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Abstract

Let V be an rn-dimensional linear subspace of Zn
2 . Suppose the smallest Hamming

weight of non-zero vectors in V is d. (In coding-theoretic terminology, V is a linear code of
length n, rate r and distance d.) We settle two extremal problems on such spaces.

First we prove a (weak form) of a conjecture by Kalai and Linial and show that the
fraction of vectors in V with weight d is exponentially small. Specifically, in the interesting

case of a small r, this fraction does not exceed 2
−Ω( r2

log(1/r)+1
n)

.
We also answer a question of Ben-Or, and show that if r >

1
2 , then for every k, at most

Cr · |V |√
n

vectors of V have weight k.

Our work draws on a simple connection between extremal properties of linear subspaces
of Zn

2 and the distribution of values in short sums of Zn
2 -characters.
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1 Introduction

This paper deals with extremal problems on linear codes. Our approach utilizes harmonic analysis
on the cube Zn

2 . We observe that extremal questions about linear codes readily translate into
questions about the possible value distributions of character sums over Zn

2 . To fix ideas, we quote
a simple but useful lemma which illustrates this connection.

Lemma 1.1: Let V be an m-dimensional subspace of Zn
2 . Let A be a generating matrix of V ,

namely an m×n matrix whose rows v1, . . . , vm are a basis of V . Let u1, . . . , un be the columns of
A, and let f be the characteristic function of the (multi)set {u1, . . . , un} (in the m-dimensional

cube Zm
2 ). For B ⊆ {1, . . . , m}, the Hamming weight of v =

⊕
i∈B vi, is n−2mf̂(B)

2
. (f̂ being the

Fourier Transform on Zm
2 , see next section for details.)

We turn to the two problems that are addressed here, and formulate them in both coding-
theoretic and harmonic-analytic terms. In [9] Kalai and Linial conjecture, that the number of
codewords of minimal weight in a linear code of length n is subexponential in n. Recall that the
characters on Zm

2 are the Walsh functions Wv with v ∈ Zm
2 , defined as Wv(u) = (−1)<u,v>. Here,

then is the translation of this question to the functional terminology: Let f =
∑n

i=1 Wui
, where

ui span Zm
2 . Is it true that the maximum of f on Zm

2 \ {0} is attained only at exp(o(n)) points?
In Section 3 we prove a weaker statement, namely, that the probability of f attaining its

maximum is exponentially small. Translating back to subspaces, we conclude that the fraction of
non-zero vectors of minimal weight in an (rn)-dimensional linear subspace of Zn

2 is exponentially

small, and does not exceed 2
−Ω( r2

log(1/r)+1
n)

.
What is the largest possible number of vectors in an affine subspace that have a given weight?

Ben Or [2] considered affine subspaces E ⊆ Zn
2 of dimension a · n (a > 1

2
fixed, n even and

large) and asked for the largest possible number of vectors in E whose Hamming weight is n/2.
Consider the expected number of times we draw a vector of weight n/2, when we draw uniformly
at random 2an vectors from the cube. Ben Or’s conjecture states that the number of vectors
with weight n/2 in an affine subspace never exceeds this expectation by much. Let Lk = Lk,n be
the set of vectors in Zn

2 whose Hamming weight is k (“the k-th level”). The conjecture says:

|E ∩ Ln/2| ≤ Ca

|E||Ln
2
|

2n
= Θ(

|E|√
n

).

We prove more, namely, that for every 0 ≤ k ≤ n:

|E ∩ Lk| ≤ Ca
|E|√

n

The harmonic-analytic formulation says that if f =
∑n

i=1 Wui
is a real function on Zm

2 with {ui}n
1

a spanning set of Zm
2 , and n/m bounded away from above by 2, then f attains every value at

most O( 2m√
n
) times. Examples show that the bound 2 on n/m is best possible.

The extremal behavior of linear subspaces of Zn
2 is of fundamental importance for coding

theory. One of the foremost questions in this area concerns the largest possible size of a linear
code with a given distance. Namely, given d and n, the question is to find a linear subspace V of

2



Zn
2 with largest possible dimension, where every non-zero vector of V has weight at least d. (See

[22] for an introduction to the coding theory.) A more general question (and not as well studied)
is to estimate the maximum (minimum) possible number of vectors in V of given weight k. We
point out the connection between this problem and the uncertainty principle.

Extremal properties of short sums of Zn
2 -characters are of interest in probability [7] and also

have applications in the Local Theory of Banach Spaces [17], and in combinatorics [6]. We are
interested in the possible value distribution of such functions f : Zn

2 → R. Specifically, how
large are the higher values of f , and how often are they attained. We are also interested in f ’s
concentration function: Q1(f) = maxx∈RPr(x ≤ f ≤ x + 1).

The connection between character sums and subspaces may hopefully contribute to the study
of both subjects.

2 Preliminaries

This section contains necessary definitions, terminology and references as well as some of the
facts that are required later on. Elements of Zn

2 will be viewed as either vectors or as subsets
of {1, . . . , n}. In this context, we interchange freely between a subset and its characteristic vector.

2.1 Harmonic Analysis on Zn
2

Zn
2 is a finite Abelian group, therefore its characters {WT}T∈Zn

2
constitute a group (the dual

group which is isomorphic to Zn
2 .) The character WT is a function from Zn

2 to {−1, 1}, defined
as: WT (S) = (−1)|T∩S|. The characters {WT}T∈Zn

2
form an orthonormal basis in the space of

real-valued functions on Zn
2 , equipped with uniform probability distribution.

For f : Zn
2 → R, define f̂ : Zn

2 → R, as f̂(T ) = 1
2n

∑
S∈Zn

2
f(S)WT (S). The function f̂ is the

Fourier Transform of f . See [8], for more on the Fourier Transform in Zn
2 .

For 0 ≤ k ≤ n define Kk : Zn
2 → R as Kk(S) =

∑
|T |=k WT (S). Clearly, Kk(S) depends only on

|S|, and can therefore be viewed as a function on integers 0 ≤ s ≤ n. With some abuse of notation

we may, therefore, view Kk as Kk(x) =
∑k

j=0(−1)j
(

x
j

)(
n−x
k−j

)
, the k-th Krawchouk polynomial, a

real polynomial of degree k. The polynomials Kk with 0 ≤ k ≤ n form an orthogonal system
with respect to the binomial measure on {0, . . . , n}. See [21] for more on orthogonal polynomials
and [12] for a survey of Krawchouk polynomials. We need several more specific properties of
Krawchouk polynomials.

Lemma 2.1: If n = 2d is even, then

Kd(x) =
(−1)d2d

d!
(x − 1)(x − 3)(x − 5)...(x − (n − 1)).

Proof: An easily verified property of Krawchouk polynomials is that Ks(x+d) is an even function
of x if s is even, and an odd function for odd s. Therefore Ks(d) vanishes for odd s. Using the

identity
(

n
s

)
Kt(s) =

(
n
t

)
Ks(t), we deduce that Kd(s) = 0 for every odd integer s between 0 and

n. These d roots of Kd, a polynomial of degree d, determine Kd up to a constant factor. This
constant may be obtained using the fact that Ks(0) =

(
n
s

)
.
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Lemma 2.2:

Let n = 2d be even. Then for any integer k and for an even integer s between 0 and n:

|Kk(s)| ≤ |Kd(s)|

Proof: This proof is essentially due to Solé [20]. We are grateful to S. Litsyn for this refer-
ence. The generating function of Krawchouk polynomials is

∑∞
0 Kk(x)zk = (1 + z)n−x(1 − z)x.

Therefore, by Cauchy’s integral formula, for nonnegative integers x:

Kk(x) =
1

2πi

∮
(1 + z)n−x(1 − z)x

zk+1
dz =

2n · (−i)x

2π

∫ 2π

0
exp[i(

n

2
− k)θ]cosn−x(

θ

2
)sinx(

θ

2
)dθ.

Thus, for s even:

|Kk(s)| ≤
2n

2π

∫ 2π

0
|exp[i(

n

2
− k)θ]cosn−s(

θ

2
)sins(

θ

2
)|dθ ≤ 2n

2π

∫ 2π

0
cosn−s(

θ

2
)sins(

θ

2
)dθ = |Kd(s)|

Corollary 2.3: For even s and n = 2d,

|Kk(s)| ≤ |Kd(s)| =
2d

d!

s!(n − s)!

2d( s
2
)!(n−s

2
)!

=

(
n

d

)(d
s
2

)

(
n
s

) = O




2n

√
n

(
d
s
2

)

(
n
s

)




2.2 Coding Theory

We recall some standard notation in this area. As usual, the rate of a code C ⊆ Zn
2 is defined as

R(C) = 1
n

log2 |C|. For 1
2
≥ δ ≥ 0 one defines

R(δ) = lim sup
n→∞

{R(C) | C has length n and distance ≥ δn}.

For future use we record the essentially strongest known upper bounds on R(δ) (see [15]). 1

Theorem 2.4: Let H(x) = −x log(x) − (1 − x) log(1 − x), denote the binary entropy function,

and let µ(x) = H(1
2
−
√

x(1 − x)). Then

R(δ) ≤ µ(δ)

for 0 ≤ δ ≤ 1
2
.

Theorem 2.4 is a consequence of the following non-asymptotic result [15]:

1Strictly speaking, this is not the best bound in [15], but it matches their best bound for a wide range of δ,
and suffices for our purposes.
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Theorem 2.5: Let C be a code in Zn
2 with minimal distance d. Let 0 ≤ k ≤ n/2 be such that

the first root xk of the Krawchouk polynomial Kk satisfies xk ≤ d. Then

|C| ≤
(
n

k

)
(n + 1)2.

In order to apply theorem 2.5 we need an estimate on the first root xk of the Krawchouk poly-
nomial Kk. The following, sufficiently precise estimate follows from the bounds in [13], section
5.2. For 2 ≤ k ≤ n/2

xk ≤ n/2 −
√

(n − k + 2)(k − 2). (1)

We also record several simple but useful properties of H :

Lemma 2.6:

• H(0) = H(1) = 0, H(1
2
) = 1, H is concave on [0, 1].

• For |x| ≤ 1
2
, H(1

2
− x) = 1 − O(x2).

•
(

n
an

)
= 2n[H(a)+o(1)], and

∑
0≤k≤an

(
n
k

)
= 2n[H(a)+o(1)], where 0 ≤ a ≤ 1

2
is constant and

n → ∞.

• For any 0 ≤ r ≤ n/2,
∑

0≤k≤r

(
n
k

)
≤ 2nH(r/n).

Combining theorem 2.5 and the lemma we obtain the following corollary (see also the discussion
in remark 3.2):

Corollary 2.7: Let C be a code in Zn
2 with minimal distance d. Then

|C| ≤
(

n

⌈n
2
−
√

d(n − d) + 2⌉

)
(n + 1)2 ≤ 2

n·
[
H

(
1
2
−
√

d
n

(1− d
n

)

)
+O( log(n)

n )
]

.

We will also need estimates from [15] on the largest possible size of constant weight codes.
Namely, we need estimates on the largest cardinality of a subset of Ld, in which all pairwise
distances are at least d. Denote by M(n, d, w) the largest cardinality of a subset of Lw, in which
all pairwise distances are at least d and set

R(δ, α) = lim sup
n→∞

1

n
log2 M(n, dn, wn),

where the lim sup is taken over all sequences dn = δn + o(n) and wn = αn + o(n). We quote a
bound on R(δ, δ):

Proposition 2.8: ([15])
R(δ, δ) ≤ H((1 −

√
1 − x)/2),

where
x = 2δ(1 − δ) − 2δ

√
2δ − 3δ2.
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2.3 Matroid Theory

We need the following classical result of Edmonds, (E.g., [18] which is a good introduction to
matroid theory in general).

Theorem 2.9: The Matroid Union Theorem Let M be a matroid on a ground set E with a
rank function ρ.

• M has k disjoint bases if and only if, for every subset X of E,

k · ρ(X) + |E − X| ≥ k · ρ(E).

• E can be expressed as the union of k independent sets iff, for every subset X of E,

k · ρ(X) ≥ |X|.

2.4 An outstanding debt

We still owe the reader a proof of Lemma 1.1:
Proof: ( Of Lemma 1.1:) Let b be the characteristic vector of the set B. Then

f̂(B) =
1

2m

∑

S∈Zn
2

f(S)WB(S) =
1

2m

∑

1≤i≤n

(−1)<b,ui>.

Therefore, 2mf̂(B) is the difference between the number of indices i with < b, ui >= 0 and those

where < b, ui >= 1. It follows that | ⊕i∈B vi| = |{i| < b, ui >= 1}| = n−2mf̂(B)
2

.

3 Minimal weight

In [9] Kalai and Linial show that the distribution of short distances in a code conveys significant
information about the whole code. Specifically, they establish the existence a certain short
interval [d, d′] near the minimum distance d, wherein there is a k such that

|V ∩ Lk| ≥ (
|V ||Lk|

2n
)1−o(1).

This, naturally, draws one’s attention to the behavior of a linear code near the code’s minimal
distance. In [9] the following surprising possibility is raised:

Conjecture 3.1: For every linear code V of length n and minimal distance d, the cardinality
|V ∩ Ld| is subexponential in n. In other words, for every ǫ there is N = N(ǫ) such that if V is
a code of length n > N and minimal distance d, then |V ∩ Ld| ≤ (1 + ǫ)n.

Codes are known [1] in which there are 2Θ(
√

n) vectors of the smallest weight. This is currently
the best known lower bound.

In this section we prove a weaker version of the conjecture. In particular, we show that if V
has an exponential size, then |V ∩ Ld| is exponentially smaller than V .
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Remark 3.2: The coding theoretic estimate in theorem 2.4 implies that a very large code has a
small minimal distance. In particular, in large enough codes V , already the size of the whole level
|Ld| is exponentially smaller than |V |, making the statement obvious. (This reasoning holds for
every code, whether linear or not.) Calculations with the estimate given in the theorem imply
the validity of a weak version of the Conjecture 3.1 for all codes (linear or nonlinear) of size
|V | ≥ 20.60...·n. Indeed, the theorem provides a bound on V ’s rate:

R(V ) ≤ µ(δ) + o(1),

where δ = d
n

and µ(x) = H(1
2
−
√

x(1 − x)). Denote φ(x) = 1
2
−
√

x(1 − x). Note that H(y)

strictly increases from zero to one throughout the interval y ∈ [0, 1
2
], and so is invertible on this

interval. The function φ(y) strictly decreases from 1
2

to zero on y ∈ [0, 1
2
], and φ(φ(y)) = y.

Using these facts, and ignoring asymptotically vanishing factors, we conclude:

d ≤ nφ(H−1(R)) = n
(

1

2
−
√

H−1(R)(1 − H−1(R))
)

.

However (Lemma 2.6), |Ld| =
(

n
d

)
= 2n(H(δ)+o(1)). So if R satisfies:

R > H
(

1

2
−
√

H−1(R)(1 − H−1(R))
)

,

then |Ld∩V | (in fact even all of |Ld|) is exponentially smaller than |V |. As R increases from zero
to one, the right term decreases from one to zero; so there is a critical R0 where equality holds.
By applying H−1, it follows that x0 = H−1(R0) ∈ (0, 1/2) satisfies x0 = φ(x0), i.e. x0 = 2−

√
2

4
,

so R0 = H(x0) = 0.60 . . ..
Better still, rather than use 2.4, we can resort to estimates in [15] on the largest possible size

of constant weight codes. Refer to Proposition 2.8 and define r(δ) = H((1 −
√

1 − x)/2), where
x = 2δ(1 − δ) − 2δ

√
2δ − 3δ2. The following are easy to check: r ≥ 0, r(0) = r(1/2) = 0, the

maximum of r(δ) for 0 ≤ δ ≤ 1/2 is obtained in δ0 = 1
6
, and r(1

6
) = H(3−2

√
2

6
) = x1 = 0.189 . . ..

Therefore, a code V with rate above x1, is exponentially bigger than V ’s lowest level. On the
other hand, when the rate is positive but ≤ x1, we cannot preclude the possibility of a code that
is included in the k-th level Lk for k around n/6, where all distances are ≥ k.

3.1 A geometric perspective

Almost all work done so far on extremal asymptotic problems in coding theory has taken place
within the framework of linear programming. This approach views the distance distribution of
C, a code of length n, as an n + 1-dimensional vector. The convex hull of all such vectors, as C
ranges over all codes of length n is a polytope Pn. The extremal problem is then tantamount
to optimizing a linear function over the polytope Pn, i.e., a the solution of a linear program.
A successful completion of this plan of research would resolve essentially all extremal asymp-
totic problems about codes. At this writing, however, neither part of this research program is
completed, and we do not even have a complete list of the facets (defining inequalities) of Pn.
What we do know is the system of linear inequalities found by Delsarte [3]. This system of

7



inequalities defines a polytope Dn that properly contains Pn. One obvious question, then, is to
find closer approximations (more facets) of Pn. Furthermore, even the current solutions for the
relevant optimization problems on Dn are not known to be optimal. The best results so far in
this direction were found in [15], but their optimality is still in question (see [12] and [19] for
more on this.) Similarly to Pn we also define Ln, the convex hull of the characteristic vectors of
all length n linear codes. We know that Dn ⊃ Pn ⊃ Ln and the inclusions are proper. We still
seem far from a complete description of the latter two polytopes.

In view of these remarks, it is natural to ask whether the analogue of Kalai and Linial’s problem
holds on Delsarte’s polytope Dn. The answer is negative. Here is a simple counterexample: Select
an even d proportionate with n, and set f(d) = 2rn. Also set f(0) = 1, and f(i) = 0 for all
i 6= 0, d. It is easy to check that f ∈ Dn for any sufficiently small constant r.

These observations suggest, then, an alternative interpretation of results in this paper. The-
orem 3.3 expresses a linear inequality on the distribution of values in linear codes, and by the
above mentioned example, these linear inequalities hold in Ln but not in Dn. A closer look at
the proof of Theorem 3.3 shows that it yields, in fact, a whole class of inequalities (for weights
near the minimum) which define a proper subpolytope of Dn. It is an interesting possibility to
try and improve the bounds in [15] by working in this new smaller polytope, but we have not
done this yet. Our impression is that an improvement over [15] will require a more far-reaching
reduction of Dn. As observed in [9] the original Kalai-Linial conjecture, and even weaker versions
will certainly suffice.

3.2 Proofs

We turn to prove one of the main results of this paper:

Theorem 3.3: Let V be an rn-dimensional linear subspace of Zn
2 in which the minimal weight

of a non-zero vector is d. Then, for r = Ω
(

log n√
n

)
, the fraction of vectors in V whose weight is d

does not exceed 2−Ω( r2n
log(1/r)+1

).

Lemma 1.1 suggests a translation into the language of character sums:

Theorem 3.4: Let f be a function on the m-dimensional cube Zm
2 , which is a sum of n = m

r
> m

characters, f =
∑n

i=1 Wui
and where {ui}n

i=1 span Zm
2 . Let M(f) be the second largest value of

f , M(f) = maxS 6=0f(S). Then,

Pr(f = M(f)) ≤ 2−Ω( rm
log(1/r)+1

)

Proof: First we need several simple facts 2.

Lemma 3.5: Let B : Zm
2 → Zm

2 be a non-singular linear transformation, and let f be a real
function on Zm

2 . Define another real function fB on Zm
2 via fB(S) = f(B(S)). Then the Fourier

Transforms of f and fB are related thus: f̂B = f̂(B−1)T . In particular, the functions f̂ and f̂B

have the same distribution of values.

2It is convenient for us to state them in the language of character sums. Note, however, that they easily
translate back to statements about linear codes. For instance, corollary 3.6 just says that switching to another
basis of a code preserves the code, and therefore its weight distribution.
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In terms of character sums, this lemma reads:

Corollary 3.6: Let B : Zm
2 → Zm

2 be a non-singular linear transformation. Then f =
∑

Wui

and fB =
∑

WBui
have the same distribution.

The next lemma covers a special case which is very simple to analyze and crucial for our
results.

Lemma 3.7: If the vectors {xi|i ∈ I} are linearly independent, then the values of the function∑
i∈I Wxi

are binomially distributed.

Proof: By the above corollary, the distribution of
∑

i∈I Wxi
is the same as in the case where xi

is the i-th unit vector, which is clearly binomial.
We turn to the proof of Theorem 3.3:

Proof: The plan of this proof is as follows: Denote U = {ui|1 ≤ i ≤ n}. Consider a process at
each step of which we find a set of m/2 linearly independent column vectors in U and remove
them from U . This process can go on as long as the rank of the remaining matrix does not fall
below m/2. Say that t such sets Bj are extracted and the set of remaining columns is N . Thus,
a decomposition is obtained: U = ∪t

1Bj ∪N , where each Bj is a linearly independent sequence of
length m/2, and k = rank(N ) < m/2. Consider a change of basis (achieved by multiplying A on
the left by T , a nonsingular matrix) following which we may assume that span(N ) is a subspace
of Zm

2 that is contained in the span of the last k < m/2 unit vectors em−k+1, . . . , em. This change
of basis clearly does not affect the linear independence of the vectors in Bj . At this stage, we
should introduce names for the rows and columns of TA, the matrix whose rows are the new
basis vectors of V . For simplicity’s sake, we keep calling TA’s rows v1, . . . , vm and the columns
u1, . . . , un. It is not hard to see that this is only a notational convention and that nothing is lost
by these assumptions. Moreover, we are allowed to assume also that Bj consists of the columns
u (j−1)m

2
+1

, . . . , u jm
2

and that N = {u tm
2

+1, . . . , un}. These assumptions imply that in each of the

rows v1, . . . , vm/2 the last n − 1/2mt coordinates vanish. This allows us to view v1, . . . , vm/2 as

vectors in Z
mt
2

2 and apply the bound from Theorem 2.5 (in mt
2

dimensions) to their linear span
V1.

B1 . . . Bt N

v1
...

vm/2
...

vm




. . . 0
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With the notation of 2.7, if d is the minimal weight of a non-zero vector in V1, then:

|V1| = 2m/2 ≤ 2
mt
2
·
[
H

(
1
2
−
√

2d
mt

(1− 2d
mt

)

)
+O( log(mt)

mt )
]

Consequently,

1 ≤ t ·


H



1

2
−
√

2d

mt
(1 − 2d

mt
)



+ O

(
log(mt)

mt

)



Recall that r = Ω
(

log n√
n

)
. Therefore m = rn = Ω (

√
n log n), implying log(mt)

m
= o(1). Assuming

n is sufficiently large, we get:

1

2
≤ t · H



1

2
−
√

2d

mt
(1 − 2d

mt
)





As in our discussion in remark 3.2, the properties of φ(x) = 1
2
−
√

x(1 − x) imply:

d ≤ d0 =
1

2
mtφ

(
H−1

(
1

2t

))
=

1

2
mt



 1

2
−
√

H−1

(
1

2t

)(
1 − H−1

(
1

2t

)) 



We have thus established an upper bound on the minimal weight in V1 and therefore in all of
V . The idea now is that by an averaging argument, every codeword of small weight, must have
a small weight within some of the “windows” Bj . It is not hard to show that such an event has
low probability, since by Lemma 3.7 the weights within such window are binomially distributed.
Specifically, let us denote

fj =
∑

T∈Bj

WT

Using the functional notation of theorem 3.4 we deduce from the above that f ≥ M(f) implies

t∑

j=1

fj ≥
1

2
mt − 2d0 = mt ·

√

H−1

(
1

2t

)(
1 − H−1

(
1

2t

))

and thus there exists an index 1 ≤ j ≤ t such that

fj ≥ m ·
√

H−1

(
1

2t

)(
1 − H−1

(
1

2t

))
≥ m ·

√
H−1(r)(1 − H−1(r)).

The latter inequality holds, since the middle term decreases with t, whence we may assume that
1
2
mt = n, i.e., t = 2n

m
= 2

r
. Therefore:

Pr(f ≥ M(f)) ≤ t · Pr
(

fj ≥ m ·
√

H−1(r)(1 − H−1(r))
)

The standard tail estimates for the binomial distribution imply:

Pr(fj ≥ θm) ≤ e−
mθ2

4 .
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An easy calculation shows:

H−1(r)(1 − H−1(r)) = Θ(
r

log 1/r + 1
).

Taking all the estimates together, we can now complete the proof of theorem 3.4:

Pr(f ≥ M(f)) ≤ n · 2−Ω( rm
log(1/r)+1

) ≤ 2
−Ω( rm

log(1/r)+1
)
.

The last inequality follows since r = Ω
(

log n√
n

)
.

3.3 Intersection of subspaces and balls

A simple consequence of the theorem is that there are no constant-weight linear codes V of
dimension rn, with r bounded away from zero and n → ∞. The analogous statement for affine
subspaces is, however, false. In Example 4.2 we will encounter an affine subspace of dimension
n/2, which is a subset of the middle level Ln/2.

Still, essentially the same argument yields the following “affine version” of Theorem 3.3:

Theorem 3.8: Let V be an rn-dimensional linear subspace of Zn
2 with minimal weight d. Then,

for any x ∈ Zn
2 , the fraction of vectors in V + x of weight d does not exceed 2−Ω( r2n

log(1/r)+1
).

Proof: (Sketch) Pick a generating matrix A for V and decompose its columns as in the above
proof: ∪t

1Bj ∪ N , where |Bj | = rn/2, rank(N ) < rn/2. We are interested in those elements of
V whose distance from x is ≤ d. Apply Theorem 2.5 to V to obtain an upper bound d0 ≥ d.
If y ∈ V is at distance ≤ d0 from x, then there is an index 1 ≤ j ≤ t, such that the section
of y within the j-th “window” is at distance ≤ d0

t
from the corresponding segment of x. As

before, the weights of codewords within Bj are binomially distributed, and the tail estimates on
the binomial distribution yield the theorem.

An alternate statement is:

Theorem 3.9: Let V be an rn-dimensional linear subspace of Zn
2 with minimal weight d. Then

the intersection of V with any Hamming ball of radius d contains at most |V | · 2
−Ω( r2n

log(1/r)+1
)

vectors. Consequently, V cannot be covered by fewer than 2Ω( r2n
log(1/r)+1

) Hamming balls of radius
d.

3.4 A matroid-theoretic detour

The girth g(M) of a matroid M = (E, ρ) is the smallest cardinality of a cycle in M . In matroid-
theoretic terms Conjecture 3.1 (or rather, its matroid dual) states: “The number of cycles of
cardinality g(M) in a binary matroid M = (E, ρ) is subexponential in the size of the ground set
E.”

While this conjecture is open for binary matroids in general, it can be established in certain
interesting instances. Consider, for example, cographic matroids - or, equivalently, subspaces V

11



of Z2
n where each column of the generating matrix A in Lemma 1.1 has weight ≤ 2. The cycles of

the cographic matroid are the edge cutsets of the corresponding graph, so the statement reads:
“The number of minimal (non-empty) edge cutsets in a graph with e edges is subexponential

in e.”
In fact, much more is true, and this number cannot even exceed

(
e+1
2

)
. Indeed, it is clearly

sufficient to prove this for connected graphs. And it is known [14], that the number of minimal

edge cutsets in a connected graph with v vertices cannot exceed
(

v
2

)
. (This bound is tight, as

demonstrated by Cv, the cycle of length v.) See also the ingenious probabilistic proof from [10].
We illustrate the methods of the present paper and prove a slightly weaker bound.

Proposition 3.10: Let G be a simple connected graph on v vertices whose edge-connectivity is
t. Then at most O(v2) cuts in G have exactly t edges.

Proof: Replace each edge of G by two parallel edges, to obtain a 2t-edge-connected multigraph
G′. A simple and well-known consequence of Matroid Union Theorem (Theorem 2.9), is that
a 2t-edge-connected multigraph contains t disjoint spanning trees, say, T1, . . . , Tt. Let fi =∑

e∈E(Ti) We, and f =
∑

e∈E We. (Here we view an edge e as an element in Zv−1
2 . Recall that

for x ∈ Zv−1
2 , the character Wx : Zv−1

2 → {−1, 1} is defined by Wx(y) = (−1)<x,y>.) The
assumption that 2t is the edge-connectivity of G′ translates into M(f) = |E(G′)| − 4t. This,
in turn, implies that when f(x) = M(f), then either fi ≥ v − 5 for any 1 ≤ i ≤ t or there is

an 1 ≤ i ≤ t for which fi ≥ v − 3. By Lemma 3.7, |{x|fi(x) = v − 2j − 1}| =
(

v−1
j

)
, (where

i = 1, . . . , t and j = 0, . . . , v − 1). The corresponding upper bounds on |{x : f(x) = M(f)}| are
attained: in the first case |{x : f(x) = M(f)}| ≤ |{x : f1(x) ≥ v − 5}| ≤ O(v2). In the second
case |{x : f(x) = M(f)}| ≤ t|{x : fi(x) ≥ v − 3}| ≤ O(tv) = O(v2).

Similarly, the statement of Conjecture 3.1 for graphic matroids is that:
“If the shortest cycle in a graph G with e edges has length g, then G has only subexponentially

many in e cycles of length g”.
Again, much more is true.

Proposition 3.11: Let G be a graph with e edges whose shortest cycle has length g, then at
most O(e2) cycles in G have length g.

Proof: Pick from every g-cycle in G two antipodal edges (at distance ⌊g
2
⌋− 1). It is not hard to

see that every such pair of edges uniquely determines the cycle to which it belongs. Therefore
the number of g-cycles is at most O(e2).

Remark 3.12: In both the graphical and cographical problems, the same proofs extend and
yield bounds on the number of near-minimal cuts/cycles.

4 The middle level

Questions concerning the weight distributions come up also outside of coding theory, graph the-
ory and matroid theory. The specific question addressed in this section arose in the field of
computational complexity. There is a well-developed theory of decision trees in which inter-
nal nodes compute boolean or algebraic functions of the input and the computation proceeds
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according to the outcomes. Much less is known when internal nodes are allowed to compute an-
alytic functions. These so-called analytic decision trees are easier to understand by considering
infinitesimally small inputs. This is the approach taken in a recent paper by Ben Or [2]. His
investigations have led him to state:

Conjecture 4.1: Let E ⊆ Zn
2 be an affine subspace of dimension λ · n, where λ > 1

2
is fixed,

and n is large. Then at most O( |E|√
n
) vectors in E have Hamming weight n/2.

As observed by Ben Or, the condition λ > 1
2

is essential, in view of the following example:

Example 4.2: Consider the following affine subspace: V = {(x1, x2...xn) ∈ Zn
2 : x1 + x2 =

1, x3 + x4 = 1, . . . , xn−1 + xn = 1}. Clearly V is an n
2
-dimensional affine subspace of Zn

2 , which
is contained in Ln

2
, the middle level.

Ben Or’s problem may be put in the context of the uncertainty principle of harmonic analysis.
Informally, this principle posits that it is impossible for both f and f̂ to have small support
(see [4, 16] for more on this). The obvious quantitative formulation would be an upper bound
on the number of zeros a real f function on Zn

2 can have, given |support(f̂)|, the cardinality
of the support of its transform. It is easy to construct examples where |support(f̂)| = 2s,
while Pr(f = 0) = 1 − 1

2s , e.g., f =
∏s

1(1 + Ri), where Ri = Wei
is the i-th Rademacher

function. These examples are tight (e.g., [16]). Also, these examples are degenerate, in that
support(f̂) fails to span Zn

2 . The large number of zeros in these examples can be accounted
to this degeneracy. Henceforth we will require that f be nondegenerate, i.e. that support(f̂)
spans Zn

2 . One nondegenerate example is f = (1 + R1)
∑n

2 Ri. Here |support(f̂)| = 2n − 2 and
Pr(f = 0) = 1

2
+Θ(n−1/2). It may be worth noting that this example is essentially the functional

counterpart of Ben Or’s example. Below (Corollary 4.6) we show that if f is nondegenerate, and
moreover f̂ takes a constant non-zero value on a basis of Zn

2 , and |support(f̂)| ≤ (3
2
− ǫ)n, then

Pr(f = 0) ≤ O(n−1/2). We do not know whether this is implied by the weaker assumption that
f̂ takes a constant non-zero value on a basis of Zn

2 , and |support(f̂)| ≤ (2 − ǫ)n, which would
be tight in view of the above example. This weaker assumption does suffice, if f̂ takes only the
values −1, 0, 1 (Corollary 4.6). Perhaps for a nondegenerate f with Pr(f = 0) = 1 − 1

2s , the

transform f̂ must have support ≥ (n−s)2s, as in the obvious extension of the above construction.
Let us mention two papers on related subjects: In [5] it is shown that a linear subspace of

dimension > n/2 must meet the middle level (here n is required to be divisible by 4.) Also,
under the additional condition that the dual distance of V is large, it is shown in [11] that for k
in a certain range around n

2
,

|V ∩ Lk| ≤ O

(√
n · |V ||Lk|

2n

)
.

The following variation on Ben Or’s example deals with subspaces of even larger dimension.
These may, in fact, be the extremal examples for the problems considered in the present section.

Example 4.3: Again n is even and t ≤ n is even as well. Let V = {(x1, x2...xn) ∈ Zn
2 :

x1 + x2 = 1, x3 + x4 = 1, . . . , xt−1 + xt = 1}. Clearly, dim(V ) = n− t
2
. Maintaining the notation
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dim(V ) = λ · n, this subspace satisfies:

|V ∩ Ln
2
| ≥ Ω

(
1√

2λ − 1

|V |√
n

)
.

We prove a statement that is stronger that Ben Or’s Conjecture 4.1:

Theorem 4.4: Let F be an affine subspace of Zn
2 with dim(F ) = λ · n, where λ > 1/2. Then

for each 0 ≤ k ≤ n:

|F ∩ Lk| ≤ O

(
1

(2λ − 1)4

|F |√
n

)
.

The bound is tight up to the constant 4 in the exponent of 2λ − 1.

Using the translation in Lemma 1.1 we obtain (with b = 1−λ
λ

):

Corollary 4.5: Let b < 1, and let g =
∑(1+b)m

i=1 Wxi
be a sum of (1 + b)m characters of Zm

2 such
that xi, 1 ≤ i ≤ (1 + b)m span Zm

2 . Then the concentration function of g satisfies:

Q1(g) ≤ O




(

1 + b

1 − b

)4
1√
m



 ,

where Q1(g) is defined as supx∈RPr (x ≤ g < x + 1).

Corollary 4.6:

1. Let Ri = Wei
be the i-th Rademacher function in Zm

2 , and let R =
∑

1≤i≤m Ri. Consider an
approximation of R by a signed sum of bm Walsh functions:

∑
1≤i≤bm ǫiWTi

, where b < 1
and ǫi ∈ {−1, 1}. For any choice of the Ti and the ǫi

Pr



R =
∑

1≤i≤bm

ǫiWTi



 ≤ O




(

1 + b

1 − b

)4
1√
m



 .

2. If, moreover, b < 1
2
, then R is hard to approximate by any linear combination of bm Walsh

functions:

Pr



R =
∑

1≤i≤bm

aiWTi



 ≤ O

(
1

(1 − 2b)4

1√
m

)

for any choice of characters, WTi
and real ai (1 ≤ i ≤ bm).

Proof:
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1. Let n = (1 + b)m, and consider the m × n zero-one matrix whose multiset of columns
x1, . . . , xn is e1, .., em, T1, .., Tbm. Let the rows be denoted z1, . . . , zm and let V ⊂ Zn

2 be
their linear span. Augment this matrix with an additional row zm+1 the first m coordinates
of which are zero. In later coordinates zm+1(i) = 0 or 1 according to ǫi = −1 or 1. Let the
augmented matrix be called A. With the notation of Lemma 1.1, let f be the characteristic
function of the (multi)set of A’s ((m+1)-dimensional) columns. By Corollary 4.5, (or rather
a slight modification thereof, where the xi may span a subspace of codimension one),

Pr(f = 0) ≤ O




(

1 + b

1 − b

)4
1√
m



 .

Note that f(x1, . . . , xm, 1) = g(x1, . . . , xm), where g = R − ∑
1≤i≤bm ǫiWTi

. Therefore
Pr(g = 0) = Pr(f = 0|xm+1 = 1) ≤ 2Pr(f = 0) and the claim follows.

2. Set h =
∑

1≤i≤bm aiWTi
, and let U be a linear subspace of Zm

2 spanned by the {Ti}. The
space Zm

2 is partitioned by the cosets of U⊥, so let the quotient space X = Zm
2 /U⊥ be

viewed as a set of distinct representatives for the cosets. Then,

Pr(R =
∑

1≤i≤bm

aiWTi
) =

1

|X|
∑

x∈X

Pr(h(y) = R(y)|y ∈ U⊥ ⊕ x).

Now h is constant on each coset of U⊥, for if y ∈ (U⊥ ⊕ x), say y = u⊥ ⊕ x, then

h(y) =
∑

1≤i≤bm

aiWTi
(y) =

∑

1≤i≤bm

ai(−1)<Ti,y> =
∑

1≤i≤bm

ai(−1)<Ti,u
⊥⊕x> =

∑

1≤i≤bm

ai(−1)<Ti,x>.

Therefore, in the relation h(y) = R(y), considered over y ∈ U⊥ ⊕ x, the term h(y) stays
constant. However, R depends only on Hamming weights, R(y) = m − 2|y|. Therefore,
Pr(h(y) = R(y)|y ∈ U⊥⊕x) cannot exceed the fraction of elements in U⊥⊕x that reside in
any single level. But U⊥ ⊕ x is a (1− b)m-dimensional affine subspace of Zm

2 and b < 1/2,
so Theorem 4.4 applies, yielding for every x ∈ X,

Pr(h(y) = R(y)|y ∈ U⊥ ⊕ x) ≤ O

(
1

(1 − 2b)4

1√
m

)
.

The claim follows.

Proof: (Of Theorem 4.4) We argue by induction on the dimension n, that for some absolute

constant c > 0 holds |F ∩ Lk| ≤ c · 1
(2λ−1)4

|F |√
n
. The theorem is true for n = 1, 2. ¿From now on

we assume that n is even. Note, that this causes no loss of generality. If the theorem is true for
all even n, it is also true for all odd n (with a constant c′ = 2c, say). To see this, embed Zn

2 in
Zn+1

2 by adding a zero last coordinate.
F is an affine subspace, say F = V ⊕ z where V is a linear subspace of Zn

2 . Pick a basis
v1, . . . , vm of V , and A be the matrix with rows v1, ..., vm. Denote the columns of A by x1, .., xn.
Let ρ be the rank function of the binary matroid defined by {x1, .., xn}.
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We distinguish between two cases:
(I) There exists Y ⊆ {x1, .., xn} with |Y | ≥ 2ρ(Y ).
(II) No such Y exists.

In the first case, the proof can be completed by induction. In the second case, by the Matroid
Union Theorem 2.9, {x1, .., xn} is the union of two linearly independent sets. In this case the
problem is solved straightforwardly.

We start with case (I). Without loss of generality Y = {xn−2t+1, .., xn} has rank ρ(Y ) = t and
the set {xn−2t+1, .., xn−t} is a linear independent spanning set of Y . By a proper change of basis,
we can further assume xi = ei−(n−t−m) for n − 2t + 1 ≤ i ≤ n − t.

x1 . . . xn−2t . . . xn−t . . . xn

v1

...
vm−t

...
vm




0 0

1
. . .

1




So, the first m − t coordinates of the vectors xi for n − 2t + 1 ≤ i ≤ n are zero. Consider the
linear subspace V1 of V spanned by v1, .., vm−t. Since the last 2t coordinates of these vectors are
zero, V1 may be viewed as a subspace of Zn−2t

2 . We apply the induction hypothesis to V1 and
its translates. To this end, let n1 = n − 2t and m1 = dim(V1) = m − t. Note that m1 = λ1n1,
where λ1 = m−t

n−2t
. We wish to estimate |F ∩ Lk| for every 0 ≤ k ≤ n. Now F = V ⊕ z, and we

can express V as the disjoint union of cosets of V1, namely:

|F ∩ Lk| = |(V ⊕ z) ∩ Lk| =
∑

w∈V/V1

|(V1 ⊕ w ⊕ z) ∩ Lk|.

All vectors in V1 ⊕ w ⊕ z have the same last 2t coordinates. Say that l of these 2t coordinates
are 1. Therefore |(V1 ⊕w⊕ z)∩Lk| = |F1 ∩Lk−l,n−2t|. Here F1 is the restriction of V1 ⊕w⊕ z to
the first n− 2t coordinates, F1 being an m1-dimensional affine subspace of Zn−2t

2 . The induction
hypothesis may be applied to yield

|F1 ∩ Lk−l,n−2t| ≤ c · 1

(2λ1 − 1)4

|F1|√
n − 2t

.

Expand
1

(2λ1 − 1)4
√

n − 2t
≤ 1

(2λ − 1)4

(n − 2t)
7
2

n4
≤ 1

(2λ − 1)4

1√
n
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to conclude that

|F1 ∩ Lk−l,n−2t| ≤ c · 1

(2λ − 1)4

|F1|√
n

.

Finally:

|F ∩ Lk| ≤ c · |V/V1|
(2λ − 1)4

|V1|√
n

≤ c · 1

(2λ − 1)4

|F |√
n

.

which completes the proof in case (I).
Case (II):
By the Matroid Union theorem, the columns of A can be divided into two linearly independent

sets. It is possible to augment one of these sets to a basis, using vectors from the other set.
Therefore, we may assume that x1 = e1, . . . , xm = em and that {xn−m+1, .., xn} are linearly
independent. Note that 2−n|F ∩Lk| is the inner product of the characteristic functions of F and
Lk. It follows:

|F ∩ Lk|
|F | =

2n

|F | < 1F , 1Lk
>=

22n

|F | < 1̂F , 1̂Lk
>

by the Parseval identity. Observe that 1̂Lk
= 1

2n Kk. To evaluate 1̂F , recall that F = V ⊕ z,

so that 1F = 2n · 1V ∗ 1{z} (convolution), whence 1̂F = 2n · 1̂V · 1̂{z}. But 1̂V = |V |
2n 1V ⊥ and

1̂{z} = 1
2n Wz, and we conclude that:

|F ∩ Lk|
|F | =< 1V ⊥Wz, Kk >≤ 1

2n

n∑

s=0

fs|Kk(s)|,

where fs = |{x ∈ V ⊥, |x| = s}|, is the number of linear dependencies of length s among the xi.
This uses the fact that Wz takes only the values −1, 1.

To facilitate the following computations, we would like to assume that there are no linear
dependencies among the {xi} that have an odd length. That is fs = 0, for every odd s. Let us
see why this assumption causes no loss of generality. If 1̄, the all-one vector is in V , then V ⊥ is
supported only on the even levels, and this assumption holds. If 1̄ 6∈ V , then we add it to V to
create V +, of dimension larger by one. In other words, we augment the matrix A with the row
1̄, to obtain the matrix A+. The partition of A’s columns into two independent sets still works
for A+. Also upper bounds on the intersection of V + with various levels, certainly apply to V .

We turn to prove an upper bound on |F∩Lk|
|F | . Since {xi} are a union of a basis and a linearly

independent set of size (1 − λ)n, it is easy to see that

fs ≤
s∑

j=0

min

{(
n − λn

j

)
,

(
λn

s − j

)}
.

Therefore,

|F ∩ Lk|
|F | ≤ 1

2n

n∑

s=0

fs|Kk(s)| ≤
1

2n−1

n
2∑

s=0

gs|Kk(s)|

where gs =
∑s

j=0 min
{(

n−λn
j

)
,
(

λn
s−j

)}
. The last step relies on the relation |Kk(s)| = |Kk(n − s)|

and the observation that fn−s ≤ gs as well as fs ≤ gs. As mentioned above, we may assume that
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fs vanishes for odd s, so

|F ∩ Lk|
|F | ≤ 1

2n−1

∑

n/2≥s≥0, even

gs|Kk(s)| ≤
1

2n−1

∑

n/2≥s≥0, even

gs|Kn
2
(s)| ≤ O




∑

n/2≥s≥0, even

gs√
n

(n
2
s
2

)

(
n
s

)




The last two inequalities are based on Corollary 2.3.
If we can show that

∑

n/2≥s≥0, even

gs

(n
2
s
2

)

(
n
s

) ≤ O

(
1

(2λ − 1)4

)
,

then this will conclude the proof of the Case (II) and the proof of the theorem. To proceed, we
need upper bounds on gs. To this end, we split gs = g(1)

s + g(2)
s , where

g(1)
s =

∑s
j> s

2
min

{(
n−λn

j

)
,
(

λn
s−j

)}
, g(2)

s =
∑ s

2
j=0 min

{(
n−λn

j

)
,
(

λn
s−j

)}
.

We start with g(1)
s . Obviously,

s∑

j> s
2

min

{(
n − λn

j

)
,

(
λn

s − j

)}
≤

s∑

j> s
2

√√√√
(
n − λn

j

)(
λn

s − j

)
.

But in the sum
∑s

j> s
2

√(
n−λn

j

)(
λn
s−j

)
the first term is clearly the largest, i.e.,

s∑

j> s
2

min

{(
n − λn

j

)
,

(
λn

s − j

)}
≤ s ·

√√√√
(
n − λn

s/2

)(
λn

s/2

)
.

Therefore,

g(1)
s

(n
2
s
2

)

(
n
s

) ≤ s

(n
2
s
2

)

(
n
s

)

√√√√
(
n − λn

s/2

)(
λn

s/2

)
= s

(n
2
s
2

)2

(
n
s

)

√√√√√√

(
n−λn
s/2

)(
λn
s/2

)

(n
2
s
2

)2 ≤ O(s · (4λ(1 − λ))s/2).

We have to justify the last inequality. Indeed,
(

n
2
s
2
)
2

(n
s)

≤ 1, and to estimate the square root we use

the following simple fact: for positive integers, x, y, a,
(

x+y
a

)(
x−y

a

)

(
x
a

)2 ≤
(

1 − y2

x2

)a

.

To convince yourself about this inequality, put together the i-th terms in the product form of the
binomials and observe that (x+y−i)(x−y−i)

(x−i)2
≤ 1 − y2

x2 for any 0 ≤ i ≤ x − y. In our case, x = n/2,

y = (λ − 1
2
)n, and a = s/2.

To estimate g(2)
s we use

g(2)
s =

s
2∑

j=0

min

{(
n − λn

j

)
,

(
λn

s − j

)}
≤

s
2∑

j=0

(
n − λn

j

)

18



There are two cases to consider, depending on the value of s. If s ≤ n − λn, then

s
2∑

j=0

(
n − λn

j

)
≤ s

(
n − λn

s
2

)

and so
g(2)

s

(n
2
s
2

)

(
n
s

) ≤ s

(n
2
s
2

)(
n−λn

s
2

)

(
n
s

) ≤ s

(
(3/2−λ)n

s

)

(
n
s

) ≤ s(
3

2
− λ)

s

.

Two easy facts used here are:
(

a1

b1

)(
a2

b2

)
≤
(

a1+a2

b1+b2

)
and the inequality

(x
a)

(y
a)

≤ (x
y
)a for 0 ≤ a ≤ y ≤ x.

In the complementary range, n − λn ≤ s ≤ n
2
, it suffices to use

s
2∑

j=0

(
n − λn

j

)
≤ 2n−λn

whence
g(2)

s

(n
2
s
2

)

(
n
s

) ≤
2n−λn

(n
2
s
2

)

(
n
s

)

Now, we sum up all the previous bounds, and show that indeed

∑

n/2≥s≥0, even

gs

(n
2
s
2

)

(
n
s

) ≤ O

(
1

(2λ − 1)4

)
.

First,

∑

n/2≥s≥0, even

g(1)
s

(n
2
s
2

)

(
n
s

) ≤
∑

s even

s(4λ(1 − λ))s/2 ≤
∑

s

s(4λ(1 − λ))s.

We use the identity
∑

s sxs = 1
(1−x)2

, with x = 4λ(1 − λ) to conclude:

∑

n/2≥s≥0, even

g(1)
s

(n
2
s
2

)

(
n
s

) ≤ O

(
1

(2λ − 1)4

)
.

Our estimates on g(2)
s imply:

∑

n/2≥s≥0, even

g(2)
s

(n
2
s
2

)

(
n
s

) ≤
∑

s

s(
3

2
− λ)

s

+ 2n−λn
∑

n/2≥s≥n−λn, even

(n
2
s
2

)

(
n
s

)

Now,
∑

s s(3
2
− λ)

s
= O( 1

(2λ−1)2
) and we are left with estimating the second sum, which we call

S.
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We have to distinguish two cases, depending on the value of λ. If λ is bounded away from 1/2,

say λ ≥ 0.6, then the sum
(

n
2
s
2
)

(n
s)

taken over even s in the range n/2 ≥ s ≥ n − λn is dominated by

the first term. To see this, use the fact that the first, say, 2λ−1
8

n terms decrease geometrically,
while later terms continue to decrease, and therefor make a negligible contribution to the sum.
That is,

∑

n/2≥s≥n−λn, even

(n
2
s
2

)

(
n
s

) ≤ O




( n
2

n−λn
2

)

(
n

n−λn

)


 .

Therefore,

S ≤ O




2n−λn
( n

2
n−λn

2

)

(
n

n−λn

)


 ≤ O(2n(1−λ− 1

2
H(1−λ)))

where we have employed Stirling’s formula to estimate the binomials. But 2n(1−λ− 1
2
H(1−λ)) is

bounded by 1, since H(x) ≥ 2x, for x ≤ 1/2.

The last range to check is 0.5 ≤ λ ≤ 0.6. Since
(

n
2
s
2
)

(n
s)

decreases as s goes from n − λn to n/2,

we can bound

S = 2n−λn ·
∑

n/2≥s≥n−λn, even

(n
2
s
2

)

(
n
s

) ≤ 2n−λn · (λ − 1/2)n ·

( n
2

n−λn
2

)

(
n

n−λn

) ≤ O((λ − 1/2)n · 2n(1−λ− 1
2
H(1−λ)))

again using Stirling. Set x = (λ−1/2)n. Then the last expression is x ·2n(( 1
2
− x

n
)− 1

2
H( 1

2
− x

n
)), where

0 ≤ x
n
≤ 0.1. The concavity of H , (Lemma 2.6) implies that H(1/2 − ǫ) ≥ 1 − 0.3 · ǫ whenever

0 ≤ ǫ ≤ 0.1. Therefore,
1

2
− x

n
− 1

2
· H(

1

2
− x

n
) ≤ −0.85 · x

n

implying S ≤ O(x · 2−0.85·x). It is easily verified that the expression x · 2−0.85·x is bounded for all
x ≥ 0. Consequently, S ≤ O(1), where the constant in the O(1) does not depend on λ. Finally,
all cases are checked, and the theorem is established.
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