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Abstract

The existence of small d-regular graphs of a prescribed girth g is equivalent to the existence

of certain codes in the d-regular infinite tree. We show that in the tree ‘‘perfect’’ codes exist,

but those are usually not ‘‘graphic’’. We also give an explicit coloring that is ‘‘nearly perfect’’

as well as ‘‘nearly graphic’’.

r 2004 Elsevier Inc. All rights reserved.

1. Introduction

It is a trivial combinatorial fact, that any d-regular graph with n vertices and girth
g; must satisfy the so-called Moore bound (see [2, p. 180]):

nXn0ðd; gÞ; ð1Þ

where n0ðd; gÞ is defined as

n0ðd; 2r þ 1Þ ¼ 1þ d þ dðd � 1Þ þ dðd � 1Þ2 þ?þ dðd � 1Þr�1;

n0ðd; 2rÞ ¼ 1þ d þ dðd � 1Þ þ dðd � 1Þ2 þ?þ dðd � 1Þr�2 þ ðd � 1Þr�1

for odd and even values of g:
It is known (and not too easy to prove) that equality in (1) is a rare phenomenon,

and does not occur at all for g412 and d42 (see [2, Theorem 23.6]). On the other
hand, attempts to construct d-regular graphs of girth g with small n have not been
too successful, compared with bound (1). The best known construction so far [5],
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yields n ¼ ½n0ðd; gÞ�
3
2þoð1Þ; for large g; and an infinite family of values for d: A survey

of the problem for cubic graphs, can be found in [3].
In this note, we would like to indicate a connection between this problem, and

certain coloring problems on the d-regular infinite tree Td: In the following
discussion, we equip Td with the usual graph metric dT : We also denote by BrðxÞ; the
ball of radius r around the vertex x; i.e. BrðxÞ ¼ fy : dTðx; yÞprg:

2. Perfect colorings

Td is the universal covering space of any d-regular undirected graph (regarded as a
one-dimensional complex). Therefore, given a d-regular graph G with n vertices and
girth g; there is a cover map f : VðTdÞ-VðGÞ (actually, there are infinitely many
such maps). Such a map can be regarded as a vertex coloring of Td using n colors
where each xAVðTdÞ is colored fðxÞ: This coloring f has the property, that

if fðxÞ ¼ fðyÞ for some xay then dT ðx; yÞXg: ð2Þ

Therefore, a necessary condition for the existence of a graph with parameters d; g; n

is that there exists a vertex coloring of Td satisfying (2).
We first ask for the smallest possible n for which such a coloring exists, and denote

this number by ncðd; gÞ: The answer for this question is given by:

Theorem 2.1.

ncðd; gÞ ¼ n0ðd; gÞ:

Proof. The usual proof of the Moore bound implies also that nc is at least n0ðd; gÞ:
Let f be some coloring of Td satisfying (2).

* For g ¼ 2r þ 1; consider the ball BrðvÞ for some vertex v: The diameter of this ball
is og; and therefore all its n0ðd; gÞ vertices must have distinct colors.

* For g ¼ 2r; consider the set Br�1ðvÞ,Br�1ðuÞ for two adjacent vertices v; u: This
set has diameter og; and must be colored using distinct colors. Since its size is
n0ðd; gÞ; this is a lower bound on the number of vertices used by f:

To prove that nc does not exceed n0ðd; gÞ; we construct a coloring.
Choose a vertex v0 to be the root of the tree, and fix an order v0; v1;y on the

vertices of Td; satisfying dTðv0; viÞpdTðv0; vjÞ for all ioj:

We color Td using a greedy algorithm. At step i color vi by cðviÞ: the least positive
integer that does not appear in the set

fcðxÞ : xAðBg�1ðviÞ-fv0; v1;y; vi�1gÞg: ð3Þ

Obviously, this coloring satisfies (2). We have to show that the number of colors used
by the algorithm does not exceed n0ðd; gÞ: (Regardless of the arbitrary order of
selecting the vertices at any given distance from the root.)
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Consider the coloring of a vertex vi; with dTðvi; v0Þ ¼ s4r: We have to prove that
the size of the set of forbidden colors given by (3) is strictly less than n0ðd; gÞ: Since
fv0;y; vi�1gCBsðv0Þ; it is enough to prove that:

jBg�1ðviÞ-Bsðv0Þjpn0ðd; gÞ: ð4Þ

(In other words, it is enough to consider the case where vi is the last vertex in layer s:)
Actually, (4) is an equality. To prove that, we discuss the cases of odd and even g

separately.

* The case of odd g ¼ 2r þ 1:
This follows from the following set identity:

Bg�1ðviÞ-Bsðv0Þ ¼ BrðuÞ; ð5Þ

where u is the rth ancestor of vi: We denote the rth ancestor function by PðrÞð�Þ; so
u ¼ PðrÞðviÞ:

In (5), the inclusion is * obvious. xABrðuÞ means dT ðx; uÞpr; so:

dTðx; viÞpdTðx; uÞ þ dTðu; viÞpr þ r ¼ g � 1;

dTðx; v0ÞpdTðv0; uÞ þ dTðu; xÞpðs � rÞ þ r ¼ s:

To prove the inclusion C; assume that xABg�1ðviÞ-Bsðv0Þ; and let y be the

vertex, closest to the root v0 of all the vertices on the shortest path from x to vi:
Then either y is an ancestor of u or vice versa, since both are on the path from v0
to vi:

In the first case (Fig. 1a):

dT ðx; uÞ ¼ dTðx; viÞ � dTðu; viÞpg � 1� r ¼ r:

In the second case (Fig. 1b):

dT ðx; uÞ ¼ dTðx; yÞ þ dTðy; uÞ ¼ dT ðx; yÞ þ r � dTðy; viÞpr:

ARTICLE IN PRESS

v

v

x

y

u

0

i

v

v

u

x

y

i

0

(a) (b)

Fig. 1. (a), (b).

S. Hoory, N. Linial / Journal of Combinatorial Theory, Series B 91 (2004) 161–167 163



* The case of even g ¼ 2r:
To prove that (4) is an equality, it is enough to prove the set identity:

Bg�1ðviÞ-Bsðv0Þ ¼ Br�1ðu1Þ,Br�1ðu2Þ; ð6Þ

where u1 ¼ PðrÞðviÞ; and u2 ¼ Pðr�1ÞðviÞ:
Again, the inclusion * is obvious.
To prove the inclusion C; assume xABg�1ðviÞ-Bsðv0Þ and let y be the vertex,

closest to v0 of all the vertices on the shortest path from x to vi: Then, either y is an
ancestor of u1 or u2 is an ancestor of y:

In the first case (Fig. 2a):

dT ðx; u1Þ ¼ dT ðx; viÞ � rpr � 1:

In the second case (Fig. 2b):

dTðx; u2Þ ¼ dTðx; yÞ þ dTðy; u2Þ ¼ dTðx; yÞ þ ðr � 1Þ � dTðy; viÞpr � 1: &

Note 2.1. The proof of Theorem 2.1 actually proves a bit more: Given any tree T ; let
ncðT ; gÞ be the minimal number of colors needed to color T under the requirement
(2). Then

ncðT ; gÞ ¼
max

xAVðTÞ
jBrðxÞj if g ¼ 2r þ 1;

max
ðx;yÞAEðTÞ

jBrðxÞ,BrðyÞj if g ¼ 2r:

8<
:

If T covers a finite graph G with an average degree %d; then it follows from the proof

given in [1] that ncðT ; gÞXn0ð %d; gÞ:
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3. A criterion for being graphic

We know that equality in (1) does not occur when g412 and d42: Therefore
n-colorings of Td satisfying (2) for such g; d cannot be graphic, i.e. cannot be induced
by a cover map of some graph with parameters n; d; g: A criterion for being graphic,
is given by the following proposition:

Let f be a coloring of Td; and define jEðfÞj as the set of all unordered pairs
ðfðxÞ;fðyÞÞ over x; y that are neighbors in Td:

Theorem 3.1. An n-vertex coloring f of Td is graphic, iff

1. fðxÞ ¼ fðyÞ for xay; implies dTðx; yÞX3;

2. jEðfÞj ¼ nd
2
:

Proof. If f is graphic, then it is the cover map of some graph G: In that case, the first
condition holds since G has no cycles of length o3; and the second condition holds

since the set EðfÞ can be identified with the nd
2
edges of G:

To prove the other direction, we construct a graph G from the coloring f: The
vertex set of G is the set of colors used by f; two vertices c1; c2 are adjacent, iff
ðc1; c2ÞAEðfÞ: It is straightforward to verify that G is indeed a graph, and that the
coloring f covers G: &

In light of Theorems 2.1 and 3.1, given n; d; g it is natural to seek n-colorings f of
Td that are ‘‘nearly graphic’’. Namely, we want f to satisfy (2), and yet that jEðfÞj be
small.

Here is a coloring that seems to do well in this respect. Given d; g; we define a

coloring c that satisfies (2), uses n ¼ g � ðd � 1ÞI
g
2
m colors, for which EðcÞ has size

ðd � 1Þ � n: Therefore, this coloring exceeds the Moore bound by about g and the

‘‘graphicity’’ bound by 2 � ð1� 1
d
Þ:

To define c; the first step is to define a potential function F on Td: Let
R ¼ ðv0; v1;yÞ be an infinite simple path in Td: Consider any vertex vAVðTdÞ;
and let vi be the vertex in R closest to v (clearly this i is uniquely defined). Then
define

FðvÞ ¼ i � dTðv; viÞ:

It is not difficult to verify, that jFðxÞ � FðyÞj ¼ 1 for every edge ðx; yÞAEðTdÞ; and
that any vertex vAVðTdÞ has one neighbor u with FðuÞ ¼ FðvÞ þ 1; while for all its
other neighbors u0; Fðu0Þ ¼ FðvÞ � 1: We say that u ¼ PðvÞ is the parent of v; and the
rest of the neighbors of v are its children. The d � 1 children of v are denoted by
C1ðvÞ;C2ðvÞ;y;Cd�1ðvÞ: The index nðwÞ of a vertex w is the integer 1pipd � 1 so
that w ¼ CiðPðwÞÞ (i.e., w is the ith child of its parent). As before we denote the lth
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ancestor of v by PðlÞðvÞ: After these preliminaries, we are ready to define the coloring

c : VðTdÞ-Z=gZ� Sr; where S ¼ f1; 2;y; d � 1g; and r ¼ Ig
2
m:

cðvÞ ¼ ðFðvÞmod g; nðvÞ; nðPðvÞÞ;y; nðPðr�1ÞÞÞ:

Theorem 3.2. The coloring c ¼ cd;g; uses n ¼ g � ðd � 1Þr
colors, satisfies (2), and has

jEðcÞj ¼ n � ðd � 1Þ:

Proof. Obviously, the number of colors is indeed n ¼ g � ðd � 1Þr: To see than c
satisfies (2), let x; y be two distinct vertices, such that cðxÞ ¼ cðyÞ; and assume for
contradiction that dðx; yÞog: Since jFðxÞ � FðyÞjpdðx; yÞog; and FðxÞ �
FðyÞmod g; then FðxÞ ¼ FðyÞ: Consider the simple path connecting x and y: As
we move along this path from x to y the function F changes by 71 at every step.
Also, there must be a vertex z along this path, so that in the x � z segment of the
path F is monotonically increasing, and in the z � y segment it is monotonically
decreasing. (Otherwise, the x � y path must contain the sequence y;w1;w2;w3;y;
where Fðw1Þ ¼ Fðw3Þ ¼ Fðw2Þ þ 1; which contradicts the fact that the path is
simple.) Then z is a common ancestor of both x and y; and therefore D ¼ dðx; zÞ ¼
dðy; zÞ: If Dpr; then it is possible to use the index information from cðxÞ to
determine x from z and cðxÞ alone. If cðxÞ ¼ ð�; n1; n2;y; nrÞ; then x ¼
Cn13Cn23?3CnDðzÞ: Therefore, since cðxÞ ¼ cðyÞ the vertices x and y must be

identical. On the other hand, if D4r; then dðx; yÞ ¼ 2DX2ðr þ 1ÞXg; which is a
contradiction.

To prove that jEðcÞj ¼ n � ðd � 1Þ; consider some possible color in the range of c;
say c ¼ ðk; s0; s1;y; sr�1Þ: Let c ¼ cðxÞ for some vertex x; then cðPðxÞÞ ¼
ðk þ 1mod g; s1; s2;y; sr�1; srÞ: Depending on the vertex x; sr can assume any
value in S: Also, for any jAS; cðCjðxÞÞ ¼ ðk � 1 mod g; j; s0; s1;y; sr�2Þ: We

conclude that c has exactly 2ðd � 1Þ possible adjacent colors, and therefore jEðcÞj ¼
ðd � 1Þ � n; as claimed. &

4. Codes

Definition 4.1. A distance-r code in a graph G is a subset CDVðGÞ such that for
every distinct x; yAC; distGðx; yÞXr:

Coding theory concerns mostly codes in the graph of the binary resp. q-ary cubes
Fn
2 ; F n

q and their subgraphs corresponding to constant weight words. It turns out,

that the existence of small d-regular graphs with girth g; is closely related to large
codes in Td of minimal distance Xg:

We have defined ncðd; gÞ as the least number of colors needed to color Td so that
every two vertices of the same color are at distance Xg: In such a coloring f; for
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every color c; the vertices f�1ðcÞ are a code. The obvious bound ncðd; gÞXn0ðd; gÞ is
the analogue of the sphere bound in coding theory. In this context, the construction
of Theorem 2.1, shows that perfect codes exist in Td:

If we denote by nðd; gÞ the minimal number of vertices of a d-regular graph with
girth g; it is not difficult to derive the following theorem. The requirement of even
degree stems from the fact that any 2l-regular graph can be 2-factored (see [4]). We
denote by Fl the free group with l generators.

Theorem 4.1. For every d ¼ 2l and g; the value of nðd; gÞ is the smallest index n of a

subgroup HCFl such that g is the minimal length of a non-trivial word in a conjugate

of H:

We can, likewise, consider nCayleyðd; gÞ; the minimal size of a d-regular Cayley graph

with girth g: Here things get even simpler.

Theorem 4.2. For every d ¼ 2l and g; the value of nCayleyðd; gÞ is equal to the least

index n of a normal subgroup HCFl such that g is the minimal length of a non-trivial

word in H:

It turns out, then, that the questions considered here are analogous to the
problems about the existence of good linear codes. Thus, the Moore bound is
asymptotically tight iff the sphere bound for ‘‘Linear’’ codes in the tree (i.e.
subgroups of Fl) is tight. We recall (e.g. [6] Ch. 5) that for the cube, the sphere
bound is exponentially far from the truth. What the case is for Td; remains a major
open question.
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