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Abstract
We investigate the weight distribution of random binary linear

codes. For 0 < 𝜆 < 1 and n → ∞ pick uniformly at random

𝜆n vectors in F
n
2

and let C ≤ F
n
2

be the orthogonal comple-

ment of their span. Given 0 < 𝛾 < 1∕2 with 0 < 𝜆 < h(𝛾)
let X be the random variable that counts the number of words

in C of Hamming weight 𝛾n. In this paper we determine the

asymptotics of the moments of X of all orders o( n
log n

).
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1 INTRODUCTION

Random linear codes play a major role in the theory of error correcting codes, and are also important

in other areas such as information theory, theoretical computer science and cryptography [1, 2, 8, 12].

Nevertheless, not much seems to be known about their properties. As already demonstrated in Shan-

non’s foundational paper [13], random linear codes occupy a particularly prominent position in coding

theory. This is arguably the simplest construction to achieve channel capacity in the binary symmetric

channel, as well as the Gilbert-Varshamov bound for minimal distance. The present paper is motivated

by the contrast between the importance of random codes and the lack of our understanding. Our main

aim is to improve our comprehension of the weight distribution of random binary linear codes.

The two most basic parameters of a code C ⊆ F
n
2

are its rate R = log2 |C|
n

and its relative distance
𝛿 = min{‖x−y‖ ∣ x,y∈C x≠y}

n
, where ‖ ⋅ ‖ is the Hamming norm. Clearly, the rate of a -dimensional linear

code C ⊆ F
n
2

is


n
, and its relative distance is

min{‖w‖ ∣ w∈C w≠0}
n

.

It is a major challenge to understand the trade-off between rate and distance for linear as well as

general codes. Concretely, given 0 < 𝛿 <
1

2
, we wish to know the value of lim sup R(C) where the

lim sup is taken over all binary codes of relative distance at least 𝛿. The Gilbert-Varshamov (GV) lower

bound (e.g., [7], lec. 2) states that R ≥ 1 − h(𝛿) is achievable, where h is the binary entropy function.

Despite many attempts, this bound has not been improved, nor shown to be tight, through over 60
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years of intense investigations. The best known upper bound, from 1977 (MRRW), is due to McEliece,

Rodemich, Rumsey, and Welch [9]. An alternative proof of this bound, using harmonic analysis on F
n
2
,

was given in 2007 by Navon and Samorodnitsky [10]. Note that this is an upper bound on all codes.

Curiously, neither bound, GV and MRRW, exhibits any distinction between linear and nonlinear

codes. Of course, the realm of nonlinear codes is much richer than the linear one, but whether or not

nonlinear codes perform better than linear ones remains a mystery. One would thus expect that both

the lower bounds and the upper bounds for nonlinear codes be higher than for linear codes, but neither

one is the case at present. Since both GV and MRRW are several decades old, it is of interest to find

any key ways in which linear and nonlinear codes differ. As this paper shows, the weight distribution

of random linear codes is very different from that of random nonlinear codes.

This paper concerns the weight distribution of random linear codes. Concretely, fix two rational

numbers 0 < 𝛾 <
1

2
and 0 < 𝜆 < h(𝛾), and let n ∈ N be such that 𝜆n is an integer and 𝛾n is an even

integer1. Let C = Cn,𝜆 be a random subspace of F
n
2

that is defined via C ∶= {x ∈ F
n
2
|Kx = 0} where K

is a uniformly random 𝜆n× n binary matrix. Clearly dim C ≥ (1− 𝜆)n, and with very high probability

equality holds. Denote L = Ln,𝛾 = {x ∈ F
n
2
∣ ‖x‖ = 𝛾n}. We investigate the distribution of the random

variable X = Xn,𝛾,𝜆 = |C ∩ L| for fixed 𝛾 and 𝜆 when n → ∞. Clearly E(X) = N−𝜆( n
𝛾n

)
= Nh(𝛾)−𝜆+o(1),

where N = 2n. This follows since every x ∈ Ln,𝛾 belongs to a random Cn,𝜆 with probability N−𝜆. Also,

limn→∞ E(X) = ∞, since, by assumption 𝜆 < h(𝛾).
It is instructive to compare what happens if rather than a random linear code C, we consider a

uniformly random subset C′ ⊂ F
n
2
, where every vector in F

n
2

independently belongs to C′ with prob-

ability N−𝜆. In analogy, we define X′ = |C′ ∩ L|, and the distribution of X′ is clearly approximately

normal. It would not be unreasonable to guess that X behaves similarly, and in particular that its limit

distribution, as n → ∞ is normal. However, as we show, the code’s linear structure has a rather strong

effect. Indeed X does not converge to a normal random variable, and moreover, only a few of its central

moments are bounded.

1.1 Rough outline of how we compute the moments

We seek to approximate the central kth moments of X for all k ≤ o( n
log n

). In Section 2 we reduce this

question to an enumeration problem that we describe next. We say that a linear subspace U ≤ F
k
2

is

robust if every system of linear equations that defines it involves all k coordinates. Given a subspace

U ≤ F
k
2
, let TU be the set of all k × n binary matrices where every column is a vector in U and every

row has weight 𝛾n and let |TU| denote the cardinality of this set. We show that

E
(
(X − E(X))k

)
= Θ

⎛⎜⎜⎜⎜⎜⎝
k−1∑
=0

N−𝜆
∑

V≤Fk
2

dim(V)=
V robust

|TV |
⎞⎟⎟⎟⎟⎟⎠
, (1)

The main challenge is to estimate the internal sum, but understanding the interaction with the outer

sum is nontrivial either. The reason that we can resolve this problem is that the main contributors to the

internal sum are fairly easy to describe. As it turns out, this yields a satisfactory answer even though

we provide a rather crude upper bound on all the other terms.

1For other ranges of the problem—See our Discussion.
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A key player in this story is the space of even-weight vectors V = Vk ≤ F
k
2
. In Section 3 we solve

this enumeration problem for this space, and show that |TVk | ≈ NF(k,𝛾) up to a factor that is polynomial

in n and exponential in k. Here F(k, 𝛾) is the entropy of a certain entropy maximizing probability

distribution on Vk. In our proof, we generate a k × n matrix A with i.i.d. columns sampled from this

distribution, and compute the probability that A ∈ TVk . The function F has the explicit description

F(k, 𝛾) = min
1>x>0

log2

(
(1 + x)k + (1 − x)k

)
− k𝛾 log2 x − 1

and its asymptotic behavior for large k is:

F(k, 𝛾) = kh(𝛾) − 1 + O((1 − 2𝛾)k).

In Section 4 we use the result of Section 3 to bound |TU| for a general robust U ≤ F
k
2
. Consider

a robust space U ≤ F
k
2

of the form
⨁c

i=1 Vmi , where
∑

mi = k. Clearly, |TU| =
∏c

i=1 |TVmi | ≈
N

∑c
i=1

F(mi,𝛾). Hence, finding a space of this form of given dimension that maximizes |TU| translates into

a question about the dependence of F(m, 𝛾) on m. We show (Lemma 26) that this function is convex,

so that the optimum is attained at m1 = k − 2c + 2 and m2 = m3 = · · · = mc = 2.

We show that if U ≤ F
k
2

is robust and not a product of Even spaces, then there is some V of this

form and of the same dimension with |TV | ≥ |TU|. We reduce the proof of this claim (Eq. (23)) to the

analysis of m × n matrices where every row weighs 𝛾n, the first 𝛿n columns have odd weight and the

last (1−𝛿)n ones are even. A key step in the proof (Lemma 25) shows that the number of such matrices

decreases with 𝛿.

Finally, in Section 5, the results of the previous sections are put together to find the dominating

terms of Equation (1), yielding the moments of X. For even k, we show that the dominating terms are

those corresponding to either  = k
2

or  = k − 1, and respectively, to the subspaces
⨁k∕2

i=1
V2 or Vk.

More precisely, there exists some k0(𝛾, 𝛿) such that the former dominates when k ≤ k0 and the latter

when k > k0. The behavior of odd order moments is similar, although slightly more complicated to

state.

Theorems 29 and 30 in Section 5, deal with even and odd order moments, respectively. Theorem

1 gives the central moments of the normalized variable
X√

Var(X)
.

Theorem 1. Fix 𝛾 <
1

2
and 0 < 𝜆 < h(𝛾), let X = Xn,𝛾,𝜆, and let

k0 = min
{

m ∣ F(m, 𝛾) − (m − 1)𝜆 >
m
2
(h(𝛾) − 𝜆)

}
.

Then, for 2 ≤ k ≤ o( n
log n

),

E((X − E(X))k)

Var(X)
k
2

=
⎧⎪⎨⎪⎩

o(1) if k is odd and < k0

(1 + o(1)) ⋅ k!! if k is even and < k0

NF(k,𝛾)− k
2

h(𝛾)−( k
2
−1)𝜆− k log n

4n
+O( k

n
) if k ≥ k0

We call the reader’s attention to the following interesting point on which we elaborate below.

For given 𝛾 and 𝜆 there is a bounded number of moments for which our distribution behaves as if it

were normal, but from that index k0, the code’s linear structure starts to dominate the picture and the

normalized moments become unbounded as n → ∞ (see Figure 1).
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FIGURE 1 Illustration for Theorem 1. For k < k0 = k0(𝛾, 𝜆) the kth moment of X is that of a normal distribution. The

relevant range 𝜆 < h(𝛾) is below the solid line. Note that k0 = 3 for much of the parameters range

1.2 Preliminaries

1.2.1 General
• Unless stated otherwise, all logarithms here are to base 2.

• Our default is that an asymptotic statement refers to n → ∞, while the parameters 𝛾 and 𝜆 take

fixed arbitrary values within their respective domains. Other parameters such as k may or may not

depend on n.

• We denote a binomial distribution with n trials of probability p by B(n, p).

1.2.2 Entropy
• We use the standard notation h(t) = −t ⋅ log t − (1 − t) ⋅ log(1 − t). Entropy and conditional entropy

are always binary.

1.2.3 Linear algebra
• U ≤ V means that U is a linear subspace of the vector space V . The weight, ‖u‖ of a vector u ∈ F

n
2

is the number of its 1 coordinates. Accordingly we call u even or odd. Likewise, the weight ‖A‖ of

a binary matrix A, is the number of its 1 entries.

• The sets of even and odd vectors in F
n
2

are denoted by Vn and Dn.

• The ith row of a matrix A is denoted by Ai. If I ⊆ [k] then AI is the submatrix consisting of the rows

{Ai ∣ i ∈ I}. Also vI is the restriction of the vector v to the coordinates in I.

• For a subspace U ≤ F
k
2

and I ⊂ [k] we denote by UI the projection of U to the coordinates in I, that

is, UI = {uI ∣ u ∈ U}, and we use the shorthand I(U) = dim UI , and (U) = dim U.
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2 FROM MOMENTS TO ENUMERATION

To recap: C = Cn,𝜆 is a random linear subspace of F
n
2
, and L = Ln,𝛾 is the 𝛾nth layer of F

n
2
. We fix

0 < 𝛾 < 1, 0 < 𝜆 < h(𝛾), so that 𝜆n is an integer and 𝛾n is an even integer, and we start to investigate

the moments of X = |C ∩ L|, as n → ∞.

The probability that C contains a given subset of F
n
2

depends only on its linear dimension:

Proposition 2. If Y ⊆ F
n
2

has dimension dim(Y) = , then Pr(Y ⊆ C) = N−𝜆.

Proof. As mentioned, we think of C as the kernel of a uniform random 𝜆n × n binary matrix K, so

Y ⊆ C iff every row of K is orthogonal to Y . The probability of this event is 2− for a given row, and

2−𝜆n = N−𝜆 for all rows together. ▪

2.1 Interpreting the central moments of X

We turn to express X and its moments in terms of indicator random variables.

Definition 3. For a vector u ∈ F
n
2
, let Yu be the indicator for the event that u ∈ C. For a binary k × n

matrix A we let YA be the indicator random variable for the event that every row of A is in C.

Proposition 2 plainly yields the first two central moments of X.

E(X) =
∑
u∈L

E(Yu) = |L|N−𝜆 =
(

n
𝛾n

)
N−𝜆 = Nh(𝛾)−𝜆− log n

2n
+O( 1

n
)
.

Proposition 2 also implies that Cov(Yu,Yv) = 0 for every u ≠ v ∈ L. Hence,

Var(X) =
∑
u∈L

Var(Yu) =
(

n
𝛾n

)
N−𝜆(1 − N−𝜆) = Nh(𝛾)−𝜆− log n

2n
+O( 1

n
)
.

In words, the first two moments of X are not affected by the linearity of C.

We now turn to higher order moments. Specifically we wish to compute the kth central moment of

X for any 2 < k ≤ o( n
log n

).

Definition 4. We denote by Wk = Wk,𝛾 the set of binary k×n matrices in which every row has weight

𝛾n.

Definition 5. For a subspace U ≤ F
k
2

we denote

TU,n,𝛾 = TU = {A ∈ Wk ∣ ImA ⊆ U}

and

TU,n,𝛾 = TU = {A ∈ Wk ∣ ImA = U}.

Let us expand the kth central moment.

E
(
(X − E(X))k

)
= E

⎛⎜⎜⎝
(∑

u∈L
Yu −

∑
u∈L

E(Yu)

)k⎞⎟⎟⎠ =
∑

u1,…,uk∈L

∑
I⊆[k]

E

(∏
i∈I

Yui

) ∏
j∈[k]⧵I

(
−E

(
Yuj

))
. (2)
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If A is the matrix with rows u1,… , uk, then by Proposition 2 this equals∑
A∈Wk

∑
I⊆[k]

(−1)k−|I| ⋅ N−𝜆⋅(rank AI+k−|I|).

We group the matrices A ∈ Wk with the same image U and rewrite the above as∑
U≤Fk

2

|TU| ∑
I⊆[k]

(−1)k−|I| ⋅ N−𝜆⋅(I (U)+k−|I|),

which we restate as

E
(
(X − E(X))k

)
=

∑
U≤Fk

2

|TU|RU , (3)

where for any U ≤ F
k
2

RU =
∑
I⊆[k]

(−1)k−|I| ⋅ N−𝜆⋅(I (U)+k−|I|). (4)

We proceed as follows:

1. We recall the notion of a robust linear subspace of F
k
2
, and bound RU separately for robust and

nonrobust subspaces.

2. Using Möbius inversion, we restate Equation (3) in terms of |TU| rather than |TU|.
2.1.1 Computing RU

It is revealing to consider our treatment of X alongside a proof of the central limit theorem (CLT)

based on the moments method (e.g., [5]). In that proof, the kth moment of a sum of random vari-

ables of expectation zero is expressed as a sum of expectations of degree-k monomials, just as in

our Equation (2). These monomials are then grouped according to the relations between their factors.

In the CLT proof, it is assumed that each tuple’s nonrepeating factors are independent, so mono-

mials are grouped according to their degree sequence. Here, and specifically in Equation (3), we

need a more refined analysis that accounts for the linear matroid that is defined by the monomial’s

factors.

In the proof the CLT there holds E(M) = 0 for every monomial M that contains a degree-1 factor

Y . This follows, since E(Y) = 0 and the rest of the monomial is independent of Y . Something similar

happens here too. If u does not participate in any linear relation with the other factors in its monomial,

then Yu can play a role analogous to that of Y . This intuition is captured by the following definition

and proposition.

Definition 6. Let U ≤ F
k
2

be a linear subspace. We say that its ith coordinate is sensitive if

[k]⧵{i}(U) = (U)−1. We denote by Sen(U) the set of U’s sensitive coordinates. Also, if Sen(U) = ∅,

we say that U is robust.

It is not hard to see that equivalently, robustness means that every 1-co-dimensional

coordinate-wise projection of U has the same dimension as U. Yet another description is that every

system of linear equations that defines U must involve all coordinates.
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Proposition 7. For U ≤ F
k
2

it holds that

1. If U is robust then RU = Θ
(
N−(U)𝜆).

2. If U is not robust then RU = 0.

Proof. We use here the shorthand  = (U) and I = I(U).
We start with the case of a robust U. Note that for every I ⊊ [k] there holds I ≥  − k + |I| + 1.

For let us carry out the projection as k − |I| steps of 1-co-dimensional projections. At each step the

dimension either stays or goes down by one. But since U is robust, in the first step the dimension stays.

We claim that in the expression for RU in Equation (4), the term N−𝜆 that corresponds to

I = [k] dominates the rest of the sum. Indeed, each of the other 2k − 1 summands is ±Θ(N−𝜆(+1)).
Consequently, RU = Θ(N−𝜆).

Let us consider next a nonrobust U. Let j be a sensitive coordinate of U. If I ⊆ [k] ⧵ {j}, then

I∪{j} = I + 1. Consequently:

RU =
∑

I⊆[k]⧵{j}

(
(−1)k−|I|N−𝜆(I+k−|I|) + (−1)k−|I|−1N−𝜆(I∪{j}+k−|I|−1))

=
∑

I⊆[k]⧵{j}

(
(−1)k−|I|N−𝜆(I+k−|I|) + (−1)k−|I|−1N−𝜆(I+k−|I|)) = 0

▪

2.1.2 From |TU| to |TU|

In order for Equation (3) to be expressed in terms of |TU| rather than |TU| we can appeal to the Möbius

inversion formula for vector spaces over a finite field (e.g., [14, Ch 3.10]).

E
(
(X − E(X))k

)
=

∑
U≤Fk

2

RU
∑
V≤U

(−1)(U)−(V) ⋅ 2(
(U)−(V)

2
)|TV |

=
∑

V≤Fk
2

|TV | ∑
V≤U≤Fk

2

RU(−1)(U)−(V) ⋅ 2(
(U)−(V)

2
).

Grouping the U’s by their dimension i = (U), we express the above as

∑
V≤Fk

2

|TV |(−1)(V)
k∑

i=(V)
(−1)i ⋅ 2(

i−(V)
2
) ∑

V≤U≤Fk
2

(U)=i

RU .

By Proposition 7, this sum can be further rewritten as

Θ
⎛⎜⎜⎝

∑
V≤Fk

2

|TV |(−1)(V)
k∑

i=(V)
(−1)i ⋅ 2(

i−(V)
2
) ⋅ N−𝜆i ⋅ Zi,V

⎞⎟⎟⎠
where

Zi,V = |{U ∣ V ≤ U ≤ F
k
2
∧ (U) = i ∧ U is robust}|.

Note that if V is nonrobust then every U ≥ V is also nonrobust. Hence, the outer sum terms

corresponding to nonrobust V’s vanish. If V is robust, we claim that the inner sum is dominated by the
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term i = (V) and that consequently

E
(
(X − E(X))k

)
= Θ

⎛⎜⎜⎜⎝
∑

V≤Fk
2

V robust

|TV | ⋅ N−𝜆(V)

⎞⎟⎟⎟⎠ . (5)

Indeed, the number of i-dimensional subspaces containing V is given by the Gaussian binomial

coefficient(
k

i −(V)

)
2

=
∏k

j=k+1−(i−(V))(2j − 1)∏i−(V)
j=1

(2j − 1)
≤ 4 ⋅

∏k
j=k+1−(i−(V)) 2j∏i−(V)

j=1
2j

= 22+(i−(V))(k−i),

so the absolute value of the inner sum’s i-term is at most

2(
i−(V)

2
)−𝜆ni+2+(i−(V))(k−i) = 22+(i−(V))(k− i+(V)+1

2
)−i𝜆n

≤ 2−i(𝜆n+1−k)+2.

In order to proceed we need to estimate the cardinalities |TV |. As we show in Sections 3 and 4, at

least for large enough k, Equation (5) is dominated by the term V = Vk, the subspace of even-weight

vectors.

3 THE INTERSECTION OF VK AND THE 𝜸nTH LAYER

In this section we give tight estimates for |T| = |TVk ,n,𝛾 |. As usual we assume that 0 < 𝛾 <
1

2
and 𝛾n

is an even integer. We need the following terminology:

Definition 8. Let Ak×n be a binary matrix.

• A row of A is said to satisfy the row condition if it weighs 𝛾n. If this holds for every row of A, we

say that A satisfies the row condition.

• The column condition for A is that every column be of even weight.

• Recall that TVk ,n,𝛾 is the set of k × n binary matrices satisfying both the row and the column

conditions.

Our estimation of |T| is based on an entropy argument (see [11] for a survey on the use of entropy

in enumeration). We define a certain probability measure 𝜋 = 𝜋k,n,𝛾 on binary k × n matrices. We then

show that the elements of T are highly typical for the distribution 𝜋, in the following sense: For every

A ∈ T , a random matrix sampled from 𝜋 is equal to A with probability exactly 2−h(𝜋). In particular, the

restriction of 𝜋 to T is uniform. Consequently,

|T| = PrA∼𝜋(A ∈ T)
𝜋(A)

= Pr
A∼𝜋

(A ∈ T) ⋅ 2h(𝜋).

We then compute reasonably tight bounds on PrA∼𝜋(A ∈ T), yielding an estimation for |T| in terms of

h(𝜋).
In this distribution 𝜋, columns are chosen independently according to a distribution P = Pk,𝛾 that

is supported on Vk, and is invariant to permutations of the k coordinates. Naturally, we choose P so
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that for every i:

Pr
u∼P

(ui = 1) = 𝛾. (6)

Out of all distributions over Vk satisfying Equation (6), we seek one with maximal entropy, thus

making our P as general as possible, in a sense. The theory of exponential families (e.g., [15] Chapter

3) provides a framework to describe and study maximum entropy distributions. However, we do not

explicitly rely on this theory so that this paper remains self-contained.

Concretely, for some 1 > 𝛼 > 0 and for every u ∈ Vk we define

P(u) = 𝛼‖u‖
Z

(7)

Here Z = Z(k, 𝛼) =
∑

u∈Vk 𝛼
‖u‖. We claim that there is a unique 1 > 𝛼 > 0 for which Condition (6)

holds. First, note that

Z =
∑

w is even

(
k
w

)
𝛼w = (1 + 𝛼)k + (1 − 𝛼)k

2
.

Also,

Pr
u∼P

(ui = 1) =
∑

w is even

(k−1

w−1

)
𝛼w

Z
= 𝛼

(1 + 𝛼)k−1 − (1 − 𝛼)k−1

(1 + 𝛼)k + (1 − 𝛼)k

so that Equation (6) becomes

𝛼
(1 + 𝛼)k−1 − (1 − 𝛼)k−1

(1 + 𝛼)k + (1 − 𝛼)k
= 𝛾. (8)

Denote the left side of this expression by 𝛾(k, 𝛼).

Proposition 9. Let k ≥ 2. In the range 0 < 𝛼 < 1 the function 𝛾(k, 𝛼) increases from 0 to 1

2
.

Proof. In the following, the sums are over even i, j and t:

𝜕𝛾(k, 𝛼)
𝜕𝛼

=

(∑
i i

(k−1

i−1

)
𝛼i−1

) (∑
j
(k

j

)
𝛼j

)
−

(∑
i
(k−1

i−1

)
𝛼i

) (∑
j j

(k
j

)
𝛼j−1

)
Z2

.

Denoting t = j + i, the above equals∑
t 𝛼

t ∑
i(2i − t)

(k−1

i−1

)( k
t−i

)
𝛼Z2

=
∑

t 𝛼
t ∑

i(2i − t)i
(k

i

)( k
t−i

)
k𝛼Z2

.

Grouping the i and t − i terms of the inner sum yields∑
t 𝛼

t ∑
i(2i − t)2

(k
i

)( k
t−i

)
2k𝛼Z2

,

which is clearly positive. ▪
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It follows that the function 𝛾 = 𝛾(k, 𝛼) has an inverse with respect to 𝛼, which we denote by

𝛼 = 𝛼(k, 𝛾).
We summarize the new definitions pertaining to the distribution 𝜋.

Definition 10. Let k, n ∈ N.

• For 0 < 𝛼 < 1, we define

Z(k, 𝛼) =
∑

u∈Vk

𝛼‖u‖ = (1 + 𝛼)k + (1 − 𝛼)k

2

and

𝛾(𝛼, k) =
∑

u∈Vk

u1=1

𝛼‖u‖
Z(k, 𝛼)

= 𝛼
(1 + 𝛼)k−1 − (1 − 𝛼)k−1

(1 + 𝛼)k + (1 − 𝛼)k
.

• If x ∈ (0, 1

2
), then 𝛼(x, k) ∈ (0, 1) is the unique solution for 𝛾(𝛼(x, k), k) = x.

• Pk,𝛾 is the distribution on Vk defined by

P(u) = 𝛼‖u‖
Z(k, 𝛼)

,

where 𝛼 = 𝛼(𝛾, k).
• 𝜋k,n,𝛾 is the distribution on binary k × n matrices in which the columns are sampled independently

from the distribution Pk,𝛾 .

Proposition 11.

𝛼(k, 𝛾) = 𝛾

1 − 𝛾
+ O((1 − 2𝛾)k)

for every fixed 𝛾 ∈ (0, 1

2
) and k → ∞.

Proof. The proposition follows from the following inequality:

𝛾

(
k,

𝛾0

1 − 𝛾0

)
≤ 𝛾0 ≤ 𝛾

(
k,

𝛾0 + 𝜖

1 − 𝛾0

)

where 𝜖 = 2𝛾0 ⋅
(1−2𝛾0)k−1

1−(1−2𝛾0)k−1
.

The lower bound is easily verified, since

𝛾

(
k,

𝛾0

1 − 𝛾0

)
= 𝛾0 ⋅

1 − (1 − 2𝛾0)k−1

1 + (1 − 2𝛾0)k
.

For the upper bound, our claim,

𝛾

(
k,

𝛾0 + 𝜖

1 − 𝛾0

)
= (𝛾0 + 𝜖) (1 + 𝜖)k−1 − (1 − 2𝛾0 − 𝜖)k−1

(1 + 𝜖)k + (1 − 2𝛾0 − 𝜖)k
≥ 𝛾0,
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is equivalent by simple algebraic manipulation to

(1 + 𝜖)k−1𝜖 ≥ (2𝛾0 + 𝜖)(1 − 2𝛾0 − 𝜖)k−1.

To see that this last inequality holds, note that the l.h.s. is ≥ 𝜖, and the r.h.s. is ≤ (2𝛾0 + 𝜖)(1 − 2𝛾0)k−1.

Finally, the latter two expressions are identical due to the definition of 𝜖. ▪

We next compute the entropies of the distributions we have just defined:

h(𝜋) = nh(P)

where

h(P) = −
∑

u∈Vk

𝛼‖u‖
Z

log
𝛼‖u‖

Z
= log Z ⋅

∑
u∈Vk

𝛼‖u‖
Z

−
∑

u∈Vk

‖u‖𝛼‖u‖
Z

log 𝛼

= log Z − Eu∼P(‖u‖) log 𝛼 = log Z − k Pr
u∼P

(u1 = 1) log 𝛼 = log Z − k𝛾 log 𝛼.

To sum up:

h(𝜋) = n(log Z − k𝛾 log 𝛼).

Definition 12. For k ∈ N and 𝛾 ∈ (0, 1

2
), we denote

F(k, 𝛾) = h(𝜋)
n

= log Z − k𝛾 log 𝛼 = log((1 + 𝛼)k + (1 − 𝛼)k) − k𝛾 log 𝛼 − 1.

We next evaluate 𝜋(A) for a matrix A ∈ T . Let u1,… , un be the columns of A. Then

𝜋(A) =
n∏

i=0

P(ui) =
n∏

i=1

𝛼‖ui‖
Z

= 𝛼‖A‖
Zn = 𝛼𝛾kn

Zn = 2−h(𝜋).

Since 𝜋 is constant on T , this yields an expression for |T|. Namely,

|T| = PrA∼𝜋(A ∈ T)
𝜋(A)

= Pr
A∼𝜋

(A ∈ T) ⋅ 2h(𝜋). (9)

This is complemented by the following Lemma.

Lemma 13. Fix 𝛾 ∈ (0, 1

2
). Then, for every k ≥ 3 and n ∈ N, there holds

Pr
A∼𝜋k,n,𝛾

(A ∈ T) = n− k
2 ⋅ 2±O(k).

We will prove Lemma 13 at the end of this section. Before doing so, we wish to explore its

implications. Together with Equation (9), Lemma 13 allows us to conclude that

|T| = NF(k,𝛾)− k log n
2n

±O( k
n
) (10)

if k ≥ 3.
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For k = 2, a matrix in |T| is defined by its first row, so

|T| = (
n
𝛾n

)
= Nh(𝛾)− log n

2n
+O( 1

n
)
.

As we show later, F(k, 𝛾) has a linear (in k) asymptote. Consequently, the exponents in

Equation (10) are dominated by the F(k, 𝛾) term. Thus, to understand |T|’s behavior we need to

investigate F, which is what we do next.

3.1 Basic properties of F(k, 𝜸)

We start with several simple observations about F(k, 𝛾).

Proposition 14. For 𝛾 ∈ (0, 1

2
) there holds F(2, 𝛾) = h(𝛾). Also, F(k, 𝛾) ≤ k − 1 for all k ≥ 2.

Proof. For the first claim, note that 𝛾(2, 𝛼) = 𝛼2

1+𝛼2
so 𝛼(2, 𝛾) =

(
𝛾

1−𝛾

) 1

2

. Hence

F(2, 𝛾) = log Z − 2𝛾 log 𝛼 = log(1 + 𝛼2) − 𝛾 log(𝛼2) = h(𝛾).

The second claim holds since F(k, 𝛾) = h(P) is the binary entropy of a distribution with support

size 2k−1. ▪

Next we develop an efficient method to calculate F to desirable accuracy. We recall (e.g., [3], p. 26)

the notion cross entropy of D,E, two discrete probability distributions H(D,E) ∶= −
∑

i D(i) log E(i).
Recall also that H(D,E) ≥ h(D) with equality if and only if D = E. We apply this to P = Pk,𝛾 , with

𝛼 = 𝛼(k, 𝛾) and to Q, a distribution defined similarly according to Equation (7), but with some x in

place of 𝛼. Then

F(k, 𝛾) = h(P) ≤ H(P,Q) = −
∑

u
P(u) log Q(u) = −

∑
u

P(u) log
x‖u‖

Z(k, x)

= log Z(k, x) −
∑

u
P(u)‖u‖ ⋅ log(x) = log Z(k, x) − Eu∼P(‖u‖) ⋅ log(x)

= log Z(k, x) − 𝛾k log(x). (11)

Definition 15. We Denote the r.h.s. of Equation (11) by

g(k, 𝛾, x) = log Z(k, x) − 𝛾k log(x).

It follows that for an integer k ≥ 2 and 𝛾 ∈ (0, 1

2
),

F(k, 𝛾) = min
x∈(0,1)

g(k, 𝛾, x) = min
x∈(0,∞)

log
(
(1 + x)k + (1 − x)k

)
− 𝛾k log(x) − 1. (12)

This minimum is attained at x = 𝛼(k, 𝛾). Note that this expression allows us to conveniently compute

F to desirable accuracy (see Figure 2). Also, we take Equation (12) as a definition for F(k, 𝛾) for all

real positive k.
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FIGURE 2 The function g(3, 1

5
, x) and its minimum (see Equation (12))

FIGURE 3 F(k, 1

5
) − (k ⋅ h( 1

5
) − 1) (see Proposition 16)

Proposition 16. For an integer k > 1 and 0 < 𝛾 <
1

2
, it holds that

kh(𝛾) − 1 ≤ F(k, 𝛾) ≤ kh(𝛾) + log(1 + (1 − 2𝛾)k) − 1,

so,

F(k, 𝛾) = kh(𝛾) − 1 + O((1 − 2𝛾)k)

(see Figure 3).

Proof. The upper bound follows from Equation (12) which yields

F(k, 𝛾) ≤ g
(

k, 𝛾,
𝛾

1 − 𝛾

)
= kh(𝛾) + log(1 + (1 − 2𝛾)k) − 1.

We turn to proving the lower bound. Clearly,

g(k, 𝛾, x) ≥ log((1 + x)k) − 𝛾k log(x) − 1.

The r.h.s. expression attains its minimum at x = 𝛾

1−𝛾
and this minimum equals kh(𝛾)−1. Equation (12)

implies that this is a lower bound on F(k, 𝛾). ▪



18 LINIAL AND MOSHEIFF

3.2 Proof of Lemma 13

We turn to prove Lemma 13. It will be useful to view a vector u ∼ P as being generated in steps,

with its ith coordinate ui determined in the ith step. The following proposition describes the quantities

involved in this process.

Proposition 17. For k ≥ 2 and 0 < 𝛾 <
1

2
, let u ∈ F

k
2

be a random vector sampled from P. For
0 ≤ i ≤ k, let wi denote the weight of the prefix vector (u1,… , ui). Then:

1. The distribution of the bit ui conditioned on the prefix (u1,… , ui−1) depends only on the parity of
wi−1.

2.

Pr(ui = 1 ∣ wi−1 is even) = 𝛼 ⋅
(1 + 𝛼)k−i − (1 − 𝛼)k−i

(1 + 𝛼)k−i+1 + (1 − 𝛼)k−i+1
(13)

and

Pr(ui = 1 ∣ wi−1 is odd) = 𝛼 ⋅
(1 + 𝛼)k−i + (1 − 𝛼)k−i

(1 + 𝛼)k−i+1 − (1 − 𝛼)k−i+1
. (14)

Proof. Fix a prefix (u1,… , ui−1) of weight wi−1. We sum over x = ‖u‖ − wi and y = ‖u‖ − wi−1.

Pr (ui = 1 ∣ u1,… , ui−1) =
Pr (ui = 1 ∩ u1,… , ui−1)

Pr (u1,… , ui−1)
=

∑
x≢wi−1 mod 2

(k−i
x

)
𝛼x+wi−1+1

Z∑
y≡wi−1 mod 2

(k−i+1

y

)
𝛼y+wi−1

Z

= 𝛼

∑
x≢wi−1 mod 2

(k−i
x

)
𝛼x∑

y≡wi−1 mod 2

(k−i+1

y

)
𝛼y

,

yielding the claim. ▪

We denote the r.h.s. of Equations (13) and (14) by p0→1,i = p0→1,i,k and p1→0,i = p1→0,i,k,

respectively. Also, for 0 ≤ i ≤ k, let

ei = ei,k = Pr
u∼P

(wi is odd).

Here are some useful facts about these terms. Equation (6) yields

𝛾 = Pr
u∼P

(ui = 1) = p0→1,i ⋅ Pr
u∼P

(wi−1 is even) + p1→0,i ⋅ Pr
u∼P

(wi−1 is odd)

= p1→0,iei−1 + p0→1,i(1 − ei−1). (15)

By similar considerations, we have

ei = ei−1 ⋅ (1 − p1→0,i) + (1 − ei−1) ⋅ p0→1,i.

By combining these equations we find

p0→1,i ⋅ (1 − ei−1) =
𝛾 + (ei − ei−1)

2
(16)
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and

p1→0,i ⋅ ei−1 = 𝛾 − (ei − ei−1)
2

. (17)

We need some further technical propositions.

Proposition 18. For every 𝛾 ∈ (0, 1

2
) there exists some c = c(𝛾) > 0 such that if k ≥ 3 then

ei,k , p0→1,i,k , p1→0,i,k ∈ [c, 1 − c]

for every 1 ≤ i ≤ k − 1.

Proof. It is not hard to see that both p0→1,i,k and p1→0,i,k are monotone in i. Therefore it suffices to

check what happens for i = 1 and for i = k−1. For i = k−1 the two terms equal
𝛼2

1+𝛼2
and

1

2
respectively.

Since 𝛼 is bounded from 0 by Proposition 11, this yields the claim.

For i = 1 we note that p0→1,1,k = 𝛾 .

It remains to consider p1→0,1,k. Denote x = 1−𝛼
1+𝛼

and note that x is bounded away from 1. This yields

the bounds:

p1→0,1,k =
𝛼

1 + 𝛼
⋅

1 + xk−1

1 − xk ≥
𝛼

1 + 𝛼
⋅

1 − x
1 + x

and

1 − p1→0,1,k =
1

1 + 𝛼
⋅

1 − xk−1

1 − xk ≥
1

1 + 𝛼
⋅

1 − x
1 + x

We turn to deal with ei,k. Denote a = 1 + 𝛼, b = 1 − 𝛼 and r = k − i − 1. A bound on ei follows

from Equations (15) and (8) since

ei =
𝛾 − p0→t,i+1

p1→0,i+1 − p0→1,i+1

=
ak−1−bk−1

ak+bk − ar−1−br−1

ar+br

ar−1+br−1

ar−br − ar−1−br−1

ar+br

= (ar − br)(ak−r − bk−r)
2(ak + bk)

= (1 − xr)(1 − xk−r)
2(1 + xk)

≥
(1 − x)2

2(1 + x)

and likewise,

1 − ei =
(1 + xr)(1 + xk−r)

2(1 + xk)
≥

(1 − x)2

2(1 + x)
.

▪

The following simple and technical proposition will come in handy in several situations below. It

speaks about an experiment where n balls fall randomly into r bins. An outcome of such an experiment

is an r-tuple of nonnegative integers a1,… , ar with
∑

ai = n, where ai is the number of balls at bin i
at the end of the experiment.

Proposition 19. Let r ≥ 2 be an integer 1

r
≥ c > 0, and p1,… , pr ≥ c with

∑
pi = 1. We drop

randomly and independently n balls into r bins with probability pi of falling into bin i. The probability
of every possible outcome is at most O

(
n− r−1

2

)
, where c, r are fixed and n grows.
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Proof. It is well known (e.g., [4] p. 171) that the most likely outcome of the above process (a1,… , ar),
satisfies npi − 1 < ai for every i and its probability is(

n
a1,… , ar

) r∏
i=1

pai
i ≤

(
n

a1,… , ar

) r∏
i=1

(
ai + 1

n

)ai

=
(

n
a1,… , ar

) r∏
i=1

(ai

n

)ai
⋅
(

1 + 1

ai

)ai

≤ er ⋅
(

n
a1,… , ar

) r∏
i=1

(ai

n

)ai
.

By Stirling’s approximation for the multinomial term, the above is at most

O

( √
n∏r

i=1

√
ai

)
≤ O

( √
n∏r

i=1

√
npi − 1

)
≤ O

( √
n√

(cn − 1)r

)
≤ O

(
n− r−1

2

)
▪

Proposition 20. Let a, c > 0 be real and n ∈ N . Consider a random variable X ∼ B(n, p) where
c ≤ p ≤ 1 − c. Let y be an integer such that |y − pn| ≤ a

√
n. Then Pr(X = y) ≥ Ω

(
n− 1

2

)
for fixed a, c

and n → ∞.

Proof. Let q = 1 − p, and let us denote y = pn + x
√

n, where |x| ≤ a.

Pr(X = y) =
(

n
y

)
pyqn−y =

(
n
y

) ( y
n

)y (n − y
n

)n−y
(

1 −
x
√

n
y

)y (
1 +

x
√

n
n − y

)n−y

Expand into Taylor Series, using the fact that |x| is bounded and y = Θ(n) to derive the following

inequalities: (
1 −

x
√

n
y

)y

≥ Ω
(

e−x
√

n
)

and

(
1 +

x
√

n
n − y

)n−y

≥ Ω
(

ex
√

n
)
.

The proposition now follows from Stirling’s approximation, as(
n
y

) ( y
n

)y (n − y
n

)n−y
≥ Ω(n− 1

2 ).
▪

We are now ready to prove the main lemma of this section.

Proof. Every binary k × n matrix A that is sampled from the distribution 𝜋 satisfies the column

condition, and we estimate the probability that the row condition holds.

By Proposition 18, there is some c = c(𝛾) > 0 so that p0→1,i , p1→0,i , ei are in [c, 1 − c] for every

1 ≤ i ≤ k − 1.

We recall that A’s columns are sampled independently and view A as being sampled row by row.

Let bi be the vector A1+…+Ai−1 mod 2. We want to observe how the ordered pairs (‖bi‖, ‖Ai‖) evolve

as i goes from 1 to k. By Proposition 17, this evolution depends probabilistically on ‖bi−1‖ and only

on it. Namely, let si be the number of coordinates j where bi−1
j = 0 and Ai,j = 1. Likewise ti counts the

coordinates j for which bi−1
j = Ai,j = 1. It follows that ‖Ai‖ = si + ti, and ‖bi‖ = ‖bi−1‖+ si − ti, where

si ∼ B(n − ‖bi−1‖, p0→1,i) and ti ∼ B(‖bi−1‖, p1→0,i) are independent binomial random variables.
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Clearly A ∈ T iff
⋀k

i=1 Di, where Di is the event that ‖Ai‖ = 𝛾n.

We seek next an upper bound on Pr(A ∈ T).

Pr(A ∈ T) = Pr

( k⋀
i=1

Di

)
=

k∏
i=1

Pr

(
Di ∣

i−1⋀
j=1

Dj

)

≤

( k−3∏
i=1

max
w

Pr(Di ∣ ‖bi−1‖ = w)

)
⋅ max

w
Pr(Dk−2 ∧ Dk−1 ∧ Dk ∣ ‖bk−3‖ = w).

The inequality follows, since conditioned on ‖bi−1‖, the event Di is independent of D1,… ,Di−1. We

proceed to bound these terms. For 1 ≤ i ≤ k − 3,

Pr(Di ∣ ‖bi−1‖ = w) = Pr(si + ti = 𝛾n ∣ ‖bi−1‖ = w).

If w ≥
n
2
, we condition on si and bound this expression from above by

max
x

Pr(ti = 𝛾n − x ∣ ‖bi−1‖ = w ∧ si = x),

namely, the probability that a B(w, p1→0,i) variable takes a certain value. By Proposition 20 this is at

most O(w− 1

2 ) ≤ O(n− 1

2 ). When w <
n
2

the same argument applies with reversed roles for ti and si.

The last three rows of A require a separate treatment, since for example, the last row is com-

pletely determined by the first k − 1 rows. Let G be the matrix comprised of A’s last three rows.

Denote 𝜖 ∶= bk−3, and let w ∶= ‖𝜖‖. Again it suffices to consider the case w ≥
n
2
, and simi-

larly handle the complementary situation. If 𝜖j = 1, the jth column in G must be one of the vectors

(1, 0, 0)⊺, (0, 1, 0)⊺, (0, 0, 1)⊺, (1, 1, 1)⊺. Let a1, a2, a3, a4 denote the number of occurrences of each of

these vectors respectively. There are n − w indices j with 𝜖j = 0, and a corresponding column of G
must be one of the four even-weight vectors of length 3. We condition on the entries of these columns.

Under this conditioning ai + a4 is determined by the row condition applied to row k − 3 + i, and

clearly also
∑4

1ai = w. This system of four linearly independent linear equations has at most one

solution in nonnegative integers. To estimate how likely it is that this unique solution is reached, we

view it as a w-balls and 4-bins experiment. The probability of each bin is a product of two terms from

among p0→1,i , 1 − p0→1,i , p1→0,i , 1 − p1→0,i where i ∈ {k − 2, k − 1}. Again, these probabilities are

bounded away from 0. By Proposition 19 the probability of success is at most O(n− 3

2 ). Consequently,

Pr(A ∈ T) ≤ n− k
2 ⋅ 2O(k).

To prove a lower bound on Pr(A ∈ T), again we consider the rows one at a time. As before, it is

easier to bound the probability of Di by first conditioning on ‖bi−1‖. However, at present more care is

needed, since letting the ‖bi‖’s take arbitrary values is too crude. Firstly, as long as the row conditions

hold, necessarily ‖bi‖ is even. In addition, we monitor the deviation of ‖bi‖ from its expectation, which

is n ⋅ ei. Accordingly, we define the following sets:

For 1 ≤ i ≤ k − 2, let Si ∶= {0 ≤ w ≤ n ∣ |w − ei ⋅ n| ≤ √
n ∧ w is even}.

The intuition is that the event ‖bi‖ ∈ Si makes it likely that Di+1 holds, in which case it is also likely

that ‖bi+1‖ ∈ Si+1. This chain of probabilistic implication yields our claim. To start, clearly ‖b0‖ ∈
S0 ∶= {0}.
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Now,

Pr(A ∈ T) = Pr

( k⋀
i=1

Di

)
≥ Pr

( k⋀
i=1

Di ∧
k−2⋀
i=1

‖bi‖ ∈ Si

)

=

( k−2∏
i=1

Pr

(
(Di ∧ ‖bi‖ ∈ Si) ∣

i−1⋀
j=1

(Dj ∧ ‖bj‖ ∈ Sj)

))

⋅ Pr

(
(Dk−1 ∧ Dk) ∣

k−2⋀
j=1

(Dj ∧ ‖bj‖ ∈ Sj)

)

≥

( k−2∏
i=1

min
w∈Si−1

Pr((Di ∧ ‖bi‖ ∈ Si) ∣ ‖bi−1‖ = w)

)
⋅ min

w∈Sk−2

Pr((Dk−1 ∧ Dk) ∣ ‖bk−2‖ = w).

It is in estimating these last terms that the assumption ‖bi‖ ∈ Si becomes useful. We proceed to

bound these terms, and claim the following:

1. minw∈Si−1
Pr((Di ∧ ‖bi‖ ∈ Si) ∣ ‖bi−1‖ = w) ≥ Ω( 1√

n
) for every 1 ≤ i ≤ k − 2.

2. minw∈Sk−2
Pr((Dk−1 ∩ Dk) ∣ ‖bk−2‖ = w) ≥ Ω( 1

n
).

It is clear that the above inequalities imply that Pr(A ∈ T) ≥ n
k
2 ⋅ 2−O(k), which proves the lemma.

Fix some 1 ≤ i ≤ k − 2 and let w ∈ Si−1, and assume that Di holds. Then

‖bi‖ − ‖bi−1‖ ≡ si − ti ≡ si + ti ≡ 𝛾n ≡ 0 mod 2,

so that ‖bi‖ satisfies Si’s parity condition. Therefore

Pr(Di ∧ ‖bi‖ ∈ Si ∣ ‖bi−1‖ = w) = Pr(Di ∧ |‖bi‖ − E(‖bi‖)| ≤ √
n ∣ ‖bi−1‖ = w)

Namely

Pr(Di ∧ ‖bi‖ ∈ Si ∣ ‖bi−1‖ = w)

= Pr(si + ti = 𝛾n ∧ |si − ti − ei ⋅ n + w| ≤ √
n ∣ ‖bi−1‖ = w). (18)

We want to express this last condition in terms of x = si − ti, where clearly si = 𝛾n+x
2

and ti = 𝛾n−x
2

.

Equation (18) means that ei ⋅ n − w −
√

n ≤ x ≤ ei ⋅ n − w +
√

n and x ≡ 𝛾n mod 2. Summing over

all such x’s we have

Pr(Di ∧ ‖bi‖ ∈ Si ∣ ‖bi−1‖ = w) =
∑

x
Pr

(
si =

𝛾n + x
2

)
⋅ Pr

(
ti =

𝛾n − x
2

)
. (19)

Here si ∼ B(n − w, p0→1,i) and ti ∼ B(w, p1→0,i). We use Proposition 20 to give lower bounds on a

general term in Equation (19). To this end we show that
𝛾n+x

2
and

𝛾n−x
2

are close, respectively, to the

means of si and ti.
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Since w ∈ Si−1, we can write w = ei−1 ⋅ n + y where |y| ≤ √
n. The bounds on x allow us to write

x = (ei − ei−1)n − y + z for some |z| ≤ √
n. By Equation (16),

||||E(si) −
𝛾n + x

2

|||| = ||||p0→1,i ⋅ (n − w) − 𝛾n + x
2

||||
=

||||p0→1,i ⋅ ((1 − ei−1)n − y) −
(𝛾 + ei − ei−1)n − y + z

2

||||
=

||||𝛾 + (ei − ei−1)
2

n − p0→1,i ⋅ y −
(𝛾 + ei − ei−1)n − y + z

2

||||
=

||||y − z
2

− p0→1,i ⋅ y
|||| ≤ √

n.

By Proposition 20, Pr(si = 𝛾n+x
2

) ≥ Ω(n− 1

2 ). A similar proof, using Equation (17), shows that

Pr(ti = 𝛾n−x
2

≥ Ω(n− 1

2 )). Thus, each of theΩ(
√

n), summands in Equation (19) is at leastΩ(n−1), so that

Pr(Di ∧ ‖bi‖ ∈ Si ∣ ‖bi−1‖ = w) ≥ Ω(n− 1

2 ).

We turn to proving a lower bound on minw∈Sk−2
Pr((Dk−1 ∧ Dk) ∣ ‖bk−2‖ = w). The column

condition implies that Ak = bk−1. Thus, for w ∈ Sk−2,

Pr((Dk−1 ∧ Dk) ∣ ‖bk−2‖ = w) = Pr(Dk−1 ∧ ‖bk−1‖ = 𝛾n ∣ ‖bk−1‖ = w)
= Pr(sk−1 + tk−1 = 𝛾n ∧ sk−1 − tk−1 + w = 𝛾n)

= Pr
(

sk−1 = 𝛾n − w
2

)
⋅ Pr

(
tk−1 = w

2

)
,

where sk−1 ∼ B(n − w, p0→1,k−1) and tk−1 ∼ B(w, p1→0,k−1). Again, by applying Proposition 20 to sk−1

and tk−1, we conclude that the above is at least Ω(n−1). ▪

4 BOUNDING |TV| IN GENERAL

In this section we fix a robust subspace V ≤ F
k
2

and bound its contribution to Equation (5). Let us

sample, uniformly at random a matrix Ak×n in TV . Since TV is invariant under column permutations,

the columns of A are equally distributed. We denote this distribution on F
k
2

by QV , and note that

log |TV | = h(A) ≤ n ⋅ h(QV ).

To bound h(QV ) we employ the following strategy. Express V as the kernel of a (k − (V)) × k
binary matrix B in reduced row echelon form. Suppose that Bi,j = 1. If Bi′,j = 0 for every i′ < i we say

that the coordinate j is i-new. Otherwise, j is said to be i-old. We denote the set of i-new coordinates by

Δi. We have assumed that V is robust, so that
⋃k−

i=1 Δi = [k], since j ∉
⋃k−

i=1 Δi means that coordinate

j is sensitive. Also B is in reduced row echelon form, so all Δi are nonempty.

Example 1. The following B3×7 corresponds to k = 7 and (V) = 4. In bold—the i-new entries in

row i for i = 1, 2, 3. [1 0 0 1 1 0 0
0 1 0 1 0 1 1
0 0 1 1 0 1 0

]
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A vector v sampled from QV satisfies Bv = 0 and the expected value of each of its coordinates is

E(vi) = 𝛾 . Consider v as generated in stages, with the coordinates in Δi determined in the ith stage.

We express v’s entropy in this view:

h(QV ) = h(v) = h(vΔ1
) +

k−(V)∑
i=2

h(vΔi ∣ v⋃i−1

i′=1
Δi′
). (20)

We begin with the first term. Since Δ1 is the support of B’s first row and since Bv = 0, it follows

that vΔ1
has even weight. As we show in Lemma 24, the distribution P from Section 3 has the largest

possible entropy for a distribution that is supported on even weight vectors with expectation 𝛾 per

coordinate. Hence,

h(vΔ1
) ≤ h(P|Δ1|,𝛾 ) = F(|Δ1|, 𝛾)

It takes more work to bound the other terms in Equation (20). Let 2 ≤ i ≤ k − (V). Before the

ith stage, v’s i-old coordinates are already determined. Since the inner product ⟨Bi, v⟩ = 0, the i-new

coordinates of v have the same parity as its i-old coordinates. Hence ‖vΔi‖’s parity is determined before

this stage. Let 𝛿i = Pr(‖vΔi‖ is odd). Since conditioning reduces entropy

h(vΔi ∣ v⋃i−1

i′=1
Δi′
) ≤ h(vΔi ∣ parity of ‖vΔi‖) = h(vΔi) − h(𝛿i).

We have already mentioned that Lemma 24 characterizes the max-entropy distribution on

even-weight vectors with given per-coordinate expectation. We actually do more, and find a maximum

entropy distribution P = Pm,𝛾,𝛿 on F
m
2

satisfying

Pr
u∼P

(ui = 1) = 𝛾 (21)

for every 1 ≤ i ≤ m and

Pr
u∼P

(‖u‖ is odd) = 𝛿. (22)

This distribution P = Pm,𝛾,𝛿 extends something we did before, in that Pm,𝛾,0 coincides with Pm,𝛾

from Section 3

Since v|Δi| also satisfies these conditions, this yields the bound h(vΔi ∣ v⋃i−1

i′=1
Δi′
) ≤ F(|Δi|, 𝛾, 𝛿i),

where:

Definition 21. For m ∈ N, 𝛾 ∈ (0, 1

2
) and 𝛿 ∈ [0, 1] we define

F(m, 𝛾, 𝛿) = h(Pm,𝛾,𝛿) − h(𝛿).

This generalizes Definition 12 since F(m, 𝛾) = F(m, 𝛾, 0).

We conclude that

log |TV | ≤ n ⋅ h(QV ) ≤ n ⋅

(
F(|Δ1|, 𝛾) + k−(V)∑

i=2

F(|Δi|, 𝛾, 𝛿i)

)
. (23)

We determine next the distribution Pm,𝛾,𝛿 and then return to the analysis of Equation (23).
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4.1 The function F(m, 𝜸, 𝜹)

As explained above we now find the max-entropy distribution satisfying Equations (21) and (22). The

following proposition gives a necessary condition for the existence of such a distribution.

Proposition 22. If there is a distribution satisfying conditions (21) and (22), then 𝛾 ≥ 𝛾min, where
𝛾min = 𝛿

m
.

Proof. Let P be such a distribution and let u ∼ P. By Equation (21), E(‖u‖) = 𝛾m. The lower bound

on 𝛾 follows since each odd vector weighs at least 1 and thus

𝛿 = Pr(‖u‖ is odd) ≤ E(‖u‖). ▪

Remark. As we show soon, the condition in Proposition 22 is also sufficient.

Let m ≥ 2 and assume that m, 𝛾, 𝛿 satisfy the strict inequalities 0 < 𝛿 < 1 and 𝛾min < 𝛾 . We define

the distribution P = Pm,𝛾,𝛿 on F
m
2

as follows:

P(u) =

{
𝛼‖u‖

Z
if ‖u‖ is even

𝛽⋅𝛼‖u‖
Z

if ‖u‖ is odd
(24)

where

Z =
∑

u∈Vm

𝛼‖u‖ + 𝛽
∑

u∈Dm

𝛼‖u‖ = (1 + 𝛽)(1 + 𝛼)m + (1 − 𝛽)(1 − 𝛼)m

2
.

As we show there exist unique positive reals 𝛼, 𝛽 for which Equations (21) and (22) hold. Note that

Pr
u∼P

(‖u‖ is odd) = 𝛽 ((1 + 𝛼)m − (1 − 𝛼)m)
2Z

,

so Equation (22) is equivalent to

𝛽 = 𝛿

1 − 𝛿
⋅
(1 + 𝛼)m + (1 − 𝛼)m

(1 + 𝛼)m − (1 − 𝛼)m
,

showing in particular that 𝛼 determines the value of 𝛽. Substituting the above into Equation (21) gives

𝛾 = Pr(ui = 1) = 𝛼
(1 + 𝛽)(1 + 𝛼)m−1 + (1 − 𝛽)(1 − 𝛼)m−1

2Z

= 𝛼(1 − 𝛿) (1 + 𝛼)m−1 − (1 − 𝛼)m−1

(1 + 𝛼)m + (1 − 𝛼)m
+ 𝛼𝛿

(1 + 𝛼)m−1 + (1 − 𝛼)m−1

(1 + 𝛼)m − (1 − 𝛼)m
.

Denote the right side of this expression by 𝛾(m, 𝛼, 𝛿). The following generalizes Proposition 9.

Proposition 23. Let m ≥ 2. In the range 1 > 𝛼 > 0 the function 𝛾(m, 𝛼, 𝛿) increases from 𝛾min to 1

2
.

Proof. Clearly, it is enough to prove the proposition for 𝛿 = 0, 1. The case 𝛿 = 0 was dealt with in

Proposition 9. The same argument works for 𝛿 = 1 as well, since

𝛾 = 𝛼
(1 + 𝛼)m−1 + (1 − 𝛼)m−1

(1 + 𝛼)m − (1 − 𝛼)m
=

∑
i odd

(m−1

i−1

)
𝛼i∑

i odd

(m
i

)
𝛼i

.

▪
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Hence, 𝛾(m, 𝛼, 𝛿) has an inverse with respect to 𝛼, which we denote 𝛼(m, 𝛾, 𝛿). The uniqueness of

𝛼 and 𝛽 follows.

We can also define P at the extreme values 𝛿 ∈ {0, 1} and 𝛾 = 𝛾min by taking limits in Equation (24).

The limit 𝛼 → 0 corresponds to 𝛾 = 𝛾min and 𝛽 → 0 resp. 𝛽 → ∞ to 𝛿 = 0 or 𝛿 = ∞. We still require,

however, that 𝛾 > 0. For example, if 𝛾 = 𝛾min, P yields each weight 1 vector with probability
𝛿

m
and

the weight 0 vector with probability 1− 𝛿. Also, as already mentioned Pm,𝛾,0 coincides with Pm,𝛾 from

Section 3.

We next compute P’s entropy:

h(P) = −
∑

u∈Vm

𝛼‖u‖
Z

log
𝛼‖u‖

Z
−

∑
u∈Dm

𝛽𝛼‖u‖
Z

log
𝛽𝛼‖u‖

Z

= log Z − 𝛿 log 𝛽 − 𝛾m log 𝛼

= h(𝛿) + (1 − 𝛿) log((1 + 𝛼)m + (1 − 𝛼)m) + 𝛿 log((1 + 𝛼)m − (1 − 𝛼)m)
− 𝛾m log 𝛼 − 1 (25)

and recall that F(m, 𝛾, 𝛿) = h(P) − h(𝛿). Consistency for the boundary cases 𝛿 ∈ {0, 1} or 𝛾 = 𝛾min

follows by continuity and passage to the limit. In particular, F(m, 𝛾, 0) = F(m, 𝛾). Also, let F(m, 𝛾, 𝛿) =
−∞ for 𝛾 < 𝛾min.

For 𝛾min < 𝛾 <
1

2
we also have the following generalization of Equation (12), which follows from

the same argument:

F(m, 𝛾, 𝛿) = min
x>0

g(m, 𝛾, x, 𝛿) (26)

where

g(m, 𝛾, x, 𝛿) = (1 − 𝛿) log ((1 + x)m + (1 − x)m) + 𝛿 log ((1 + x)m − (1 − x)m) − 𝛾m log x − 1

with the minimum attained at x = 𝛼.

We are now ready to show that P is the relevant max-entropy distribution.

Lemma 24. Fix m ≥ 2, 0 ≤ 𝛿 ≤ 1 and 𝛾min ≤ 𝛾 <
1

2
. The largest possible entropy of a

F
m
2

-distribution satisfying Equations (21) and (22), is h(Pm,𝛾,𝛿).

Proof. Let  denote the polytope of F
m
2

-distributions that satisfy Conditions (21) and (22). Note

that if 𝛾 = 𝛾min this polytope is reduced to a point, and the claim is trivial. We henceforth assume that

𝛾min < 𝛾 , and seek a distribution Q ∈  of maximum entropy. This distribution is unique, since the

entropy function is strictly concave. Also, the value of Q(u) depends only on ‖u‖ for all u ∈ F
m
2

, since

the optimum is unique and this maximization problem is invariant to permutation of coordinates in F
m
2

.

Let ai = Q(u) where ‖u‖ = i. We claim that

ai−2 ⋅ ai+2 = a2
i (27)

for every 2 ≤ i ≤ m − 2. Indeed, let x, y, y′, z ∈ F
m
2

be the indicator vectors for, respectively, the sets

{3,… , i}, {1,… , i}, {3,… , i + 2} and {1,… , i + 2}. Consider the distribution Q + 𝜃 where

𝜃(u) =
⎧⎪⎨⎪⎩
𝜖 for u = y, y′

−𝜖 for u = x, z
0 otherwise.
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Note that, if ai−2, ai, ai+2 are positive, Q + 𝜃 ∈  for |𝜖| small enough. Hence, by the optimality of Q,

0 = ∇𝜃h(Q) = log
ai−2ai+2

a2
i

,

yielding Equation (27).

We also want to rule out the possibility that exactly one side of Equation (27) vanishes. However,

even if exactly one side vanishes, it is possible to increase h(Q) by moving in the direction of either 𝜃

or −𝜃.

A similar argument yields

ai ⋅ ai+3 = ai+1 ⋅ ai+2 (28)

for 0 ≤ i ≤ m − 3. Here, we take

𝜃(u) =
⎧⎪⎨⎪⎩
𝜖 for u = x,w
−𝜖 for u = y, z
0 otherwise.

where x, y, z,w are the respective indicator vectors of {3,… , i + 2}, {3,… , i + 3}, {1,… , i + 2} and

{1,… , i + 3}.

Equations (27) and (28) imply that one of the following must hold:

1. a0, a2,… , a2⌊ m
2
⌋ and a1, a3,… , a2⌊ m−1

2
⌋+1 are geometric sequences with the same positive

quotient.

2. a0 = (1 − 𝛿), a1 = 𝛿 and ai = 0 for every i ≥ 2.

3. am−1 and am are 𝛿 and 1 − 𝛿 according to m’s parity, and ai = 0 for all i ≤ m − 2.

Case 2 corresponds to 𝛾 = 𝛾min and case 3 is impossible since 𝛾 <
1

2
, so we are left with case 1.

If 0 < 𝛿 < 1, note that Q must satisfy Equation (24) for some positive 𝛼 and 𝛽. By the uniqueness of

these parameters, it follows that Q = P.

If 𝛿 = 0, 1 then ai vanishes for odd resp. even i’s. Thus, Q satisfies Equation (24) with 𝛽 going to

0 or ∞. ▪

4.2 Properties of F(m, 𝜸, 𝜹)

Our analysis of Equation (23) requires that we understand F’s behavior in certain regimes.

Lemma 25. If m > 1 is an integer, and 0 < 𝛾 <
1

2
, then F(m, 𝛾, 𝛿) is a nonincreasing function of 𝛿

(see Figure 4).

Proof. If 𝛿 > 𝛾m, then 𝛾 < 𝛾min and F(m, 𝛾, 𝛿) = −∞. It suffices, therefore, to consider the range

0 ≤ 𝛿 < 𝛾m.

Let 0 ≤ 𝛿 < 𝛿′ < 𝛾m and let 𝛼 = 𝛼(m, 𝛾, 𝛿). By Equations (26) and (25):

F(m, 𝛾, 𝛿′) − F(m, 𝛾, 𝛿) ≤ g(m, 𝛼, 𝛿′) − F(m, 𝛾, 𝛿)
= (𝛿′ − 𝛿) (log ((1 + 𝛼)m − (1 − 𝛼)m) − log ((1 + 𝛼)m + (1 − 𝛼)m)) ≤ 0

▪
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FIGURE 4 Illustration for Lemma 25—F(5, 1

5
, 𝛿)

We now return to the case 𝛿 = 0, and discuss the convexity of F in this regime.

Lemma 26. For any 0 < 𝛾 <
1

2
the function F(m, 𝛾) is strictly convex in m for m ≥ 2. (See Figure 3).

Proof. Since 𝛾 is fixed throughout the proof, we can and will denote F(m) = F(m, 𝛾), g(m, x) =
g(m, 𝛾, x). Also, 𝛼 = 𝛼(m, 𝛾) is the value of x which minimizes g(m, 𝛾, x). This allows us to extend the

definition of 𝛼 to real m. Note that Equation (8) still holds in this extended setting, and that 1 > 𝛼 > 0.

In addition, a = 1 + 𝛼 and b = 1 − 𝛼.

Our goal is to show that for m ≥ 2 there holds

𝜕2F
𝜕m2

(m, 𝛼) ≥ 0.

It follows from Equation (12) that

𝜕g
𝜕x

(m, 𝛼) = 0. (29)

Taking the derivative w.r.t. m yields

𝜕2g
𝜕x𝜕m

(m, 𝛼) +
𝜕2g
𝜕x2

(m, 𝛼) 𝑑𝛼
𝑑m

= 0. (30)

Using Equation (29) we obtain:

𝜕F
𝜕m

=
𝜕g
𝜕m

(m, 𝛼) +
𝜕g
𝜕x

(m, 𝛼) 𝑑𝛼
𝑑m

=
𝜕g
𝜕m

(m, 𝛼).

Next,

𝜕2F
𝜕m2

=
𝜕2g
𝜕m2

(m, 𝛼) +
𝜕2g
𝜕m𝜕x

(m, 𝛼) 𝑑𝛼
𝑑m

=
𝜕2g
𝜕m2

(m, 𝛼) −

(
𝜕2g
𝜕m𝜕x

(m, 𝛼)
)2

𝜕2g
𝜕x2

(m, 𝛼)

where the second equality follows from Equation (30). The partial derivatives commute since g is

smooth. We claim that
𝜕2g
𝜕x2

> 0. To this end we refer to the definition of g in Equation (11) and take its

derivative twice, then use the defining relation between 𝛾 and 𝛼 (Equation (8)) to see that the sign of
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this derivative is the same as that of

(m − 1)(am−2 + bm−2)(am + bm) − m(am−1 − bm−1)2 + (am + bm)(am−1 − bm−1)
𝛼

> (m − 1)(am−2 + bm−2)(am + bm) − m(am−1 − bm−1)2 + (am + bm)(am−1 − bm−1)
> 0.

Thus, to prove the lemma it suffices to show that

𝜕2g
𝜕m2

(m, 𝛼)
𝜕2g
𝜕x2

(m, 𝛼) >
(

𝜕2g
𝜕m𝜕x

(m, 𝛼)
)2

when m ≥ 2.

We wish to show that rs > t2, where

r = ln 2(am + bm)2
𝜕2g
𝜕m2

(m, 𝛼)

s = ln 2(am + bm)2
𝜕2g
𝜕x2

(m, 𝛼)

t = ln 2(am + bm)2
𝜕2g
𝜕m𝜕x

(m, 𝛼)

We start with the first order derivatives

𝜕g
𝜕m

(m, 𝛼) =
am log a + bm log b

am + bm − 𝛾 log x

and

𝜕g
𝜕x

(m, 𝛼) = m(am−1 − bm−1)
am + bm − m𝛾

x
.

Expand the second order derivatives with 𝛾 replaced according to Equation (8) to get

r = m(m − 1)(am−2 + bm−2)(am + bm) − m2(am−1 − bm−1)2 + m𝛾(am + bm)2

𝛼2

= m
(
(m − 1)(am−2 + bm−2)(am + bm) + (am−1 − bm−1)(am + bm)

𝛼
− m(am−1 − bm−1)2

)
> m

(
(m − 1)(am−2 + bm−2)(am + bm) + (am+2 + bm+2)(am + bm) − m(am−1 − bm−1)2

)
= 4m2am−2bm−2.

The inequality follows from am−1 − bm−1 − 𝛼(am−2 + bm−2) = a+b
2
(am−2 − bm−2) > 0. Also

s = (am + bm)(am(log a)2 + bm(log b)2) − (am log a + bm log b)2

= ambm(log a − log b)2.

and

t =
(
(m log a + 1)am−1 − (m log b + 1)bm−1

)
(am + bm)
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− m(am−1 − bm−1)(am log a + bm log b) − 𝛾(am + bm)2

𝛼

= 2mam−1bm−1(log a − log b).

We therefore conclude that

rs > t2

as claimed. ▪

The following corollary follows immediately from Lemma 26.

Corollary 27. For every 0 < 𝛾 <
1

2
and every 2 ≤ m ≤ m′, the holds

F(m′, 𝛾) + F(m, 𝛾) < F(m′ + 1, 𝛾) + F(m − 1, 𝛾).

We also need the following result in order to bound |TV |.
Proposition 28. Let 0 < 𝛾 <

1

2
, 0 ≤ 𝛿 ≤ 1 and m ≥ 2. Then,

F(1, 𝛾, 𝛿) + F(m + 1, 𝛾) < F(2, 𝛾) + F(m, 𝛾).

Proof. Recall that F(1, 𝛾, 𝛿) ≤ 0 and F(2, 𝛾) = h(𝛾). Thus, the claim follows from

F(m + 1, 𝛾) < F(m, 𝛾) + h(𝛾).

This holds since F is strictly convex in m (Lemma 26) and since the limit slope of F is h(𝛾)
(Proposition 16). ▪

5 DERIVATION OF THE MAIN THEOREMS

We can now return to the beginning of Section 4 and complete our proof. Equation (5) can be restated as

E
(
(X − E(X))k

)
= Θ

( k−1∑
=0

G

)
(31)

where

G = N−𝜆
∑

V≤Fk
2

(V)=
V robust

|TV |. (32)

We need to determine which term dominates Equation (31). We use the crude upper bound

of 2min(,k−)⋅k on the number of -dimensional linear subspaces V of F
k
2
. This bound follows by

considering the smaller of the two: a basis for V or for its orthogonal complement.

We proceed to bound |TV | for a robust -dimensional subspace V ≤ F
k
2
. When  <

k
2
, the trivial

bound log |TV | ≤ n ⋅ h(QV ) ≤ nh(𝛾) suffices. Indeed, a vector sampled from QV is determined by 



LINIAL AND MOSHEIFF 31

of its bits, each of which has entropy h(𝛾). It follows that

G ≤ N(h(𝛾)−𝜆)+ k
n (33)

for  <
k
2
.

To deal with the range  ≥
k
2

we return to the notations of Equation (23),

log(|TV |)
n

≤ F(m1, 𝛾) +
k−∑
i=2

F(mi, 𝛾, 𝛿i) (34)

where mi = |Δi| and
∑k−

i=1 mi = k.

Lemma 25 yields F(mi, 𝛾, 𝛿i) ≤ F(mi, 𝛾). By repeatedly applying Corollary 27 and Proposition 28

we get the upper bound

log(|TV |)
n

≤ F(2( + 1) − k, 𝛾) + (k − − 1)F(2) = F(2( + 1) − k, 𝛾) + (k − − 1)h(𝛾).

Hence,

log G ≤ −𝜆n + (k −)k + n(F(2( + 1) − k, 𝛾) + (k − − 1)h(𝛾))
= n (F(2( + 1) − k, 𝛾) − (k − 1)𝜆 + (k − − 1)(h(𝛾) + 𝜆)) + (k −)k. (35)

Our bounds on G are in fact tight up to a polynomial factor in n (but perhaps exponential in k).

This follows from the existence of certain large terms in Equation (32). For  <
k
2
, pick any map 𝜑

from { + 1,… , k} onto {1,… ,}. Consider the space V that is defined by the equations vi = v𝜑(i)
for every k ≥ i > . It is clear that the space V is robust. For  ≥

k
2
, consider the contribution of the

term corresponding to

V =

{
u ∈ F

k
2
∣

t∑
i=1

ui = 0 ∧ ut+1 = ut+2 ∧ ut+3 = ut+4 ∧… ∧ uk−1 = uk

}
,

where t = 2( + 1) − k.

We turn to use these bounds to compute X’s central moments. We consider two cases, according

the value of 𝛾 .

5.1 Moments of even order

Let k be even. By Lemma 26 and Proposition 16, there is a positive integer k0 = k0(𝛾, 𝜆) such that{
2 ≤ m ∈ N ∣ F(m, 𝛾) − (m − 1)𝜆 >

m
2
(h(𝛾) − 𝜆)

}
= {k0, k0 + 1, k0 + 2,…}

We claim that the sum in Equation (31) is dominated by either G k
2

or Gk−1 depending on whether

k < k0 or k ≥ k0.

5.1.1 When k < k0

Since k0 = k0(𝛾, 𝜆) does not depend of n, and since k < k0 there is only a bounded number of

F
k
2
-subspaces. We wish to compute the term G = G k

2

. We show that in this case, the sum in



32 LINIAL AND MOSHEIFF

Equation (32) is dominated by spaces of the form

V = {v ∈ F
k
2
∣ vi1 = vj1 ∧ vi2 = vj2 ∧ · · · ∧ vi k

2

= vj k
2

}, (36)

where the pairs {i1, j1},… , {i k
2

, j k
2

} form a partition of [k]. Clearly, for such a space V , a matrix in TV

is defined by
k
2

of its rows, so

|TV | = (
n
𝛾n

) k
2

.

If U ≤ F
k
2

is robust, of dimension
k
2
, and not of this form (36), then at least one of its associated

mi’s (see Equation (34)) equals 1. By repeated application of Proposition 28, it follows that

|TU| ≤ N
k
2

F(2,𝛾)−Ω(1) = N
k
2

h(𝛾)−Ω(1)
,

which, as claimed, is exponentially negligible relative to |TV |. The number of subspaces of the form

(36) is k!!, whence

G k
2

= k!!
(

n
𝛾n

) k
2

N−𝜆 k
2 (1 + N−Ω(1)) = N

k
2
(h(𝛾)−𝜆)− k log n

4n
+O( k

n
)
.

We turn to show that G = o(Gk∕2) for any  ≠
k
2
. For  <

k
2

this follows from Equation (33).

For  >
k
2
, due to Lemma 26, the r.h.s. of Equation (35) is strictly convex in , and therefore attains

its maximum at  = k
2

or  = k − 1. Since k < k0, the former holds.2

Equation (31) yields

E
(
(X − E(X))k

)
= k!!

(
n
𝛾n

) k
2

N−𝜆 k
2 (1 + o(1)).

5.1.2 When k ≥ k0

Note that Vk is the one and only (k − 1)-dimensional robust subspace of F
k
2
. Hence, by Equation (10),

Gk−1 = N−𝜆|TVk | = NF(k,𝛾)−(k−1)𝜆− k log n
2n

+O( k
n
)
.

We next show that the sum in Equation (31) is dominated by this term. By Proposition 16 and

Equations (35) and (33),

G ≤ N⋅(h(𝛾)−𝜆)−1+O((1−2𝛾)k)+ (k−)k
n

for all 0 ≤  ≤ k − 2. Consequently,

G

Gk−1

≤ N(k−1−)(𝜆−h(𝛾))+O((1−2𝛾)k)+ k log n
2n

+ (k−)k
n .

2It is possible that the r.h.s. of Equation (35) attains the same value with  = k
2

and  = k − 1. Note that G k
2

still dominates in

this case, due to polynomial factors
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For large enough k, this is at most N−Ω(k−), so

E
(
(X − E(X))k

)
= Gk−1(1 − o(1)) = NF(k,𝛾)−(k−1)𝜆− k log n

2n
+O( k

n
)

(37)

It is left to show that Equation (37) holds for all k ≥ k0, but this follows again from the convexity

of F. Namely, since k ≥ k0, the r.h.s. of Equation (35) is strictly maximized by  = k − 1, whence

G = o(Gk−1) for
k
2
≤  < k − 1. For  <

k
2
, this inequality follows from G < G k

2

.

We are now ready to state our main theorem:

Theorem 29. For every 𝛾 <
1

2
and 0 < 𝜆 < h(𝛾) and for every even integer k ≤ o( n

log n
), the

expectation E((X − E(X))k) is the larger of the two expressions

k!!
(

n
𝛾n

) k
2

N−𝜆 k
2 (1 + o(1)) and

NF(k,𝛾)−(k−1)𝜆− k log n
2n

+O( k
n
)
.

There is an integer k0 = k0(𝛾, 𝜆) ≥ 3 such that the former term is the larger of the two when k < k0

and the latter when k ≥ k0.

5.2 Moments of odd order

We turn to the case of odd k > 2. The arguments that we used to derive the moments of even order

hold here as well, with a single difference, as we now elaborate.

The role previously held by G k
2

is now be taken by either

G k−1

2

= Θ
(

N
k−1

2
(h(𝛾)−𝜆)− (k−1) log n

4

)
or

G k+1

2

= Θ
(

N
k−3

2
(h(𝛾)−𝜆)+F(3,𝛾)−2𝜆− (k+1) log n

4

)
.

These asymptotics are for bounded k. Which of these two terms is larger depends on whether F(3, 𝛾) >
(h(𝛾) − 𝜆). This yields our main theorem for moments of odd order.

Theorem 30. For every 𝛾 <
1

2
and 0 < 𝜆 < h(𝛾) and for every odd integer 3 ≤ k ≤ o( n

log n
), the

expectation E((X − E(X))k) is the larger of the two expressions

Θ
(

N
k−3

2
(h(𝛾)−𝜆)−𝜆− (k−1) log n

4 ⋅ Nmax(h(𝛾),F(3,𝛾)−𝜆− log n
2n

)
)

and

NF(k,𝛾)−(k−1)𝜆− k log n
2n

+O( k
n
)
.

There is an integer k1 = k1(𝛾, 𝜆) such that the former term is the larger of the two when k < k1 and
the latter when k ≥ k1.

5.3 Normalized moments

In this section we return to a theorem stated in the introduction. While it is somewhat weaker than our

best results, we hope that it is more transparent and may better convey the spirit of our main findings.
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FIGURE 5 . Illustration for Section 6.1—extending F to 𝛾 ∈ ( 1

2
, 1). Solid: F(5, 𝛾) Dashed: F(5, 𝛾, 1) = F(5, 1 − 𝛾) Dotted:

5h(𝛾) − 1

Recall that

Var(X) =
(

n
𝛾n

)
N−𝜆(1 + o(1)).

Consider the variable
X√

Var(X)
. By the same convexity arguments as above, its odd moments of order

up to k0 are on(1). This yields the following result.

6 DISCUSSION

6.1 Extensions and refinements

Throughout this paper, we have limited 𝛾 to the range (0, 1

2
). What about 𝛾 >

1

2
? The function F(k, 𝛾, 𝛿)

can be naturally extended to 𝛾 ∈ ( 1

2
, 1) and it satisfies the following obvious identity that follows by

negating all bits in the underlying distribution.

F(m, 𝛾, 𝛿) =

{
F(m, 1 − 𝛾, 𝛿) if m is even

F(m, 1 − 𝛾, 1 − 𝛿) if m is odd.

In particular, when 𝛾 >
1

2
and m is odd, F is increasing rather than decreasing in 𝛿. Also, Lemma 26

is no longer valid. In fact, F(m, 𝛾) is larger than the linear function m ⋅ h(𝛾) − 1 when m is even, but

smaller than it when m is odd (see Figure 5 for an example of the odd case).

It can be shown that Theorem 29 still holds in this range, but the odd moments are more compli-

cated. The dominant term in Equation (31) is no longer necessarily a product of Vm spaces. Rather, it

may be a (k − 2)-dimensional space, the exact parameters of which are determined by 𝛾 .

We illustrate this unexpected additional complexity with a numerical example. Consider the

following two 7-dimensional subspaces of F
9
2
:

U =

{
u ∈ F

9
2
∣

8∑
i=1

ui = 0 ∧ u9 = u8

}
and

V =

{
u ∈ F

9
2
∣

3∑
i=1

ui =
8∑

i=4

ui =
9∑

i=7

ui

}
.

For most values of 𝛾 there holds |TU| > |TV |, but for 𝛾 > 0.9997 the opposite inequality holds.
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We believe that further analysis along the lines of the present paper may yield these odd moments

as well.

Similar phenomena occur when 𝛾n is odd. Due to parity considerations, TV is empty when there

is an odd weight vector that is orthogonal to V . It turns out that computing the moments in this case

comes down to essentially the same problem as the one described above for 𝛾 >
1

2
.

We next discuss the possible range of k. Namely, which moments we know. We are presently

restricted to k ≤ o( n
log n

), but it is conceivable that with some additional work the same conclusions can

be shown to hold for all k ≤ o(n). The current bound arises in our analysis of the expression
G

Gk−1

in

Equation (37). Our lower bound on Gk−1 includes a factor of N− k log n
2n , which is absent from our upper

bound on G. Lemma 13 can presumably be adapted to work for general robust subspaces, thereby

improving this upper bound, thus yielding the same conclusions for k up to o(n).
Pushing k to the linear range k ≥ Ω(n) is likely a bigger challenge, since many basic ingredients of

our approach are no longer valid. If k > (1−𝜆)n+1, we expect our code to have dimension smaller than

k− 1, whereas our main theorems show that the kth moment of X is dominated by (k− 1)-dimensional

subsets of the (𝛾n)th layer of F
k
2
. Concretely, for k ≥ Ω(n), our derivation of Equation (37) would fail,

since the term
(k−)k

n
is no longer negligible. It is interesting to understand which terms dominate these

very high moments.

The above discussion about large k is also related to the way that we sample random linear sub-

spaces C in this paper. In our model there is a negligible probability that dim(C) > (1 − 𝜆)n. This can

be avoided by opting for another natural choice, viz. to sample C uniformly at random from among the

(1−𝜆)-dimensional subspaces of F
n
2
. The effect of this choice manifests itself already in Proposition 2.

This effect is negligible when  ≪ (1 − 𝜆)n, but becomes significant as  grows, for example, under

the alternative definition Pr(Y ⊆ C) = 0 whenever dim(Y) > (1 − 𝜆)n. Presumably, X’s moments of

order Θ(n) are sensitive to this choice of model.

There is further potential value to improving Lemma 13. A reduction in its error term would have

interesting implications for the range
n

log n
≫ k >

log n
− log(1−2𝛾)

. As things stand now, the difference

between the upper and lower estimates in Proposition 16 is smaller than the error term in our estimates

for the moments and yields

Nkh(𝛾)−1−(k−1)𝜆− k log n
2n

+O( k
n
)
.

as our best estimate for the kth moment. Reducing the error term in Lemma 13 may significantly

improve several of our results.

Since the original submission of this paper, extensions of our techniques have turned out to be

useful in other ongoing lines of research. One such line concerns Gallager’s classic construction of

LDPC codes [6]. Gallager’s codes are a more structured variant of the generic random linear codes

with which we deal in the current paper. Hence, it is not surprising that our methods apply to them as

well. Our approach also seems helpful in analyzing the list-decodability parameters of certain codes,

namely, for bounding the number of codewords contained in a ball of some given radius (see e.g., [7]

lec. 9 for the exact definition).

Finally, we note that much of our analysis, at the very least the part contained in Sections 2 and 3,

can be naturally generalized from the binary regime to random linear codes over any finite field.

6.2 Open problems

The long-term goal of this research is to understand the distribution of the random variable X. In

particular, it would be interesting to understand the large deviation probabilities of this variable.

Although our computation of X’s moments is a step in this direction, we still do not yet have a clear
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view of this distribution. In particular, since all but boundedly many of X’s normalized moments tend

to infinity, there is no obvious way to apply moment convergence theorems.

Taking an even broader view, let us associate with a linear code C the probability measure 𝜇 on

[0, 1], with the CDF

f (x) = |C|−1 ⋅ |{u ∈ C ∣ ‖u‖ ≤ nx}|.
We are interested in the typical behavior of this measure when C is chosen at random. In this context,

our random variable X corresponds to the PDF of 𝜇 at the point 𝛾 . Note that 𝜇 is typically concentrated

in the range
1

2
± O(n− 1

2 ), so that our questions correspond to large deviations in 𝜇.

Many further problems concerning 𝜇 suggest themselves. What can be said about correlations

between 𝜇’s PDF at two or more different points? Also, clearly, 𝜇 is binomial in expectation, but how

far is it from this expectation in terms of moments, CDF, or other standard measures of similarity? We

believe that the framework developed in this paper can be used to tackle these questions.
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