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Abstract

Many popular learning algorithms (E.g. Regression, Fourier-Transform based algo-
rithms, Kernel SVM and Kernel ridge regression) operate by reducing the problem to a
convex optimization problem over a vector space of functions. These methods offer the
currently best approach to several central problems such as learning half spaces and
learning DNF’s. In addition they are widely used in numerous application domains.
Despite their importance, there are still very few proof techniques to show limits on
the power of these algorithms.

We study the performance of this approach in the problem of (agnostically and
improperly) learning halfspaces with margin γ. Let D be a distribution over labeled
examples. The γ-margin error of a hyperplane h is the probability of an example to
fall on the wrong side of h or at a distance ≤ γ from it. The γ-margin error of the best
h is denoted Errγ(D). An α(γ)-approximation algorithm receives γ, ε as input and,
using i.i.d. samples of D, outputs a classifier with error rate ≤ α(γ) Errγ(D) + ε. Such
an algorithm is efficient if it uses poly( 1

γ ,
1
ε ) samples and runs in time polynomial in

the sample size.

The best approximation ratio achievable by an efficient algorithm is O

(
1/γ√

log(1/γ)

)
and is achieved using an algorithm from the above class. Our main result shows
that the approximation ratio of every efficient algorithm from this family must be

≥ Ω
(

1/γ
poly(log(1/γ))

)
, essentially matching the best known upper bound.

1 Introduction

Let X be some set and let D be a distribution on X × {±1}. The basic learning
task is, based on an i.i.d. sample, to find a function f : X → {±1} whose error,
ErrD,0−1(f) := Pr(X,Y )∼D (f(X) 6= Y ), is as small as possible. A learning problem is defined
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by specifying a class H of competitors (i.e. H is a class of functions from X to {±1}). Given
such a class, the corresponding learning problem is to find f : X → {±1} whose error is
small relatively to the error of the best competitor in H. Ignoring computational aspects,
the celebrated PAC/VC theory essentially tells us that the best algorithm for every learning
problem is an Empirical Risk Minimizer (=ERM) – namely, one that returns the competitor
in H of least empirical error. Unfortunately, for many learning problems, implementing the
ERM paradigm is NP -hard and even NP -hard to approximate.

There is a very popular family of algorithms to cope with this hardness, which we collec-
tively call “the generalized linear family”. It proceeds as follows: fix some set W ⊂ RX and
return a function of the form f(x) = sign(g(x)−b) where the pair (g, b) ∈ W ×R empirically
minimizes some convex objective function (called convex loss in the learning literature). In
order that such a method be useful, the set W should be “small” (to prevent overfitting)
and “nicely behaved” (to make the optimization problem computationally feasible). The
two main choices for such a set W are

• A (usually convex) subset of a finite dimensional space of functions (e.g. if X ⊂ Rd

then W can be the space of all polynomials of degree ≤ 17 and coefficients bounded
by d3). We refer to such algorithms as finite dimensional learners.

• A ball in a reproducing kernel Hilbet space. We refer to such algorithms as as kernel
based learners.

The generalized linear family has been applied extensively to tackle learning problems
(e.g. Linial et al. (1989), Kushilevitz and Mansour (1991), Klivans and Servedio (2001),
Kalai et al. (2005), Blais et al. (2008), Shalev-Shwartz et al. (2011) – see section 1.4).
Their statistical charactersitics have been thoroughly studied as well (Vapnik, 1998, Anthony
and Bartlet, 1999, Schölkopf et al., 1998, Cristianini and Shawe-Taylor, 2000, Steinwart
and Christmann, 2008). Moreover, the significance of this approach is by no means only
theoretical – algorithms from this family are widely used by practitioners.

In spite of all that, very few lower bounds are known on the performance of this family of
algorithms (i.e., theorems of the form “For every kernel-based/finite-dimensional algorithm
for the learning problem X, there exists a distribution under which the algorithm performs
poorly”). Such a lower bound must quantify over all possible choices of “small and nicely
behaved” sets W . In order to address this difficulty we need to employ several different
mathematical methods some of which are new in this domain. We make intensive use of
harmonic analysis on the sphere, reproducing kernel Hilbert spaces, orthogonal polynomials,
John’s Lemma as well as a new symmetrization technique.

Our lower bounds are established for the fundamental problem of learning large margin
halfsapces (to be defined precisely in Section 1.1). The best known efficient (in 1

γ
) algorithm

for this problem (Birnbaum and Shalev-Shwartz, 2012) is a kernel based learner that achieves

an approximation ratio of 1/γ√
log(1/γ)

. (We note, however, that this approximation ratio was

first obtained by (Long and Servedio, 2011) using a “boosting based” algorithm that does not
belong to the generalized linear family). The best known exact algorithm (that is, α(γ) = 1),

is also a kernel based learner and runs in time exp
(

Θ
(

1
γ

log
(

1
γ

)))
(Shalev-Shwartz et al.,

2011).
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Our main results show that kernel based learners cannot achieve better approxima-

tion ratio than Ω
(

1/γ
poly(log(1/γ))

)
, essentially matching the best known upper bound. Also,

we show that finite dimensional learners cannot achieve better approximation ratio than

Ω
(

1/
√
γ

poly(log(1/γ))

)
. In addition we show that the running time of exact kernel based learners

as well as of exact finite dimensional learners must be exponential in (1/γ)Ω(1).
Next, we formulate the problem of learning large margin halfspaces and survey some rel-

evant background to motivate our definitions of kernel-based and finite dimensional learners
given in Section 2.

1.1 Learning large margin halfspaces

We view Rd as a subspace of the Hilbert spaceH = `2 corresponding to the first d coordinates.
Since the notion of margin is defined relative to a suitable scaling of the examples, we consider
throughout only distributions that are supported in the unit ball, B, of H. Also, all the
distributions we consider are supported in Rd for some d <∞. We denote by Sd−1 the unit
sphere of Rd.

It will be convenient to use loss functions. A loss function is any function l : R→ [0,∞).
Given a loss function l and f : B → R, we denote ErrD,l(f) = E(x,y)∼D(l(yf(x))). Two loss

functions of particular importance are the 0− 1 loss function, l0−1(x) =

{
1 x ≤ 0

0 x > 0
, and the

γ-margin loss function, lγ(x) =

{
1 x ≤ γ

0 x > γ
. We use shorthands such as ErrD,0−1 instead of

ErrD,l0−1 .
A halfspace, parameterized by w ∈ B and b ∈ R, is the classifier f(x) = sign(Λw,b(x)),

where Λw,b(x) := 〈w, x〉+ b. Given a distribution D over B × {±1}, the error rate of Λw,b is

ErrD,0−1(Λw,b) = Pr
(x,y)∼D

(sign(Λw,b(x)) 6= y) = Pr
(x,y)∼D

(yΛw,b(x) ≤ 0) .

The γ-margin error rate of Λw,b is

ErrD,γ(Λw,b) = Pr
(x,y)∼D

(yΛw,b(x) ≤ γ) .

Note that if ‖w‖ = 1 then |Λw,b(x)| is the distance of x from the separating hyperplane.
Therefore, the γ-margin error rate is the probability of x to either be in the wrong side of
the hyperplane or to be at a distance of at most γ from the hyperplane. The least γ-margin
error rate of a halfspace classifier is denoted Errγ(D) = minw∈B,b∈R ErrD,γ(Λw,b).

A learning algorithm receives γ, ε and can receive i.i.d. samples from D. The algorithm
should return a classifier (which need not be an affine function). We say that the algorithm
has approximation ratio α(γ) if for every γ, ε and for every distribution, it outputs (w.h.p.
over the i.i.d. D-samples) a classifier with error rate ≤ α(γ) Errγ(D) + ε. An efficient
algorithm uses poly(1/γ, 1/ε) samples, runs in time polynomial in the size of the sample1

and output a classifier f such that f(x) can be evaluated in time polynomial in the sample
size.

1The size of a vector x ∈ H is taken to be the largest index j for which xj 6= 0.
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1.2 Kernel-SVM and kernel-based learners

The SVM paradigm, introduced by Vapnik is inspired by the idea of separation with margin.
For the reader’s convenience we first describe the basic (kernel-free) variant of SVM. It is
well known (e.g. Anthony and Bartlet (1999)) that the affine function that minimizes the
empirical γ-margin error rate over an i.i.d. sample of size poly(1/γ, 1/ε) has error rate
≤ Errγ(D) + ε. However, this minimization problem is NP -hard and even NP -hard to
approximate (Guruswami and Raghavendra, 2006, Feldman et al., 2006).

SVM deals with this hardness by replacing the margin loss with a convex surrogate loss,
in particular, the hinge loss2 lhinge(x) = (1− x)+. Note that for x ∈ [−2, 2],

l0−1(x) ≤ lhinge(x/γ) ≤ (1 + 2/γ)lγ(x) ,

from which it easily follows that by solving

min
w,b

ErrD,hinge

(
1
γ

Λw,b

)
s.t. w ∈ H, b ∈ R, ‖w‖H ≤ 1

we obtain an approximation ratio of α(γ) = 1 + 2/γ. It is more convenient to consider the
problem

min
w,b

ErrD,hinge (Λw,b) s.t. w ∈ H, b ∈ R, ‖w‖H ≤ C , (1)

which is equivalent for C = 1
γ
. The basic (kernel-free) variant of SVM essentially solves Prob-

lem (1), which can be approximated, up to an additive error of ε, by an efficient algorithm
running on a sample of size poly( 1

γ
, 1
ε
).

Kernel-free SVM minimizes the hinge loss over the space of affine functionals of bounded
norm. The family of Kernel-SVM algorithms is obtained by replacing the space of affine
functionals with other, possibly much larger, spaces (e.g., a polynomial kernel of degree t
extends the repertoire of possible output functions from affine functionals to all polynomials
of degree at most t). This is accomplished by embedding B into the unit ball of another
Hilbert space on which we apply basic-SVM. Concretely, let ψ : B → B1, where B1 is the
unit ball of a Hilbert space H1. The embedding ψ need not be computed directly. Rather, it
is enough that we can efficiently compute the corresponding kernel, k(x, y) := 〈ψ(x), ψ(y)〉H1

(this property, sometimes crucial, is called the kernel trick). It remains to solve the following
program

min
w,b

ErrD,hinge (Λw,b ◦ ψ) s.t. w ∈ H1, b ∈ R, ‖w‖H1 ≤ C . (2)

This problem can be approximated, up to an additive error of ε, using poly(C/ε) samples
and time as follows. Let (x1, y1), . . . , (xn, yn) be a sequence of i.i.d. samples from D. Let D̂
be the empirical distribution over these examples. By a uniform convergence argument (e.g.
(Boucheron et al., 2005)), if n = Ω(C2/ε2), then w.h.p. over the choice of examples we have3

max
b∈R,w∈H1,‖w‖H1

≤C
|ErrD,hinge (Λw,b ◦ ψ)− ErrD̂,hinge (Λw,b ◦ ψ) | ≤ ε/2 .

2As usual, z+ := max(z, 0).
3 In fact, the uniform convergence argument holds for any L-Lipschitz surrogate, as long as the sample

size is Ω(C2L2/ε2).
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Therefore, we can solve (2) w.r.t. D̂ instead of w.r.t. D. It is easy to verify that there
exists a solution of the form w =

∑n
i=1 αiψ(xi) to the problem w.r.t. D̂ for some real αi’s.

Therefore, we can optimize over α ∈ Rn instead of over w ∈ H1. This yields the problem

min
α∈Rn,b∈R

1

n

n∑
j=1

lhinge

(
yj

(
n∑
i=1

αik(xi, xj) + b

))
s.t.

n∑
i,j=1

αiαjk(xi, xj) ≤ C .

In this formulation we use the kernel trick and access examples only via the kernel function.
This is a convex optimization problem on n+1 variables, which can be solved in time poly(n)
by standard methods (assuming that the kernel function can be evaluated efficiently). Recall
that n should be Ω(C2/ε2) for the uniform convergence to hold. It therefore makes sense,
and we adopt this practice, to refer to C as the time and sample complexity of program (2).
In particular, we prove lower bounds to all approximate solutions of program (2). In fact,
our results work with arbitrary (not just hinge loss) convex surrogate losses and arbitrary
(not just efficiently computable) kernels.

Although we formulate our results for Problem (2), they apply as well to the following
commonly used formulation of the kernel SVM problem, where the constraint ‖w‖H1 ≤ C is
replaced by a regularization term. Namely

min
w∈H1,b∈R

1

C2
‖w‖2

H1
+ ErrD,hinge (Λw,b ◦ ψ) (3)

The optimum of program (3) is ≤ 1 as shown by the zero solution w = 0, b = 0. Thus,

if w, b is an approximate optimal solution, then
‖w‖2H1

C2 ≤ O(1) ⇒ ‖w‖H1 ≤ O(C). This
observation makes it easy to modify our results on program (2) to apply to program (3).

1.3 Finite dimensional learners

The SVM algorithms embed the data in a (possibly infinite dimensional) Hilbert space,
and minimize the hinge loss over all affine functionals of bounded norm. The kernel trick
sometimes allows us to work in infinite dimensional Hilbert spaces. Even without it, we can
still embed the data in some Rm and minimize a convex loss over all affine functionals from
some set W ⊂ Rm. For example, some algorithms do not constraint the affine functional,
while in the Lasso method (Tibshirani, 1996) the affine functional (represented as a vector
in Rm) must have small L1-norm. We take m as a lower bound on the complexity of the
algorithm. Therefore, such an algorithm can be efficient only if the dimension is polynomial
in 1/γ. This choice is justified, since without the kernel-trick we must work directly in Rm.
Therefore, every algorithm must have time complexity Ω(m). We prove lower bounds for
any approximate solution to a problem of the form

min
w,b

ErrD,l (Λw,b ◦ ψ) s.t. w ∈ W ⊂ Rm, b ∈ R , (4)

where l is some surrogate loss function (see formal definition in the next section) and
ψ : B → Rm.
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It is not hard to see that for any m-dimensional space V of functions over the ball, there
exists an embedding ψ : B → Rm such that

{f + b : f ∈ V, b ∈ R} = {Λw,b ◦ ψ : w ∈ Rm, b ∈ R}

Hence, our lower bounds hold for any method that optimizes a surrogate loss over a set of
threshold functions induced by a subset of a finite dimensional space of functions.

1.4 Previous Results and Related Work

The problem of learning halfspaces and in particular large margin halfspaces is as old as the
field of machine learning, starting with the perceptron algorithm (Rosenblatt, 1958). Since
then it has been a fundamental challenge in machine learning and has inspired much of the
existing theory as well as many popular algorithms.

The generalized linear method has its roots in the work of Gauss and Legendre who used
the least squares method for astronomical computations. This method has played a key role
in modern statistics. Its first application in computational learning theory is in (Linial et al.,
1989) where it is shown that AC0 functions are learnable in quasi-polynomial time w.r.t. the
uniform distribution. Subsequently, many authors have used the method to tackle various
learning problems. For example, Klivans and Servedio (2001) derived the fastest algorithm
for learning DNF and Kushilevitz and Mansour (1991) used it to develop an algorithm for
decision trees. The main uses of the linear method in the problem of learning halfspaces
appear in the next paragraph. Needless to say we are unable here to offer a comprehensive
survey of its uses in computational learning theory in general.

The best currently known approximation ratios in the problem of learning large margin
halfspaces are due to (Birnbaum and Shalev-Shwartz, 2012) and (Long and Servedio, 2011)
and achieve an approximation ratio of 1

γ·
√

log(1/γ)
. The algorithm of (Birnbaum and Shalev-

Shwartz, 2012) is a kernel based learner, while (Long and Servedio, 2011) used a “boosting
based” approach (that does not belong to the generalized linear method). The fastest exact

algorithm is due to Shalev-Shwartz et al. (2011) and runs it time exp
(

Θ
(

1
γ

log
(

1
εγ

)))
, and

is also a kernel based learner. Better running times can be achieved under distributional
assumptions. For data which is separable with margin γ, i.e. Errγ(D) = 0, the perceptron
algorithm (as well as SVM with a linear kernel) can find a classifier with error ≤ ε with time
and sample complexity ≤ poly(1/γ, 1/ε). Kalai et al. (2005) gave a finite dimensional learner
which is the fastest known algorithm for learning halfspaces w.r.t. the uniform distribution
over Sd−1 and the d-dimensional boolean cube (running in time dO(1/ε)4). They also designed
a finite dimensional learner of halfspaces w.r.t. log-concave distributions. Blais et al. (2008)
extended these results from uniform to product distributions. In this work, we focus on
algorithms which work for any distribution and whose runtime is polynomial in both 1/γ
and 1/ε.

The problem of proper4 learning of halfspaces in the non-separable case was shown to
be hard to approximate within any constant approximation factor (Feldman et al., 2006,

4A proper learner must output a halfspace classifier. Here we consider improper learning where the learner
can output any classifier.
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Guruswami and Raghavendra, 2006). It has been recently shown Shalev-Shwartz et al. (2011)
that improper learning under the margin assumption is also hard (under some cryptographic
assumptions). Namely, no polynomial time algorithm can achieve an approximation ratio of
α(γ) = 1. We emphasize that this is a far cry from what currently known algorithms can
accomplish.

Ben-David et al. (2012) (see also Long and Servedio (2011)) addressed the performance of
methods that minimize a convex loss over the class of affine functional of bounded norm (in
our terminology, they considered the narrow class of finite dimensional learners that optimize
over the space of linear functionals). They showed that the best approximation ratio of such
methods is Θ(1/γ). Our results can be seen as a substantial generalization of their results.

The learning theory literature contains consistency results for learning with the so-called
universal kernels and well-calibrated surrogate loss functions. This includes the study of
asymptotic relations between surrogate convex loss functions and the 0-1 loss function
(Zhang, 2004, Bartlett et al., 2006, Steinwart and Christmann, 2008). It is shown that
the approximation ratio of SVM with a universal kernel tends to 1 as the sample size grows.
Our result implies that this convergence is very slow, e.g., an exponentially large (in 1

γ
)

sample is needed to make the error < 2 Errγ(D).

2 Results

We first define the two families of algorithms to which our lower bounds apply. We start
with the class of surrogate loss functions. This class includes the most popular choices such
as the absolute loss |1 − x|, the squared loss (1 − x)2, the logistic loss log2 (1 + e−x), the
hinge loss (1− x)+ etc.

Definition 2.1 (Surrogate loss function) A function l : R→ R is called a surrogate loss
function if l is convex and is bounded below by the 0-1 loss.

The first family of algorithms contains kernel based algorithms, such as kernel SVM. In the
definitions below we set the accuracy parameter ε to be

√
γ. Since our goal is to prove lower

bounds, this choice is without loss of generality, and is intended for the sake of simplifying
the theorems statements.

Definition 2.2 (Kernel based learner) Let l : R → R be a surrogate loss function. A
kernel based learning algorithm, A, receives as input γ ∈ (0, 1). It then selects C = CA(γ)
and an absolutely continuous feature mapping, ψ = ψA(γ), which maps the original space H
into the new space H1 (see Section 1.2). The algorithm returns a function

A(γ) ∈ {Λw,b ◦ ψ : w ∈ H1, b ∈ R, ‖w‖H1 ≤ C}

such that, with probability ≥ 1− exp(−1/γ),

ErrD,l(A(γ)) ≤ inf{ErrD,l(Λw,b ◦ ψ) : w ∈ H1, b ∈ R, ‖w‖H1 ≤ C}+
√
γ .

We say that A is efficient if CA(γ) ≤ poly(1/γ).
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Note that the definition of kernel based learner allows for any predefined convex surrogate
loss, not just the hinge loss. Namely, we consider the program

min
w,b

ErrD,l (Λw,b ◦ ψ) s.t. w ∈ H1, b ∈ R, ‖w‖H1 ≤ C . (5)

We note that our results also hold if the kernel corresponds to ψ is hard to compute.
The second family of learning algorithms involves an arbitrary feature mapping and

domain constraint on the vector w, as in program (4).

Definition 2.3 (Finite dimensional learner) Let l : R→ R be some surrogate loss func-
tion. A finite dimensional learning algorithm, A, receives as input γ ∈ (0, 1). It then selects
a continuous embedding ψ = ψA(γ) : B → Rm and a constraint set W = WA(γ) ⊆ Rm. The
algorithm returns, with probability ≥ 1− exp(1/γ), a function

A(γ) ∈ {Λw,b ◦ ψ : w ∈ W, b ∈ R}

such that
ErrD,l(A(γ)) ≤ inf{ErrD,l(Λw,b ◦ ψ) : w ∈ W, b ∈ R}+

√
γ .,

We say that A is efficient if m = mA(γ) ≤ poly(1/γ).

2.1 Main Results

We begin with a lower bound on the performance of efficient kernel-based algorithms.

Theorem 2.4 Let l be an arbitrary surrogate loss and let A be an efficient kernel-based
learner w.r.t. l. Then, for every γ > 0, there exists a distribution D on B such that, w.p.
≥ 1− exp(−1/γ),

ErrD,0−1(A(γ))

Errγ(D)
≥ Ω

(
1

γ · poly(log(1/γ))

)
.

Next we show that kernel-based learners that achieve constant approximation ratio must
suffer exponential (in the weak sense) complexity.

Theorem 2.5 Let l be an arbitrary surrogate loss and let A be an efficient kernel-based
learner w.r.t. l such that for every γ > 0 and every distribution D on B, w.p. ≥ 1/2,

ErrD,0−1(A(γ))

Errγ(D)
≤ O(1) .

Then, for some a > 0, CA(γ) = Ω (exp ((1/γ)a)).

These two theorems follow from the following result.

Theorem 2.6 Let l be an arbitrary surrogate loss and let A be an efficient kernel-based
learner w.r.t. l for which CA(γ) = exp(o(γ−2/7)). Then, for every γ > 0, there exists a
distribution D on B such that, w.p. ≥ 1− exp(−1/γ),

ErrD,0−1(A(γ))

Errγ(D)
≥ Ω

(
1

γ · poly(log(CA(γ))

)
.
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It is shown in (Birnbaum and Shalev-Shwartz, 2012) that solving kernel SVM with a spe-

cific kernel (i.e. a specific ψ) yields an approximation ratio of O

(
1

γ
√

log(1/γ)

)
. It fol-

lows that our lower bound in Theorem 2.6 is essentially tight. Also, this theorem can
be viewed as a substantial generalization of (Ben-David et al., 2012, Long and Servedio,

2011), who give an approximation ratio of Ω
(

1
γ

)
with no embedding (i.e., ψ is the identity

map). Also relevant is (Shalev-Shwartz et al., 2011), which shows that for a certain ψ, and
CA(γ) = poly (exp ((1/γ) · log (1/(γ))), kernel SVM has approximation ratio of 1. Theorem
2.6 shows that for kernel-based learner to achieve a constant approximation ratio, CA must
be exponential in 1/γ.

Next we give lower bounds on the performance of finite dimensional learners.

Theorem 2.7 Let l be a Lipschitz surrogate loss and let A be a finite dimensional learner
w.r.t. l. Assume that mA(γ) = exp(o(γ−1/8)). Then, for every γ > 0, there exists a
distribution D on Sd−1×{±1} with d = O(log(mA(γ)/γ)) such that, w.p. ≥ 1− exp(−1/γ),

ErrD,0−1(A(γ))

Errγ(D)
≥ Ω

(
1

√
γ poly(log(mA(γ)/γ))

)
.

Corollary 2.8 Let l be a Lipschitz surrogate loss and let A be a finite dimensional learner
w.r.t. l. Then, for every γ > 0, there exists a distribution D on Sd−1 × {±1} with
d = O(log(1/γ)) such that, w.p. ≥ 1− exp(−1/γ),

ErrD,0−1(A(γ))

Errγ(D)
≥ Ω

(
1

√
γ poly(log(1/γ))

)
.

Corollary 2.9 Let l be a Lipschitz surrogate loss and let A be a finite dimensional learner
w.r.t. l such that for every γ > 0 and every distribution D on Bd with d = ω(log(1/γ)) it
holds that w.p. ≥ 1/2,

ErrD,0−1(A(γ))

Errγ(D)
≤ O(1)

Then, for some a > 0, mA(γ) = Ω (exp ((1/γ)a)).

2.2 Review of the proofs’ main ideas

To give the reader some idea of our arguments, we sketch some of the main ingredients of the
proof of Theorem 2.6. At the end of this section we sketch the idea of the proof of Theorem
2.7. We note, however, that the actual proofs are organized somewhat differently.

We will construct a distributionD over Sd−1×{±1} (recall that Rd is viewed as standardly
embedded in H = `2). Thus, we can assume that the program is formulated in terms of the
unit sphere, S∞ ⊂ `2, and not the unit ball.

Fix an embedding ψ and C > 0. Denote by k : S∞ × S∞ → R the corresponding kernel
k(x, y) = 〈ψ(x), ψ(y)〉H1 and consider the following set of functions over S∞

Hk = {Λv,0 ◦ ψ : v ∈ H1} .
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Hk is a Hilbert space with norm ||f ||Hk = inf{||v||H1 : Λv,0 ◦ ψ = f}. The subscript k
indicates that Hk is uniquely determined (as a Hilbert space) given the kernel k. With this
interpretation, program (5) is equivalent to the program

min
f∈Hk,b∈R

ErrD,l (f + b) s.t. ||f ||Hk ≤ C . (6)

For simplicity we focus on l being the hinge-loss (the generalization to other surrogate loss
functions is rather technical).

The proof may be split into three steps:

1. We consider the one-dimensional problem of improperly learning halfspaces (i.e.
thresholds on the line) by optimizing the hinge loss over the space of univariate polyno-
mials of degree bounded by log(C). We construct a distribution D over [−1, 1]×{±1}
that is a convex combination of two distributions. One that is separable by a γ-margin
halfspace and the other representing a tiny amount of noise. We show that each so-
lution of the problem of minimizing the hinge-loss w.r.t. D over the space of such
polynomials has the property that f(γ) ≈ f(−γ).

2. We pull back the distribution D w.r.t. a direction e ∈ Sd−1 to a distribution over
Sd−1×{±1}. Let f be an approximate solution of program (6). We show that f takes
almost the same value on instances for which 〈x, e〉 = γ and 〈x, e〉 = −γ. This step
can be further broken into three substeps –

(a) First, we assume that the kernel is symmetric and f(x) depends only on 〈x, e〉.
This substep uses a characterization of Hilbert spaces corresponding to symmetric
kernels, from which it follows that f has the form

f(x) =
∞∑
n=1

αnPd,n(〈x, e〉) .

Here Pd,n are the d-dimensional Legendre polynomials and
∑∞

n=0 α
2
n < C2. This

allows us to rely on the results for the one-dimensional case from step (1).

(b) By symmetrizing f , we relax the assumption that f depends only on 〈x, e〉.
(c) By averaging the kernel over the group of linear isometries on Rd, we relax the

assumption that the kernel is symmetric.

3. Finally, we show that for the distribution from the previous step, if f is an approximate
solution to program (6) then f predicts the same value, 1, on instances for which
〈x, e〉 = γ and 〈x, e〉 = −γ. This establishes our claim, as the constructed distribution
assigns the value −1 to instances for which 〈x, e〉 = −γ.

We now expand on this brief description of the main steps.
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The one dimensional distribution

We define a distribution D on [−1, 1] as follows. Start with the distribution D1 that takes the
values ±(γ, 1), where D1(γ, 1) = 0.7 and D1(−γ,−1) = 0.3. Clearly, for this distribution,
the threshold 0 has zero error rate. To construct D, we perturb D1 with “noise” as follows.
Let D = (1 − λ)D1 + λD2, where D2 is defined as follows. The probability of the labels is
uniform and independent of the instance and the marginal probability over the instances is
defined by the density function

ρ(x) =

{
0 if |x| > 1/8

8

π
√

1−(8x)2
if |x| ≤ 1/8

.

This choice of ρ simplifies our calculations due to its relation to Chebyshev polynomials.
However, other choices of ρ which are supported on a small interval around zero can also
work.

Note that the error rate of the threshold 0 on D is λ/2. We next show that each poly-
nomial f of degree K = log(C) that satisfies ErrD,hinge(f) ≤ 1 must have f(γ) ≈ f(−γ).
Indeed, if

1 ≥ ErrD,hinge(f) = (1− λ) ErrD1,hinge(f) + λErrD2,hinge(f)

then ErrD2,hinge(f) ≤ 1
λ
. But,

ErrD2,hinge(f) =
1

2

∫ 1

−1

lhinge(f(x))ρ(x)dx+
1

2

∫ 1

−1

lhinge(−f(x))ρ(x)dx

≥ 1

2

∫ 1

−1

lhinge(−|f(x)|)ρ(x)dx

and using the convexity of lhinge we obtain from Jensen’s inequality that

≥ 1

2
lhinge

(∫ 1

−1

−|f(x)|ρ(x)dx

)
=

1

2

(
1 +

∫ 1

−1

|f(x)|ρ(x)dx

)
≥ 1

2

∫ 1

−1

|f(x)|ρ(x)dx =:
1

2
‖f‖1,dρ .

This shows that ‖f‖1,dρ ≤ 2
λ
. We next write f =

∑K
i=1 αiT̃i, where {T̃i} are the orthonormal

polynomials corresponding to the measure dρ. Since T̃i are related to Chebyshev polynomials
we can uniformly bound their `∞ norm, hence obtain that√∑

i

α2
i = ‖f‖2,dρ ≤ O(

√
k) ‖f‖1,dρ ≤ O

(√
K

λ

)
.

Based on the above, and using a bound on the derivatives of Chebyshev polynomials, we can
bound the derivative of the polynomial f

|f ′(x)| ≤
∑
i

|αi||T̃ ′i (x)| ≤ O

(
K3

λ

)
.

11



Hence, by choosing λ = ω(γK3) = ω(γ log3(C)) we obtain

|f(γ)− f(−γ)| ≤ 2 γmax
x
|f ′(x)| = O

(
γ K3

λ

)
= o(1) ,

as required.

Pulling back to the d− 1 dimensional sphere

Given the distribution D over [−1, 1]× {±1} described before, and some e ∈ Sd−1, we now
define a distribution De on Sd−1 × {±1}. To sample from De, we first sample (α, β) from D
and (uniformly and independently) a vector z from the 1-codimensional sphere of Sd−1 that
is orthogonal to e. The constructed point is (αe+

√
1− α2z, β).

For any f ∈ Hk and a ∈ [−1, 1] define f̄(a) to be the expectation of f over the 1-
codimensional sphere {x ∈ Sd−1 : 〈x, e〉 = a}. We will show that for any f ∈ Hk, such that
‖f‖Hk ≤ C and ErrDe,hinge(f) ≤ 1, we have that |f̄(γ)− f̄(−γ)| = o(1).

To do so, let us first assume that f is symmetric with respect to e, and hence can be
written as

f(x) =
∞∑
n=0

αnPd,n(〈x, e〉) ,

where αn ∈ R and Pd,n is the d-dimensional Legendre polynomial of degree n. Furthermore,
by a characterization of Hilbert spaces corresponding to symmetric kernels, it follows that∑
α2
n ≤ C2.

Since f is symmetric w.r.t. e we have,

f̄(a) =
∞∑
n=0

αnPd,n(a) .

For |a| ≤ 1/8, we have that |Pd,n(a)| tends to zero exponentially fast with both d and n.
Hence, if d is large enough then

f̄(a) ≈
log(C)∑
n=0

αnPd,n(a) =: f̃(a) .

Note that f̃ is a polynomial of degree bounded by log(C). In addition, by construction,
ErrDe,hinge(f) = ErrD,hinge(f̄) ≈ ErrD,hinge(f̃). Hence, if 1 ≥ ErrDe,hinge(f) then using the
previous subsection we conclude that |f̄(γ)− f̄(−γ)| = o(1).

Symmetrization of f

In the above, we assumed that both the kernel function is symmetric and that f is symmetric
w.r.t. e. Our next step is to relax the latter assumption, while still assuming that the kernel
function is symmetric.

Let O(e) be the group of linear isometries that fix e, namely, O(e) = {A ∈ O(d) : Ae = e}.
By assuming that k is a symmetric kernel, we have that for all A ∈ O(e), the func-
tion g(x) = f(Ax) is also in Hk. Furthermore, ‖g‖Hk = ‖f‖Hk and by the construc-
tion of De we also have ErrDe,hinge(g) = ErrDe,hinge(f). Let Pef(x) =

∫
O(e)

f(Ax)dA be

12



the symmetrization of f w.r.t. e. On one hand, Pef ∈ Hk, ‖Pef‖Hk ≤ ‖f‖Hk , and
ErrDe,hinge(Pef) ≤ ErrDe,hinge(f). On the other hand, f̄ = Pef . Since for Pef we have
already shown that |Pef(γ)−Pef(−γ)| = o(1), it follows that |f̄(γ)− f̄(−γ)| = o(1) as well.

Symmetrization of the kernel

Our final step is to remove the assumption that the kernel is symmetric. To do so, we first
symmetrize the kernel as follows. Recall that O(d) is the group of linear isometries of Rd.
Define the following symmetric kernel:

ks(x, y) =

∫
O(d)

k(Ax,Ay)dA .

We show that the corresponding Hilbert space consists of functions of the form

f(x) =

∫
O(d)

fA(Ax)dA ,

where for every A fA ∈ Hk. Moreover,

‖f‖2
Hks
≤
∫
O(d)

‖fA‖2
Hk
dA . (7)

Let α be the maximal number such that

∀e ∈ Sd−1∃fe ∈ Hk s.t. ‖fe‖Hk ≤ C, ErrDe,hinge(fe) ≤ 1, |f̄e(γ)− f̄e(−γ)| > α .

Since Hk is closed to negation, it follows that α satisfies

∀e ∈ Sd−1∃fe ∈ Hk s.t. ‖fe‖Hk ≤ C, ErrDe,hinge(fe) ≤ 1, f̄e(γ)− f̄e(−γ) > α .

Fix some v ∈ Sd−1 and define f ∈ Hks to be

f(x) =

∫
O(d)

fAv(Ax)dA .

By Equation (7) we have that ‖f‖Hks ≤ C. It is also possible to show that for all A
ErrDv ,hinge(fAv ◦ A) = ErrDAv ,hinge(fAv) ≤ 1. Therefore, by the convexity of the loss,
ErrDv ,hinge(f) ≤ 1. It follows, by the previous sections, that |f̄(γ)− f̄(−γ)| = o(1). But, we
show that f̄(γ)− f̄(−γ) > α. It therefore follows that α = o(1), as required.

Concluding the proof

We have shown that for every kernel, there exists some direction e such that for all f ∈ Hk

that satisfies ‖f‖Hk ≤ C and ErrDe,hinge(f) ≤ 1 we have that |f̄(γ)− f̄(−γ)| = o(1).
Next, consider f which is also an (approximated) optimal solution of program (2) with

respect to De. Since ErrDe,hinge(0) = 1, we clearly have that ErrDe,hinge(f) ≤ 1, hence
|f̄(γ) − f̄(−γ)| = o(1). Next we show that f̄(−γ) > 1/2, which will imply that f predicts
the label 1 for most instances on the 1 co-dimensional sphere such that 〈x, e〉 = −γ. Hence,
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its 0-1 error is close to 0.3(1−λ) ≥ 0.2 while Errγ(De) = λ/2. By choosing λ = O(γ log3.1(C))

we obtain that the approximation ratio is Ω
(

1
γ log3.1(C)

)
.

It is therefore left to show that f̄(−γ) > 1/2. Let a = f̄(γ) ≈ f̄(−γ). On (1− λ)
fraction fraction of the distribution, the hinge-loss would be (on average and roughly)
0.3[1 + a]+ + 0.7[1− a]+. This function is minimized for a = 1, which concludes our proof
since λ is o(1).

The proof of Theorem 2.7

To prove Theorem 2.7, we prove, using John’s Lemma (Matousek, 2002), that for every em-
bedding ψ : Sd−1 → B1, we can construct a kernel k : Sd−1 × Sd−1 → R and a probability
measure µN over Sd−1 with the following properties: If f is an approximate solution of pro-

gram (4), where γ fraction of the distribution D is perturbed by µN , then ‖f‖k ≤ O
(
m1.5

γ

)
.

Using this, we adapt the proof as sketched above to prove Theorem 2.7.

3 Additional Results

Low dimensional distributions. It is of interest to examine Theorem 2.6 when D is
supported on Bd for d small. We show that for d = O(log(1/γ)), the approximation ratio is

Ω
(

1√
γ·poly(log(1/γ))

)
. Most commonly used kernels (e.g., the polynomial, RBF, and Hyperbolic

tangent kernels, as well as the kernel used in (Shalev-Shwartz et al., 2011)) are symmetric.
Namely, for all unit vectors x, y ∈ B, k(x, y) := 〈ψ(x), ψ(y)〉H1 depends only on 〈x, y〉H .
For symmetric kernels, we show that even with the restriction that d = O(log(1/γ)), the

approximation ratio is still Ω
(

1
γ·poly(log(1/γ))

)
. However, the result for symmetric kernels is

only proved for (idealized) algorithms that return the exact solution of program (5).

Theorem 3.1 Let A be a kernel-based learner corresponding to a Lipschitz surrogate. As-
sume that CA(γ) = exp(o(γ−1/8)). Then, for every γ > 0, there exists a distribution D on
Bd, for d = O(log(CA(γ)/γ)), such that, w.p. ≥ 1− exp(−1/γ),

ErrD,0−1(A(γ))

Errγ(D)
≥ Ω

(
1

√
γ · poly(log(CA(γ))

)
.

Theorem 3.2 Assume that C = exp(o(γ−2/7)) and ψ is continuous and symmetric. For
every γ > 0, there exists a distribution D on Bd, for d = O(log(C)) and a solution to

program (5) whose 0-1-error is Ω
(

1
γ poly(log(C))

)
· Errγ(D).

The integrality gap. In bounding the approximation ratio, we considered a predefined
loss l. We believe that similar bounds hold as well for algorithms that can choose l according
to γ. However, at the moment, we only know to lower bound the integrality gap, as defined
below.

If we let l depend on γ, we should redefine the complexity of Program (5) to be C · L,
where L is the Lipschitz constant of l. (See the discussion following Program (5)). The (γ-
)integrality gap of program (5) and (4) is defined as the worst case, over all possible choices
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of D, of the ratio between the optimum of the program, running on the input γ, to Errγ(D).
We note that ErrD,0−1(f) ≤ ErrD,l(f) for every convex surrogate l. Thus, the integrality gap
always upper bounds the approximation ratio. Moreover, this fact establishes most (if not
all) guarantees for algorithms that solve Program (5) or Program (4).

We denote by ∂+f the right derivative of the real function f . Note that ∂+f always exists
for f convex. Also, ∀x ∈ R, |∂+f(x)| ≤ L if f is L-Lipschitz. We prove:

Theorem 3.3 Assume that C = exp
(
o(γ−2/7)

)
and ψ is continuous. For every γ > 0, there

exists a distribution D on Bd, for d = O(log(C)) such that the optimum of Program (5) is

Ω
(

1
γ poly(log(C·|∂+l(0)|))

)
· Errγ(D).

Thus Program (5) has itegrality gap Ω
(

1
γ poly(log(C·L))

)
. For Program (4) we prove a similar

lower bound:

Theorem 3.4 Let m, d, γ such that d = ω(log(m/γ)) and m = exp
(
o(γ−2/7)

)
. There

exist a distribution D on Sd−1 × {±1} such that the optimum of Program (4) is

Ω
(

1
γ poly(log(m/γ))

)
· Errγ(D).

4 Conclusion

We prove impossibility results for the family of generalized linear methods in the task of
learning large margin halfspaces. Some of our lower bounds nearly match the best known
upper bounds and we conjecture that the rest of our bounds can be improved as well to
match the best known upper bounds. As we describe next, our work leaves much for future
research.

First, regarding the task of learning large margin halfspaces, our analysis suggests that if
better approximation ratios are at all possible then they would require methods other than
optimizing a convex surrogate over a regularized linear class of classifiers.

Second, similar to the problem of learning large margin halfsapces, for many learning
problems the best known algorithms belong to the generalized linear family. Understanding
the limits of the generalized linear method for these problems is therefore of particular interest
and might indicate where is the line discriminating between feasibility and infeasibility for
these problems. We believe that our techniques will prove useful in proving lower bounds on
the performance of generalized linear methods for these and other learning problems. E.g.,
our techniques yield lower bounds on the performance of generalized linear algorithms that
learn halfspaces over the boolean cube {±1}n: it can be shown that these methods cannot
achieve approximation ratios better than Ω̃(

√
n) even if the algorithm competes only with

halfspaces defined by vectors in {±1}n. These ideas will be elaborated on in a long version
of this manuscript.

Third, while our results indicate the limitations of generalized linear methods, it is an
empirical fact that these methods perform very well in practice. Therefore, it is of great
interest to find conditions on distributions that hold in practice, under which these methods
guaranteed to perform well. We note that learning halfspaces under distributional assump-
tions, has already been addressed to a certain degree. For example, (Kalai et al., 2005, Blais
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et al., 2008) show positive results under several assumptions on the marginal distribution
(namely, they assume that the distribution is either uniform, log-concave or a product distri-
bution). There is still much to do here, specifically in search of better runtimes. Currently
these results yield a runtime which is exponential in poly(1/ε), where ε is the excess error of
the learnt hypothesis.

There are several limitations of our analysis that deserve further work. In our work the
surrogate loss is fixed in advance. However we believe that similar results hold even if the loss
depends on γ. This belief is supported by our results about the integrality gap. As explained
in Section 6, this is a subtle issue that is related to questions about sample complexity. Also,
we refer to C as the complexity of Program (3) since the analysis of uniform convergence
requires a sample of size poly(C) in order to solve the problem based on a finite sample.
Our results do not rule out the possibility of choosing C that is exponentially large in 1/γ
and still using a polynomial sample. We believe that this approach is doomed to fail due to
over-fitting. Finally, in view of Theorems 3.3 and 3.4, we believe that, as in Theorem 2.6,
the lower bound in Theorems 2.7 and 3.1 can be improved to depend on 1

γ
rather than on

1√
γ
.

5 Proofs

5.1 Background and Notation

Here we introduce some notations and terminology to be used throughout. The Lp norm
corresponding to a measure µ is denoted || · ||p,µ. Also, N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}.

5.1.1 Reproducing Kernel Hilbert Spaces

All the theorems we quote here are standard and can be found, e.g., in Chapter 2 of (Saitoh,
1988). Let H be a Hilbert space of functions from a set S to C. Note that H consists of
functions and not of equivalence classes of functions. We say that H is a reproducing kernel
Hilbert space (RKHS for short) if, for every x ∈ S, the linear functional f → f(x) is bounded.

A function k : S×S → C is a reproducing kernel (or just a kernel) if, for every x1, . . . , xn ∈
S, the matrix {k(xi, xj)}1≤i,j≤n is positive semi-definite.

Kernels and RKHSs are essentially synonymous:

Theorem 5.1 1. For every kernel k there exists a unique RKHS Hk such that for every
y ∈ S, k(·, y) ∈ Hk and ∀f ∈ H, f(y) = 〈f(·), k(·, y)〉Hk .

2. A Hilbert space H ⊆ CS is a RKHS if and only if there exists a kernel k : S × S → R
such that H = Hk.

3. For every kernel k, span{k(·, y)}y∈S = Hk. Moreover,

〈
n∑
i=1

αik(·, xi),
n∑
i=1

βik(·, yi)〉Hk =
∑

1≤i,j,≤n

αiβ̄jk(yj, xi)
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4. If the kernel k : S×S → R takes only real values, then HR
k := {Re(f) : f ∈ Hk} ⊂ Hk.

Moreover, HR
k is a real Hilbert space with the inner product induced from Hk.

5. For every kernel k, convergence in Hk implies point-wise convergence. If
supx∈S k(x, x) <∞ then this convergence is uniform.

There is also a tight connection between embeddings of S into a Hilbert space and RKHSs.

Theorem 5.2 A function k : S × S → R is a kernel iff there exists a mapping φ : S → H
to some real Hilbert space for which k(x, y) = 〈φ(y), φ(x)〉H . Also,

Hk = {fv : v ∈ H}

Where fv(x) = 〈v, φ(x)〉H . The mapping v 7→ fv, restricted to span(φ(S)), is a Hilbert space
isomorphism.

A kernel k : S × S → R is called normalized if supx∈S k(x, x) = 1. Also,

Theorem 5.3 Let k : S × S → R be a kernel and let {fn}∞n=1 be an orthonormal basis of a
Hk. Then, k(x, y) =

∑∞
n=1 fn(x)fn(y).

5.1.2 Unitary Representations of Compact Groups

Proofs of the results stated here can be found in (Folland, 1994), chapter 5. Let G be a
compact group. A unitary representation (or just a representation) of G is a group homo-
morphism ρ : G→ U(H) where U(H) is the class of unitary operators over a Hilbert space
H, such that, for every v ∈ H, the mapping a 7→ ρ(a)v is continuous.

We say that a closed subspace M ⊂ H is invariant (to ρ) if for every a ∈ G, v ∈ M ,
ρ(a)v ∈ M . We note that if M is invariant then so is M⊥. We denote by ρ|M : G→ U(M)
the restriction of ρ to M . That is, ∀a ∈ G, ρ|M(a) = ρ(a)|M . We say that ρ : G→ U(H) is
reducible if H = M⊕M⊥ such that M,M⊥ are both non zero closed and invariant subspaces
of H. A basic result is that every representation of a compact group is a sum of irreducible
representation.

Theorem 5.4 Let ρ : G → U(H) be a representation of a compact group G. Then, H =
⊕n∈IHn, where every Hn is invariant to ρ and ρ|Hn is irreducible.

We shall also use the following Lemma.

Lemma 5.5 Let G be a compact group, V a finite dimensional vector space and let ρ : G→
GL(V ) be a continuous homomorphism of groups (here, GL(V ) is the group of invertible
linear operators over V ). Then,

1. There exists an inner product on V making ρ a unitary representation.

2. Moreover, if V has no non-trivial invariant subspaces (here a subspace U ⊂ V is called
invariant if, ∀a ∈ G, f ∈ U, ρ(a)f ∈ U) then this inner product is unique up to scalar
multiple.
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5.1.3 Harmonic Analysis on the Sphere

All the results stated here can be found in (Atkinson and Han, 2012), chapters 1 and
2. Denote by O(d) the group of unitary operators over Rd and by dA the uniform
probability measure over O(d) (that is, dA is the unique probability measure satisfying∫
O(d)

f(A)dA =
∫
O(d)

f(AB)dA =
∫
O(d)

f(BA)dA for every B ∈ O(d) and every integrable

function f : O(d)→ C). Denote by dx = dxd−1 the Lebesgue (area) measure over Sd−1 and
let L2(Sd−1) := L2(Sd−1, dx). Given a measurable set Z ⊆ Sd−1, we sometime denote its
Lebesgue measure by |Z|. Also, denote dm = dx

|Sd−1| the Lebesgue measure, normalized to be
a probability measure.

For every n ∈ N0, we denote by Yd
n the linear space of d-variables harmonic (i.e., satisfying

∆p = 0) homogeneous polynomials of degree n. It holds that

Nd,n = dim(Yd
n) =

(
d+ n− 1

d− 1

)
−
(
d+ n− 3

d− 1

)
=

(2n+ d− 2)(n+ d− 3)!

n!(d− 2)!
(8)

Denote by Pd,n : L2(Sd−1)→ Yd
n the orthogonal projection onto Yd

n.
We denote by ρ : O(d)→ U(L2(Sd−1)) the unitary representation defined by

ρ(A)f = f ◦ A−1

We say that a closed subspace M ⊂ L2(Sd−1) is invariant if it is invariant w.r.t. ρ (that is,
∀f ∈ M,A ∈ O(d), f ◦ A ∈ M). We say that an invariant space M is primitive if ρ|M is
irreducible.

Theorem 5.6 1. L2(Sd−1) = ⊕∞n=0Yd
n.

2. The primitive finite dimensional subspaces of L2(Sd−1) are exactly {Yd
n}∞n=0.

Lemma 5.7 Fix an orthonormal basis Y d
n,j, 1 ≤ j ≤ Nd,n to Yd

n. For every x ∈ Sd−1 it
holds that

Nd,n∑
j=1

|Y d
n,j(x)|2 =

Nd,n

|Sd−1|

5.1.4 Legendre and Chebyshev Polynomials

The results stated here can be found at (Atkinson and Han, 2012). Fix d ≥ 2. The d
dimensional Legendre polynomials are the sequence of polynomials over [−1, 1] defined by
the recursion formula

Pd,n(x) = 2n+d−4
n+d−3

xPd,n−1(x) + n−1
n+d−3

Pd,n−2(x)

Pd,0 ≡ 1, Pd,1(x) = x

We shall make use of the following properties of the Legendre polynomials.

Proposition 5.8 1. For every d ≥ 2, the sequence {Pd,n} is orthogonal basis of the

Hilbert space L2
(

[−1, 1], (1− x2)
d−3
2 dx

)
.
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2. For every n, d, ||Pd,n||∞ = 1.

The Chebyshev polynomials of the first kind are defined as Tn := P2,n. The Chebyshev
polynomials of the second kind are the polynomials over [−1, 1] defined by the recursion
formula

Un(x) = 2xUn−1(x)− Un−2(x)

U0 ≡ 1, U1(x) = 2x

We shall make use of the following properties of the Chebyshev polynomials.

Proposition 5.9 1. For every n ≥ 1, T ′n = nUn−1.

2. ||Un||∞ = n+ 1.

Given a measure µ over [−1, 1], the orthogonal polynomials corresponding to µ are the se-
quence of polynomials obtained upon the Gram-Schmidt procedure applied to 1, x, x2, x3, . . ..
We note that the 1,

√
2T1,
√

2T2,
√

2T3, . . . are the orthogonal polynomials corresponding to
the probability measure dµ = dx

π
√

1−x2

5.1.5 Bochner Integral and Bochner Spaces

Proofs and elaborations on the material appearing in this section can be found in (Kosaku
Yosida, 1963). Let (X,m, µ) be a measure space and let H be a Hilbert space. A function
f : X → H is (Bochner) measurable if there exits a sequence of function fn : X → H such
that

• For almost every x ∈ X, f(x) = limn→∞ fn(x).

• The range of every fn is countable and, for every v ∈ H, f−1(v) is measurable.

A measurable function f : X → H is (Bochner) integrable if there exists a sequence of simple
measurable functions (in the usual sense) sn such that limn→∞

∫
X
||f(x)−sn(x)||Hdµ(x) = 0.

We define the integral of f to be
∫
X
fdµ = limn→∞

∫
sndµ, where the integral of a simple

function s =
∑n

i=1 1Aivi, Ai ∈ m, vi ∈ H is
∫
X
sdµ =

∑n
i=1 µ(Ai)vi.

Define by L2(X,H) the Kolmogorov quotient (by equality almost everywhere) of all
measurable functions f : X → H such that

∫
X
||f ||2Hdµ <∞.

Theorem 5.10 L2(X,H) in a Hilbert space w.r.t. the inner product 〈f, g〉L2(X,H) =∫
X
〈f(x), g(x)〉Hdµ(x)

5.2 Symmetric Kernels and Symmetrization

In this section we concern symmetric kernels. Fix d ≥ 2 and let k : Sd−1 × Sd−1 → R be a
continuous positive definite kernel. We say that k is symmetric if

∀A ∈ O(d), x, y ∈ Sd−1, k(Ax,Ay) = k(x, y)

In other words, k(x, y) depends only on 〈x, y〉Rd . A RKHS is called symmetric if its repro-
ducing kernel is symmetric. The next theorem characterize symmetric RKHSs. We note
that Theorems of the same spirit have already been proved (e.g. (Schoenberg, 1942)).
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Theorem 5.11 Let k : Sd−1×Sd−1 → R be a normalized, symmetric and continuous kernel.
Then,

1. The group O(d) acts on Hk. That is, for every A ∈ O(d) and every f ∈ Hk if holds
that f ◦ A ∈ Hk and ||f ||Hk = ||f ◦ A||Hk .

2. The mapping ρ : O(d)→ U(Hk) defined by ρ(A)f = f ◦A−1 is a unitary representation.

3. The space Hk consists of continuous functions.

4. The decomposition of ρ into a sum of irreducible representation is H = ⊕n∈IYd
n for

some set I ⊂ N0. Moreover,

∀f, g ∈ Hk, 〈f, g〉Hk =
∑
n∈I

a2
n〈Pd,nf,Pd,ng〉L2(Sd−1)

Where {an}n∈I are positive numbers.

5. It holds that
∑

n∈I
Nd,n
|Sd−1|a

−2
n = 1.

Proof Let f ∈ Hk, A ∈ O(d). To prove part 1, assume first that

∀x ∈ Sd−1, f(x) =
n∑
i=1

αik(x, yi) (9)

For some y1, . . . , yn ∈ Sd−1 and α1, . . . , αn ∈ C. We have, since k is symmetric, that

f ◦ A(x) =
n∑
i=1

αik(Ax, yi)

=
n∑
i=1

αik(A−1Ax,A−1yi)

=
n∑
i=1

αik(x,A−1yi)

Thus, by Theorem 5.1, f ◦ A ∈ Hk. Moreover, it holds that

||f ◦ A||2Hk =
∑

1≤i,j≤n

αiᾱjk(A−1yj, A
−1yi)

=
∑

1≤i,j≤n

αiᾱjk(yj, yi) = ||f ||2Hk

Thus, part 1 holds for function f ∈ Hk of the form (9). For general f ∈ Hk, by Theorem 5.1,
there is a sequence fn ∈ Hk of functions of the from (9) that converges to f in Hk. From what
we have shown for functions of the form (9) if follows that ||fn−fm||Hk = ||fn◦A−fm◦A||Hk ,
thus fn ◦ A is a Cauchy sequence, hence, has a limit g ∈ Hk. By Theorem 5.1, convergence
in Hk entails point wise convergence, thus, g = f ◦ A. Finally,

||f ||Hk = lim
n→∞

||fn||Hk = lim
n→∞

||fn ◦ A||Hk = ||f ◦ A||Hk
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We proceed to part 2. It is not hard to check that ρ is group homomorphism, so it
only remains to validate that for every f ∈ H the mapping A 7→ ρ(A)f is continuous. Let
ε > 0 and let A ∈ O(d). We must show that there exists a neighbourhood U of A such that
∀B ∈ U, ||f ◦A−1− f ◦B−1||Hk < ε. Choose g(·) =

∑n
i=1 αik(·, yi) such that ||g− f ||Hk < ε

3
.

By part 1, it holds that

||f ◦ A−1 − f ◦B−1||Hk ≤ ||f ◦ A−1 − g ◦ A−1||Hk + ||g ◦ A−1 − g ◦B−1||Hk + ||g ◦B−1 − f ◦B−1||Hk
= ||f − g||Hk + ||g ◦ A−1 − g ◦B−1||Hk + ||g − f ||Hk
<

ε

3
+ ||g ◦ A−1 − g ◦B−1||Hk +

ε

3

Thus, it is enough to find a neighbourhood U of A such that ∀B ∈ U, ||g◦A−1−g◦B−1||Hk <
ε
3
. However,

||g ◦ A−1 − g ◦B−1||2Hk = ||g ◦ A−1||2Hk + ||g ◦B−1||2Hk − 2 Re

[
〈
n∑
i=1

αik(·, yi) ◦ A−1,
n∑
i=1

αik(·, yi) ◦B−1〉

]

= 2||g ◦ A−1||2Hk − 2 Re

[
〈
n∑
i=1

αik(·, Ayi),
n∑
i=1

αik(·, Byi)〉

]

= 2||g ◦ A−1||2Hk − Re

[
n∑

i,j=1

αiᾱjk(Byj, Ayi)

]

Since k is continuous, the last expres-

sion tends to 2||g ◦ A−1||2Hk − Re
[∑n

i,j=1 αiᾱjk(Ayj, Ayi)
]

= ||g ◦ A − g ◦ A||2Hk = 0 as

B → A. Thus, there exists a neighbourhood U such that ∀B ∈ U, ||g ◦A−1−g ◦B−1||Hk < ε
3

as required.
To see part 3, note that every function in Hk is a limit in Hk of functions of the form

(9). Since k is continuous, every function in Hk is a limit in Hk of continuous functions.
However, by Theorem 5.1, every function is in fact a uniform limit of continuous function,
thus – continuous itself.

We proceed to part 4. By Theorem 5.4 Hk = ⊕i∈IVi where each Vi is a finite dimensional
space that is invariant to ρ. By Theorem 5.6 each Vi must be Yn for some n, thus, H =
⊕n∈IYd

n. By the uniqueness part in Lemma 5.5 and Theorem 5.6, the restriction of 〈·, ·〉Hk to
each Yd

n, n ∈ I equals to 〈·, ·〉L2(Sd−1) up to scalar multiple, proving the formula for 〈·, ·〉Hk
Finally, to see equation part 5, note that if for every n ∈ I, {Y d

n,j}j∈[Nd,n] in an orthonormal
basis of Yd

n w.r.t. 〈·, ·〉L2(Sd−1) then { 1
an
Y d
n,j}n∈I,j∈[Nd,n] is an orthogonal basis of H. By

Theorem 5.3 and Lemma 5.7, it follows that, for every x ∈ Sd−1,

1 = k(x, x) =
∑
n∈I

a−2
n

Nd,n∑
j=1

(Y d
n,j(x))2 =

∑
n∈I

Nd,n

|Sd−1|
a−2
n

2
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Symmetrization

Let k : Sd−1 × Sd−1 → R be a normalized continuous kernel. We define its symmetrization
by

∀x, y ∈ Sd−1, ks(x, y) =

∫
O(d)

k(Ax,Ay)dA

Theorem 5.12 1. ks is symmetric continuous kernel with supx∈Sd−1 ks(x, x) ≤ 1.

2. For every Φ ∈ L2(O(d), Hk) define Φ̄ : Sd−1 → C by Φ̄(x) =
∫
O(d)

Φ(A)(Ax)dA. Then

Hks = {Φ̄ : Φ ∈ L2(O(d), Hk)}

Moreover, for every Φ ∈ L2(O(d), Hk), ||Φ̄||Hks ≤ ||Φ||L2(O(d),Hk).

Proof Part 1. follows readily from the definition. We proceed to part 2. Define φ : Sd−1 →
L2(O(d), Hk) by

φ(x)(A)(·) = k(Ax, ·)
Note that

〈φ(x), φ(y)〉L2(O(d),Hk) =

∫
O(d)

〈φ(x)(A), φ(y)(A)〉

=

∫
O(d)

〈φ(x)(A), φ(y)(A)〉

= ks(x, y)

Thus, the Theorem follows from Theorem 5.1.1

2

5.3 Lemma 5.16 and its proof

Lemma 5.13 For every n > 0, d ≥ 5 and t ∈ [−1, 1] it holds that

|Pd,n(t)| ≤ min

{
Γ
(
d−1

2

)
√
π

[
4

n(1− t2)

] d−2
2

,

(
n

n+ d− 2
+ 2|t|

)n
2

}
Moreover, if n

n+d−2
+ 2|t| ≤ 1 we also have

|Pd,n(t)| ≤

√√√√ n∏
i=1

(
i

i+ d− 2
+ 2|t|

)
Finally, there exist constants E > 0 and 0 < r, s < 1 such that for every K > 0, d ≥ 5 and
t ∈
[
−1

8
, 1

8

]
we have

∞∑
n=K

|Pd,n(t)| ≤ ErK + Esd
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Proof In (Atkinson and Han, 2012) it is shown that |Pd,n(t)| ≤ Γ( d−1
2 )√
π

[
4

n(1−t2)

] d−2
2

. We

shall prove, by induction on k that

|Pd,n(t)| ≤

√√√√ n∏
i=1

(
i

i+ d− 2
+ 2|t|

)

Whenever n
n+d−2

+ 2|t| ≤ 1. For n = 0, 1 it follows from the fact that Pd,0 ≡ 1 and
Pd,1(t) = t. Let n > 1. By the induction hypothesis and the recursion formula for the
Legendre polynomials we have

|Pd,n(t)| ≤ 2n+ d− 4

n+ d− 3
|t||Pd,n−1(t)|+ n− 1

n+ d− 3
|Pd,n−2(t)|

≤ 2|t||Pd,n−1(t)|+ n− 1

n+ d− 3
|Pd,n−2(t)|

≤ 2|t|

√√√√n−1∏
i=1

(
i

i+ d− 2
+ 2|t|

)
+

n− 1

n+ d− 3

√√√√n−2∏
i=1

(
i

i+ d− 2
+ 2|t|

)

≤ 2|t|

√√√√n−2∏
i=1

(
i

i+ d− 2
+ 2|t|

)
+

n− 1

n+ d− 3

√√√√n−2∏
i=1

(
i

i+ d− 2
+ 2|t|

)

≤

√(
2|t|+ n− 1

n+ d− 3

)(
2|t|+ n

n+ d− 2

)√√√√n−2∏
i=1

(
i

i+ d− 2
+ 2|t|

)

=

√√√√ n∏
i=1

(
i

i+ d− 2
+ 2|t|

)
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Now, every K, K̄ ≥ 0 such that
(

K̄
K̄+d−2

+ 2|t|
) 1

2
< 1, we have

∞∑
n=K

|Pd,n(t)| ≤
K̄∑

n=K

(
n

n+ d− 2
+ 2|t|

)n
2

+
∞∑

n=K̄+1

Γ
(
d−1

2

)
√
π

[
4

n(1− t2)

] d−2
2

≤
K̄∑

n=K

(
K̄

K̄ + d− 2
+ 2|t|

)n
2

+
∞∑

n=K̄+1

Γ
(
d−1

2

)
√
π

[
4

n(1− t2)

] d−2
2

≤
∞∑
n=K

(
K̄

K̄ + d− 2
+ 2|t|

)n
2

+
Γ
(
d−1

2

)
√
π

[
4

(1− t2)

] d−2
2

∞∑
n=K̄+1

n−
d−2
2

≤

(
K̄

K̄+d−2
+ 2|t|

)K
2

1−
(

K̄
K̄+d−2

+ 2|t|
) 1

2

+
Γ
(
d−1

2

)
√
π

[
4

(1− t2)

] d−2
2

∞∑
n=K̄+1

n−
d−2
2

≤

(
K̄

K̄+d−2
+ 2|t|

)K
2

1−
(

K̄
K̄+d−2

+ 2|t|
) 1

2

+
Γ
(
d−1

2

)
√
π

[
4

(1− t2)

] d−2
2
∫ ∞
K̄

x−
d−2
2 dx

=

(
K̄

K̄+d−2
+ 2|t|

)K
2

1−
(

K̄
K̄+d−2

+ 2|t|
) 1

2

+
Γ
(
d−1

2

)
√
π

[
4

(1− t2)

] d−2
2 K̄−

d−4
2

d−4
2

(We limit ourselves to d ≥ 5 to guarantee the convergence of
∑
n−

d−2
2 .) In particular, if

|t| ≤ 1
8

and K̄ = d− 2, we have,

∞∑
n=K

|Pd,n(t)| ≤

 1

1−
(

3
4

) 1
2

(3

4

)K
2

+
Γ
(
d−1

2

)
√
π

[
4.07

(d− 2)

] d−2
2 d− 2

d−4
2

≤

 1

1−
(

3
4

) 1
2

(3

4

)K
2

+
6Γ
(
d−1

2

)
√
π

[
4.07

(d− 2)

] d−2
2

∼

 1

1−
(

3
4

) 1
2

(3

4

)K
2

+
6√
π

[
4.07

(d− 2)

] d−2
2

√
2π
d−2

2

(
d− 2

2e

) d−2
2

=

 1

1−
(

3
4

) 1
2

(3

4

)K
2

+ 12

[
4.07

2e

] d−2
2

2

Lemma 5.14 Let µ be a probability measure on [−1, 1] and let p0, p1, . . . be the corresponding
orthogonal polynomials. Then, for every f ∈ span{p0, . . . , pK−1} we have

||f ||2 ≤
√
K||f ||1 · max

0≤i≤K−1
||pi||∞
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Here, all Lp norms are w.r.t. µ.

Proof Write f =
∑K−1

i=0 αipi and denote M = max0≤i≤K−1 ||pi||∞.We have

||f ||22 ≤ ||f ||1 · ||f ||∞

≤ ||f ||1 ·M
K−1∑
n=0

|αk|

≤ ||f ||1 ·M

√√√√K−1∑
n=0

α2
k ·
√
K

= ||f ||1 ·M · ||f ||2
√
K

2

Lemma 5.15 Let d ≥ 5 and let f : [−1, 1] → R be a continuous function whose expansion
in the basis of d-dimensional Legendre polynomials is

f =
∞∑
n=0

αnPd,n

Denote C = supn |αn|. Let µ be the probability measure on [−1, 1] whose density function is

w(x) =

{
0 |x| > 1

8
8

π
√

1−(8x)2
|x| ≤ 1

8

Then, for every K ∈ N, 1
8
> γ > 0,

|f(γ)− f(−γ)| ≤ 32γK3.5 · ||f ||1,µ +
(
32γK3.5 + 2

)
· C · E · (rK + sd)

Here, E, r and s are the constants from Lemma 5.13.

Proof Let f̄ =
∑K−1

n=0 αnPd,n. We have ||f̄ ||1,µ ≤ ||f ||1,µ+||f̄−f ||∞,µ. Define g : [−1, 1]→ R
by g(x) = f̄(x

8
) and denote by dλ = dx

π
√

1−x2 . Write,

g =
K−1∑
n=0

βnTn

Where Tn are the Chebyshev polynomials. By Lemma 5.14 it holds that, for every 0 ≤ n ≤
K − 1,

|βn| ≤
√

2||g||2,λ ≤ 2
√
K||g||1,λ = 2

√
K||f̄ ||1,µ

Now,

g′ =
K−1∑
n=1

βknUn−1
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Where Un are the Chebyshev polynomials of the second kind. Thus,

||g′||∞,λ ≤
K−1∑
n=1

|βk| · n · ||Un−1||∞,λ =
K−1∑
n=1

|βk| · n2 ≤ 2
√
K||f̄ ||1,µ ·K3

Finally, by Lemma 5.13,

|f(γ)− f(−γ)| ≤ |g(8γ)− g(−8γ)|+ 2||f − f̄ ||∞,µ
≤ 32γK3.5 · ||f̄ ||1,µ + 2||f − f̄ ||∞,µ
≤ 32γK3.5 ·

(
||f ||1,µ + ||f − f̄ ||∞,µ

)
+ 2||f − f̄ ||∞,µ

≤ 32γK3.5 · ||f ||1,µ +
(
32γK3.5 + 2

)
· ||f − f̄ ||∞,µ

≤ 32γK3.5 · ||f ||1,µ +
(
32γK3.5 + 2

)
· E · C · (rK + sd)

2

For e ∈ Sd−1 we define the group O(e) := {A ∈ O(d) : Ae = e}. If Hk be a symmetric
RKHS and e ∈ Sd−1 we define Symmetrization around e. This is the operator Pe : Hk → Hk

which is the projection on the subspace {f ∈ Hk : ∀A ∈ O(e), f ◦ A = f}. It is not hard
to see that (Pef)(x) =

∫
{x′:〈x′,e〉=〈x,e〉} f(x′)dx′ =

∫
O(e)

f ◦ A(x)dA. Since Pef is a convex

combination of the functions {f ◦ A}A∈O(e), it follows that if R : Hk → R is a convex
functional then R(Pef) ≤

∫
O(e)
R(f ◦ A)dA.

Lemma 5.16 (main) There exists a probability measure µ on [−1, 1] with the following
properties. For every continuous and normalized kernel k : Sd−1 × Sd−1 → R and C > 0,
there exists e ∈ Sd−1 such that, for every f ∈ Hk with ||f ||Hk ≤ C, K ∈ N and 0 < γ < 1

8
,∣∣∣∣∫

{x:〈x,e〉=γ}
f −

∫
{x:〈x,e〉=−γ}

f

∣∣∣∣ ≤ 32γK3.5 · ||f ||1,µe +
(
32γK3.5 + 2

)
· E · C · (rK + sd)

≤ 32γK3.5 · ||f ||1,µe + 10 · E ·K3.5 · C · (rK + sd)

The integrals are w.r.t. the uniform probability over {x : 〈x, e〉 = γ} and {x : 〈x, e〉 = −γ}
and E, r, s are the constants from Lemma 5.13.

Proof Suppose first that k is symmetric. Let µ be the distribution over [−1, 1] whose
density function is

w(x) =

{
0 |x| > 1

8
8

π
√

1−(8x)2
|x| ≤ 1

8

We can assume that f is O(e)-invariant. Otherwise, we can replace f with Pef , which does
not change the l.h.s. and does not increase the r.h.s. This assumption yields (see (Atkinson
and Han, 2012), pages 17-18)

f(x) =
∞∑
n=0

αnPd,n(〈e, x〉).
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The L2(Sd−1)-norm of the map x 7→ Pd,n(〈x, e〉) is |S
d−1|
Nd,n

(e.g. (Atkinson and Han, 2012),

page 71). Therefore,

||f ||2k =
∑
n∈I

|Sd−1|
Nd,n

a2
nα

2
n

where {an}n∈I are the numbers corresponding to Hk from Theorem 5.11. In particular (since
also for n 6∈ I, αn = 0),

|αn|2 ≤
Nd,n

|Sd−1|
a−2
n ||f ||2k ≤ ||f ||2k

Write
g(t) = f(te), t ∈ [−1, 1]

By Lemma 5.15,

|g(γ)− g(−γ)| ≤ 32γK3.5 · ||f ||1,µ +
(
32γK3.5 + 2

)
· E · C · (rK + sd)

Finally,
∫
{x:〈x,e〉=γ} f = g(γ),

∫
{x:〈x,e〉=−γ} f = g(−γ) since f is O(e)-invariant. The Lemma

follows.
We proceed to the general case where k is not necessarily symmetric. Assume by way of

contradiction that for every e ∈ Sd−1, there exists a function fe such that∫
{x:〈x,e〉=γ}

fe−
∫
{x:〈x,e〉=−γ}

fe > 32γK3.5 ·||fe||1,µe+
(
32γK3.5 + 2

)
·||fe||Hk ·C ·(rK+sd) (10)

For convenience we normalize, so l.h.s. equals 1. Fix a vector e0 ∈ Sd−1. Define Φ ∈
L2(O(d), Hk) by

Φ(A) = fAe0

and let f ∈ Hks be the function

f(x) =

∫
O(d)

Φ(A)(Ax)dA =

∫
O(d)

fAe0(Ax)dA

Now, it holds that∫
{x:〈x,e0〉=γ}

f −
∫
{x:〈x,e0〉=−γ}

f =

∫
{x:〈x,e0〉=γ}

∫
O(d)

fAe0(Ax)dAdx−
∫
{x:〈x,e0〉=−γ}

∫
O(d)

fAe0(Ax)dAdx

=

∫
O(d)

∫
{x:〈x,e0〉=γ}

fAe0(Ax)dx−
∫
{x:〈x,e0〉=−γ}

fAe0(Ax)dxdA

=

∫
O(d)

∫
{x:〈x,Ae0〉=γ}

fAe0(x)dx−
∫
{x:〈x,Ae0〉=−γ}

fAe0(x)dxdA

= 1
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On the other hand

||f ||1,µe =

∫
Sd−1

∣∣∣∣∫
O(d)

fAe0(Ax)dA

∣∣∣∣ dµe0(x)

≤
∫
O(d)

∫
Sd−1

|fAe0(Ax)| dµe0(x)dA

≤
∫
O(d)

∫
Sd−1

|fAe0(x)| dµAe0(x)dA

=

∫
O(d)

||fAe0||1,µAe0dA

Moreover, by Theorem 5.12,

||f ||2Hks ≤ ||Φ||
2
L2(O(d),Hk) =

∫
O(d)

||fAe0 ||2HkdA ≤ C2

Since the Lemma is already proved for symmetric kernels, it follows that

1 ≤ 32γK3.5 · ||f ||1,µe0 +
(
32γK3.5 + 2

)
· E · C · (rK + sd)

≤ 32γK3.5 ·
∫
O(d)

||fAe0||1,µAe0dA+
(
32γK3.5 + 2

)
· E · C · (rK + sd)

=

∫
O(d)

32γK3.5 · ||fAe0||1,µAe0 +
(
32γK3.5 + 2

)
· E · C · (rK + sd)dA

Thus, for some A ∈ O(d)

1 ≤ 32γK3.5 · ||fAe0||1,µAe0 +
(
32γK3.5 + 2

)
· E · C · (rK + sd)

Contradicting Equation (10).

2

5.4 Proofs of the main Theorems

We are now ready to prove Theorems 2.6 and 3.2. We only consider distributions that
supported on the unit sphere, and we can therefore assume that the problem is formulated
it terms of the unit sphere and not the unit ball. Also, we reformulate program (5) as
follows: Given l : R → R a convex surrogate, a constant C > 0 and a continuous kernel
k : S∞ × S∞ → R with supx∈S∞ k(x, x) ≤ 1, we want to solve

min ErrD,l (f + b)

s.t. f ∈ Hk, b ∈ R (11)

||f ||Hk ≤ C

We can assume that ∂+l(0) < 0, for otherwise the approximation ratio is ∞. To see that,
let the distribution D be concentrated on a single point on the sphere and always return the
label 1. Of course, Errγ(D) = 0. However, if ∂+l(0) ≥ 0, it is bot hard to see that if f, b is
the solution of program (11), then f(x) + b ≤ 0, so that Err0−1(f + b) = 1.
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Lemma 5.17 Let l be a surrogate loss, µ a probability measure on Sd−1 and f ∈ C(Sd−1).
Let µ̄ be the probability measure on Sd−1 × {±1} which is the product measure of µ and the
uniform distribution on {±1}. Then

||f ||1,µ ≤
2

|∂+l(0)|
Errµ̄,l(f)

Proof By Jansen’s inequaliy, it holds that

Errµ̄,l(f) = E(x,y)∼µ̄l(y · f(x))

=
1

2
E(x,y)∼µ̄l(f(x)) + l(−f(x))

≥ 1

2
E(x,y)∼µ̄l(−|f(x)|)

≥ 1

2
l
(
−E(x,y)∼µ̄|f(x)|

)
It follows that l (−||f ||1,µ) ≤ 2 Errµ̄,l(f). By the convexity of l, it follows that for every
x ∈ R, l(x) ≥ l(0) + x · ∂+l(0) = l(0)− x · |∂+l(0)| ≥ −x · |∂+l(0)|. Thus,

||f ||1,µ ≤
2

|∂+l(0)|
Errµ̄,l(f)

2

5.4.1 Theorems 2.6 and 3.2

We will need Levy’s measure concentration Lemma (e.g., (Milman and Schechtman, 2002)).
Let f : X → Y be an absolutely continuous map between metric spaces. We define its
modulus of continuity as

∀ε > 0, ωf (ε) = sup{d(f(x), f(y)) : x, y ∈ X, d(x, y) ≤ ε}

Theorem 5.18 (Levy’s Lemma) There exists a constant η > 0 such that for every con-
tinuous function f : Sd−1 → R,

Pr (|f − Ef | > ωf (ε)) ≤ exp
(
−ηdε2

)
Here, both probability and expectation are w.r.t. the uniform distribution.

We note that ωf◦g ≤ ωf ·ωg and that ωΛv(ε) = ‖v‖ · ε. Thus, if ψ : S∞ → H1 is an absolutely
continuous embedding such that k(x, y) = 〈ψ(x), ψ(y)〉H1 , then for every v ∈ H1, it holds
that ωΛv,0◦ψ ≤ ||v||H1 ·ωψ. Suppose now that f ∈ Hk with ‖f‖Hk ≤ C. Let v ∈ H1 such that
f = Λv,0 ◦ ψ and ||v||H1 = ||f ||Hk ≤ C. It follows from Levi’s Lemma that

Pr (|f − Ef | > C · ωψ(ε)) ≤ Pr (|f − Ef | > ωf (ε)) ≤ exp
(
−ηdε2

)
(12)

Again, when both probability and expectation are w.r.t. the uniform distribution over Sd−1.
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Proof (of Theorems 2.6 and 3.2) Let β > α > 0 such that l(α) > l(β). Choose 0 < θ < 1
large enough so that (1−θ)l(−β)+θl(β) < θl(α). Define probability measures µ1, µ2, µ over
[−1, 1]× {±1} as follows.

µ1((−γ,−1)) = 1− θ, µ1((γ, 1)) = θ

The measure µ2 is the product of uniform{±1} and the measure on [−1, 1] whose density
function is

w(x) =

{
0 |x| > 1

8
8

π
√

1−(8x)2
|x| ≤ 1

8

Finally, µ = (1− λ)µ1 + λµ2 for λ > 0, which will be chosen later.
Let e ∈ Sd−1 be the vector from Lemma 5.16. The distribution D is the pullback of µ

w.r.t. e. By considering the affine functional Λe,0, it holds that Errγ(D) ≤ λ.
Let g be the solution returned by the algorithm. With probability ≥ 1 − exp(−1/γ),

g = f + b, where f, b is a solution to program (11) with C = CA(γ) and with an additive
error ≤ √γ. Since the value of the zero solution for program (11) is l(0), it follows that

l(0) +
√
γ ≥ Errµ,l(g) = (1− λ) Errµ1e,l(g) + λErrµ2e,l(g)

Thus, Errµ2e,l(g) ≤ l(0)+
√
γ

λ
≤ 2l(0)

λ
. Combining Lemma 5.17 and Lemma 5.16 is follows that∣∣∣∣∫

{x:〈x,e〉=γ}
g −

∫
{x:〈x,e〉=−γ}

g

∣∣∣∣ ≤ 128l(0)γK3.5

|∂+l(0)|λ
+ 10 ·K3.5 · E · C · (rK + sd)

By choosing K = Θ(log(C)), λ = Θ (γK3.5) = Θ
(
γ log3.5(C)

)
and d = Θ(log(C)), we can

make the last bound ≤ α
2
. We claim that

∫
{x:〈x,e〉=−γ} g >

α
2
. To see that, note that otherwise∫

{x:〈x,e〉=γ} g ≤ α thus,

E(x,y)∼Dl((f(x) + b)y) = E(x,y)∼Dl(g(x)y)

≥ θ(1− λ) ·
∫
{x:〈x,e〉=γ}

l(g(x))dx

≥ θ(1− λ) · l
(∫
{x:〈x,e〉=γ}

g(x)dx

)
≥ θ · l (α) · (1− λ) = θ · l (α) + o(1)

This contradict the optimality of f, b, as for f ′ = 0, b′ = β it holds that

E(x,y)∼Dl((f
′(x) + b′)y) ≤ λl(−β) + (1− λ) · (1− θ)l(−β) + θ · l(β))

= (1− θ)l(−β) + θ · l(β) + o(1)

We can conclude now the proof of Theorem 2.6. By choosing d large enough
and using Equation (12), we can guarantee that g|{x:〈x,e〉=−γ} is very concentrated
around its expectation. In particular, if (x, y) are sampled according to D, then w.p.
> 0.5 · (1− θ) · (1− λ) = Ω(1), it holds that yg(x) < 0. Thus, ErrD,0−1(g) = Ω(1), while
Errγ(D) ≤ λ = O (γ poly(log(C)))
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To conclude the proof of Theorem 3.2, we note that we can assume that g is O(e)-
invariant. Otherwise, we can replace it with Pef + b. This does not increase ||f ||Hk nor
ErrD,l(f + b), thus, the solution Pef + b is optimal as well. Now, it follows that g|{x:〈x,e〉=−γ}
is constant and we finish as before.

2

5.4.2 Theorem 3.1

Let L be the Lipschitz constant of l. Let β > α > 0 such that l(α) > l(β). Choose 0 < θ < 1
large enough so that (1−θ)l(−β)+θl(β) < θl(α). First, define probability measures µ1, µ2, µ3

and µ over [−1, 1]× {±1} as follows.

µ1(γ, 1) = θ, µ1(−γ,−1) = 1− θ

µ2(−γ, 1) = 1

The measure µ3 is the product of uniform{±1} and the measure over [−1, 1] whose density
function is

w(x) =

{
0 |x| > 1

8
8

π
√

1−(8x)2
|x| ≤ 1

8

Finally, µ = (1− λ1 − λ2)µ1 + λ2µ
2 + λ3µ

3 with λ2, λ3 > 0 to be chosen later.
Now, let e ∈ Sd−1 be the vector from Lemma 5.16. The distribution D is the pullback of

µ w.r.t. e. By considering the affine functional Λe,0, it holds that Errγ(D) ≤ λ3 + λ2.
Let g be the solution returned by the algorithm. With probability ≥ 1 − exp(−1/γ),

g = f + b, where f, b is a solution to program (11) with C = CA(γ) and with an additive
error ≤ √γ. As in the proof of Theorem 2.6, it holds that∣∣∣∣∫

{x:〈x,e〉=γ}
g −

∫
{x:〈x,e〉=−γ}

g

∣∣∣∣ ≤ 128l(0)γK3.5

|∂+l(0)|λ3

+ 10 ·K3.5 · E · C · (rK + sd) (13)

Denote the last bound by ε. It holds that

ErrD,l(g) = (1− λ2 − λ3)Eµ1e l(yg(x)) + λ2Eµ2e l(yg(x)) + λ3Eµ3e l(yg(x)) (14)

Now, denote δ =
∫
{x:〈x,e〉=−γ} g. It holds that

Eµ1e l(yg(x)) = θ

∫
{x:〈x,e〉=γ}

l(g(x)) + (1− θ)
∫
{x:〈x,e〉=−γ}

l(−g(x))

≥ θ · l
(∫
{x:〈x,e〉=γ}

g

)
+ (1− θ) · l

(
−
∫
{x:〈x,e〉=−γ}

g

)
(15)

≥ θ · l(δ) + (1− θ) · l(−δ)− Lε

Thus,

ErrD,l(g) ≥ (1− λ2 − λ3)(θ · l(δ) + (1− θ) · l(−δ))− Lε+ λ2Eµ2e l(yg(x))
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However, by considering the constant solution δ, it follows that

ErrD,l(g) ≤ (1− λ2 − λ3)(θl(δ) + (1− θ) · l(−δ)) + λ2 · l(δ) + λ3
1

2
(l(δ) + l(−δ)) +

√
γ

≤ (1− λ2 − λ3)(θ · l(δ) + (1− θ) · l(−δ)) + λ2 · l(δ) + λ3 · l(−|δ|) +
√
γ

Thus,

Errµ2e,l(g) ≤ Lε

λ2

+ l(δ) +
λ3

λ2

l(−|δ|) +

√
γ

λ2

(16)

=
L · l(0)128γK3.5

|∂+l(0)|λ2λ3

+
10 · L ·K3.5

λ2

· E · C · (rK + sd) + l(δ) +
λ3

λ2

l(−|δ|) +

√
γ

λ2

Now, relying on the assumption that γ · log8(C) = o(1), it is possible to choose λ2 =
Θ
(√

γK4
)

= Θ
(√

γ log4(C)
)
, λ3 =

√
γ, K = Θ(log(C/γ)), and d = Θ(log(C/γ)) such that

the bound in Equation (13), L·l(0)128γK3.5

|∂+l(0)|λ2λ3 + 10K3.5

λ2
·E ·C · (rK + sd), λ2, λ3 and λ3

λ2
are all o(1).

Since the bound in Equation (13) is o(1), it follows, as in the proof of Theorem 2.6, that
l(δ) ≤ l

(
α
2

)
and consequently, 0 < α

2
≤ δ. From equations (14) and (15), it follows that

l(−|δ|) = l(−δ) ≤
Lε+

ErrD,l(g)

1−λ2−λ3
1− θ

≤
Lε+ 2l(0)

1−λ2−λ3
1− θ

= O(1)

It now follows from Equation (16) that

E(x,y)∼µ2l(g(x)y) = Errµ2e,l(g) ≤ l
(α

2

)
+ o(1)

By Markov’s inequality,

Pr
(x,y)∼µ2

(l(g(x)y) ≥ l(0)) ≤
l
(
α
2

)
+ o(1)

l(0)

Thus, if (x, y) are chosen according to µ2
e, then w.p. >

l(0)−l(α2 )
l(0)

− o(1), l(g(x)) < l(0) ⇒
g(x) > 0. Since the marginal distributions of µ1

e and µ2
e are the same, it follows that, if (x, y)

are chosen according to D, then w.p. >

(
l(0)−l(α2 )

l(0)
− o(1)

)
· (1 − λ2 − λ3) · (1 − θ) = Ω(1),

yg(x) < 0. Thus, ErrD,0−1(g) = Ω(1) while Errγ(D) ≤ λ2 + λ3 = O
(√

γ poly(log(C))
)
.

2

5.4.3 The integrality gap – Theorem 3.3

Our first step is a reduction to the hinge loss. Let a = ∂+l(0). Define

l∗(x) =

{
ax+ 1 x ≤ 1

−a
0 o/w
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it is not hard to see that l∗ is a convex surrogate satisfying ∀x, l∗(x) ≤ l(x) and ∂+l
∗(0) =

∂+l(0). Thus, if we substitute l with l∗, we just decrease the integrality gap, hence can
assume that l = l∗. Now, we note that if we consider program (11) with l = l∗ the inegrality
gap of coincides with what we get by replacing C with |a| · C and l∗ with the hinge loss.
To see that, note that for every f ∈ Hk, b ∈ R, ErrD,l∗(f + b) = ErrD,hinge(|a| · f + |a| · b),
thus, minimizing ErrD,l∗ over all functions f ∈ Hk that satisfy ||f ||Hk ≤ C is equivalent to
minimizing ErrD,hinge over all functions f ∈ Hk that satisfy ||f ||Hk ≤ |a| · C. Thus, it is
enough to prove the Theorem for l = lhinge.

Next, we show that we can assume that the embedding is symmetric (i.e., correspond to
a symmetric kernel). As the integrality gap is at least as large as the approximation ratio,
using Theorem 3.2 this will complete our argument. (The reduction to the hinge loss yields
bounds with universal constants in the asymptotic terms).

Let γ > 0 and let D be a distribution on Sd−1 × {±1}. It is enough to find (a possibly
different) distribution D1 with the same γ-margin error as D, for which the optimum of
program (11) (with l = lhinge) is not smaller than the optimum of the program

min ErrD,hinge (f + b)

s.t. f ∈ Hks , b ∈ R (17)

||f ||Hks ≤ C

Denote the optimal value of program (17) by α and assume, towards contradiction, that
whenever Errγ(D1) = Errγ(D), the optimum of program (11) is strictly less then α.

For every A ∈ O(d), let DA, be the distribution of the r.v. (Ax, y) ∈ Sd−1 × {±1},
where (x, y) ∼ D. Since clearly Errγ(DA) = Errγ(D), there exist fA ∈ Hk and bA ∈ R
such that ||fA||Hk ≤ C and ErrDA,hinge(gA) < α, where gA := fA + bA. Define f ∈ Hks by
f(x) =

∫
O(d)

fA(Ax)dA and let b =
∫
O(d)

bAdA and g = f+b. By Theorem 5.12, ||f ||Hks ≤ C.

Finally, for l = lhinge,

ErrD,hinge(g) = E(x,y)∼Dl(yg(x))

= E(x,y)∼Dl(yEA∼O(d)gA(Ax))

≤ E(x,y)∼DEA∼O(d)l(ygA(Ax))

= EA∼O(d)E(x,y)∼Dl(ygA(Ax))

= EA∼O(d)E(x,y)∼DAl(ygA(x)) < α

Contrary to the assumption that α is the optimum of program (17).

5.4.4 Finite dimension - Theorems 2.7 and 3.4

Let V ⊆ C(Sd−1) be the linear space {Λv,b ◦ ψ : v ∈ Rm, b ∈ R} and denote W̄ = {Λv,b ◦ ψ :
v ∈ W, b ∈ R}. We note that dim(V ) ≤ m + 1. Instead of program (4) we consider the
equivalent formulation

min ErrD,l (f)

s.t. f ∈ W̄ (18)
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Lemma 5.19 (John’s Lemma) (Matousek, 2002) Let V be an m-dimensional real vector
space and let K be a full-dimensional 0-symmetric compact convex set. Then there exists an
inner product on V so that K is contained in the unit ball, and contains the ball around 0
of radius 1√

m
.

Lemma 5.20 Let l be a convex surrogate and let V ⊂ C(Sd−1) an m-dimensional vector
space. There exists a continuous kernel k : Sd−1×Sd−1 → R with supx∈Sd−1 k(x, x) ≤ 1 such
that Hk = V as a vector space and there exists a probability measure µN such that

∀f ∈ V, ||f ||Hk ≤
2m1.5

|∂+l(0)|
ErrµN ,l(f)

Proof Let ψ : Sd−1 → V ∗ be the evaluation operator. It maps each x ∈ Sd−1 to the linear
functional f ∈ V 7→ f(x). We claim that

1. ψ is continuous,

2. aff(ψ(Sd−1) ∪ −ψ(Sd−1)) = V ∗,

3. V = {v∗∗ ◦ ψ : v∗∗ ∈ V ∗∗}.

Proof of 1: We need to show that ψ(xn)→ ψ(x) if xn → x. Since V ∗ is finite dimensional, it
suffices to show that ψ(xn)(f)→ ψ(x)(f) for every f ∈ V , which follows from the continuity
of f .
Proof of 2: Note that 0 ∈ U = aff(ψ(Sd−1) ∪−ψ(Sd−1)), so U is a linear space. Now, define
T : U∗ → V via T (u∗) = u∗ ◦ ψ. We claim that T is onto, whence dim(U) = dim(U∗) =
dim(V ) = dim(V ∗), so that U = V ∗. Indeed, for f ∈ V , let u∗f ∈ U∗ be the functional
u∗f (u) = u(f). Now, T (u∗f )(x) = u∗f (ψ(x)) = ψ(x)(f) = f(x), thus T (u∗f ) = f .
Proof of 3: From U = V ∗ it follows that U∗ = V ∗∗, so that the mapping T : V ∗∗ → V is
onto, showing that V = {v∗∗ ◦ ψ : v∗∗ ∈ V ∗∗}.

Let us apply John’s Lemma to K = conv(ψ(Sd−1)∪−ψ(Sd−1)). It yields an inner product
on V ∗ with K contained in the unit ball and containing the ball around 0 with radius 1√

m
.

Let k be the kernel k(x, y) = 〈ψ(x), ψ(y)〉. Since ψ is continuous, k is continuous as well.
By Theorem 5.1.1 and since T is onto, it follows that, as a vector space, V = Hk. Since K
is contained in the unit ball, it follows that supx∈Sd−1 k(x, x) ≤ 1. It remains to prove the
existence of the measure µN .

Let e1, . . . , em ∈ V ∗ be an orthonormal basis. For every i ∈ [m], choose
(x1

i , yi), . . . , (x
m+1
i , yi) ∈ Sd−1 × {±1} and λ1

i , . . . , λ
m+1
i ≥ 0 such that

∑m+1
j=1 λji = 1 and

1√
m
ei =

∑m+1
j=1 λjiyiψ(xji ). Define µN(xji , 1) = µN(xji ,−1) =

λji
2m

.

Let f ∈ V . By Theorem 5.1.1 there exists v ∈ V ∗ such that f = Λv,0 ◦ ψ and ||f ||Hk =
||v||V ∗ . It follows that, for a = ∂+l(0),
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ErrµN ,l(f) =
m∑
i=1

m+1∑
j=1

λji
2m

[
l(yif(xji )) + l(−yif(xji ))

]
≥ 1

2m

m∑
i=1

[
l

(
m+1∑
j=1

λjiyif(xji )

)
+ l

(
−

m+1∑
j=1

λjiyif(xji )

)]

=
1

2m

m∑
i=1

[
l

(
m+1∑
j=1

λjiyi〈v, ψ(xji )〉

)
+ l

(
−

m+1∑
j=1

λjiyi〈v, ψ(xji )〉

)]

=
1

2m

m∑
i=1

l

(
〈v,

m+1∑
j=1

λjiyiψ(xji )〉

)
+ l

(
−〈v,

m+1∑
j=1

λjiyiψ(xji )〉

)

=
1

2m

m∑
i=1

l

(
〈v, ei√

m
〉
)

+ l

(
−〈v, ei√

m
〉
)

≥ 1

2m

m∑
i=1

l

(
−|〈v, ei〉|√

m

)
≥ |a|

2m1.5

m∑
i=1

|〈v, ei〉|

≥ |a|
2m1.5

||v||V ∗ =
|a|

2m1.5
||f ||Hk

2

Proof (of Theorem 2.7) Let L be the Lipschitz constant of l. Let β > α > 0 such that
l(α) > l(β). Choose 0 < θ < 1 large enough so that (1 − θ)l(−β) + θl(β) < θl(α). First,
define probability measures µ1, µ2, µ3 and µ over [−1, 1]× {±1} as follows.

µ1(γ, 1) = θ, µ1(−γ,−1) = 1− θ

µ2(−γ, 1) = 1

The measure µ3 is the product of uniform{±1} and the measure over [−1, 1] whose density
function is

w(x) =

{
0 |x| > 1

8
8

π
√

1−(8x)2
|x| ≤ 1

8

Let k, µN be the distribution and kernel from Lemma 5.20. Now, let e ∈ Sd−1 be the vector
from Lemma 5.16. We define the distribution D corresponding to the measure

µ = (1− λ2 − λ3 − λN)µ1
e + λ2µ

2
e + λ3µ

3
e + λNµN

By considering the affine functional Λe,0, it holds that Errγ(D) ≤ λ3 + λ2 + λN .
Let g be the solution returned by the algorithm. With probability ≥ 1 − exp(−1/γ),

g = f + b, where f, b is a solution to program (18) with an additive error ≤ √γ.
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Denote ||g||Hk = C. By Lemma 5.20, it holds that

C ≤ 2m1.5

|∂+l(0)|
ErrµN ,l(g)

≤ 2m1.5

|∂+l(0)|
Errµ,l(g)

λN

≤ 2m1.5

|∂+l(0)|
l(0)

λN

As in the proof of Theorem 2.6, it holds that∣∣∣∣∫
{x:〈x,e〉=γ}

g −
∫
{x:〈x,e〉=−γ}

g

∣∣∣∣ ≤ 128l(0)γK3.5

|∂+l(0)|λ3

+ 10 ·K3.5 · E · C · (rK + sd) (19)

Denote the last bound by ε. It holds that

ErrD,l(g) = (1−λ2−λ3−λN)Eµ1e l(yg(x)) +λ2Eµ2e l(yg(x)) +λ3Eµ3e l(yg(x)) +λNEµN l(yg(x))
(20)

Now, denote δ =
∫
{x:〈x,e〉=−γ} g. It holds that

Eµ1e l(yg(x)) = θ

∫
{x:〈x,e〉=γ}

l(g(x)) + (1− θ)
∫
{x:〈x,e〉=−γ}

l(−g(x))

≥ θ · l
(∫
{x:〈x,e〉=γ}

g

)
+ (1− θ) · l

(
−
∫
{x:〈x,e〉=−γ}

g

)
(21)

≥ θ · l(δ) + (1− θ) · l(−δ)− Lε

Thus,

ErrD,l(g) ≥ (1− λ2 − λ3 − λN)(θ · l(δ) + (1− θ) · l(−δ))− Lε+ λ2Eµ2e l(yg(x))

However, by considering the constant solution δ, it follows that

ErrD,l(g) ≤ (1− λ2 − λ3 − λN)(a · l(δ) + (1− θ) · l(−δ)) + λ2 · l(δ) + (λ3 + λN)
1

2
(l(δ) + l(−δ)) +

√
γ

≤ (1− λ2 − λ3 − λN)(θ · l(δ) + (1− θ) · l(−δ)) + λ2 · l(δ) + (λ3 + λN) · l(−|δ|) +
√
γ

Thus,

Errµ2e,l(g) ≤ Lε

λ2

+ l(δ) +
λ3 + λN
λ2

l(−|δ|) +

√
γ

λ2

(22)

≤ L · l(0)128γK3.5

|∂+l(0)|λ2λ3

+
10 · L ·K3.5

λ2

· E · C · (rK + sd) + l(δ) +
λ3 + λN +

√
γ

λ2

l(−|δ|)

Now, relying on the assumption that γ · log8(C) = o(1), it is possible to choose λ2 =
Θ
(√

γK4
)

= Θ
(√

γ log4(C)
)
, λ3 =

√
γ, K = Θ(log(C/γ)), λN = γ and d = Θ(log(C/γ))

such that the bound in Equation (19), L·l(0)128γK3.5

|∂+l(0)|λ2λ3 + 10K3.5

λ2
·E ·C · (rK + sd), λ2, λ3, λN and

λ3+λN+
√
γ

λ2
are all o(1).
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Since the bound in Equation (19) is o(1), it follows, as in the proof of Theorem 2.6, that
l(δ) ≤ l

(
α
2

)
and consequently, 0 < α

2
≤ δ. From equations (20) and (21), it follows that

l(−|δ|) = l(−δ) ≤
Lε+

ErrD,l(g)

1−λ2−λ3−λN
1− θ

≤
Lε+ 2l(0)

1−λ2−λ3−λN
1− θ

= O(1)

It now follows from Equation (22) that

E(x,y)∼µ2l(g(x)y) = Errµ2e,l(g) ≤ l
(α

2

)
+ o(1)

By Markov’s inequality,

Pr
(x,y)∼µ2

(l(g(x)y) ≥ l(0)) ≤
l
(
α
2

)
+ o(1)

l(0)

Thus, if (x, y) are chosen according to µ2
e, then w.p. >

l(0)−l(α2 )
l(0)

− o(1), l(g(x)) < l(0) ⇒
g(x) > 0. Since the marginal distributions of µ1

e and µ2
e are the same, it follows that, if (x, y)

are chosen according to D, then w.p. >

(
l(0)−l(α2 )

l(0)
− o(1)

)
·(1−λ2−λ3−λN) ·(1−θ) = Ω(1),

yg(x) < 0. Thus, ErrD,0−1(g) = Ω(1) while Errγ(D) ≤ λ2+λ3+λN = O
(√

γ poly(log(C))
)

=
O
(√

γ poly(log(m/γ))
)
.

2

Proof (of Theorem 3.4) As in the proof of Theorem 3.3, we can assume w.l.o.g. that
l = lhinge. Let k, µN be the measure and the kernel from Lemma 5.20. Let C = 2m1.5/γ.
By (the proof of) Theorem 3.3, there exists a probability measure µ̄ over Sd−1 × {±1} such
that for every f ∈ Hk with ||f ||Hk ≤ C it holds that Errµ̄,l(f) = Ω(1) but Errγ(µ̄) =
O(γ · poly(log(C))). Consider the distribution µ = (1 − γ)µ̄ + γµN . It still holds that
Errγ(µ̄) = O(γ · poly(log(C))) = O(γ · poly(log(m/γ))). Let f be an optimal for program
(18). We have that 1 ≥ Errµ,l(f) ≥ γ · ErrµN ,l(f). By Lemma 5.20, ||f ||Hk ≤ C. Thus,
Errµ,l(f) ≥ (1− γ) Errµ̄,l(f) = Ω(1).

2

6 Choosing a surrogate according to the margin

The purpose of this section is to demonstrate the subtleties relating to the possibility of
choosing a convex surrogate l according to the margin γ. Let k : B ×B → R be the kernel

k(x, y) =
1

1− 1
2
〈x, y〉H

and let ψ : B → H1 be a corresponding embedding (i.e., k(x, y) = 〈ψ(x), ψ(y)〉H1). In
(Shalev-Shwartz et al., 2011) it has been shown that the solution f, b to Program (2), with
C = C(γ) = poly(exp(1/γ · log(1/γ))) and the embedding ψ, satisfies

Errhinge(f + b) ≤ Errγ(D) + γ .
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Consequently, every approximated solution to the Program with an additive error of at most
γ will have a 0-1 loss bounded by Errγ(D) + 2γ.

For every γ, define a 1-Lipschitz convex surrogate by

lγ(x) =

{
1− x x ≤ 1/C(γ)

1− 1/C(γ) x ≥ 1/C(γ)

Claim 1 A function g : B → R is a solutions to Program (5) with l = lγ, C = 1 and the
embedding ψ, if and only if C(γ) · g is a solutions to Program (2) with C = C(γ) and the
embedding ψ.

We postpone the proof to the end of the section. We note that Program (5) with l = lγ,
C = 1 and the embedding ψ, have a complexity of 1, according to our conventions. Moreover,
by Claim 1, the optimal solution to it has a 0-1 error of at most Errγ(D) + γ. Thus, if A is
an algorithm that is only obligated to return an approximated solution to Program (5) with
l = lγ, C = 1 and the embedding ψ, we cannot lower bound its approximation ratio. In
particular, our Theorems regarding the approximation ratio are no longer true, as currently
stated, if the algorithms are allowed to choose the surrogate according to γ. One might be
tempted to think that by the above construction (i.e. taking ψ as our embedding, choosing
C = 1 and l = lγ, and approximate the program upon a sample of size poly(1/γ)), we have
actually gave 1-approximation algorithm. The crux of the matter is that algorithms that
approximate the program according to a finite sample of size poly(1/γ) are only guaranteed
to find a solution with an additive error of poly(γ). For the loss lγ, such an additive error
is meaningless: Since for every function f , ErrD,lγ (f) ≥ 1 − 1/C(γ), the 0 solution has an
additive error of poly(γ). Therefore, we cannot argue that the solution returned by the
algorithm will have a small 0-1 error. Indeed we anticipate that the algorithm we have
described will suffer from serious over-fitting.

To summarize, we note that the lower bounds we have proved, relies on the fact that the
optimal solutions of the programs we considered are very bad. For the algorithm we sketched
above, the optimal solution is very good. However, guaranties on approximated solutions
obtained from a polynomial sample are meaningless. We conclude that lower bounds for
such algorithms will have to involve over-fitting arguments, which are out of the scope of the
paper.
Proof (of claim 1) Define

l∗γ(x) =

{
1− C(γ)x x ≤ 1

C(γ)

0 x ≥ 1
C(γ)

Since l∗γ(x) = C(γ) · (lγ(x) − (1 − 1
C(γ)

)), it follows that the solutions to Program (5) with
l = l∗γ, C = 1 and ψ coincide with the solutions with l = lγ, C = 1 and ψ. Now, we note
that, for every function f : B → R,

ErrD,l∗γ (f) = ErrD,hinge(C(γ) · f)

Thus, w, b minimizes ErrD,l∗γ (Λw,b ◦ ψ) under the restriction that ‖w‖ ≤ 1 if and only if
C(γ) · w,C(γ) · b minimizes ErrD,hinge(Λw,b ◦ ψ) under the restriction that ‖w‖ ≤ C(γ).

2
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