐹 = 𝑡𝑢𝑚 · 𝐹𝑢𝑚 = Θ

(
𝑛log𝑘 (2𝑘−1)

𝑃

)
𝐵𝑊 = 𝑡𝑢𝑚 · 𝐵𝑊𝑢𝑚 = Θ

(( 𝑛
𝑀

)
log𝑘 (2𝑘−1)

· 𝑀
𝑃

)
𝐿 = 𝑡𝑢𝑚 · 𝐿𝑢𝑚 = Θ

(( 𝑛
𝑀

)
log𝑘 (2𝑘−1)

· log 𝑃
𝑃

)
□
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5.2 Fault-tolerant Toom-Cook
Theorem 5.2. Let 𝑃 ,𝑀 , 𝑛, and 𝑓 denote the number of processors,

memory size, input size, and number of faults. Let 𝐹 , 𝐵𝑊 , 𝐿, and 𝑃
denote the arithmetic cost, bandwidth cost, latency cost, and processor
count of Parallel Toom-Cook, respectively. Denote by 𝐹

′
, 𝐵𝑊

′
, 𝐿

′
, and

𝑃
′
the arithmetic cost, bandwidth cost, latency cost, and processor

count of Fault-tolerant Toom-Cook, respectively. Then,

𝐹
′
= (1 + 𝑜 (1)) · 𝐹

𝐵𝑊
′
= (1 + 𝑜 (1)) · 𝐵𝑊

𝐿
′
= (1 + 𝑜 (1)) · 𝐿

𝑃
′
=

{
𝑓 · (2𝑘 − 1) 𝑀 = 𝑂

(
𝑛

𝑃
log(2𝑘−1) 𝑘

)
𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Proof. Our fault-tolerance version combines two types of codes.

We start with linear coding for the evaluation and interpolation

phases, and then we switch to polynomial coding for the multipli-

cation phase. We arrange the processors in a
𝑃

2𝑘−1 × (2𝑘 − 1) grid
and add 𝑓 · (2𝑘 − 1) code processors (as shown in Figure 1). We

then encode the original processors data on the code processors

(using an 𝑓 -reduce operation), which costs (Lemma 2.5)

(𝐹𝑐𝑐 , 𝐵𝑊𝑐𝑐 , 𝐿𝑐𝑐 ) =
(
𝑂 (𝑓 ·𝑀) , 𝑂 (𝑓 ·𝑀) , 𝑂

(
log

(
𝑃

2𝑘 − 1

+ 𝑓

)))
When a fault occurs, the processors in the faulty processor’s column

recover its lost data using a reduce operation to the newly allocated

processor. Recovering from 𝑓 faults costs is done using an 𝑓 -reduce

operation, which costs (Lemma 2.5)(
𝐹𝑓 𝑟 , 𝐵𝑊𝑓 𝑟 , 𝐿𝑓 𝑟

)
=

(
𝑂 (𝑓 ·𝑀) , 𝑂 (𝑓 ·𝑀) , 𝑂

(
log

(
𝑃

2𝑘 − 1

+ 𝑓

)))
For themultiplication phase, we arrange the processors in a

𝑃
(2𝑘−1)𝑟 ×

(2𝑘 − 1)𝑟 grid and add 𝑓 · 𝑃
(2𝑘−1)𝑟 code processors (as shown in

Figure 2). We then perform a single step of Parallel Toom-Cook

with 𝑓 additional evaluation points and continue recursively with

the standard Parallel Toom-Cook. Recall the cost analysis of Parallel

Toom-Cook. The cost of the first step in the fault tolerant algorithm

(5.1), increasing the cost of the first step by a factor of
2𝑘−1+𝑓
2𝑘−1 , com-

pared to the same step (for using 2𝑘 − 1 + 𝑓 sets instead of 2𝑘 − 1)

does not affect asymptotically. Moreover, as we disregard the work

of faulty processors, there are no overhead costs for fault recovery.

Overall, we get that:

𝐹
′
= (1 + 𝑜 (1)) · 𝐹

𝐵𝑊
′
= (1 + 𝑜 (1)) · 𝐵𝑊

𝐿
′
= (1 + 𝑜 (1)) · 𝐿

𝑃
′
= 𝑓 · (2𝑘 − 1)

Notice that in the unlimited-memory case (𝑀 = Ω
(

𝑛

𝑃
log(2𝑘−1) 𝑘

)
),

one can avoid using linear coding. In this case, using Fault-Tolerant

Toom-Cook-𝑘 with 𝑙 multi-step traversal (for 𝑙 = log
2𝑘−1 𝑃 ) reduces

the number of additional processors to 𝑓 (instead of 𝑓 · (2𝑘 − 1)). □

5.3 Toom-Cook with Replication
Theorem 5.3. Let 𝑃 ,𝑀 , 𝑛, and 𝑓 denote the number of processors,

memory size, input size, and number of faults. Let 𝐹 , 𝐵𝑊 , 𝐿, and 𝑃
denote the arithmetic cost, bandwidth cost, latency cost, and processor
count of Parallel Toom-Cook, respectively. Denote by 𝐹

′
, 𝐵𝑊

′
, 𝐿

′
, and

𝑃
′
the arithmetic cost, bandwidth cost, latency cost, and processor

count of Toom-Cook with Replication, respectively. Then,

𝐹
′
= 𝐹

𝐵𝑊
′
= (1 + 𝑜 (1)) · 𝐵𝑊

𝐿
′
= (1 + 𝑜 (1)) · 𝐿

𝑃
′
= 𝑓 · 𝑃

Proof. In the replication strategy, we replicate the processors

into 𝑓 (by adding 𝑓 − 1 sets of 𝑃 processors) and run Parallel Toom-

Cook on each set independently and in parallel. Thus, the costs of

this algorithm are similar to Parallel Toom-Cook with a negligible

communication overhead on data replicating. □

6 GENERALIZATION AND SPECIAL CASES
6.1 Multi-step Toom-Cook
This section provides the full details on Multi-step Toom-Cook with

fault tolerance. Toom-Cook with 𝑙-step traversal generates 𝑘𝑙 sub-

problems at each recursive step. In our fault-tolerant version, we

add 𝑓 new sub-problems, namely, 𝑓 new evaluation points. To do

so, we introduce (𝑟, 𝑙)-general position, a generalization of linear

general position ([80]), and show that choosing a set of points with

this property is a sufficient condition for valid evaluation points.

We then propose a heuristic for finding the set of points.

Let 𝑘, 𝑙, 𝑓 ∈ N be the parameters of a fault-tolerant 𝑙-step Toom-

Cook-𝑘 algorithm. A set 𝑆 of (2𝑘 − 1)𝑙 + 𝑓 evaluation points over

some field 𝐹 is valid if and only if the evaluation matrix of every

subset of (2𝑘 − 1)𝑙 points is injective.

Definition 6.1 ((𝑟, 𝑙)-General Position). Let 𝐹 𝑙 be an 𝑙 dimen-
sional Euclidean space. Let 𝑆 be a set of points in 𝐹 𝑙 . The points in 𝑆
are in (𝑟, 𝑙)-general position if and only if for every 𝑆 ′ ⊂ 𝑆 such that
|𝑆 ′ | = 𝑟 𝑙 , the only polynomial in 𝑃𝑜𝑙𝑦𝑟,𝑙 that vanishes on 𝑆 ′ is the
zero polynomial.

Claim 6.1. Let 𝑁 = 𝑟 𝑙 . Let 𝑆 be a set of 𝑛 evaluation points, where
𝑁 ≤ 𝑛 ∈ N. Let 𝐴 ∈ 𝐹𝑛×𝑁 be an evaluation matrix of 𝑆 . Every sub-
matrix of size 𝑁 × 𝑁 is injective if and only if 𝑆 is in (𝑟, 𝑙)-general
position.

Proof. Assume that 𝑆 is in (𝑟, 𝑙)-general position. Assume by

contradiction that a sub-matrix 𝐴
′ ∈ 𝐹𝑁×𝑁

, corresponding to

the evaluation matrix of 𝑆
′ ⊂ 𝑆 , is not injective, namely its 𝑁

rows are linearly dependent. Since 𝐴′
is not invertible, there is

𝑝 ∈ ker𝐴′\{0}, which means that 𝑝 is the coefficient vector of

a non-zero polynomial in 𝑃𝑜𝑙𝑦𝑟,𝑙 that vanishes on 𝑆
′
. Hence, 𝑆 is

not in (𝑟, 𝑙)-general position (see Definition 6.1). The proof for the

other direction is similar. If 𝑆 is in (𝑟, 𝑙)-general position, then the

evaluation matrix for every subset 𝑆
′ ⊂ 𝑆 of size 𝑁 is invertible,

and hence, injective. □
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Hence, if a set 𝑆 of (2𝑘 − 1)𝑙 + 𝑓 points is in (2𝑘 − 1, 𝑙)-general
position, then it is a valid set of evaluation points for fault-tolerant

Toom-Cook-𝑘 with 𝑙-step traversal.

6.2 Finding points in (2𝑘 − 1, 𝑙)-general position
We provide a heuristic for finding 𝑓 redundant evaluation points

for Fault-Tolerant Toom-Cook-𝑘 . Our heuristic is recursive, adding

one point at a time.

We follow the notations in Section 6.1. Let 𝑆 be a set of evaluation

points in (2𝑘 − 1, 𝑙)-general position. Denote by 𝑇𝑆 = {𝐿 ⊂ 𝑆 :

|𝐿 | = (2𝑘 − 1)𝑙 − 1}, and let 𝑃 ∈ 𝑇𝑆 be an arbitrary subset of 𝑆 .

Let 𝑥 ∈ 𝐹 𝑙 be a vector. We denote by 𝐴𝑃 (𝑥) ∈ 𝐹 (2𝑘−1)𝑙×(2𝑘−1)𝑙

the evaluation matrix of 𝑃 ∪ {𝑥}, and by 𝑞𝑃 (𝑥) the multivariate

polynomial det(𝐴𝑃 (𝑥)) where 𝑥 = (𝑥1, ..., 𝑥𝑙 ) are the variables.

Claim 6.2. Let 𝑘, 𝑙 ∈ N. Let 𝑆 be a set of evaluation points in
(2𝑘 − 1, 𝑙)-general position. Let 𝑥 ∈ 𝐹 𝑙 be a point such that 𝑞𝑃 (𝑥) ≠ 0

for every 𝑃 ∈ 𝑇𝑆 . Then, 𝑆 ∪ {𝑥} is in (2𝑘 − 1, 𝑙)-general position.

Proof. Let 𝑆 ′ ⊂ 𝑆 ∪{𝑥} such that |𝑆 ′ | = (2𝑘 −1)𝑙 . In case 𝑥 ∉ 𝑆 ′

then 𝑆 ′ ⊂ 𝑆 and thus the only polynomial that vanishes on 𝑆 ′ is
the zero polynomial since 𝑆 is in (2𝑘 − 1, 𝑙)-general position.

In case 𝑥 ∈ 𝑆 ′, then let 𝑃 = 𝑆 ′\{𝑥}. Thematrix𝐴𝑃 (𝑥) is the evalu-
ationmatrix of 𝑆 ′. Thematrix𝐴𝑃 (𝑥) is invertible since det(𝐴𝑃 (𝑥)) =
𝑞𝑃 (𝑥) ≠ 0. Therefore, ker(𝐴𝑃 (𝑥)) = {0} and thus the only polyno-

mial that vanishes on 𝑆 ′ is the zero polynomial. Thus, 𝑆 ∪ {𝑥} is in
(2𝑘 − 1, 𝑙)-general position. □

Let𝑈𝑆 denote the set:

𝑈𝑆 = {𝑥 ∈ 𝐹 𝑙 : ∃𝑃 ∈ 𝑇𝑆 s.t. 𝑞𝑃 (𝑥) = 0}

From Claim 6.2, every 𝑥 ∉ 𝑈𝑆 can be used as a redundant evaluation

point. We show in the following claims that there such point 𝑥

always exists.

Claim 6.3. Let 𝑘, 𝑙 ∈ N. Let 𝑆 be a finite set in (2𝑘 − 1, 𝑙)-general
position. Let 𝑃 ∈ 𝑇𝑆 . Then, 𝑞𝑃 is not the zero polynomial.

Proof. Assume by contradiction that 𝑞𝑃 is the zero polynomial.

Let 𝐸𝑃 ∈ 𝐹 ( (2𝑘−1)𝑙−1)×(2𝑘−1)𝑙
be the evaluation matrix of 𝑃 . Let

𝑦 be a row vector in (𝐹 (2𝑘−1)𝑙 )𝑇 that is not in the span of the

rows of 𝐸𝑃 . Let 𝐸𝑃,𝑦 ∈ 𝐹 (2𝑘−1)𝑙×(2𝑘−1)𝑙
be the matrix that its first

(2𝑘 − 1)𝑙 − 1 rows are 𝐸𝑃 and the last row is 𝑦. The rows of 𝐸𝑃 are

linearly independent since 𝑆 is in (2𝑘 − 1, 𝑙)-general position. Thus
the rows of 𝐸𝑃,𝑦 are linearly independent and det(𝐸𝑃,𝑦) ≠ 0.

Let 𝐵𝑃,𝑖 ∈ 𝐹 ( (2𝑘−1)𝑙−1)×( (2𝑘−1)𝑙−1)
be the evaluation matrix of

𝑃 without the 𝑖’th column. The coefficient of the 𝑖’thmonomial of𝑞𝑃
is (−1)𝑖+1 det(𝐵𝑃,𝑖 ). Since 𝑞𝑃 is the zero polynomial, det(𝐵𝑃,𝑖 ) = 0

and we get the contradiction:

0 ≠ det(𝐸𝑃,𝑦) =
𝑡𝑙∑︁
𝑖

[𝑦]𝑖 (−1)𝑖+1 det(𝐵𝑃,𝑖 ) = 0

. □

Claim 6.4. Let 𝑆 be a finite set in (2𝑘 − 1, 𝑙)-general position. The
set𝑈𝑆 is a null set, and there is 𝑥 ∈ 𝐹 𝑙\𝑈𝑆 .

Proof. Let 𝑆 be a finite set in (2𝑘 − 1, 𝑙)-general position. Let
𝑃 ∈ 𝑇𝑆 . The polynomial 𝑞𝑃 is not the zero polynomial (Claim 6.3).

Thus, 𝑞𝑃 vanishes on a finite union of curves (Harnack’s Inequality

[73]). Since each curve is a null set and a finite union of null sets

is a null set, 𝑞𝑃 vanishes on a null set. Hence, 𝑈 is a finite union

of null sets and thus a null set. Since 𝐹 𝑙 is not a null set, there is

𝑥 ∈ 𝐹 𝑙\𝑈𝑆 . □

Hence, we can always find more evaluation points using our pro-

posed heuristic.

An alternative proof is that we can always find more evaluation

points in Z𝑙 .

Claim 6.5. Let 𝑅 be a ring with characteristic 0. Let 𝑙, 𝑘 ∈ N and let
𝑆 be a finite set of evaluation points from 𝑅𝑙 that are in (𝑘, 𝑙)-general
position. There is an element 𝑥 ∈ Z𝑙 ⊂ 𝑅𝑙 such that 𝑆 ∪ {𝑥} is in
general position.

Proof. It is enough to show that there is 𝑥 ∈ Z such that

𝑞𝑃 (𝑥) ≠ 0 for every 𝑃 ∈ 𝑇𝑆 (Claim 6.2). Let 𝑞𝑆 =
∏

𝑃∈𝑇𝑆 𝑞𝑃 be

a polynomial. We can see that there is 𝑃 ∈ 𝑇𝑆 such that 𝑞𝑃 (𝑥) = 0

if and only if 𝑞𝑆 (𝑥) = 0. Since the power of each variable of each

monomial in each 𝑞𝑃 is at most 𝑘 − 1, then the power of each

variable in each monomial of 𝑞𝑆 is at most |𝑇𝑆 | (𝑘 − 1). Therefore,
𝑞𝑆 ∈ 𝑃𝑜𝑙𝑦 |𝑇𝑆 | (𝑘−1)+1,𝑙 . Since 𝑞𝑃 ≠ 0 for every 𝑃 ∈ 𝑇𝑆 , we conclude

that 𝑞𝑆 ≠ 0.

Let 𝐴 = {0, . . . , |𝑇𝑆 | (𝑘 − 1)} a set of points in Z. The points 𝐴
can produce a Toom-Cook-

|𝑇𝑆 | (𝑘−1)+2
2

algorithm since those are

|𝑇𝑆 | (𝑘 − 1) + 1 different evaluation points in one dimension. Thus,

𝐴𝑙
can produce an 𝑙-steps Toom-Cook-

|𝑇𝑆 | (𝑘−1)+2
2

algorithm. So,

𝐴𝑙
are in ( |𝑇𝑆 | (𝑘 − 1) + 1, 𝑙)-general position (Claim 2.2). Since

𝑞𝑆 ∈ 𝑃𝑜𝑙𝑦 |𝑇𝑆 | (𝑘−1)+1,𝑙 and 𝑞𝑆 is not the zero polynomial, then 𝑞𝑆

does not vanish on 𝐴𝑙
. Thus, there is 𝑥 ∈ 𝐴𝑙

that 𝑞𝑆 (𝑥) ≠ 0. Then,

𝑞𝑃 (𝑥) ≠ 0 for every 𝑃 ∈ 𝑇𝑆 and thus 𝑆 ∪ {𝑥} is in (𝑘, 𝑙)-general
position. Since 𝐴𝑙 ⊂ Z𝑙 , there is 𝑥 ∈ Z𝑙 such that 𝑆 ∪ {𝑥} is in
(𝑘, 𝑙)-general position. □

7 DISCUSSION
This paper addresses the problem of faults in long integer multi-

plication and proposes a new coded computation approach that

is significantly faster than existing solutions. Traditional general-

purpose methods, while broadly applicable, incur large overheads.

Future directions include empirical research on real-world settings

and exploring the applicability of our coding strategy to other al-

gorithms. The code of Birnbaum et al. [8] requires recomputations

to recover from faults in the multiplication stage. Our code avoids

this cost by introducing a code tailored to the algorithm. This ap-

proach may apply to improve fault-tolerant of other recursive linear

algebra algorithms, including FFT-based algorithms. Optimizing

the choice of redundant evaluation points may lead to speedup in

practice by decreasing the arithmetic cost by a constant factor. In

addition, finding redundant evaluation points for Fault Tolerant

Toom-Cook-𝑘 with multi-step traversal will reduce the additional

processor count (in the unlimited-memory case) by a significant

constant factor of 2𝑘 − 1. Finally, the evaluation and interpolation

stages are linear transformations. These can be viewed as codes
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that may hold natural fault tolerance, similar to the ones in fast

matrix multiplication [8].
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