
Brief Announcement: Hypergraph Partitioning for
Parallel Sparse Matrix-Matrix Multiplication

Grey Ballard
Sandia National Laboratories

gmballa@sandia.gov

Alex Druinsky
Lawrence Berkeley National Laboratory

adruinsky@lbl.gov

Nicholas Knight
University of California, Berkeley

knight@cs.berkeley.edu

Oded Schwartz
Hebrew University, Jerusalem, Israel

odedsc@cs.huji.ac.il

ABSTRACT
The performance of parallel algorithms for sparse matrix-
matrix multiplication is typically determined by the amount
of interprocessor communication performed, which in turn
depends on the nonzero structure of the input matrices.
In this paper, we characterize the communication cost of
a sparse matrix-matrix multiplication algorithm in terms
of the size of a cut of an associated hypergraph that en-
codes the computation for a given input nonzero structure.
Obtaining an optimal algorithm corresponds to solving a
hypergraph partitioning problem. Our hypergraph model
generalizes several existing models for sparse matrix-vector
multiplication, and we can leverage hypergraph partition-
ers developed for that computation to improve application-
specific algorithms for multiplying sparse matrices.

1. INTRODUCTION
Sparse matrix-matrix multiplication (SpGEMM) is a fun-

damental computation in applications ranging from linear
solvers to graph algorithms and data analysis (see [5] and ref-
erences therein). SpGEMM algorithms are typically commu-
nication bound, spending much more of their time moving
data than performing additions and multiplications. Fur-
thermore, the computation is usually irregular and depends
on the nonzero structures of the input matrices.

Hypergraphs are used to model and optimize parallel algo-
rithms for sparse matrix-dense vector multiplication (SpMV);
see, e.g., [7, 8]. More recently, hypergraph models have
been proposed for the outer-product algorithm for SpGEMM
[1]. In this work, we present a hypergraph model that gen-
eralizes the “fine-grain” SpMV model [7] and considers a
more general class of SpGEMM algorithms than [1] to mini-
mize communication. Hypergraphs have been used to model
more general computations than SpGEMM [10]: we differ

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SPAA’15, June 13–15, 2015, Portland, OR, USA.
ACM 978-1-4503-3588-1/15/06.
http://dx.doi.org/10.1145/2755573.2755613.

from this work by optimizing interprocessor communication
rather than disk I/O.

In particular, in this work we consider the critical-path
communication cost of a parallel algorithm, which is the
number of words communicated between processors along a
critical path of the algorithm. This cost is usually corre-
lated with (but can exceed) the maximum number of words
communicated by any processor during the algorithm, and
it differs from the communication volume, which is the total
number of words communicated by all processors.

The main contributions of this work are (1) showing that
SpGEMM can be modeled by a hypergraph so that its com-
munication cost corresponds to the size of a cut induced
by a partition of the vertices and (2) demonstrating that
hypergraph partitioners can be used to determine efficient
SpGEMM algorithms for an algebraic multigrid application.

2. THEORETICAL MODEL
Let A and B be I-by-K and K-by-J matrices over X,

a set closed under two binary operations denoted by addi-
tion (commutative and associative with identity element 0)
and multiplication (with absorbing element 0). SpGEMM
is (A,B) 7→ C, where C is an I-by-J matrix over X de-
fined entrywise by cij =

∑
k∈[K] aikbkj ([K] denotes the set

{1, . . . ,K}). We let SA ⊆ [I] × [K], SB ⊆ [K] × [J], and
SC ⊆ [I]× [J] denote the nonzero structures of A, B, and
C. Here we consider algorithms that evaluate and sum all
nontrivial multiplications aikbkj , where aik and bkj 6= 0, and
thus depend only on SA and SB. We do not consider algo-
rithms that exploit additional structure on X or more gen-
eral relations on the entries of A and B: in particular, we
ignore numerical cancellation, so SA and SB induce SC.

Definition 1. Given input matrices A and B, let the
SpGEMM hypergraph be H(A,B) = (V,N), with vertices

V = {vikj : (i, k) ∈ SA ∧ (k, j) ∈ SB}

and nets N =NA ∪NB ∪NC, where

NA = { nA
ik : (i, k) ∈ SA } with nA

ik = { vikj : j ∈ [J] } ,
NB = { nB

kj : (k, j) ∈ SB } with nB
kj = { vikj : i ∈ [I] } ,

NC = { nC
ij : (i, j) ∈ SC } with nC

ij = { vikj : k ∈ [K] } .

In H(A,B), each vertex corresponds to a nontrivial multi-
plication, and each net nA

ik, nB
kj , and nC

ij corresponds to a

86

nonzero of A, B, and C, and contains all nontrivial multi-
plications in which that nonzero participates.

We now consider performing SpGEMM with input ma-
trices A and B on a parallel machine with p processors
with disjoint memories. A parallelization is a p-way par-
tition of V (assigning multiplications to processors) and a
data distribution is a triple of p-way partitions of SA, SB,
and SC (assigning nonzeros to processors). The communi-
cation proceeds in two phases: the expand phase, where the
processors exchange nonzero entries of A and B (initially
distributed according to the partitions of SA and SB) in or-
der to perform their multiplications (assigned according to
the partition of V), and the fold phase, where the processors
communicate to reduce partial sums for nonzero entries of
C (finally distributed according to the partition of SC).

The model proposed in Definition 1 is a generalization of
the fine-grain SpMV model [7], but it also has an important
intuitive distinction. In the fine-grain SpMV model, nets
correspond to rows and columns of the matrix and vertices
correspond to entries of the matrix. In H(A,B), if B is a
dense vector, then all of the nets in NA collapse to single-
tons, the K nets of NB correspond to columns of the matrix
A, and the I nets of NC correspond to rows of the matrix
A. The vertices of H(A,B) correspond to scalar multipli-
cations, which in this case coincide with entries of A. Thus,
H(A,B) reproduces the SpMV model.

However, we emphasize that the vertices of H(A,B) cor-
respond to computation rather than data, which in the case
of general SpGEMM do not coincide (as they do for SpMV).
Therefore, the principal partitioning problem is that of as-
signing work to processors. Data distribution, or partition-
ing the entries of A, B, and C among processors, is our
secondary concern, much like the partitioning of the input
and output vectors in the case of SpMV.

The model proposed in Definition 1 is also distinct from
the ones proposed in [1]. The approach in [1] considers a
restricted class of parallelizations, known as outer-product
algorithms, which leads to hypergraphs with fewer vertices
and nets, while our model encompasses 1D (which include
outer-product), 2D, and 3D parallelizations as defined in [2].
Another difference in the models is that the approach in [1]
simultaneously partitions scalar multiplications and output
matrix data, while we partition only the multiplications, as
described above.

Definition 2. Given a partition {V1, . . . ,Vp} of V, for
each i ∈ [p], we define Qi, the ith cut of H, to be the subset
of N having nonempty intersections with both Vi and V \Vi.

Lemma 1. Given an SpGEMM computation with paral-
lelization {V1, . . . ,Vp} and any data distribution, the num-
ber of words each processor i sends or receives is at least
|Qi|, and the critical-path cost is at least maxi∈[p] |Qi|.

Proof. For each processor i, for each net in Qi, proces-
sor i must either receive or send the corresponding nonzero,
since at most one processor owns each nonzero at the start
and end of the computation. (While singleton nets may not
uniquely correspond to a nonzero in A, B, or C, they are
never cut.) The bound on the critical-path communication
cost is obtained by maximizing over processors.

Lemma 1 yields a lower bound over all parallelizations, sub-
ject to a computational load balance constraint.

Definition 3. For any ε ∈ [0, p − 1], let Πε be the set
of all partitions {V1, . . . ,Vp} of V where |Vi| ≤ (1 + ε)|V|/p
for each i ∈ [p]. We say an SpGEMM computation with
parallelization {V1, . . . ,Vp} ∈Πε is ε-load balanced.

Note that the sets Πε are nested: Π0 contains only perfectly
balanced partitions while Πp−1 contains every partition, in-
cluding trivial parallelizations with no interprocessor com-
munication where one processor performs the whole compu-
tation.

Theorem 1. For any ε-load balanced SpGEMM compu-
tation, its critical-path communication cost is at least

min
{V1,...,Vp}∈Πε

max
i∈[p]
|Qi|.

The next result shows that this critical-path lower bound is
tight up to a logarithmic factor.

Theorem 2. For an SpGEMM computation with paral-
lelization {V1, . . . ,Vp}, there exists a data distribution such
that the number of words processor i sends/receives is O(|Qi|)
and the critical-path communication cost is O(log p·max |Qi|).

Proof. We construct a data distribution by assigning the
nonzero corresponding to each net in NA, NB, and NC to
one of the processors owning a vertex in that net. The ex-
pand phase proceeds in at mostO(log p) steps. Each nonzero
of A and B is associated with a binary-tree broadcast among
the processors whose parts Vi intersect the corresponding
nets. Processor i receives each of its nonzeros at most once
and sends each at most twice, for a total cost of O(|Qi|).
Further, at each step j, processor i performs its assigned
sends or receives from all the broadcast trees in which it is
involved at level j (at most |Qi|), and so each step involves at
most O(maxi∈[p] |Qi|) sends/receives along the critical path.
The fold phase is similar, using binary-tree reductions.

3. EXPERIMENTAL RESULTS
Theorems 1 and 2 together reduce the problem of obtain-

ing an optimal (to within a logarithmic factor) algorithm
for the multiplication for a particular pair of sparse matrices
to the problem of hypergraph partitioning. Unfortunately,
this would need to be solved for every instance of SpGEMM
(or at least for every pair of sparsity patterns), and it is
an NP-hard problem [11]. However, we propose consider-
ing representative matrices for specific application areas in
order to gain intuition for algorithmic design. In addition,
efficient software, such as the PaToH [6] and Zoltan [4] li-
braries, exists for solving the problem approximately. The
main limitations of the software are that (1) there are no
guarantees for the quality of approximation and (2) the typ-
ical objective function is communication volume rather than
critical-path communication cost. In this section, we focus
on two SpGEMM computations arising from the setup phase
of algebraic multigrid.

We experimentally study the communication costs of com-
puting the product PTAP, formed to produce the grid hi-
erarchy of an algebraic multigrid PDE solver. Here, A is
the adjacency matrix of a graph GA of N = n3 vertices ar-
ranged as a 3D lattice, where every non-boundary vertex is
adjacent to itself and its 26 closest neighbors. The matrix
P corresponds to a bipartite graph GP = (U, V,E), where U
is the vertex set of GA and V is the set of (n/3)3 disjoint

87

Table 1: Maximum per-processor communication
cost of forming PTAP.

AP PT(AP)
N p row fine row fine

19,683 27 5,528 4,649 10,712 964
91,125 125 5,528 5,823 10,712 1,324

250,047 343 5,528 6,160 10,712 1,444
531,441 729 5,528 6,914 10,712 1,491
970,299 1,331 5,528 6,679 10,712 1,548

3-by-3-by-3 subcubes of U . Every subcube v ∈ V is adja-
cent to each vertex u ∈ U that belongs to v or is one of v’s
neighbors.

We consider two approaches for multiplying these matri-
ces. In the fine-grained approach, we use our hypergraph
model: we populate data structures that represent H(A,P)
and H(PT ,AP) as given in Definition 1, and use the PaToH
library to obtain a good partition, i.e., one with a small cut.
Theorems 1 and 2 indicate that parallelizing the computa-
tion according to this partition can minimize communica-
tion.

The other approach we consider is the row-wise approach
that corresponds to the way multigrid matrices are usually
multiplied in practice [9]. In this approach we partition the
output matrix rows among the processors manually, exploit-
ing the multigrid matrices’ correspondences with 3D lattices.
Consider the rows of A as the n3 points of a 3D lattice,
partition them into p equal subcubes, and assign the rows
that belong to each subcube to a distinct processor. We use
each processor to compute the corresponding rows of AP,
and then similarly partition the rows of PT and compute
PT (AP). This approach corresponds to choosing one spe-
cific partition among those considered by the hypergraph
partitioner and therefore it can yield a suboptimal cut.

We compare the two approaches by computing the maxi-
mum number of words sent or received by any one processor,
or maxi |Qi|, using the notation of the previous section. The
results are shown in Table 1, where we follow a weak-scaling
scheme that increases N and p proportionally. The table
shows that in the AP step, the cost of the row-wise ap-
proach is comparable to or less than that of the fine-grained
approach. We believe the slight advantage to the row-wise
approach is due to the fact that PaToH minimizes communi-
cation volume rather than maximum per-processor cost. In
the PT (AP) step, the cost of the row-wise approach is 7 to
11 times greater than that of the fine-grained approach. Al-
though this gap slightly narrows as we scale, likely because of
the mismatch in cost functions, the fine-grained approach’s
advantage is dramatic. Our intuitive explanation of this re-
sult is based on the observation that the row-wise approach
communicates the rows of the second input matrix. When
we multiply AP, the matrix P is quite sparse. However,
AP is less sparse and so for PT (AP), another algorithm
derived from the fine-grained approach is a better choice.

The results demonstrate that better algorithms for PTAP
should be developed; improvements are described in a sepa-
rate paper [3].

Acknowledgments
This research is supported by an appointment to the Sandia
National Laboratories Truman Fellowship in National Se-
curity Science and Engineering, sponsored by Sandia Cor-
poration (a wholly owned subsidiary of Lockheed Martin
Corporation) as Operator of Sandia National Laboratories
under its U.S. Department of Energy Contract No. DE-
AC04-94AL85000; the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Re-
search (ASCR), Applied Mathematics program under con-
tract number DE-AC02-05CH11231; Department of Energy
grant DE-SC0008700; grants 1878/14 and 1901/14 from the
Israel Science Foundation (founded by the Israel Academy of
Sciences and Humanities); grant 3-10891 from the Ministry
of Science and Technology, Israel; the Einstein Foundation;
and the Minerva Foundation.

4. REFERENCES
[1] K. Akbudak and C. Aykanat. Simultaneous input and

output matrix partitioning for outer-product–parallel
sparse matrix-matrix multiplication. SISC,
36(5):C568–C590, 2014.

[2] G. Ballard, A. Buluç, J. Demmel, L. Grigori,
B. Lipshitz, O. Schwartz, and S. Toledo.
Communication optimal parallel multiplication of
sparse random matrices. In SPAA ’13, pages 222–231.
ACM, 2013.

[3] G. Ballard, J. Hu, and C. Siefert. Reducing
communication costs for sparse matrix multiplication
within algebraic multigrid. Technical Report
SAND2015-3275, Sandia Natl. Labs., 2015.

[4] E. Boman, K. Devine, L. Fisk, R. Heaphy,
B. Hendrickson, C. Vaughan, Ü. Çatalyürek,
D. Bozdag, W. Mitchell, and J. Teresco. Zoltan 3.0:
parallel partitioning, boad-balancing, and data
management services; user’s guide. Technical Report
SAND2007-4748W, Sandia Natl. Labs., 2007.

[5] A. Buluç and J. R. Gilbert. Parallel sparse matrix-
matrix multiplication and indexing: implementation
and experiments. SISC, 34(4):C170–C191, 2012.

[6] Ü. Çatalyürek and C. Aykanat. PaToH: a multilevel
hypergraph partitioning tool, version 3.0. Technical
report, Dept. of Computer Engineering, Bilkent Univ.,
1999.

[7] Ü. Çatalyürek and C. Aykanat. A fine-grain
hypergraph model for 2D decomposition of sparse
matrices. In IPDPS ’01, pages 118–123, 2001.

[8] Ü. Çatalyürek, C. Aykanat, and B. Uçar. On
two-dimensional sparse matrix partitioning: models,
methods, and a recipe. SISC, 32(2):656–683, 2010.

[9] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala.
ML 5.0 Smoothed Aggregation User’s Guide. Technical
Report SAND2006-2649, Sandia Natl. Labs., 2006.

[10] S. Krishnamoorthy, Ü. Çatalyürek, J. Nieplocha,
A. Rountev, and P. Sadayappan. Hypergraph
partitioning for automatic memory hierarchy
management. In SC ’06, pages 34–46, 2006.

[11] T. Lengauer. Combinatorial Algorithms for Integrated
Circuit Layout. Wiley, 1990.

88

