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Abstract

We show that any implementation of combinatorial auctions that pro-
duces efficient allocations requires an exponential amount of information
transfer. The lower bound is independent of any computational complex-
ity considerations, holds even if only an approximately efficient outcome
is achieved, holds whether or not the bidder strategies are in equilibrium,
and holds even if all bidder valuations have decreasing marginal utilities.
This is in contrast to Ausubel’s efficient auction for heterogeneous goods
that applies in the case that all bidder valuations satisfy the “gross sub-
stitutes” condition. The lower bound implies that mechanisms such as
AUSM, iBundle or any of the suggested variants of ascending auctions
with package bids cannot, in the general case, ensure both the efficiency
of the outcome and sub-exponential communication.

1 Introduction

We have recently seen great interest in, so called, combinatorial auctions — auc-
tions in which multiple heterogeneous items are concurrently sold, and bidders
are able to express preferences for combinations of items. Such auctions may be
useful in a host of situations where items may by complementary or substitutes,
with the recent candidate “killer applications” of spectrum licenses and online
procurement. The reader is referred to, e.g., [18, 20, 12] for background and an
overview.

While auctions of a single good and of multiple homogenous goods are quite
well understood, combinatorial auctions are not so. The underlying reason for
this difficulty is the exponential amount of information that needs to be handled:
every bidder may have a valuation for each subset of the items. Since there are an
exponential number of subsets, agent types are given by an exponential amount
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of information. Simplistic mechanisms (such as direct revelation mechanisms)
will thus require bidders to communicate an exponential amount of information
to the mechanism. This exponential blowup in communication is problematic
in several respects:

1. Valuation Determination: A bidder will normally require some effort
for determining his valuation for a subset of items. Determining the val-
uation for all subsets may require an impossible amount of effort.

2. Bid Communication: The mere transfer of an exponential amount of
information is technologically infeasible over any communication medium
when the number of items is larger than 20 or 30.

3. Information Revelation: Bidders will normally not want to reveal to
competitors their full valuation, but rather to only provide the minimal
amount of information needed to determine their winning bundle.

It should be emphasized that the communication bottleneck is different from
the often considered computational problem of “winner determination” — com-
puting the optimal allocation once valuations are known. The computational
problem remains theoretically intractable even if each bidder is interested in
only a single package of items, while this case exhibits no communication bot-
tleneck. However, it seems that the communication bottleneck is actually more
severe than the computational one. First, it “kicks in” already when there are
a dozen or two items, while it seems that the computational complexity can be
handled for up to hundreds of items (and thousands of bids) optimally [20, 19]
and thousand of items (with tens of thousand of bids) near-optimally [22]. Ad-
ditionally, the computational burden may be side-stepped by transferring it to
the bidders themselves, e.g. by requiring the bidders to suggest matches to their
package [2] or by allowing them to suggest allocations [15].

One may be tempted to by-pass the communication bottleneck by restricting
the number of bundles that a bidders’ valuation may assign non-zero weight
to. Such a restriction however is much too severe for most purposes. Even
simple valuations such as “I'll pay 1 for any set of n/2 items”, or “I'll pay 1
for any single frequency band in each geographic region” place valuations on
an exponential number of packages. Even allowing combinations of a small
number of package bids using either “OR-bidding” or “XOR-bidding” will not
enable such simple valuations to be succinctly communicated, but rather more
complicated combinations expressed in some “bidding language” will be needed
[13].

Much work is currently being done to design multi-round combinatorial auc-
tions, where at each stage bidders place a bid on just a single package (or
reasonable number of packages). Several such mechanisms have been suggested
to the FCC (e.g. [12]) as well as elsewhere [2, 5, 16, 17, 1]. Presumably, in such
a multi-round auction, bidders will only send bids on subsets that “matter”,
allowing the mechanism to reach an efficient outcome using only a reasonable
amount of communication. The only complete proof was given by Ausubel [1]



who has designed such an auction for the special case where all valuations sat-
isfy the “gross substitutes” condition. Our main theorem states that such a
mechanism with provable properties cannot be designed for the general case!

Theorem 1: Any mechanism that obtains an efficient allocation in combinato-
rial auctions will require an exponential amount of communication from bidders
for some valuations.

It should be noted that this impossibility result is totally independent of
any computational issues. The proof of this theorem uses techniques from the
field of communication complexity [8]. This field abstracts and quantifies the
communication requirements that are implicit in many computational settings.
Surprisingly, in many situations the communication itself is a major bottleneck
— as it is in our case. For the sake of readers who are not familiar with the
field of communication complexity we provide a complete self-contained proof.
The impossibility result is very general and applies even with the following
relaxations (some requiring more difficult proofs):

e Equilibrium: The lower bound holds for any tuple of strategies, whether
they are in equilibrium or not.

e Distribution: The lower bound applies to certain a-priori distributions
on valuations, and for these distributions, any mechanism that uses sub-
exponential communication will produce non-efficient results on a signif-
icant fraction of valuations. The point is not that such distributions are
realistic in any sense — they are not. Rather, the point is that any claim
that some mechanism produces good results must explicitly rely on the
valuation distribution.

e Revenue: The lower bound also applies in cases where the revenue of a
VCG auction is equal to the total efficiency. Thus exponential communi-
cation is also needled for optimizing revenue.

e Simplicity: The lower bounds holds even if there are only two bidders
and even if all valuations of subsets are either 0 or 1.

e Approximation: The lower bound holds even if the mechanism is only
required to produce an “approximately efficient” allocation — e.g. with
efficiency loss proportional to some minimum bid increment size. Even
more, it holds for any non-trivial approximation — one with efficiency that
is within a factor of k from optimal, where k is the number of bidders (for
k sufficiently smaller than n). Interestingly, procurement auctions are dif-
ferent, and may be approximated to within a factor of logn (with myopic
bidders) using polynomial communication, but no better. The approxi-
mate case relies on new results in the field of communication complexity
that are described in a companion paper [14].

e Decreasing marginal utilities: The lower bound holds even if all val-
uation are known to have decreasing marginal utilities, i.e. are submod-



ular. Note that valuations satisfying the slightly stronger “gross substi-
tutes” condition can already be handled with polynomial communication
by Ausubel’s mechanism [1]. The submodular case may be approximated
to within a factor of 2 (with myopic bidders) using only polynomial com-
munication.

This result implies that any formal treatment of mechanisms for combinato-
rial auctions must rely on some restrictions on the class of valuations. Without
such restrictions any mechanism will be theoretically useless either in terms of
the required communication or in terms of efficiency obtained. (Practically, of
course, such mechanisms may still work reasonably well.) A case in point is
Ausubel’s mechanism that provaebly achieves efficiency using only a reasonable
(polynomial) amount of communication in the case where all valuations satisfy
the “gross substitutes” condition. In [4] it was noted that Ausubel’s auction
may be viewed as a primal-dual linear programming algorithm, and that in fact
other primal-dual algorithms can also be converted into mechanisms. We show
that in terms of communication this is completely general:

Theorem 2: A Truthful mechanism (with dominant strategies) that uses a
polynomial amount of communication exists for every case where valuations
are restricted so that the linear programming relaxation will find an optimal
allocation.

In addition to the case of “gross substitutes” several other natural cases
where the linear program produces optimal results are known [13, 20]. While
this mechanism is very un-natural, mimicking a separation-based linear pro-
gramming algorithm, it does show the possibility of constructing a mechanism
in such cases, in contrast with the general impossibility result. One may take
the following view of affairs: it is known that the linear program produces
an optimal allocation if and only if there exists a Walrasian price equilibrium
(with prices on single items) [3]. We thus get that when Walrasian prices exist,
then indeed a mechanism may reach an efficient allocation within a reasonable
amount of communication; otherwise, an exponential amount of communication
is needed.

2 Preliminaries

We will assume that n items are auctioned among k bidders. Each bidder j holds
a privately known valuation function v;, that gives a positive real valuation for
each subset of items S. We will assume the standard setting:

e v;(0) =0.
e Free disposal: v;(S) < v;(T) for all S CT.

Thus v; may be specified by a positive real vector of size 2" — 1. Note that
v; may have complementarities, where for some disjoint subsets v(S U T) >



v(S) + v(T'), or substitutabilities, where for some disjoint subsets v(S UT) <
v(S) + v(T).

The mechanism defines the rules of the auction, in particular specifying
which bidder speaks at any point of time, how to interpret what the bidder says,
the stopping rules, the final allocation, and the payments. Each player has a
strategy o; that specifies its behavior as a function of its valuation v;. We will
not be assuming any type of equilibrium from the strategies, and make no further
assumptions about them. Any fixed mechanism and fixed k-tuple of strategies
completely defines a mapping from each k-tuple of valuation v;...v; to a run
of the protocol yielding a particular allocation S;...Sx. We will be looking at
the total information communicated from the bidders to the mechanism for this
tuple of valuations, and call this the “communication pattern” of this tuple. The
efficiency of the allocation is };v;(S;), and an efficient mechanism maximizes
this efficiency (implicitly we assume here that all items have 0 reservation value.)

3 The Basic Lower Bound

Overview:

The basic setting in the field of communication complexity has two players,
each holding some kind of data, who together wish to compute some function
of their combined data. Since the function depends on both parts of the data
they will need to communicate with each other, and we wish to quantify the
amount of communication required. The whole point of this field is to prove
that whatever these players do in order to solve the problem, a certain amount
of communication will be needed. While this setting is not identical to the
case of combinatorial auctions, it does correctly abstract a key aspect: we may
view the valuations of the players as their “data”, the interactions of their
strategies with the mechanism as their communication with each other, and
the allocation produced by the mechanism as the “computed” output. Thus
every mechanism for combinatorial auctions has to implicitly also solve the
corresponding communication complexity problem. We will now attempt finding
a certain sub-structure in combinatorial auctions that corresponds to a well
studied problem in communication complexity.

We restrict ourselves to the case of two bidders, each of them interested in
a certain collection of bundles, where each desired bundle contains exactly half
of the items (assume that the number of items is even). Assume further that
each such desired bundle is valued at 1, and that any subset of items that does
not contain one of these desired bundles is valued at 0. An allocation with total
efficiency of 2 can be obtained whenever the n auctioned items can be partitioned
into two subsets each of size n/2, each one desired by one of the bidders. Let
N = (HT/‘Q) denote the total number of subsets of size n/2 from n elements. The
desired subsets of each bidder may be described by a binary vector of length
N, indexed by sets S, where each bit specifies whether the indexed subset is
desired by the bidder. To obtain efficiency of 2, the mechanism now needs to
find a location S in the vector where the first bidder has a 1-bit and the second



bidder has a 1-bit in location S° — this will provide a partition (S : S¢) with
efficiency 2. If we order the indexing of subsets for the two bidders such that
the index of S for the first bidder is the same as the index of S¢ for the second
bidder, then we are now looking for an index where both bidders have a 1-bit
in their vector.

Thus we have shown that any mechanism for a combinatorial auction will
implicitly also solve the following communication problem: each bidder holds
a binary vector of size N and they need to find an index in which they both
hold a 1-bit. This is one of the most well studied problems in the field of
communication complexity, and it is known [21] that N bits of communication
are required. See [8] for an introduction as well as the result. Since N is
exponential in the number of items n, we see that an exponential amount of
communication must take place during the operation of the mechanism.

We will now prove this result formally, and fold into the proof the required
lower bound on communication complexity!. In order to quantify the amount
of information exchanged we will need to assume that communication with the
mechanism is in sequences of bits.

Theorem 3.1 Let M be a 2-player mechanism for a combinatorial auction on
an even number n of elements and 01,02 be any strategies of the two players.
If the mechanism, when the players use these strategies, produces the optimal
allocation for any pair of player valuations vy, ve then for some pair of valuations
a total of at least ("72) bits are communicated by the bidders to the mechanism.

Proof:

Our first step is to restrict the set of valuations to a simple form that is easy
to handle in the proof. Clearly any general mechanism will also work for these
restricted cases. We will require the following notations:

Notation:

e Let H denote the set of all subsets of {1..n} of size exactly n/2. Denote

e For D C H denote by vp the valuation where v(S) = 1 if for some T € D,
T C S, and v(S) = 0 otherwise. (L.e. the value is 1 if S contains a desired
subset, where D specifies the collection of desired subsets.)

e Denote V = {vp | D C H} be the set of all valuations defined by such
collections of desired subsets. Thus |V| = 2. We will only be considering
valuations in V.

Now one may easily verify that for any player valuations vp,vg € V, an
allocation can be found with value 1 (give everything to the first player), but an
allocation with value 2 can be found if and only if for some partition of {1...n}

1Readers familiar with communication complexity will notice we are using the fooling-set
method with a cut-and-paste argument [8].



into two sets (S : S°) each of size n/2, we have that S € D and S°¢ € E. The
rest of the proof now shows that recognizing these cases requires exponential
communication.

Notation: For a set D C H define D* = {S € H|S® ¢ D}. Le. those sets
whose complement is notin D. Note that D* C H. Denote v}, = vp~, and note
that v € V.

The definition of D* ensures the following two simple claims:

Claim For every D, if the players’ valuations are vp and v}, then no allocation
will have value more than 1.

Proof: Let S be allocated to player 1 and S° to player 2. If |S| < n/2
then clearly vp(S) = 0. Since v} (S¢) < 1, the allocation value is at most 1.
Similarly, if |S| > n/2 then |S°¢| < n/2 and v} (S¢) = 0, while vp(S) < 1 and the
allocation value is at most 1. So we are left with the case that |S| = |S¢| = n/2.
If v(S) > 0 then S € D, and thus by definition S¢ ¢ D* and thus v},(S°) =0
and thus the total allocation value is at most 1.

Claim 2: For every D # E, one of the following two cases holds: either (A) for
player valuations vp and v}, there exists an allocation with value 2 or (B) for
player valuations vg and v}, there exists an allocation with value 2.

Proof: If D # E then either D—FE # §or E—D # ). Assume, first, D—FE # ()
and let S € D but S ¢ E and thus by definition S¢ € E*. Thus vp(S) =1, and
v3(S°) = 1, producing an allocation (S : S°) with value 2 for case (A). If, on
the other hand, E — D # 0 then let S € E but S ¢ D, and similarly vg(S) =1
and v}, (S°) = 1, producing an allocation (S : §¢) with value 2 for case (B).

We are now ready for the core of the argument: let us consider the operation
of the mechanism (with the fixed player strategies) under all pairs of valuations
of the form (vp,v},), for all possible D C H. For each such pair of player valu-
ations, some information is transferred between the mechanism and the players
(according to the mechanism rules and the fixed player strategies) and finally
some allocation is reached. For every valuation pair, let us consider the complete
sequence of bits communicated from the players to the mechanism throughout
the run of the mechanism, and call it the “pattern of communication” for this
pair of valuations. The main claim is that this pattern of communication must
be different for any two different choices of D. Before proving this claim let us
see why it implies the result. Since there are 2V different choices of D, there
must be 2V different possible communication patterns. However, if the number
of bits communicated is always at most ¢, then there can be at most 2! different
patterns of communication. It follows that the number of bits communicated,
t 2 N = (nT/b2)

Claim 3: For every D # E, the communication pattern on the pair of valuations
(vp,v}) is different from the communication pattern on (vg,vy).

Proof: Assume to the contrary that the same communication pattern takes
place in both cases, in particular reaching an identical allocation in the end,



whose value is, of course, 1. Now, we claim that if we consider a third case, where
the pair of valuation is (vp,v}) then we would still get the same communication
pattern. The reason for this is that player 1 will not be able to distinguish
between this case and the case of (vp,v},) (since his valuation is the same,
and player 2’s communication pattern is exactly the same), and similarly player
2 will not be able to distinguish this case from the case (vg,v}). Thus the
whole run of the mechanism will never deviate from the cases of (vp,v},) and
(vE,v})), in particular yielding the same allocation value of 1 at the end. The
same argument holds for a fourth case where the pair of valuations is (vg, v},).
However, now we have reached a contradiction since claim 2 guaranteed that
either for (vp,vy) or for (vg,v}) the efficient allocation has value 2, which is
what the mechanism should find. 5

This concludes the proof of the theorem.
O

4 Extensions

We discuss shortly here why the basic lower bound applies under all the relax-
ations mentioned in the introduction.

4.1 Distribution

The proof above essentially showed that an allocation with value 2 can be found
on inputs (vp,vg) if and only if D and (E*)¢ are not disjoint. Thus any effi-
cient mechanism for combinatorial auctions must, in particular, require as least
as much communication as the well known “disjointness problem” in commu-
nication complexity. It is known that for some distributions this problem has
high “distributional complexity”, i.e. that for such distributions, every mecha-
nism that uses sub-exponential communication will err on a constant fraction
of valuations. See sections 3.4 and 4.6 of [8] for details.

These sections also show that this type of lower bound implies a randomized
lower bound, and thus one that applies to mixed player strategies.

4.2 Approximation

The proof given showed that a mechanism that produces an outcome that is
closer than a factor of 2 from optimal already needs exponential communication
(since we only used that the mechanism is not allowed an outcome with value 1
when the optimal one has value 2). For the case of 2 bidders, an approximation
ratio of 2 is trivially possible, simply by bundling all items and selling them in
a simple (single-item) Vickerey auction. For the more general case of k bidders,
an approximation to within & is similarly trivial, and it turns out that no mech-
anism can do better without requiring 2%(n/#*—kloghk) communication. Thus
for all k£ < n'/3~¢, any mechanism that achieves better than k-approximation



requires exponential communication. (For larger number of bidders, we have
n'/3=¢ as the upper bound to approximation.)

It should be noted that a n'/? approximation is possible in polynomial com-
munication, but using myopic bidders, by adapting the algorithm of [10].

Somewhat surprisingly, the situation for procurement auctions is different:
an approximation to within a factor of lnn is possible (with myopic bidders) in
polynomial communication, adapting the greedy method of [11], but a better
approximation ratio requires exponential communication.

The proofs use communication complexity types of reasoning, and are pre-
sented in a companion paper aimed at the computer science community [14].

4.3 Revenue

If one considers cases where the k players are partitioned into pairs, both players
in each pair having the exact same valuation, then we also get a lower bound for
mechanisms that approximate the revenue. In such cases a VCG mechanism will
extract all surplus from the auction (i.e. the price for a winning bundle must be
equal to the valuation of this bundle). Any mechanism that satisfies participa-
tion constraints will not be able to extract more than the efficiency is generates,
and thus approximating the revenue in these cases requires approximating the
efficiency as well.

4.4 Decreasing Marginal Utilities

The valuations vp used in the proof exhibit complementarities. If instead we
define valuations up(S) = wvp(S) + 1, then it is easy to verify that up is
complementarity-free. Now, an allocation achieving value x on a certain pair
of v’s would achieve value z + 2 on the corresponding pair of w’s. Thus, it is
as hard for a mechanism to distinguish between allocation efficiency 3 and 4
when valuations are complement-free, as it is to distinguish between 1 and 2 for
general valuations.

In order to get hard examples with decreasing marginal utilities, just define
wp(S) = |S| for |S| < n/2, wp(S) = n/2 for |S| > n/2, and for |S| = n/2,
wp(S) =n/2if S € D and wp(S) =n/2—-1if S ¢ D. One may easily verify
that such valuations have decreasing marginal utilities (sub-modular), and that
an allocation between two w valuations will achieve value n if and only if the
same allocation between the corresponding v valuations achieves value 2. Thus
any mechanism that produces efficient allocations even where valuations are
restricted to be submodular still requires exponential communication.

It should be noted that a 2-approximation for submodular valuations is possi-
ble (with myopic bidders) in polynomial communication, adapting the algorithm
of [9].



5 Possibility results using Linear Programming

The communication lower bound shown still leaves room for mechanisms that
handle restricted classes of valuations. In this section we sketch some possibility
results along these lines. These mechanisms are not “pretty” in any sense, rather
they only suggest that, for restricted classes of valuations, communication is not
a bottleneck.

It is well known that the allocation problem of combinatorial auctions may
be phrased as an integer programming problem (see [20] for a survey). This
integer programming problem is commonly relaxed to a linear programming
problem, and in some cases it is known that this linear program will indeed
return integer allocations, solving the original problem as well. In particular
it is known that this is the case if all valuations satisfy the “gross substitutes”
property [6]. What we wish to point here is that in all such cases, a mechanism
that only requires polynomial amount of communication may be implemented.

The basic correspondence between many auction mechanisms and primal-
dual methods of linear programming was pointed out in [4]. However, to prove
a theorem about communication we will need to use separation-based LP algo-
rithms. A separation-based linear programming algorithm may be used in cases
of linear programs that have an exponential number of constraints (inequali-
ties) that are given implicitly. Specifically, such an algorithm does not receive
the inequalities as an explicit input, but rather is provided with a “separation
oracle” as its input: whenever an infeasible solution is presented to this oracle,
it must be able to produce a violated inequality. Algorithms of this type can
solve linear programs in polynomial time, given just this type of an oracle. The
reader is referred to any textbook on linear programming (e.g. [7]) for more
information.

The allocation problem itself is usually phrased as having an exponential
number of variables (z% specifying the allocation of the bundle S of goods to
bidder %), but only a polynomial number of significant inequalities (that each
good is sold only once, and that each bidder is allocated only one set):

Maximize: ), 5 ztv;(S)
Subject to:

e For all goods j: 3=, 5/jcs zh <1
e For all bidders i: Y gz% < 1.
e For all i,S: z% > 0.

In order to use a separation-based linear programming algorithm, we move
to the dual that has just a polynomial number of variables:

Minimize: }_; p; + >, ui
Subject to:

e For all 4,5 u; + ZjeSpj > v;(9).
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e For all j: p; > 0.
e For all i: u; > 0.

It is important to note that in the dual, each inequality specifies a condition
that depends on the valuation of a single player! Now the separation-based
LP is used, where the mechanism runs the separation-based LP algorithm, and
whenever an oracle query needs to me made (i.e. a violated inequality is desired),
the current solution is presented to all players, and each of them responds with
a violated inequality, if any2. Since each inequality is held by some single player,
if a violated equality exists it is found, and the mechanism can continue. The
communication that takes place at each such stage is polynomial, and since the
algorithm is known to terminate within a polynomial number of steps, we have
that the whole mechanism requires polynomial communication.

In order to ensure truthfulness on the part of all the bidders, the mechanism
should simply impose VCG payments on allocated bundles. The calculation of
these payments will require running n different linear programs in the same way.
This is clearly not very elegant, but still in such a mechanism truth remains a
dominant strategy.
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