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Abstract

In this note we show that everyn-point ultrametric embeds with constant distortion in�
O(logn)
p

for every∞ ≥ p ≥ 1. More precisely, we consider a special type of ultrametric with hierarchical
structure called ak-hierarchically well-separated tree (k-HST). We show that anyk-HST can be

embedded with distortion at most 1+ O(1/k) in �
O(k2logn)
p . These facts have implications to

embeddings of finite metric spaces in low dimensional�p spaces in the context of metric Ramsey-
type theorems.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

An ultrametric is a metric space(X, d) such that for everyx, y, z ∈ X,

d(x, z) ≤ max{d(x, y), d(y, z)}.
Finite ultrametrics have a naturalhierarchical description calleddendrogram(see [1]

and references therein). A more restricted class of metrics with potentially stronger
hierarchical structure is that ofk-hierarchically well-separated trees, defined as follows:

Definition 1 ([2]). For k ≥ 1, ak-hierarchically well-separated tree(k-HST) is ametric
space whose elements are the leaves of a rooted finite treeT . To each vertexu ∈ T there
is associated a label∆(u) ≥ 0 such that∆(u) = 0 iff u is a leaf ofT . It is required that if
a vertexu is a child of a vertexv then∆(u) ≤ ∆(v)/k. Thedistance between two leaves
x, y ∈ T is defined as∆(lca(x, y)), where lca(x, y) is the least common ancestor ofx and
y in T .
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The notion of 1-HST coincides with that of an ultrametric. Anyk-HST is also a
1-HST, i.e., an ultrametric. However, for everyk > 1 the class ofk-HST is a proper
subclass of ultrametrics. Ultrametrics andk-HSTs have played a key role in recent work
on embeddings of finite metric spaces [3–6].

Let f : X → Y be an embedding of the metric space(X, dX) into the metric space
(Y, dY). We define thedistortionof f by

dist( f ) = sup
x, y ∈ X

x �= y

dY( f (x), f (y))

dX(x, y)
· sup

x, y ∈ X
x �= y

dX(x, y)

dY( f (x), f (y))
.

We denote bycY(X) the least distortion with whichX may be embedded inY. When
cY(X) ≤ α we say thatX α-embeds intoY. When there is a bijection f betweentwo
metric spacesX andY with dist( f ) ≤ α we say thatX andY areα-similar.

The following proposition provides a comparison between ultrametrics andk-HSTs.

Proposition 1 ([3]). For any k> 1, any ultrametric is k-similar to a k-HST.

A basic folklore property of ultrametrics (cf. [7]) is:

Proposition 2. Any finite ultrametric is isometrically embeddable in�2.

Since any finite subset of �2 isometrically embeds into�p for every 1 ≤ p ≤ ∞, a
similar result follows for embeddings in�p. Moreover,a careful analysis of the proof of

the above proposition yields an isometric embedding of anyn-point HST into�
O(n)
p .

Here we consider thedimensionfor which ultrametrics andk-HST spaces embed with a
given distortion in�p, 1 ≤ p ≤ ∞. For�2 this is answered by the Johnson–Lindenstrauss
dimension reduction lemma [8] which states that for everyε > 0, anyn-point metric space

in �2 can be(1 + ε)-embedded in�O(logn/ε2)

2 . Using [9], it follows that any set ofn points

in �2 can be embedded with constant distortion into�
O(logn)
p for 1 ≤ p ≤ 2 andinto

�
O(

√
p(logn)p/2)

p for p > 2. The main result of this note improves the upper bound on the
dimension required to embedn-point ultrametrics into�p, p > 2, and gives additional
structural information on the problem for embeddings into low dimensional�p spaces for
1 ≤ p ≤ 2. Moreover, we show that anyn-point k-HST can be embedded in�p with
constant distortion and dimension logarithmic inn. Furthermore, thedistortion approaches
1 ask grows.

Proposition 3. Fix an integer k > 5. Then for any 1 ≤ p < ∞, any k-HST can be
(k + 1)/(k − 5)-embedded in�h

p with h = �C(1 + k/p)2 log D	, where D is the maximal
out-degree of a vertex in the tree defining the k-HST, and C> 0 is auniversal constant.

Proposition 3is proved in Section 2. Combining Propositions 1and 3 we obtain the
following:
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Corollary 4. For any1 ≤ p ≤ ∞, any n point ultrametric can be O(1)-embedded into
�

O(logn)
p .

We alsoshow how to apply this lemma to the metric Ramsey-type problems. A metric
Ramsey-type theorem states that a given metric space contains a large subset which can
be embedded with small distortion in some “well-structured” family of metric spaces (e.g.
Euclidean metrics). This can be formulated using the following notion.

Definition 2. Let M be some class of metric spaces. Denote byRM(α, n) the largest
integerm such that anyn-point metric space has a subset of sizem thatα-embeds into a
member ofM. WhenM = {�p}, we useRp ratherthanR�p .

In [5] it is shown that for every 1≤ p ≤ ∞ andα > 2, Rp(α, n) ≥ n
1−O

(
logα

α

)
and

for every 0 < ε < 1, Rp(2 + ε, n) ≥ n
Ω
(

ε
log(2/ε)

)
. We refer to [5] and the references

therein for a comprehensive description of metric Ramsey problems and their history.
Using Proposition 3, we prove the following variant of the result of [5] in which there
is control on the dimension in the metric Ramsey problem for�p, p ≥ 1. This application
wasour original motivation for studying low-dimensional embeddings of ultrametrics.

Theorem 1. The following assertions hold:

(1) There existabsolute constants c, C > 0 such that for all1 ≤ p ≤ ∞ and for every
α > 2,

R�d
p
(α, n) ≥ n1−C

logα
α , where d= �c logn	.

(2) There areabsolute constants C, c > 0 such that for every0 < ε < 1, 1 ≤ p < ∞
and every integer n,

R�d
p
(2 + ε, n) ≥ n

cε
log(2/ε) , where d=

⌈
C

ε�(εp)−2	
log(2/ε)

log n

⌉
.

2. Embedding HSTs in low dimensional �p spaces

We follow Definition 1, and associate with anyk-HST, the treeT defining the HST.
An internal vertex inT with out-degree 1 is said to bedegenerate. If u is non-degenerate,
then∆(u) is the diameter of the sub-spaceinduced on the subtree rooted byu. Degenerate
nodes do not influence the metric onT ’s leaves, hence we may assume that all internal
nodes are non-degenerate. In particular for an HSTX, diam(X) = ∆(root(T)), whereT
is the tree definingX.

We make use of the following standard construction of codes, the proof of which is
included for the sake of completeness. In what follows, forw, v ∈ {0, 1}h, w ⊕ v denotes
the point-wise addition modulo 2 ofv andw.
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Lemma 5. For any h∈ N, andτ ∈ (0, 1), there exists K ⊂ {0, 1}h such that the Hamming
distance between any two distinct elements of K is in the range[(1 − τ )h/2, (1 + τ )h/2]
and|K | ≥ �ehτ2/8.

Proof. Let w, v ∈ {0, 1}h be independent and equidistributed random elements. Then
by the Chernoff bound,the probability thatw ⊕ v has less than(1 − δ)h/2 1’s is
at most e−δ2h/4. Similarly, the probability it has more than(1 + δ)h/2 1’s is also at
most e−δ2h/4. Givenm random elementsw1, . . . , wm ∈ {0, 1}h, the probability that the
distance between any two of them isn’t in the range[(1 − δ)h/2, (1 + δ)h/2] is at most(m

2

)
2e−δ2h/4 < m2e−δ2h/4. Thus, choosingm = �eδ2h/8 implies that with a positive

probability the subsetK = {w1, . . . , wm} has the required properties.�
Proof of Proposition 3. Let u be the root of the tree definingX and X1, . . . , Xs be the
leaf sets of subtrees rooted at the children ofu. Note that s ≤ D. For p < ∞, let
τ = (1 + k/p)−1/6. Seth = �8τ−2 log D	, so that ehτ2/8 ≥ s. By Lemma 5there
exists K ⊂ {0, 1}h with all Hamming distances in the range[(1 − τ )h/2, (1 + τ )h/2] and
|K | ≥ s. Chooses distinct c1, . . . , cs ∈ K . By switching toc1 ⊕ c1, c2 ⊕ c1, . . . , cs ⊕ c1
we may assume thatc1 = 0, in which case for 1≤ i ≤ s, ‖ci ‖1 ≤ 1+τ

2 h.
Assume inductively that for eachi we have anembeddingφi : Xi → �h

p, such that:

• For all x, y ∈ Xi , k−5
k+1dXi (x, y) ≤ ‖φi (x) − φi (y)‖p ≤ dXi (x, y).

• For everyx ∈ Xi , ‖φi (x)‖p ≤ diam(Xi ).

Let λ = (1+τ
2 h)−1/p k−2

k , and let∆ = diam(X). Definean embeddingφ : X → �h
p of

X as follows: forx ∈ Xi ,

φ(x) = φi (x) + λ∆ci .

Then

‖φ(x)‖p ≤ ‖φi (x)‖p + λ∆‖ci ‖p ≤ diam(Xi ) +
(

1 + τ

2
h

)−1/p k − 2

k
∆‖ci ‖1/p

1

≤ ∆
k

+ k − 2

k
∆ < ∆.

For x, y ∈ Xi , ‖φ(x) − φ(y)‖p = ‖φi (x) − φi (y)‖p, so by the induction hypothesis

k − 5

k + 1
dX(x, y) ≤ ‖φ(x) − φ(y)‖p ≤ dX(x, y).

For x ∈ Xi , y ∈ X j andi �= j , we havedX(x, y) = ∆. Now

‖φ(x) − φ(y)‖p ≤ λ∆‖ci − cj ‖p + ‖φi (x)‖p + ‖φ j (x)‖p

≤ λ∆‖ci − cj ‖1/p
1 + diam(Xi ) + diam(X j )

≤
(

1 + τ

2
h

)−1/p k − 2

k
∆
(

1 + τ

2
h

)1/p

+ 2

k
∆ = ∆ = dX(x, y),
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and

‖φ(x) − φ(y)‖p ≥ λ∆‖ci − cj ‖p − ‖φi (x)‖p − ‖φ j (x)‖p

≥ λ∆‖ci − cj ‖1/p
1 − diam(Xi ) − diam(X j )

≥
(

1 + τ

2
h

)−1/p k − 2

k
∆
(

1 − τ

2
h

)1/p

− 2

k
∆

≥
((

1 − τ

1 + τ

)1/p k − 2

k
− 2

k

)
∆

≥
(

k

k + 1
· k − 2

k
− 2

k

)
∆ ≥ k − 5

k + 1
dX(x, y).

The last inequality holds fork > 5 andthe preceding derivation follows from the definition
of τ : (

1 − τ

1 + τ

)1/p

≥ (1 + 3τ )−1/p ≥ (1 + 6τ/p)−1

= (1 + (1 + k/p)−1/p)−1

≥ (1 + 1/k)−1. �

3. Implications

Denote by UM the class of all ultrametrics. We will need the following theorem:

Theorem 2 ([5]). The followingassertions hold for every integer n:

(1) There exists an absolute constant C′ > 0 such that for everyα > 2,

RUM(α, n) ≥ n1−C′ logα
α .

(2) There is anabsolute constant c> 0 such that for any k≥ 1 and0 < ε < 1, for any
integer n

Rk−HST(2 + ε, n) ≥ n
cε

log(2k/ε) .

Proposition 2implies similar bounds forR2(α, n). We next show howto extend those
results for embedding into�O(logn)

p by usingProposition 3.

Proof of Theorem 1. We begin with the first claim of the theorem. LetC′ > 0 be the
constant at the first assertion inTheorem 2, and letβ be a universal constant such that
anyn-point ultrametricβ embeds in�O(logn)

p (Corollary 4). We chooseC = βC′, so that

C log α
α

≥ C′ log(α/β)
α/β

. FromTheorem 2we deduce that

RUM(α/β, n) ≥ n
1−C′ log(α/β)

α/β ≥ n1−C
logα

α .
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The subset described by this statement is(α/β)-similar to an ultrametric and so, by
Corollary 4, it is α-embeddable in�O(logn)

p .
We next consider the second statement in the theorem. Letδ = ε/4 andk = �5+ 6/δ,

then byTheorem 2, thereexistsc′ > 0 such thatRk−HST(2+δ, n) ≥ n
c′δ

log(2/δ) . Let M be an
arbitrary metric space. For an appropriate choice ofc this means thatM contains a subset

Y of sizem = �n
cε

log(2/ε) 	 that is(2 + δ)-similar to somek-HST X. By Proposition 3and
our choice ofk, there exists some constantC′ > 0 such that X can be(1 + δ)-embedded
in �d

p, where

d = �C′�(δp)−2	 log m	 =
⌈

C
ε�(εp)−2	
log(2/ε)

log n

⌉
,

for an appropriate choice ofC. Therefore Y is (2 + δ)(1 + δ) ≤ (2 + ε)-embedded in
�d

p. �
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