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Abstract

We considemonotoneembeddings of a finite metric space into low-dimensional normed space.
Thatis, embeddings that respect the order among the distances in the original space. Our main interest
is in embeddings into Euclidean spaces. We observe that any metrigants can be embedded into
15, while (in a sense to be made precise later), for almost eveoint metric space, every monotone
map must be into a space of dimensfo() (Lemma 3).

Itbecomes natural, then, to seek explicit constructions of metric spaces that cannot be monotonically
embedded into spaces of sublinear dimension. To this end, we employ known resspiseitity
of graphs, which suggest one example of such a metric space—that is defined by a complete bi-
partite graph. We prove that am-regular graph of orden, with bounded diameter has sphericity
Qn/(42 + 1)), where/, is the second largest eigenvalue of the adjacency matrix of the graph, and
0< 6<% is constant (Theorem 4). We also show that while random graphs have linear sphericity,
there arequasi-randongraphs of logarithmic sphericity (Lemma 7).

For the above bound to be linedp must be constant. We show that if the second eigenvalue of
ann/2-regular graph is bounded by a constant, then the graph is close to being complete bipartite.
Namely, its adjacency matrix differs from that of a complete bipartite graph in @@l$) entries
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(Theorem 5). Furthermore, for any<0o < % and/», there are only finitely manyn-regular graphs
with second eigenvalue at most (Corollary 4).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Euclidean embeddings of finite metric spaces have been extensively studied, with the
aim of finding an embedding that does not distort the metric too much. We refer the reader
to the survey papers of Indyk1] and Linial [13], as well as Chapter 15 of MatouSek’s
Discrete Geometry book [16]. Here we focus on different types of embeddings. Namely,
those that preserve the order relation of the distances. We call such embeddimgtene
There are quite a few applications that make this concept natural and interesting, since there
are numerous algorithmic problems whose solution depends only on the order among the
distances. Specifically, questions that concern nearest neighbors. The notion of monotone
embeddings suggests the following general strategy toward the resolution of such problems.
Namely, embed the metric space at hand monotonically into a “nice” space, for which good
algorithms are known to solve the problem. Solve the problem in the “nice” space—the same
solution applies as well for the original space. “Nice” often means a low-dimensional normed
space. Thus, we focus on the minimal dimension which permits a monotone embedding.

In Section 2 we observe that any metricropoints can be monotonically embedded into
ann-dimensional Euclidean space, and that the bound on the dimension is asymptotically
tight. The embedding clearly depends only on the order of the distances (Lemma 1). We
show that for almost every ordering of t@ distances amongpoints, the host space of a
monotone embedding must &¢n)-dimensional. Similar bounds are given for embeddings
into /», and some bounds are also deduced for other norms.

Next we consider embeddings that are even less constrained. Given a metricspace
and some thresholt] we seek a mappin§ that only respects this threshold. Namely,

Il f(x) — f(MI<1iff 6(x, y)<t. The input to this problem can thus be thought of as a
graph (adjacency indicating distances below the threst)olthe minimal dimensioml,

such that a grap® can be mapped this way inlgj is known as thephericityof G, and de-
notedSphG). Reiterman et al. [20] and Maehara [15] show that the sphericif;,of is at
leastn. This is, then, an explicit example of a metric space which requires linear dimension
to be monotonically embedded inta Other than that, the best lower bounds previously
known to us are logarithmic. In Section 3 we prove a novel lower bound, namely that for
0<d< % SphG) = Q(#H), for anyn-vertexdn-regular graph, with bounded diameter.
Here /., is the second largest eigenvalue of the graph. We also show examples of quasi-
random graphs of logarithmic sphericity. This is somewhat surprising since quasi-random
graphs tend to behave like random graphs, yet the latter have linear sphericity.

In our search for further examples of graphs of linear sphericity, we investigate in Section
4 families of graphs whose second eigenvalue is bounded by a constant (for which the
aforementioned lower bound is linear). We show that such graphs are close to being complete
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bipartite, in the sense that one needs to modify @iih?) entries in the adjacency matrix
to get the latter from the former. As a corollary, we get that for @ < % and/y, there
are only finitely manyn-regular graphs with second eigenvalue at migst

2. Monotone maps
2.1. Definitions

Let X=([n], o) be a metric space amnpoints, such that all pairwise distances are distinct.
Let|l - | be a norm orit?. We say thatp : X — (R?, || - ||) is amonotone magf for every
w,x,y,z€X,0(x,y) <dw,2) & [[¢x) — oW < l[dp(w) — ).

We denote by/(X, || - ||) the minimalt such that there exists a monotone map fo$ito
(R, || - ). We denote byl(n, || - ||) = maxx d(X, || - ||), the smallest dimension to which
everyn point metric can be mapped monotonically.

The first thing to note is that we are actually concerned only withotder among the
distances between the points in the metric space, and not with the actual distances. Let
(X, 0) be a finite metric space, and lebe a linear order 0(1’2‘). We say thap and(X, 9)
areconsistentf for everyw, x, y,z € X, 6(x, y) < é(w,z) & (x,y) <p (w, 2).

We start with an easy, but useful observation.

Lemma 1. Let X be a finite set. For every linear order relatipnon ()2‘) there exists a
distance functiom on X that is consistent witlp.

Proof. Let{si.,}(l. He(d) be small, non-negative numbers, ordered appBefined(i, j) =

1+ ;. Itis obvious thab induces the desired order on the distanceX,@ind, that if the
¢'s are small, the triangle inequality holds

Whenwe later (Sectio?.3) use this observation, we refer to it as@ndardc:-construction
wheree = maxe;;. Itis not hard to see that this metric is Euclidean, that is, the resulting
metric can be isometrically embedded ifipsee Lemma 3 below.

We say that an order relatignon ([g]) is realizablein (R4, || - |) if there exists a metric
space X, ) onn points which is consistent with, and a monotone map: X — R?. We
say thatp is a realization op. (Thus,d(n, || - ||) is the minimald such that any linear order
on (14)) is realizable in(R?, | - ).)

We denote by = J,, then x n all ones matrix, and b?SD, the cone of real symmetric
n x n positive semidefinite matrices. We omit the subscripthen it is clear from the
context.

Finally, for agraplG, andU, V subsets of its vertices, we denoted§y/, V) = |{(u, v) €
E(G):ueU,veV},ande(U) = |{(u,u) € E(G) : u,u’ € U}|.

2.2. Monotone maps intig,

Lemma 2. The minimal dimension required to monotonically embed n pointsligts
bounded by3 — 1<d(n, lo) <n.
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Proof. Itis well known thatany metri& onnpoints can be embedded irifg isometrically,
henced (n, lo) <n.

For the lower bound, we define a metric spé&&e o) with 2n + 2 points that cannot be
realized in/% . By Lemmal, it suffices to define an ordering on the distances. In fact, we
define only a partial order, any linear extension of which will do. The-2 points come in
n+1pairs,{x;, yiti=1,..n+1. If 2 ¢ {x;, yi}, we leto(x;, yi) > 6(x;, 2), 6(yi, 2). Assume
for contradiction that a monotone mgpinto 2, does exist. For each pa(x, y) define
j(x, y) to be some indekfor which |¢(x); — ¢(y);| is maximized, that is, an indéxXor
which [p(x); — ¢(»)il = lp(x) — P lco-

By the pigeonhole principle there exist two pairs, $ay, y1) and (x2, y2), for which
j(x1, y1) = j(x2, y2) = j.Itis easy to verify that our assumptions on the four real numbers
d(x1)j, p(x2)j, p(y1)j, $(y2);, are contradictory. Thus(n, o) >5 — 1. O

2.3. Monotone maps intg

Lemma 3. The minimal dimension required to monotonically embed n pointsiii®
bounded by <d(n, I2) <n.Furthermorefor everyso>0,and every large enough aimost

no linear ordersp on ('3') can be realized in dimension less thgf.

Note 1. The upper bound is apparently folklore. As we could not find a reference for it, we
give a proof here.

The second part of the lemma relies on a bound on the numbsgfpatternsof a
sequence of real polynomials. Lgt, ..., p, be real polynomials ihvariables of (total)
degreed, and letx € R' be a point where none of them vanish. The sign-patternisit
(sgn(p1(x)), ..., sgnp., (x))). Denote the total number of different sign-patterns that can
be obtained fronp1, ..., p,, by s(p1, ..., pn). A variation of the Milnor—=Thom theorem
[17] due to Alon et al. [1]:

Theorem 1(Alon et al.[1]). Let p1, ..., p, be real polynomials as above. Then for any
integer k between 1 and:m

S(py -+, pm) <2kd - (dkd — 1)!TE L,

Proof. Letp be alinear order 0(1[’;]). Lete be a real symmetric matrix with the following
properties:

e ¢; = Oforalli.
o 15y >0 foralli # .
e The numbers; ; are consistent with the ordgr

Since the sum of each row is strictly less than one, all eigenvaluesein the open interval
(-1, 1). It follows that the matrix — ¢ is positive definite. Therefore, there exists a matrix
Vsuch thatV V! = I — ¢. Denote theath row ofV by v;. Clearly, thev;’s are unit vectors,
and(v;, v;) = —¢ j fori # j. Therefore|v; — vj||2 = (v, vi) + (vj, vj) — 2V, v)) =

2+ 2¢ ;. It follows that the mapp(i) = v; is a realization ofp, and the upper bound is
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proved. In fact, one can add another point without increasing the dimension, by mapping it
to 0, and perturbing the diagonal.

For the lower bound, it is implicit il 5,20] (see Theorem 2 below) thafis the metric
induced byk,, ,, thend(X, I2) >n.

For the second part of the lemma, get ¢ - d, for some constant, and/ = n - d.
Consider a point € R/, and think of it as an x 4 matrix. Denote théh row of this matrix
by x;. As beforex realizesan orderp on ([g]) if the distanceg|x; — x;|| are consistent
with p.

For two different pairs(i1, j1) and(iz, j2), define the polynomial

2 2
Plin, jo), G2, j2) () = Ilxig — Xy 17— llxip, — X, 1%

The list containsn = ((%)) polynomials of degree 2. Note that there is a 1:1 correspon-
dence between orders c(fg]) and sign-patterns of1, ..., pn, thus no more than =
s(p1, ..., pm) orders may be realized lg.

Takek = un?, for some large constant By Theorent logs is approximately 242 logd.

By contrast, that total number of orders@!, so its log is about2d? logd. If cis bigger
than 2, almost all order relations cannot be realized.

Note 2. In fact the same proof shows that for any positive integafrnost all orders on
(’;) require linear dimension to be realizeaind in particular thatd (n, Io;) = Q(n) (where
the constant of proportionality depends only prSimply repeat the argument above with
polynomials of degre® rather than quadratic polynomials

2.4. Other norms

We conclude this section with two easy observations about monotone maps into other
normed spaces. The first gives an upper bound on the dimension required for embedding
intol,:

Lemma 4. The minimal dimension required to monotonically embed n points/jnte
bounded byd (n,1,) < (5).

Proof. By Lemmag3, any metric space ompoints can be mapped monotonically o

It is known (see [5] and also Chapter 15 of [16]) that dnynetric onn points can be
isometrically embedded int@)-dimensionallp. The composition of these mappings is a
monotone mapping of the metric space i(@}dimensiona!p. |

The second observation gives a lower bound for arbitrary norms. We first note the fol-
lowing:

Lemma 5. Let||-|| be an arbitrary n-dimensional norm and let, . . ., xs» be points ifR",
suchthaf|x; —x;| > 1foralli # j.Thenthere exits a pait;, x;) such thaf|x; —x; || >2.
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Proof. Denote byv the volume o, the unit ball in(R”, || - ||). The translates; + %B are
obviously non-intersecting, so the volume of their unioﬁgi}fv. Assume for contradiction

that all pairwise distances are less than 2, then all these balls are contained in a single
ball of radius less thaé. But this is impossible, since the volume of this ball is less than

(3. O

Note that thd., norm shows that indeed an exponential number of points is required for
the lemma to follow. We do not know, however, the smallest base of the exponent for which
the claim holds. The determination of this number seems to be of some interest.

Corollary 1. There exists an n-point metric spack, ) such that for any nornj - ||,
d(n, | -) = Q(ogn).

Proof. We construct a distance function ofi$ 1 points which cannot be realized in any
n-dimensional norm. By Lemma it suffices to define a partial order on the distances.
Denote the points in the metric space 0, 5". Let the distance between 0 and any other
point be smaller than any distance between any two poigts; > 0. Consider a mono-
tone map¢y of the metric space inta-dimensional normed space. Assume, w.l.o.g., that
mini<i<j<s 9@ —¢(j)Il = 1. Bythe previous lemmathere exists a pair of points,#

0, suchthati¢(i) — ¢(j)| > 2. Butfor¢ to be monotone it must satisfiyp)(0) — ¢ (i) < 1
and||$(0) — ¢(j)|l < 1, contradicting the triangle inequality ]

3. Sphericity

So far we have concentrated on embeddings of a metric space into a normed space, that
preserve the order relations between distances. However, in the examples that gave us the
lower bounds fof., and for arbitrary norms, we actually only needed to distinguish between
“long” and “short” distances. This motivates the introduction of a broader class of maps,
that need only respect the distinction between short and long distances. More formally, let
X = ([n], 6) be a metric space. lfgroximity graphwith respect to some threshotdis a
graph omvertices, with an edge betwekeand;j iff 6(i, j) <t. An embedding of a proximity
graph, is a mapping of its vertices into normed space, such theti) — ¢(j)| < 1iff
(i, j) is an edge in the proximity graph (we assume that no distance is exactly 1). The
minimal dimension in which a graph can be so embedded (in Euclidean space) was first
studied by Maehara [14] under the nasghericity and denote®ph(G). Following this
terminology, we call such an embeddisgherical

The sphericity of graphs was further studied by Maehara and Frankl [7], Maehara [15],
and Reiterman et al. [19-21]. Breu and Kirkpatrick have shown in [3] that it is NP-hard to
recognize graphs of sphericity 2 (also knowrua# disk graph¥and graphs of sphericity
3. We refer the reader to [19] for a survey of results regarding this parameter, and mention
only a few of them here.

Theorem 2. Let G be graph on n vertices with minimal degréelLet /,, be the least
eigenvalue of its adjacency matrix
1. SpRKmn)<m + % — 1[14].
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2. SphG) = 0(22logn) [7].

3. SpHG) = O((n — &) log(n — 9)) [19].

4. Sph K, ) >n [15,20].

5. All but a% fraction of graphs om > 37 vertices have sphericity at leagt — 1 [19].

6. SphG) > mg;&gri%, wherea(G) is the independence number of &dr(G) is its
radius[20].

The first thing to note is that any lower bower on the sphericity of some graph on
vertices is also a lower bound @itr, [2). In particular, the fact thabph( K, ,) >n proves
the lower bound in Lemma 3. (Similarly, any upper bound on the former also applies to the
latter.)

In this section we are interested in graphs of large sphericity. The above results tell us that
they exist in abundance, yet that graphs of very small maximal degree or very large minimal
degree have small sphericity (the maximal degree is an upper boupig|phence by (2)
the sphericity is small if all degrees are small). Other than the complete bipartite graph, the
above results do not point out an explicit graph with super-logarithmic sphericity.

3.1. Upper bound on margin

Following Frankl and Maehara [7], consider an embedding of a proximity graph where
there is a large margin between short and long distances. In such a situation, the Johnson—
Lindenstrauss Lemma [12] would yield a spherical embedding into lower dimension: It
allows reducing the dimension at the cost of some distortion. If the distortion is small
with respect to the margin, the short and long distances remain separated. Alas, we show
that for most regular graphs this margin is not large enough for the method to be
useful:

Theorem 3. Let G be adn-regular graph with second eigenvalué2>§. Let ¢ be an
embedding of G as a proximity graph. Denate max, ., || ¢(u) —¢(v) ||§,andb= min, o ||
$u) — p(v)[13. Thenb —a = 0(“22),

Proof. Denotem = min{1 — a, b — 1}, and for a vertex, denotev; = ¢(i). The largest
valuem can attain, over all embeddings is given by the following quadratic semidefinite
progran® (and is attained when4 a = 1 — b):

max m
st. Y(i,j) € E(G), |vi—v[?<1—m,

V@i, j) ¢ EG), |lvi—vjl?=1+m.

3 For reference on semidefinite programming e



290 Y. Bilu, N. Linial / Journal of Combinatorial Theory, Series B 95 (2005) 283—-299

Its dual turns out to be

min 3rr A
st. A € PSD
V@i, Jj) € E(G), A;;<0,
Vi, )¢ EG), i#]j, Aij=0,
Vi, > A =0,
j=1..n
> 1Al =1
i#]
Equivalently, we can drop the last constraint, and change the objective function to
min Z”—%. Next we construct an explicit feasible solution for the dual program, and
i#j 1Aij
conclude from it a bound om.
LetM be the adjacency matrix &. DefineA = I 4+ oJ — M. To satisfy the constraints
we need

A € PSD
B=a>0,
1+ on— pon =0.

The last condition implies = o — ,—11 so it follows thatf > «, and the constraint off is
B>+

Now, since we assume that the grapdrisregular, its Perron eigenvectoﬁjscorrespond—
ing to eigenvaluén. Therefore, we can consider the eigenvectorsldb be eigenvectors
of Jandl as well, and hence also eigenvectorg\off 1 # Jn is an eigenvalue df1, then
1 — pAis an eigenvalue of, corresponding to the same eigenvector. Denoté bthe
second largest eigenvalueMf then in order to satisfy the condition € PSDit is enough
to setff = % in which case all the constraints are fulfilled.

We conclude that

trA n(l+ o)
m< =
iz lAijl T on2(f— o) + (L= 6)n? — n)a
on )
_ n+z—l <A1+Z:A12+5
on("E — 1) + (1 — o)n — (L — 1) on on

In particularh — a = 0(%:‘3). O

In order to derive a non-trivial result from the Johnson-Lindenstrauss Lemma, we need
thatﬁ logn = o(n), and in particular that: = w(,/logn/n). The above shows that this
can happen only if2 = w(3,/nlogn). On the other hand, Frankl and Maehara show that
their method does give a non-trivial bound whgn= o( @). Consequently, we get
that adn-regular graph (think of as constant) cannot have both = o(,/n logn) and
An = o(\/T). This is a bit more subtle than what one gets from the second moment

logn

argument, namely, that the graph cannot have bgtk o(,/n) andi, = o(/n).
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3.2. Lower bound on sphericity

Theorem 4. Let G be a d-regular graph with diameter D ang, the second largest eigen-

value of Gs adjacency matriat leastd — %n Then SphG) = Q(%).

In the interesting range whetke< %, and/, > 1 the bound iSpHG) = Q(‘f)‘zjj).

In proving the theorem will need the following lemma ($&@, p. 175]):

(trX)?

—.
i Xij

Lemma 6. Let X be a real symmetric matrix, theank(X) >

Proof. It will be useful to consider the following operation on matrices. Aéte am x n
symmetric matrix, and denote lythe vector whoséh coordinate isd;;. DefineR(A) to
be then x n matrix with all rows equal ta, andC(A) = R(A)'. Define

A=2A—C(A) — R(A) + J.

First note that the rank of and that ofA can differ by at most 3. Now, consider the case

whereA is the Gram matrix of some vectors, . . ., v, € R?. Then all diagonal entries of

A equal one, and the, j) entry is 2u;, vi) — (v, v;) — (v, v;) +1=1—|v; — Uj”z.
Applying Lemmas to A, we conclude that

2
o n
rank(A) > . 1
Wt Y, A= v — ;22 @
Letvi,...,v, € R?bean embedding @. By the discussion above it is enough to show
that
Y@ v —vjI»?= 0 (D222 ). @
’ d— /Ao

i#]
By the triangle inequalityiv; — v, || < D for any two vertices. So the LHS o) is bigger
by at most a factor ob? than

D Uvi—vilIP=D+ Y @— v —vl?

i, ))¢E (i,j)eE
n
= Z ||Ui—vj||2_ Z ||Ui—vj||2—<2>+nd. 3)
@, ))¢E @i, j)eE

We can bound this sum from above, by solving the following SDP:

max > (Vii+Vjj—2Vip)+ X (Vi = Vjj +2Vij) = (5) +nd
(. )EE (i,J)eE

st. V e PSD
V(,j)eE, Vii+ij—2Vij<17
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The dual problem is

min 3trA

st. A € PSD
Vi, j)eE, A;<-—-1,
Vi, )¢ E i #j, A=l
Vieln], Ajj = 0.

Jj=1...n

LetM by the adjacency matrix of the graph, and et (ad —n)I + J — oM, whereo > 2
will be determined shortly. This takes care of the all constraints except foPSD. Note
that sinceM is regular, its eigenvectors are also eigenvectows. dlloreover, ifMu = lu

for a non-constant, thenAu = (ad — n — al)u (andAi = 6). So taker = d_’—’)z and by
our assumption o#z, o> 2.
Now A gives an upper bound oB)
1 1 1 d 1 1 1 A2 1
—trA = -n(ad — 1) ==n°—— —Zn?+ Zn=2n? —n.
I A = G ) = o =, "

This, by @), shows that the dimension of the embedding (SW%(D)). O

3.3. A quasi-random graph of logarithmic sphericity

Itis an intriguing problem to construct new examples of graphs of linear sphericity. Since
random graphs have this property, it is natural to search among quasi-random graphs. There
are several equivalent definitions for such graphs (see [2]). The one we adopt here is:

Definition 3.1. A family of graphs is calledjuasi-randonif the graphs in the family are
(1+o(1))5-regular, and all their eigenvalues except the largest one are (in absolute value)
o(n).

Counter-intuitively, perhaps, quasi-random graphs may have very small sphericity.

Lemma 7. Let G be the family of graphs with vertex sg, 1}%, and edges connecting
vertices that are at Hamming distance at méstThenG is a family of quasi-random
graphs of logarithmic sphericity.

Proof. The fact that the sphericity is logarithmic is obvious—simply map each vertex to
the vector in{0, 1}* associated with it. To show that all eigenvalues except the largest one
areo(2X) we need the following facts about Krawtchouk polynomials (&83). Denote

by kK® (i) = ijo(—l)f(;)(f:}) the Krawtchouk polynomial of ordes over Z5. For
simplicity we assume thatis odd.

1. Foranyx € Z’g with |x| =, Zzezg (-2 = Ks(k)(i).

2. kP =k i 0.

lz|=s

.....
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Observe thaBis a Cayely graph forthe gromzé with generator sdig € Z’; tgl < ’5}. Since

Z’§ is abelian, the eigenvectors of the graphs are independent of the generators, and are simply
the characters of the group written as the vector of their values Namely, correspondlng to
eachy € Z" we have an eigenvector’, such thavy = (—1)*). For everyy, vO =1,s0

to figure out the eigenvalue correspondingtowe simply need to sum the valuewf on

the neighbors of 0. Note that for= 0 we get the all 1s vector, which corresponds to the
largest eigenvalue. So we are interestegldrsuch thaty| > 0. By the first two facts above

we have

k-1
2
= 30 DR =R KD = Ky - D).

geZb |gl<

=o(2h. O

. .. -1 —~ 21\'71
By the third fact, this is at moiﬁ%l) o =i

4. Graphs with bounded 4,

Theoremd suggests families of graphs that have linear sphericity. Namely, 06 & %
andZ > 0, the theorem says théi-regular graphs with second eigenvalue at mg$tave
linear sphericity. In this section we characterize such graphs. We prove tIzBai:fc%rsuch
graphs are nearly complete bipartite, and that for other values, only finitely many graphs
exist.

It is worth noting that graphs with bounded second eigenvalue have been previously
studied. The apex of these works is probably that of Cameron, Goethals, Seidel and Shult,
who characterize in [4] graphs with second eigenvalue at most 2.

4.1. n/2-Regular graphs

In this section we consider the famity of n/2-regular graphs, and second largest eigen-
value 12 bounded by a constant. We prove that, asymptotically, they are nearly complete
bipartite.

Definition 4.1. Let G andH be two graphs on vertices. We say th&s andH areclose if
there is a labeling of their vertices such thB{G) AE(H)| = o(n?).

Theorem 5. EveryG € G is close toK,, 2 /2, where n is the number of vertices in G

Note 3. By applying the theorem to the complement graph, = O(1), then G is close
to the disjoint union of two cliquexn/zL'JKn/z.

We need several lemmas. The first is the well-known Expander Mixing Lemm&J(cf.
The second is a special case of Simonovitz’s Stability Theorem [22], for which we give
a simple proof here. The third is a commonly used corollary of Szemeredi's Regularity
Lemma. We shall also make use of the Regularity Lemma itself (see e.g. [6]).
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Lemma 8. Let G be an3-regular graph on n vertices with second largest eigenvalgie
Then every subset of vertices with k vertices has at éic?s& %},gk internal edges.

Lemma 9. Let R be a triangle-free graph on n verticegth n2/4 — o(n?) edges. Then R
is close toK,/2.,/2. Furthermore all but o(n) of the vertices have degrée+ o(n).

Proof. Denote byd; the degree of thgh vertex inR, and bymthe number of edges. Then

2
2
Y @rdp= Y @ Y 4] =¥

(i,))€E(R) ieV(R) ieV(R)

Thus, there is some edgg j) € E(R) such that; +d; > % =n—o(n). LetI’; andl’;

be the neighbor sets 0&indj. Sincei andj are adjacent, and has no triangles, the sdfs
andI’; are disjoint and independent. If we delete ttie) of vertices inV\(I'; UT ;) we
obtain a bipartite graph. We have deleted arly?) edges, so the remaining graph still has
n?/4— o(n?) edges. But this means tha|, |T';| = 4 — o(n), and that the degree of each
vertex in these sets 5+ o(n). [

Recall that the Regularity Lemma states that for every0 andm € N there is arM,
such that the vertex set of every large enough graph can be partitionddsnbsets, for
somem < k <M with the following properties: All subsets except one, the “exceptional”
subset, are of the same size. The exceptional subset contains less thiaaction of the
vertices. All but are-fraction of the pairs of subsets arg@egular.

The regularity graph with respect to such a partition and a threshdlds thek subsets
as vertices. Two subset§y and U, are adjacent, if they areregular, anc (U, Up) >
d|U1)* = d|Ua/?.

Lemma 10(Diestel[6], Lemma 7.3.2 Let G be a graph on n verticesg, ¢ € (0, 1], and

sbes.te< (‘gj)f . Let R be are-regularity graph of G with (non-exceptionalsets of size

at least?, and threshold d. If R contains a trianglthen G contains a complete tripartite
subgraphwith each side of size s

Corollary 2. If G € G, and Ris as in the lemmuith s = 1015, then R is triangle free. In
this caseif R has% — o(k?) edgesthen R is close to complete bipartite

Proof. If R contains a triangle, the@ contains a complete tripartite subgraph, wéth
vertices on each side. Lét be the set of vertices in this subgraph. Theti) = 352 =
30072, but by LemmaB, e(U) < 25043, a contradiction. The second part now follows from
Lemma9. O

Proof of Theorem 5. We would like to apply the Regularity Lemma to graphsinand
havee = o(1), andk = w(1) as well ask = o(n). Indeed, this can be done. Sinkk
depends only om ande, choosed = o(1), andm = w(1), such that théM given by the



Y. Bilu, N. Linial / Journal of Combinatorial Theory, Series B 95 (2005) 283—-299 295

lemma satisfie% > 3. As M depends only om ande, % can be made small enough,
even with the requirements ahandm.

Let R be the regularity graph for the partition given by the Regularity Lemma, with
thresholdd as above. Denote bythe number of sets in the partition, and their sizel by
(sok -1 = n(1 — ), for somen <¢). We shall show thaR is close to complete bipartite,
and thatG is close to the graph obtained by replacing each vert&uith | vertices, and
replacing each edge Rby a K ;.

Call an edge inG (i) “irregular” if it belongs to an irregular pair; (ii) “internal” if it
connects two vertices within the same part; (iii) “redundant” if it belongs to a pair of edge
density smaller thawl, or touches a vertex in the exceptional set. Otherwise (iv), call it
“good”.

Recall that: = o(1), so onlyo(k?) pairs of sets are natregular. ThusG can have only
0(1%k?) = o(n?) irregular edges. Alsaj = o(1), so the number of redundant edges is
k2 - 0(1%) + o(1)3 = o(n?). Finally, the number of internal edges is at mg#tk, hence

there are"4—2 — o(n?) good edges.
The number of edges between two sets is at fostoR must have at least

2 2 2

n< —o(n®) _ k——o(k2)
4]2 4

edges. The corollary implies that it is close to complete bipartite. By LeBytiee degree

of all but o(k) of the vertices iR is indeed% + o(k). This means that every edge i

corresponds tt? — o(/2) good edges i (as the number of edgesis also no more than

2+ o(k?),

To see tha6 is close to complete bipartite, let us count how many edges need to be mod-
ified. First, deleter(n?) edges that are not “good”. Next, add all possiie?) new edges
between pairs of sets that have “good” edges between theRisAdose to complete bipar-
tite, we need to delete or add all edges betweg?) pairs. Each such step modifiésdges,
altogethen(1%k?) = o(n?) modifications. Finally, divide the(n) vertices of the exceptional
set evenly between the two sides of the bipartite graph, and add all the required edges, and the
tally remainso(n?). O

Note 4. In essencghe proof shows that a graph with no dense induced subgraphs is close
to complete bipartite. This claim is similar in flavor to Bruce Reed’s Mangoes and Blue-
berries theorenfil8]. Namely that if every induced subgrapfi’ of G has an independent

set of siz<=?1|G/| — 0(1), then G is close to being bipartite. The conclusion in Reed'’s the-
orem is stronger in that only a linear number of edges need to be deleted to get a bipartite
graph.

Note 5. In fact, the proof gives something a bit stronger. kgtz) be the number of
edges in an n-vertex complete r-partite graptith parts of equal size. Using the gen-
eral Stability Theorenj22] instead of Lemma@®, the same proof shows that if a graph
hast, — o(n?) edges and no dense induced subgrapihen it is close to being complete
r-partite.
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4.2. on-Regular graphs

In Theoremb we required that the degreerig2. We can deduce from the theorem that
this requirement can be relaxed:

Corollary 3. Let G be a family of d-regular graphswith d <75 (n being the number of
vertices in the graphand bounded second eigenvaltieen everyG € G is close to a
complete bipartite graph

Proof. Let M € M, be the adjacency matrix of suchdaegular graph, and denotd =
J — M, wherelis the all ones matrix. Consider the gragltorresponding to the following
matrix:

M M
N_<M,M>.

ClearlyH is ann-regular graph on2vertices. Denote byx, y) the concatenation of two
n-dimensional vectorsy, y, into a Z:-dimensional vector. Let be an eigenvector dfl
corresponding to eigenvaluig It is easy to see thatis also an eigenvalue off: If v = 1
(and thusi = d) it corresponds to eigenvalue— 4, otherwise to(—4).

Thus, (v, v) and(v, —v) are both eigenvectors &f. If v = 1 they correspond to eigen-
valuesn, 2d — n, respectively, otherwise to 042Since thev’s are linearly independent, so
are the 2 vectors of the form(v, v) and (v, —v): Consider a linear combination of these
vectors that gives 0. Both the sum and the difference of the coefficients of each pair have to
be 0, and thus both are 0. So we know the entire spectruxy afd see, sincé< 3, that
Theoremb5 holds for it.

Let H' be a complete bipartite graph that is closéitdinceH differs from H' by o(n?)
edges, the same holds for subgraphs over the same set of vertices. In pa@idsiclgse
to the subgraph ofi’ spanned by the first vertices. Obviously, every such subgraph is
itself complete bipartite. [

Corollary 4. For every0 < 6 < % and ¢ there are only finitely manyn-regular graphs
with 12 < c.

Proof. Consider such a graph withlarge. By the previous corollary it is close to complete
bipartite. Since it is also regular, it must be cIose'(tég%, which contradicts the constraint

1
4.3. Graphs with bothi, and 1,_1 bounded by a constant

Theoremb can loosely be stated as follows: A regular graph with spectrum similar to
that of a bipartite graph/f being close to:/2 and A, being close to 0) is close to being
complete bipartite. We conclude this section by noting that if we strengthen the assumption
on how close the spectrum of a graph is to that of a bipartite graph, we get a stronger result
as to how close it is to a complete bipartite graph.
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Theorem 6. Let G be a family of5-regular graphs on n verticesvith both/, and 7,1
bounded by a constant. Then evéhe G is close to a's », in the sense that such a graph

can be obtained from G by modifying a linear number of edge®fiayn) vertices of G
and O (4/n) edges for the rest

Proof. First note that it follows that, (G) = —5 + O(1). TakeG € G, and letA be its
adjacency matrix. Clearly-(A2) = é If 4,-1(G) = —0(1), then

2
n
?=tr(A2)=/1§+A5+ >k

i=2,...n—1
Sincei; = 3
2 2
n n
;L,fz——(—) -3
2 2 i=2,...n—1
As i, ..., ,—1 = O(1) we have
2
2 n
= Y + 0(n).

And since/,, is negative, and is smaller than in absolute value:
n
I = -5+ 0(1).

Let x be an eigenvector corresponding4g Suppose, w.l.o.g. thdltx||l.c = 1 and that
x, = 1. Denoted = {u : x, < — (1— %)}, andB = {w : xp > (1— %)}. The eigenvalue
condition onv entails

Zoowm=- Y

2
u:(u,v)eE

Thus, there is a vertexsuch thaty, < — (1 — 0(%)). It is not hard to verify that must
have — O(y/n) neighbors iM, and that must havej — O (,/n) neighbors irB.

Now denoted’ = {u : x, < — 3}, andB’ = {w : x,, > }. Again, itis not hard to check
that each vertex ik must have; — O(y/n) neighbors inB’, and vice versa. Thus, delete
the O (/n) vertices that are neither Bnor in B. For each remaining vertex i (similarly
in B), its degree is at mog}, and at leas§ — O (y/n). It has% — O(y/n) neighbors irB, so
the number of its neighbors s, and the number of its non-neighborsBris O (\/n). By
deleting and addin@ (,/n) edges to each vertex, we get a complete bipartite graph.

Note 6. Alternatively we could have define@ as a family of5-regular graphs withi,
boundedand4,(G) = —5 + O(1). It's interesting to note that in this case it follows that
n—1isboundedFor G € G, if Gisbipartite thenitis complete bipartit@ndi,_1(G) = 0.
Otherwise y(G) > 2,and by a theorem of Hoffmd@] 4,,(G) + 4,-1(G) + 41(G) >0.By
ourassumptiont,, (G)+21(G) = 0(1),andsincel,,—1(G) < 0 (otherwise the eigenvalues
won’t sum up td), it follows that4,,_1(G) = —0(1).
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5. Conclusion and open problems

The only explicit examples known so far for graphs that have linear sphericiti,ase
and small modifications of it. We conjecture that more complicated graphs, such as the Paley
graph, also have linear sphericity. Note that the lower bound presented here only shows a
bound ofQ(/n). It is also interesting to know if the bound can be improved, either as a
pure spectral bound, or with some further assumptions on the structure of the graph.

Whatis the largest sphericity,= d(n), of ann-vertex graph? We know thgt<d <n—1.
Can this gap be closed? For a seemingly related question, the smallest dimension required
to realize a sign matrix (se&]) the answer is known to b% + o(n). We have also seen a
similar gap ford (n, I2) andd(n, l,). Can this be closed? Can some kind of interpolation
arguments generalize the bounds we know for these two numbers to bouids ) for
p > 27?

Finally, we have seen thgtregular graphs with bounded second eigenvalue aré)-
close to complete bipartite. However, the only example we know of such graphs are con-
structed by taking a complete bipartite graph, and changing a constant number of edges for
each vertex. These graphs @én)-close to being complete bipartite. Are there examples
of such families which are further from complete bipartite graphs, or can a stronger notion
of closeness be proved?
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