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Abstract

In this note we Bow that everyn-point ultrametric embeds with constant distortiorﬂ%(Iog "

for everyoco > p > 1. More precisely, we consider a special type of ultrametric with hierarchical
structure called &-hierarchically well-separated trek-HST). We show that ank-HST can be

embedded with distortion at most-# O(1/k) in Zg(kzlogn). These &cts have imiications to
embeddings of finite metric spaces in low dimensiafjabpaces in the context of metric Ramsey-
type theorems.
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1. Introduction

An ultrametricis a metric spacéX, d) such ttat for everyx, y, z € X,
d(x,2) < maxd(x,y), d(y, 2)}.

Finite ultrametrics have a naturhierarchical description calledendrogram(see []
and references therein). A more restricted class of metrics with potentially stronger
hierarchical structure is that &thierarchically well-separated treedefined asdllows:

Definition 1 ([2]). Fork > 1, ak-hierarchically well-separated tregk-HST) is ametiic
space whose elements are the leaves of a rooted finité trée each vertexu € T there

is associated a label(u) > 0 such thatA(u) = 0 iff u is a leaf ofT. It is required that if

a vertexu is a child of a vertew thenA(u) < A(v)/k. Thedistance between two leaves
X,y € T is defined agi(Ica(x, y)), where Ic&x, y) is the least common ancestonoénd
yinT.
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The notion of 1-HST coincides ith that of an ultrametric. Anyk-HST is also a
1-HST, i.e., an ultrametric. However, for eveky> 1 the chss ofk-HST is a proper
subclass of ultrametrics. Ultrametrics akéHSTs have played a key role in recent work
on embeddings of finite metric spac&s4).

Let f : X — Y be an embedding of the metric spac€ dx) into the metric space
(Y, dy). We define thalistortionof f by

| dy (), () dx(x. )
dist(f) = sup — 2 277, XY
(D= 3 "oy o w0, fy)
X%y Xy

We denote bycy(X) the least distortion with whickX may be embedded . When
cy(X) < o we say thatX ¢-embeds intoY. When here is a Bection f betweentwo
metric spaceX andY with dist(f) < o we say thaiX andY area-similar.

The following proposition provides a ogparison between ultrametrics akdHSTSs.

Proposition 1 ([3]). For any k> 1, any ultrametric is ksimilar to a kK-HST.

A basic fdklore property of ultrametrics (cf.q]) is:

Proposition 2. Any finite ultrametric is isometrically embeddablelin

Since any fiite sub®t of £, isometrically embeds inté, for every 1< p < oo, a
similar result follavs for emleddings in¢p. Moreover,a careful analysis of the proof of

- . . . . . . o(n)
the above proposition yields an isometric embedding ofrappint HST intof™ .

Here we consider thdimensiorfor which ultrametrics an#-HST spaces embed with a
given dstortion in£p, 1 < p < oo. For ¢ this is answered by the Johnson-Lindenstrauss
dimension reduction lemm&][which siates that for every > 0, anyn-point metric space

2
in £ can be(1 + ¢)-embedded irig('og”/é ) Using [9], it follows that any set of points
in ¢, can be embedded with constant distortion ia&f'ogm for 1 < p < 2 andinto

O(/P(logn)P/?) : . :
Lp for p > 2. The main result of this note improves the upper bound on the
dimension required to embedpoint ultraretrics intofp, p > 2, and gives additional
structuel information on the problem for embeddings into low dimensidpadpaces for
1 < p < 2. Moreover, we show that any-point k-HST can be embedded #}, with
constant distortion and dimension logarithmiairFurthermorethedistortion approaches
1 ask grows.

Proposition 3. Fix an integer k> 5. Then br any1l < p < oo, any k-HST can be
(k+1)/(k — 5)-embedded ini?, with h = [C(1+ k/p)?log D7, where D is he maxinal
out-degree of a vertex in the tree defining the k-HST, and Cis a universal constant.

Proposition 3is proved in Section 2 Combining Propositions land 3 we obtain the
following:
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Corollary 4. Foranyl < p < oo, any n point ultrametric can be Q)-embedded into
O(logn)
ep 0",

We alsoshow how to aply this lemma to the metric Ramsey-type problems. A metric
Ramsey-type theorem statdésat a given metric space contains a large subset which can
be embedded with small distortion in some fagtructured” family of metric spaces (e.g.
Euclidean metrics). This can be formulated using the following notion.

Definition 2. Let M be some class of metric spaces. DenoteRyy (¢, n) the largest
integerm such tlat anyn-point metric space has a subset of siz¢hata-embeds into a
member ofM. WhenM = {¢,}, we useR,, ratherthanRy,.

loga
1— —J
In [5] it is shown that for every 1< p < oo ando > 2, Rp(a, n) > n ( ¢ > and

€
forevery0< € < 1, Ry(2+ €,n) > nQ('Og(Z/O). We rekr to [5] and the eferences
therein for a comprehensive stiption of metric Ramsey problems and their history.
Using Proposition 3 we prove the fowing variant d the resut of [5] in which there
is control on the dimension in the metric Ramsey probleméiarp > 1. This apfication
was our original motivation for studying low-dimensional embeddings of ultrametrics.

Theorem 1. The followng assertions hold:

(1) There existibsolute constants € > 0 such that for alll < p < oo and for every
o > 2,

1-clow
Rg%(oz, n) >n a where d= [clogn].

(2) There areabsolute constants,& > Osuch hatforevery0 < e <1,1< p < o0
and every integer n,

_ce -2
Rg%(2+ €, n) > nlog@/e) | where d= {C% log n—‘ )

2. Embedding HSTsin low dimensional £, spaces

We fdlow Definition 1, and &socate with anyk-HST, the treeT deining the HST
An internal vertex inT with out-degree 1 is said to liegeneratelf u is non-degenerate,
thenA(u) is the diameter of the sub-spacguced on the subtree rooted lbyDegererate
nodes do not influence the metric dr's leaves, Bnce we may assume that all internal
nodes are non-degenerate. In particular for an XS @iam(X) = A(root(T)), whereT
is the tree defining.

We make use ofhe following standard construction of codes, the proof of which is
included for the sake of completeness. In what followsfop € {0, 1}", w @ v denotes
the point-wise addition modulo 2 efandw.
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Lemmab. Foranyhe N,andr € (0, 1), there ejsts K C {0, 13" such hat the Hamming
distance between any two distinct elements of K is in the réfige t)h/2, (1 + t)h/2]

and|K| > [€"7/8].

Proof. Let w,v € {0,1}" be independent and equidistributed random elements. Then
by the Chernoff boundthe probability thatw & v has less tharql — §)h/2 1’s is

at most e%°"/4. Similarly, the probability it has more thadl + §)h/2 1's is also at
most e%°/4, Givenm random elementsiy, ..., wm € {0, 1}, the probability that the
distance between any two of them isn’t in the rafde— 8)h/2, (1 + §)h/2] is at most
(’;‘)Ze*‘szh/4 < m2e~%°M/4_ Thus, choosingn = [&°"/8] implies that with a positive
probability the subseK = {w1, ..., wm} has the required properties]

Proof of Proposition 3. Let u be the root of the tree defining and X, ..., Xs be the
leaf sets of subtrees rooted at the childrenuofNote hats < D. For p < oo, let
t = (1+k/p)~1/6. Seth = [8r~2log D1, so that 87/ > s. By Lemma Sthere
exigs K c {0, 1}" with all Hamming distances in the ranffd — t)h/2, (1 + t)h/2] and
|K| > s. Chooses digtinctcy, ..., ¢s € K. By switchingtoci @ ¢, co®¢Cp,...,CsDCy
we may assume that = 0, in whichcase for 1< i <s, ||i||1 < ”T’h.

Assume inductively that for eaéhwe have arembeddingy; : Xij — E?,, such hat:

o Forallx,y € Xi, E2dx; (X, y) < [l6i () — i (W) lp < dx; (X, y).
e Foreveryx € Xj, [l¢i (X)|lp < diam(X;).

Leta = (17h)~Y/Pk22 and letA = diam(X). Definean embedding : X — €% of
X as follows: forx € X;,

#(X) = i (X) + AAC.

Then Y
. 1+ “HPK_2
[¢)Np < llgi X)lp + AAlCi | p < diam(Xj) + < > Th) K Allc IIi/p
A k=2
Forx,y e Xj, l¢(xX) — oW lp = ll¢i (X) — ¢i (V)| p, 0 by the induction hypothesis
k_Sd X, y) < |l (x < dx (x
K1 x(X, ¥) < l@(X) —dWp < dx(X, ).

Forx € Xj,y € Xj andi # j, we havedx(x, y) = A. Now
[p(X) — W lp < AAllCi —Cjllp + 119 X)lp + I X p
< 246 — cjlI7’P + diam(X; ) + diam(X)

-1/p . _ 1/p
< 1+rh k 2A 1+'Ch
2 k 2

2
+ EA = A=dx(x,y),
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and
lo(X) —dWllp = AAlC —Cjllp — llgi X)Ip — ldj Xl p
> 2Allci — ¢jlly’® — diam(X;) — diam(X;)
1+7 \YPk—2 /1-7\YP 2
z(2h> K2 A(zh) 24
NP _
. 1—-¢ k 2_2 A
1+t k k
kK k—2 2 k—5
= 172 _2\a .
Z(k+1 K k) Z Iy

The last inequality holds fdt¢ > 5 andthe preceding derivation follows from the definition
of 7:

1—7\YP
<1+ ) > (1430 YP>@+6r/pt
T

=1+A+k/ppT?t
> A+t O

3. Implications

Denote by UM the class of all ultrametrics. We will need the following theorem:

Theorem 2 ([5]). The followingassertions hold for every integer n:

(1) There exists an alb$ute constant C> 0 such hat for everyx > 2,

loga
a

_
Rum(a, n) > n'=C

(2) There is amabsolute constant & 0 such hat for any k> 1and0 < ¢ < 1, for any
integer n

Ce
Rk-HST(2 4 €, n) > nlogk/e)

Proposition 2implies similar bounds foRz(«, n). We next show howio extend those

results for embdding intot 5™ by usingProposition 3

Proof of Theorem 1. We begin with the first claim of the theorem. L&&’ > 0 be the
constant at the first assertion Ttheorem 2 and letg be a universal constant such that

any n-point ultrametric8 embeds irt5°"™ (Corollary 4). We chooseS = BC/, so that
clge > C"oga(%. FromTheorem 2ve deluce that

1_c109@/B) loga
Rum(a/B,n) > n @/f >n o .
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The subset described by this statementdgg)-similar to an ultrametric and so, by
Corollary 4, it is a-embeddable i 5 "™

We net consider the second statement in the theoremé ek /4 andk = |5+ 6/45],
c's
then byTheorem 2thereexigsc’ > 0 suchhatRx_psT(2+8, n) > nlog2/®) et M be an
arbitrary metric space. For an appropriate choice this means thaM contains a subset
Ce

Y of sizem = [n09(2/e) ] that is(2 + §)-similar to somek-HST X. By Proposition 3and
our choice ofk, there eists some constai@’ > 0 such hat X can be(1 + §)-embedded
in Z%, where

efep)™2]
log(2/¢)

for an appropriate choice &. TherdoreY is (2 + §)(1 4+ 8) < (2 + ¢)-embedded in
. O
p

d = [C'[(8p)~2]log m] = logn |,
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