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Abstract
Hypertrees are high-dimensional counterparts of graph theoretic trees. They have
attracted a great deal of attention by various investigators. Here we introduce and study
hyperpaths—a particular class of hypertrees which are high dimensional analogs of
paths in graph theory. A d-dimensional hyperpath is a d-dimensional hypertree in
which every (d − 1)-dimensional face is contained in at most (d + 1) faces of dimen-
sion d. We introduce a possibly infinite family of hyperpaths for every dimension, and
investigate its properties in greater depth for dimension d = 2.

Keywords Hypertrees · Simplicial complexes · High dimensional combinatorics ·
Matrix multiplication · Linear algebra · Finite fields

Mathematics Subject Classification 05E45 · 05A19 · 65F05

1 Introduction

Hypertrees were defined in 1983 by Kalai [7]. An n-vertex d-dimensional hypertree
X = (V , E) is a Q-acyclic d-dimensional simplicial complex with a full (d − 1)-
dimensional skeleton and

(n−1
d

)
faces of dimension d. Note that when d = 1 this

coincides with the usual notion of a tree in graph theory. Also note that a hypertree
is completely specified by its list of d-dimensional faces. There is already a sizable
literature, e.g., [11,12] dealing with hypertrees, but many basic questions in this area
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are still open. Also, in order to develop an intuition for these complexes it is desirable
to have a large supply of different constructions. Many investigations in this area are
done with an eye to the one-dimensional situation. Arguably the simplest-to-describe
(1-dimensional) trees are stars and paths. These two families of trees are also the two
extreme examples with respect to various natural graph properties and parameters
such as the tree’s diameter. Hyperstars are very easy to describe in any dimension d.
Namely, we pick a vertex v ∈ V and put a d-face σ in E iff v ∈ σ . On the other
hand, it is much less obvious how to define d-dimensional paths. A one-dimensional
path is a tree in which every vertex has degree at most 2. Working by analogy we
can define a d-dimensional hyperpath as a d-dimensional hypertree in which every
(d − 1)-dimensional face is contained in no more than (d + 1) faces of dimension d.
We include a summary of the main results presented in this paper:

1. We introduce an infinite family of d-dimensional algebraically-defined simplicial
complexes (see Definition 1.2). In dimension d = 2 we analyzed fairly large
(up to n ∼ 1400) such complexes most of which turned out to be 2-dimensional
hyperpaths. To this end we devised a new fast algorithm that determines whether a
matrix with circulant blocks is invertible.

2. Partial characterization:We showed that infinitely many of the 2-dimensional com-
plexes discussed in 1. are not Q-acyclic.

3. We develop several approaches for proving positive results and finding an infinite
family of 2-dimensional hyperpaths.

Note 1.1 The necessary background in simplicial combinatorics and in number theory
are introduced in Sect. 2.

Definition 1.2 Let Fn be the field of prime order n. For c ∈ Fn and d ≥ 1 an integer,
we define the complex X = Xd,n,c on vertex set Fn . It has a full (d − 1)-dimensional
skeleton, and {x0, x1, . . . , xd} is a d-face in X iff cxd + ∑d−1

j=0 x j ≡ 0 mod n.1

Ours is by nomeans the only sensible definition of a hyperpath.An alternative approach
is described in [13]. That paper starts from the observation that a (1-dimensional) path
is characterized as a tree that can be made a spanning cycle by adding a single edge.
In this view they define a Hamiltonian d-cycle as a simple d-cycle of size

(n−1
d

)+1. A
Hamiltonian d-dimensional hyperpath is defined as a d-dimensional hypertree which
can be made a Hamiltonian d-cycle by adding a single d-face. Other possibilities
suggest themselves. For example, when an edge is added to a tree a single cycle is
created. One may wonder how the length of this cycle is distributed when the added
edge is chosen randomly.Apath is characterized as the tree forwhich the average of this
length is maximized. Similar notions clearly make sense also for d > 1. These various
definitions coincide when d = 1 but disagree for d > 1. It would be interesting to
understand the relations between these different definitions. Note that sum complexes
[9] as well as certain hypertrees from [12] are hyperpaths according to our definition.

1 Throughout this paper, unless stated otherwise, given a prime n, all arithmetic equations are mod n, and
we often replace the congruence relation ≡ by an equality sign when no confusion is possible.
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Running Example

We repeatedly return throughout the paper to the example corresponding to d = 2,
n = 13, c = 5. Some of the 2-faces in X2,13,5 are {0, 1, 5}, {2, 3, 12}, {2, 9, 3} since
0 + 1 + 5 · 5 = 2 + 3 + 5 · 12 = 2 + 9 + 5 · 3 = 0. As the next claim shows the
number of 2-faces in X2,13,5 is

(12
2

) = 66 (out of the total of
(13
3

) = 286 2-faces).

Given the vertex set {x0, x1, . . . , xd} of a d-face as in Definition 1.2, and if c �= 1,
the coordinate that is multiplied by c is uniquely defined. For if cxd + ∑d−1

j=0 x j =
cx0 + ∑d

j=1 x j = 0, then (c − 1) · xd = (c − 1) · x0. This is impossible, since we are
assuming that all xi are distinct, and c �= 1.

Claim 1.3 For an integer d ≥ 1, a prime n and c ∈ Fn, if c �= −d, 1 then X = Xd,n,c

has exactly
(n−1

d

)
d-faces. If c = 1 then X = Xd,n,1 has exactly

(n−1
d

)
/(d +1) d-faces.

Proof By induction on d. Let us start with d = 1. If c �= 0, then for every x �= 0,
there is a unique y �= 0 s.t. x + c · y = 0. Also, x �= y, since by assumption c �= −1
(= −d). This yields

(n−1
1

) = n − 1 edges, unless c = 1 in which case every edge is

counted twice with a total of
(n−1

1

)
/2 different edges. When c = 0, the complex has

n − 1 edges, namely, {0, y} for all y �= 0. We proceed to deal with d > 1,

• If c = 0, then {x0, . . . , xd−1, y} is a d-face iff
∑i=d−2

i=0 xi + 1 · xd−1 = 0. By the
induction hypothesis with c = 1 and dimension d − 1 there are exactly

(n−1
d−1

)
/d

such different choices of {x0, . . . , xd−1}. For every such choice of {x0, . . . , xd−1}
there are n − d choices for y, namely, any value not in {x0, . . . , xd−1}, yielding a
total of

1

d

(
n − 1

d − 1

)
· (n − d) =

(
n − 1

d

)

distinct d-faces.
• If c �= 0, for each of the

(n
d

)
(d − 1)-faces {x0, . . . , xd−1} there is a unique y

satisfying
∑d−1

i=0 xi + c · y = 0. This gives a d-face, unless y ∈ {x0, . . . , xd−1}.
By reordering the xi if necessary y = xd−1, which yields

d−2∑

i=0

xi + (c + 1) · xd−1 = 0.

Since c �= 0,−d, we know that c + 1 �= 1,−(d − 1) and we can apply the
induction hypothesis for dimension d − 1 to obtain

(n−1
d−1

)
such different choices

of {x0, . . . , xd−1}. All told there are
(

n

d

)
−

(
n − 1

d − 1

)
=

(
n − 1

d

)

distinct d-faces in Xd,n,c. If c = 1, y has no special role and we over-count by a
multiple of d + 1, hence we get only

(n−1
d

)
/(d + 1) distinct d-faces. ��
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Henceforth to simplify matters we assume c /∈ {0, 1,−d,−1}. In the 1-dimensional
case the resulting graph G = (V , E) has V = Fn and E = {{x,−x/c} | x �= 0}.
Consequently G is the union of (n − 1)/o(−c−1) circles of length o(−c−1). We will
later see that o(c) plays a crucial rule in determining whether X2,n,c is a hypertree.

We note that if X = Xd,n,c is a hypertree, then it is a hyperpath, since every (d −1)-
face σ in X is contained in at most d +1 of its d-faces. Indeed, let y /∈ σ be the vertex
that is added to σ to form a d-face. Then either

∑d−1
i=0 xi +c · y = 0 or there is an index

d − 1 ≥ j ≥ 0 such that cx j + ∑
i �= j xi + y = 0. Let us illustrate this observation

with our running example:

Running Example

The edge {1, 5} in the complex X2,13,5 is included in the faces {5, 1, 4}, {0, 1, 5} and
{5, 3, 1} with the convention that the last vertex is multiplied by c = 5. In contrast
{1, 4} is included in only two faces, namely {1, 4, 12} and {5, 1, 4}. The equality
4 + 4 + 5 · 1 = 0 yields the non-face {4, 4, 1}.

Since we focus mostly on the 2-dimensional case d = 2, we use the shorthand
X = X2,n,c. The boundary operator of X is given by an

(n
2

) × (n−1
2

)
matrix which we

denote by A = An,c. Clearly X is a hyperpath iff A has a full column rank, and indeed
our main technical question is:

n (primes)

c

Fig. 1 Data on X = X2,n,c for all primes 11 ≤ n ≤ 59. A yellow entry means that X is a hypertree. White
entries show the (positive) co-dimension of the column space of A = An,c . Red indicates an illegal c, i.e.,
c ≡ −2 or c ≥ n
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Question 1.4 For which primes n and c ∈ Fn is X = X2,n,c a hypertree?

Figure 1 shows the answer for Question 1.4 for all primes 11 ≤ n ≤ 59 and each
appropriate c. Figure 3 shows the fraction of eligible c for which X = X2,n,c is a
hypertree for all primes 11 ≤ n ≤ 1373.

The paper is structured as follows: in Sect. 2 we discuss some preliminary facts and
outline the necessary background in number theory and simplicial combinatorics. It
turns out that the problem whether the complex X is acyclic reduces to the question
whether a certain matrix with a special structure is invertible. We study this special
structure in Sect. 3, explain the reduction and give a new fast algorithm that determines
if a matrix of this kind is invertible. In Sect. 4 we further investigate this reduction.
This allows us to exhibit in Sect. 5 an infinite family of non-acyclic 2-dimensional
complexes. We conjecture that in our construction, a certain simple criterion asymp-
totically determines if a complex is acyclic or not. Section 6 is devoted to another
approach in search of an infinite family of 2-dimensional hyperpaths.

2 Preliminaries

Many matrices are defined throughout this paper. They are marked throughout by
hyperlinks that can return the reader to their definitions.

2.1 Some Relevant Number Theory

For a prime n, we denote by Fn = {0, 1, . . . , n−1} the field with n elements. Addition
and multiplication are done mod n. The multiplicative group of Fn is comprised of
the set F∗

n = {1, . . . , n − 1}. It is a cyclic group isomorphic to Z/(n − 1)Z. The order,
o(x) of x ∈ F∗

n is the smallest positive integer r s.t. xr = 1. The following easy lemma
gives the orders of x’s powers:

Lemma 2.1 If n is prime and x ∈ F∗
n, then for every integer j

o(x j ) = o(x)

gcd( j, o(x))
.

Recall Euler’s totient function ϕ. Namely, ϕ(t) is the number of integers in {1, . . . ,
t − 1} that are co-prime with t . It is also the order of the multiplicative group mod t .

Clearly x is a generator of F∗
n iff o(x) = |F∗

n| = n − 1. By the above comments,
F∗

n has exactly ϕ(n − 1) generators. We write logarithms w.r.t. some fixed generator
λ of F∗

n . That is, logλ u = log u is the unique k ∈ {0, . . . , n − 2} for which λk = u.

2.2 Background on Simplicial Combinatorics

We follow the setup in [10, Chapter 2]. All simplicial complexes considered here have
vertex set V = {0, . . . , n −1} = Fn . A simplicial complex X is a collection of subsets
of V that is closed under taking subsets. Namely, if σ ∈ X and τ ⊆ σ , then τ ∈ X
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as well. Members of X are called faces or simplices. The dimension of the simplex
σ ∈ X is defined as |σ | − 1. A d-dimensional simplex is also called a d-simplex or
a d-face for short. The dimension dim(X) is defined as max dim(σ ) over all faces
σ ∈ X . The size |X | of a d-complex X is the number of its d-faces.

The collection of the faces of dimension ≤ t of X , where t < d, is called the
t-skeleton of X . We say that a d-complex X has a full skeleton if its (d − 1)-skeleton
contains all the faces of dimensions at most d − 1 spanned by its vertex set. The
permutations on the vertices of a face σ are split in two orientations of σ , according
to the permutation’s sign. The boundary operator ∂d maps an oriented d-simplex
σ = (v0, . . . , vd) to the formal sum

∂d(σ ) =
d∑

i=0

(−1)i (σ \ vi ),

where σ \ vi = (v0, . . . , vi−1, vi+1, . . . , vd) is an oriented (d − 1)-simplex.
We linearly extend the boundary operator to freeQ-sums of simplices. We consider

the
(n

d

) × ( n
d+1

)
matrix form of ∂d by choosing arbitrary orientations for (d − 1)-

simplices and d-simplices. Note that changing the orientation of a d-simplex (resp.
(d − 1)-simplex results in multiplying the corresponding column (resp. row) by −1.
Thus the d-boundary of a weighted sum of d-simplices, viewed as a vector z (of
weights) of dimension

( n
d+1

)
, is just the matrix-vector product ∂d z.

A simple observation shows that the matrix ∂d has rank
(n−1

d

)
. We denote by A the

submatrix of ∂d restricted to the columns associatedwith d-faces of a d-complex X .We
define rank(X) to be rank(A). The rational d-homology of X , denoted by Hd(X;Q),
is the right kernel of the matrix A. Elements of Hd(X;Q) are called d-cycles. A d-
hypertree X over Q is a d-complex of size

(n−1
d

)
with a trivial rational d-dimensional

homology. This means that the columns of the matrix A form a basis for the column
space of ∂d .

3 Matrices with Circulant Blocks (MCB)

We remind the reader that An,c denote the submatrix of thematrix formof the boundary
operator ∂2 restricted to the columns associated with the 2-faces of X2,n,c. It turns out
that An,c is closely related to a block matrix whose blocks are circulant matrices. So,
we start our work on Question 1.4 by deriving a structure theorem for such matrices.
This is what we do in the present section.

Recall that a circulant matrix C ∈ Mr (Q) has the following form:

C =

⎛

⎜⎜
⎜
⎝

c0 cr−1 c1
c1 c0 c2

. . .
. . .

cr−1 c1 c0

⎞

⎟⎟
⎟
⎠

.
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Equivalently,

C = g(P) = c0 · I + c1 · P + c2 · P2 + · · · + cr−1 · Pr−1, (3.1)

where P ∈ Mr (Q) is the cyclic permutation matrix

P =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 0 1
1 0 0
0 1

. . . 0
0 0 1 0

⎞

⎟⎟⎟⎟⎟
⎠

. (3.2)

Given positive integers r , t , we denote by MCBr ,t (Q) (for Matrices with Circulant
Blocks) the set of all matrices of the form

E =

⎛

⎜
⎜⎜
⎝

C0,0 C0,1 C0,t−1
C1,0 C1,1

...

Ct−1,0 Ct−1,t−1

⎞

⎟
⎟⎟
⎠

, (3.3)

where each Ci, j ∈ Mr (Q) is a circulant matrix. When Q is omitted, the matrices
are over C. This is not to be confused with the well-studied class of Circulant Block
Matrices (CBM) [4]. Such a matrix is circulant as a block matrix, but its blocks need
not be circulants. We can clearly express E as follows:

E(P) =

⎛

⎜⎜⎜
⎝

g0,0(P) g0,1(P) g0,t−1(P)

g1,0(P) g1,1(P)
...

gt−1,0(P) gt−1,t−1(P)

⎞

⎟⎟⎟
⎠

, (3.4)

where gi, j are polynomials of degree less than r as in (3.1). Since Pr = 1, we can
view gi, j (P) as elements of the quotient polynomial ring

R := Q[P]/(Pr − 1). (3.5)

Likewise, we think of E(P) as a member in the matrix ring Mt (R). Associated with
every z ∈ C is a scalar t × t complex matrix E(z), viz.,

E(z) =

⎛

⎜⎜⎜
⎝

g0,0(z) g0,1(z) g0,t−1(z)
g1,0(z) g1,1(z)

...

gt−1,0(z) gt−1,t−1(z)

⎞

⎟⎟⎟
⎠

. (3.6)
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Theorem 3.1 A matrix E ∈ MCBr ,t (Q) is singular iff E(ωk) is singular for some
k | r . Here ωk = exp(2π i/k) is the primitive k-th root of unity.

Proof The proof of Theorem 3.1 uses the next claim:

Claim 3.2 Every E ∈ MCBr ,t is similar to a block diagonal matrix with t × t blocks
of the form

X · E · X−1 =

⎛

⎜⎜⎜
⎝

E(ωr
r ) 0 0

0 E(ωr−1
r ) 0

. . .

0 0 E(ω1
r )

⎞

⎟⎟⎟
⎠

for some invertible matrix X.

Proof of the claim We recall the order-r Discrete Fourier Transfrom (DFT) Matrix Fr

whose entries are Fr [k, l] = exp(−2π ikl/r) = ω−kl
r , where ωr = exp(2π i/r) is a

primitive r -th root of unity. It diagonalizes r × r circulant matrices as follows by the
next known lemma:

Lemma 3.3 Let Fr be the order-r DFT matrix. If C is an r × r circulant matrix, then

Fr · C · F−1
r = 	,

where 	 is the diagonal matrix whose entries are C’s eigenvalues,

λ j = c0 + cr−1ω
j
r + cr−2ω

2 j
r + · · · + c1ω

(r−1) j
r for 0 ≤ j ≤ r − 1.

Here (c0, c1, . . . , cr−1) is C’s first column.

Proof v j = (1, ω j
r , ω

2 j
r , . . . , ω

(r−1) j
r ) is an eigenvector of C with corresponding

eigenvalue λ j as

(C · v j )[i] = ci + ci−1ω
j
r + ci−2ω

2 j
r + · · · + c0ω

i j
r + cr−1ω

(i+1) j
r + · · · + ci+1ω

(r−1) j
r

= (c0 + cr−1ω
j
r + cr−2ω

2 j
r + · · · + c1ω

(r−1) j
r ) · ω

i j
r = λ jω

i j
r .

The claim follows since F−1
r = F∗

r /r . ��
SetL as a block diagonal matrix withFr on the diagonal. Since E ∈ MCBr ,t , Lemma
3.3 yields

L · E · L−1 =

⎛

⎜⎜
⎜
⎝

	0,0 	0,1 	0,t−1
	1,0 	1,1

...

	t−1,0 	t−1,t−1

⎞

⎟⎟
⎟
⎠

,
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where 	k,l = diag (Fr · ck,l) is a diagonal r × r matrix. Here ck,l is the first column
vector of the circulant matrix Ck,l .

This matrix has r t rows and columns which we enumerate from 0 to r t − 1. It is
made up of r × r blocks, with t of them at every layer. This suggests that indices in
this matrix be written as αr + β for some t > α ≥ 0 and r > β ≥ 0, which we
interpret as index β within block number α. We rearrange the matrix to be made up
of t × t blocks, with r of them at every layer, with indices in the form γ t + δ where
r > γ ≥ 0 and t > δ ≥ 0. Thus the mapping

ϕ : αr + β �→ βt + α (3.7)

is a permutation which we apply to the rows and columns of L · E · L−1. Since all
blocks in L · E ·L−1 are diagonal, the entry in position (αr + β, α′r + β ′) is nonzero
only if β = β ′. Following the application of ϕ, the matrix becomes an r × r diagonal
matrix of t × t blocks,

Q · L · E · L−1 · Q−1 =

⎛

⎜
⎜⎜
⎝

�0 0 0
0 �1 0

. . .

0 0 �r−1

⎞

⎟
⎟⎟
⎠

,

where Q is the permutation matrix of ϕ. The matrix thus becomes an r × r block
matrix, with block size t × t , and

�i [k, l] = 	k,l [i, i]

since the mapping (3.7) sends

row number k · r + i �→ row number i · r + k,

column number l · r + i �→ column number i · r + l.

To complete the proof of Claim 3.2, setting X = Q · L, it only remains to show that
�i = E(ω−i

r ):

�i [k, l] = 	k,l [i, i] = (Fr · ck,l)[i] =
r−1∑

j=0

Fr [i, j]ck,l [ j]

=
r−1∑

j=0

ck,l [ j] · ω
−i j
r =

r−1∑

j=0

ck,l [ j] · (ω−i
r ) j = gk,l(ω

−i
r ). ��

Claim 3.2 yields one part of Theorem 3.1. Namely, that if E(ωk) is singular for
some E ∈ MCBr ,t and some k | r , then E is singular. In order to prove the other
direction of Theorem 3.1, we need the following two lemmas. Recall from (3.5) that
for a matrix E in MCBr ,t , E(P) is a polynomial matrix in Mt (R) over the quotient
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polynomial ring R. Its determinant det(E(P)) is a polynomial in R, and we denote
by det(E(P))(z) the evaluation of this polynomial at the complex number z ∈ C.

Lemma 3.4 det(E(P))(ω
j
r ) = det(E(ω

j
r )) for every E ∈ MCBr ,t .

Proof

det(E(P))(ω
j
r ) =

⎛

⎝
∑

σ∈St

(
t∏

i=0

gi,σ (i)(P)

)⎞

⎠ (ω
j
r )

=
∑

σ∈St

(
t∏

i=0

gi,σ (i)(P)

)

(ω
j
r )

(a)=
∑

σ∈St

t∏

i=0

gi,σ (i)(P)(ω
j
r )

=
∑

σ∈St

t∏

i=0

gi,σ (i)(ω
j
r ) = det(E(ω

j
r )).

Equality (a) holds, because Pr = (ω
j
r )r = 1. ��

The next lemma appears without proof in [16]. We provide a proof, since we could
not find it in the literature:

Lemma 3.5 The non-singular matrices in MCBr ,t form a group w.r.t. matrix multipli-
cation.

Proof Clearly MCBr ,t is closed under product, since the product of two circulant
matrices is circulant, and matrix multiplication respects block product. We only need
to show closure under inverse for invertible matrices in MCBr ,t .

As mentioned above, Mt (R) and MCBr ,t are in one-to-one correspondence. An
inverse of E(P) as in (3.4) in Mt (R) is an inverse under this bijection of E in MCBr ,t ,
so it remains to prove that if E is invertible, then E(P) has an inverse in Mt (R).

The determinant of a matrix over a commutative ring is defined as usual as the
alternating sum of products over permutations. Such a matrix has an inverse iff its
determinant is invertible, as an element of the underlying ring. The proof of this fact
(see, e.g., [14, §1.D]) goes by establishing the Cauchy–Binet formula for matrices
over commutative rings. We apply this to the commutative polynomial ring R, and
conclude that E(P) has an inverse in Mt (R) iff its determinant (which is also a
polynomial inR) is invertible.

To prove the lemma, let E ∈ MCBr ,t be invertible. Recall the definitions of E(P)

in (3.4) and E(ω
j
r ) in (3.6). By Claim 3.2 and since E is invertible, for all j we obtain

det(E(ω
j
r )) �= 0.

Using Lemma 3.4 this translates into

det(E(P))(ω
j
r ) �= 0
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for all j , thus det(E(P)) and Pr − 1 do not share any root and

gcd (det(E(P)), Pr − 1) = 1,

so the determinant is invertible, finishing the proof of the lemma. ��
With Lemmas 3.4 and 3.5 we can complete the proof of Theorem 3.1. Let E ∈

MCBr ,t (Q) be singular. By Lemma 3.5, E has no inverse in MCBr ,t (Q), implying
that E(P) has no inverse in Mt (R). Consequently, det(E(P)) is not invertible and
thus det(E(P)) and Pr − 1 have a non-trivial common divisor. But

Pr − 1 =
∏

k|r
�k(P)

where

�k(P) =
∏

1≤l≤k
gcd(l,k)=1

(P − ωl
k)

is the k-th cyclotomic polynomial. It is a well-known fact that�k is irreducible overQ
(e.g., [5]). Therefore, det(E(P)) and Pr − 1 have a non-trivial common divisor iff
one of the cyclotomic polynomials divides the determinant, i.e., there exists a divisor
k | r s.t.

�k(P) | det(E(P)).

Since �k(ωk) = 0, there exists a divisor k of r s.t. det(E(P))(ωk) = 0. By Lemma
3.4 this implies

det(E(ωk)) = 0,

completing the proof of Theorem 3.1. ��

3.1 Computational Aspects of MCB

Theorem 3.1 has interesting computational aspects. In order to present them, we need
some preparations. We recall that d(m) denotes the number of distinct divisors of the
integer m, and that for every ε > 0, d(m) = O(mε). More precisely (see [6]),

lim sup
m→∞

log d(m)

logm/log logm
= log 2.

Note 3.6 It is a classical fact (e.g., [15]) thatmatrixmultiplication andmatrix inversion
have essentially the same computational complexity. It is, however, still unknown if
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these problems are also equivalent to the decision problem whether a given matrix is
invertible (e.g., [2, pp. 35–36]).

The smallest exponent for matrix multiplication is commonly denoted by ω. This is
the least real number such that two n × n matrices can be multiplied using O(nω+ε)

arithmetic operations for every ε > 0. Presently the best known bounds [8] are 2 ≤
ω ≤ 2.373.

Proposition 3.7 For every ε > 0, it is possible to determine in time

O (r1+ε · t2 + r ε · tω)

whether a matrix in MCBr ,t (Q) is invertible.

Note 3.8 It follows that when r → ∞, it is easier to decide the invertibility of matrices
in MCBr ,t (Q) than general r t × r t matrices, because

(r t)ω � r1+ε · t2 + r ε · tω.

An algorithm that decides invertibility for matrices in MCBr ,t (Q) clearly needs the
matrix to be fully specified, yielding a lower bound of �(r · t2).

Proof of Proposition 3.7 The proof of Theorem 3.1 yields an algorithm to decide if
E ∈ MCBr ,t (Q) is invertible:

1. Produce the matrix E(P) as in (3.4).
2. For each divisor k of r :

a. Calculate the matrix E(ωk) as in (3.6) by evaluating the polynomial matrix
E(P) with ωk = exp(2π i/k).

b. Determine if the t × t matrix E(ωk) is invertible. If it is singular, return ‘E is
singular’.

3. If E(ωk) has full rank for every divisor k | r , return ‘E is invertible’.

A circulant block is clearly completely defined by its first row. Therefore the matrix
E(P) can be found in time O (r · t2). To find all the divisors of r we can even
factor r using Erastothenes’ sieve with no harm to the complexity. Step 2 is repeated
d(r) = ro(1) times. Horner’s Rule allows to evaluate a degree r polynomial with r
additions and r multiplications, so step 2a takes time O (r · t2). The running time of
step 2b is at most O(tω). All told the combined running time is

O (r · t2 + r + d(r) · (r · t2 + tω)) = O (r1+ε · t2 + r ε · tω)

for every ε > 0. ��
In step 2 we need to check whether E(ωk) is invertible for different k. These calcu-
lations can clearly be done in parallel. In [17] an iterative algorithm is presented to
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invert a matrix in MCBr ,t , with run time

{
O (23l · r + t2 · r2) r is not a power of 2,

O (23l · r + t2 · r log r) r is a power of 2,
(3.8)

where l := �log2 t�. If we only need to decide whether the matrix is invertible, then
the algorithm in Proposition 3.7 is faster. We still do not know whether Theorem 3.1
yields an algorithm to invert a matrix in MCBr ,t (Q) that is faster then the algorithm
from [17].

3.2 From A to MCB

It turns out that there is a rank-preserving transformation of the boundary operator
A = An,c as defined in Sect. 2.2 into a matrix in MCBn−1,(n−3)/2 as defined in (3.3).
The transformation is fairly simple and only involves reordering of the rows and
columns plus removal of n − 1 rows that are linearly dependent on the other rows and
Gaussian elimination of (n − 1)/2 rows and columns.

As mentioned in Sect. 2.2, and maintaining the same terminology, the boundary
operator A = An,c of X = X2,n,c is given by an

(n
2

) × (n−1
2

)
matrix. We next find a

square
(n−1

2

) × (n−1
2

)
submatrix of A of rank rank(A). To this end, we remove n − 1

rows of A which are linearly spanned by the other
(n−1

2

)
rows. Rows in A are indexed

by edges (1-dimensional faces). It is well known and easy to prove that this is the case
with any n − 1 rows that represent the edge set of a spanning tree of the complete
graph Kn . We apply this with the star rooted at vertex 0. In other words, we remove
the rows corresponding to pairs {{0, j} | j ∈ F∗

n}.
Nonzero elements of Fn act on subsets of Fn . Namely, if u ∈ F∗

n , and σ =
{x0, . . . , xk} ⊆ Fn we denote

u · σ = u · {x0, . . . , xk} := {u · x0, . . . , u · xk}.

We note that X is closed under such action, and linearly extend this definition as
u · (σ1 + σ2) = u · σ1 + u · σ2.

We organize A’s rows and columns by blocks corresponding to the orbits under the
action of F∗

n . A simple calculation shows that X ’s 2-faces form (n − 3)/2 orbits of
size n − 1, and one orbit of size (n − 1)/2. The latter is comprised of all 2-faces of
the form u · {1,−1, 0}. The 1-faces (edges) also form (n − 3)/2 orbits of size n − 1,
and one orbit of size (n − 1)/2 that includes the edges u · {1,−1}.

For x ∈ F∗
n , and y ∈ Fn , the block called B[x,y] is characterized by having the edge

{1, x} as a row and the 2-face {1, y,−(1 + y)/c} as a column. We refer to x and y
as the row and column leaders of B. This creates some ambiguity, since {1, x} and
{1, x−1} belong to the same block. Between x and x−1 the leader is the one with the
smaller logarithm (as defined in Sect. 2). The same ambiguity and the way around it
apply as well to y and y−1. Since λ is a generator of the field, we order the rows of
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the block indexed by x as follows:

[
(1, x), λ · (1, x), λ2 · (1, x), . . . , λn−2 · (1, x)

]
. (3.9)

Likewise, the columns in a block whose column index is y are ordered as follows:

[
(1, y, z), λ · (1, y, z), λ2 · (1, y, z), . . . , λn−2 · (1, y, z)

]
, (3.10)

where z = −(1 + y)/c. Equations (3.9) and (3.10) also represent the orientation that
we use for the edges and 2-faces, indicated by the use of tuples over sets.

Note that the column of a 2-face {u,−u, 0} has a single non-zero entry in row
{u,−u}, since we have removed the rows that correspond to the star centered at
vertex 0. We eliminate these (n − 1)/2 rows and columns by Gaussian elimination as
in [1] and arrive at

S = Sn,c, (3.11)

an ((n − 3)(n −1)/2)×((n − 3)(n −1)/2) submatrix of A. To recap, X is a hypertree
iff S is non-singular.

Claim 3.9 Every block B[x,y] of S is circulant, i.e., S ∈ MCBn−1,(n−3)/2(Q).

Proof The boundary operator is a signed inclusion matrix where the column that
corresponds to the oriented face (u, v, w) is

e(u,v) − e(u,w) + e(v,w),

where for an oriented edge (u, v) we define e(u,v) to be the 0/1 column vector with a
single 1 in position (u, v). If the direction is opposite, i.e., the edge (v, u) is present
and not (u, v), then e(v,u) = −e(u,v). Note that the column that corresponds to the
oriented face (1, y, z) is

S[ : , (1, y, z)] = e(1,y) − e(1,z) + e(y,z) (3.12)

while the column that corresponds to the oriented face in the same block λk · (1, y, z)
is

S[ : , λk · (1, y, z)] = eλk ·(1,y) − eλk ·(1,z) + eλk ·(y,z). (3.13)

To show the blocks in S are circulant, we need to show that

B[x,y][i, 0] = B[x,y][i + k, k],

where addition is done modulo n − 1. Before we give this proof, let us illustrate it
with our running example:
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Running Example

Our chosen generator of F∗
13 is λ = 2. The next matrix B[3,4] is an example of a block

matrix in S = S13,5 whose row leader is 3 and column leader 4:

Edge 2-Face

(1, 4, 12) 2 · (1, 4, 12)
= (2, 8, 11)

22 · (1, 4, 12)
= (4, 3, 9)

· · · 29 · (1, 4, 12)
= (5, 7, 8)

210 ·(1, 4, 12)
= (10, 1, 3)

211 ·(1, 4, 12)
= (7, 2, 6)

(1,3) 0 0 0 … 0 1 0
2 · (1, 3) = (2, 6) 0 0 0 0 0 1
22 · (1, 3) = (4, 12) 1 0 0 0 0 0
23 · (1, 3)=(8, 11) 0 1 0 0 0 0
24 · (1, 3) = (3, 9) 0 0 1 0 0 0

.

.

.

.

.

.

.
.
. 0 0 0

211 · (1, 3) = (7, 8) 0 0 0 . . . 1 0 0

For example, the leader column of (1, 4, 12) has non-zero entries in rows (1, 4), (1, 12), and (4, 12). In
B[3,4] only row (4, 12) is present. Indeed, B[3,4] = P2 is a circulant matrix

B[x,y][i, 0] = S[λi · (1, x), (1, y, z)] = S[λi+k · (1, x), λk(1, y, z)]
= B[x,y][i + k, k].

The second equality stems from the indexation of the rows and 2-faces in the block as
in (3.9), (3.10), and the definition of the boundary matrix for the appropriate columns
in (3.12) and (3.13).

The fact that the blocks B[x,y] are circulant, follows also from the invariance of the
boundary operator under the action of F∗

n ,

λ · ∂2(σ ) = ∂2(λ · σ)

for

λ · ∂2(σ ) = λ · ((u0, u1) − (u0, u2) + (u1, u2))

= (λ · u0, λ · u1) − (λ · u0, λ · u2) + (λ · u1, λ · u2)

= ∂2(λ · u0, λ · u1, λ · u2) = ∂2(λ · σ).

As S is a submatrix of the matrix form of ∂d , the claim follows from the indexation
of the rows and columns. ��

4 S as a Polynomial Matrix

This section we find out how to express the matrix S = Sn,c as defined in (3.11) as a
polynomial matrix. This matrix is a sum of three sparse matrices, each having at most
one nonzero block per row and column. All these blocks have the form ±P j for some
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n − 2 ≥ j ≥ 0, because the boundary operator is a signed inclusion matrix. Thus the
column of the oriented triple (1, y, z)may only contain terms corresponding to (1, y),
to (1, z) and to (y, z). But any particular row may be labeled by either x or x−1, so
there are (at most) three possible cases where the block B[x,y] is nonzero indexed as
follows:

i = 1: y ∈ {x, x−1},
i = 2: z ∈ {x, x−1},
i = 3: zy−1 ∈ {x, x−1}.

In case i we refer to the relevant x as xi . To sum up,

B[x,y] = T1 + T2 + T3

where

T1 =
{

I y = x,

−P− log x y = x−1,
T2 =

{
−I z = x,

P− log x z = x−1,

T3 =
{

P log y z · y−1 = x,

−P log z z · y−1 = x−1.

Most columns indeed have exactly three nonzero terms, although two of them possibly
reside in the same block. We return again to our running example for illustration.

Running Example

The next table shows the logarithm to base λ = 2 of every x ∈ F∗
13, and its order o(x):

x 1 2 4 8 3 6 12 11 9 5 10 7

log x 0 1 2 3 4 5 6 7 8 9 10 11
o(x) 1 12 6 4 3 12 2 12 3 4 6 12

We next present the matrix S = S13,5 in block form. To the left and above the matrix
appear the blocks’ edge and 2-face leaders. For example, (1, 4, 12) ∈ X , since 1 +
4+ 5 · 12 ≡ 0 mod 13 and it is the 2-face leader of the first column. No leader has the
form (1, 2, z), since 1 + 2 + 5 · 2 ≡ 0, i.e., z = y = 2.

Edge 2-Face

(1, 4, 12) (1, 8, 6) (1, 3, 7) (1, 6, 9) (1, 0, 5)

(1,2) 0 0 P11 0 0
(1,4) I P3 0 0 0
(1,8) 0 I 0 P5 P9

(1,3) P2 0 I P8 0
(1,6) 0 −I −P11 I 0
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The block B[3,4] from our previous discussion of the running example resides in the
first column and fourth row. The matrix S is 60× 60, being a 5× 5 matrix of 12× 12
blocks, whence S(z) is a 5 × 5 matrix. For example, S(ω3) is

Edge 2-Face

(1, 4, 12) (1, 8, 6) (1, 3, 7) (1, 6, 9) (1, 0, 5)

(1,2) 0 0 ω2
3 0 0

(1,4) 1 1 0 0 0
(1,8) 0 1 0 ω2

3 1
(1,3) ω2

3 0 1 ω2
3 0

(1,6) 0 −1 −ω2
3 1 0

5 Non-acyclic Complexes

In this section we present an infinite family of non-acyclic 2-dimensional complexes.
As subsequently discussed in the section, we suspect that asymptotically almost every
non-acyclic complex is in this family and asymptotically almost every complex that
is not in this family is acyclic.

Before we move on to the main subject of this section, we prove the following
curious connection between o(c) and log c, which we could not find in the literature:

Lemma 5.1 For n prime and c ∈ F∗
n,

gcd

(
log c,

n − 1

2

)
= gcd

(
n − 1

o(c)
,

n − 1

2

)
.

Proof Let k1 = gcd (log c, (n − 1)/2) and k2 = gcd ((n − 1)/o(c), (n − 1)/2).

k2 | k1: λlog c = c so λlog c·o(c) = 1. But λ is a generator whence (n − 1) | log c · o(c),
thus

n − 1

o(c)

∣∣∣ log c. (5.1)

Since k2 | (n − 1)/o(c) and k2 | (n − 1)/2, from (5.1) we conclude that

k2
∣∣∣ gcd

(
log c,

n − 1

2

)
= k1.

k1 | k2: It is sufficient to prove that k1 | (n − 1)/o(c). We apply Lemma 2.1 with
x = λ2 and j = log c and conclude that

o(λ2 log c) = o(λ2)

gcd (log c, o(λ2))
. (5.2)
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But o(λ2) = (n − 1)/2 and o(λ2 log c) = o(c2). Rearranging (5.2) gives

k1 = gcd

(
log c,

n − 1

2

)
= n − 1

2 · o(c2)
.

Lemma 2.1 also tells us that if o(c) is even, o(c2) = o(c)/2 and if o(c) is
odd, o(c2) = o(c). In either case k1 | (n − 1)/o(c), as required. ��

Corollary 5.2 For n prime and c ∈ F∗
n,

gcd

(
log(−c),

n − 1

2

)
= gcd

(
n − 1

o(c)
,

n − 1

2

)
.

Proof It is sufficient to prove that gcd (log(−c), (n − 1)/2) = gcd (log c, (n − 1)/2).
Since log(−1) = ±(n −1)/2 it follows that log(−c) = log c± (n −1)/2. This yields

gcd

(
log(−c),

n − 1

2

)
= gcd

(
log c ± n − 1

2
,

n − 1

2

)
= gcd

(
log c,

n − 1

2

)
,

as claimed. ��

Theorem 5.3 The complex X2,n,c is non-acyclic in the following cases:

• n ≡ 1 mod 4 and c is not a primitive element of Fn;
• n ≡ 3 mod 4 and c is neither primitive nor of order (n − 1)/2.

Proof Note that in both cases gcd ((n − 1)/o(c), (n − 1)/2) > 1.When n ≡ 1mod 4,
the integer (n − 1)/2 has all the prime factors of n −1, so (n − 1)/o(c) and (n − 1)/2
are relatively prime only if o(c) = n − 1, i.e., c is primitive. When n ≡ 3 mod 4, the
only divisor of n − 1 that fails to divide (n − 1)/2 is 2. Therefore (n − 1)/o(c) and
(n − 1)/2 are relatively prime only if c is primitive or o(c) = (n − 1)/2.

So let k ≥ 2 be a common divisor of (n − 1)/o(c) and (n − 1)/2. We show below
that the vector vn,k whose x entry is

vn,k[x] = 1 − ω
log x
k

is in the left kernel of S(ωk). We first illustrate this in our running example:

Running Example

Theorem 5.3 applies to our running example, since o(5) = 4, and gcd (12/4, 12/2) =
3 > 1. It is easily verified that the following vector is in the left kernel of S(ω3):

v13,3 = (1 − ω1
3 1 − ω2

3 0 1 − ω1
3 1 − ω2

3),
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(1 − ω1
3 1 − ω2

3 0 1 − ω1
3 1 − ω2

3) ·

⎛

⎜⎜⎜⎜
⎝

0 0 ω2
3 0 0

1 1 0 0 0
0 1 0 ω2

3 −1
ω2
3 0 1 ω2

3 0
0 −1 −ω2

3 1 0

⎞

⎟⎟⎟⎟
⎠

= �0.

For y ∈ F∗
n we compute the y-th entry of vn,k · S(ωk), i.e., the coordinate that corre-

sponds to the 2-face (1, y, z),

(vn,k · S(ωk))[y] =
∑

i=1,2,3

(1 − ω
log xi
k ) · Ti (ωk). (5.3)

We define �k,i as the scalar term that is obtained upon evaluating Ti at ωk .

Lemma 5.4 Let tk,i := (1 − ω
log xi
k ) · �k,i be the i-th term in (5.3). Then

(i) tk,1 = 1 − ω
log y
k ,

(ii) tk,2 = ω
log z
k − 1,

(iii) tk,3 = ω
log y
k − ω

log z
k .

Proof Let us go through the cases:

(i) If x1 = y, then �k,1 = 1. If x1 = y−1, then �k,1 = −ω
− log x1
k .

(ii) If x2 = z, then �k,2 = −1. If x2 = z−1, then �k,2 = ω
− log x2
k .

(iii) If x3 = z · y−1, then �k,3 = ω
log y
k . If x3 = z−1 · y, then �k,3 = −ω

log z
k .

All cases are readily verifiable. ��
It is easy to check that tk,1 + tk,2 + tk,3 = 0 for those columns y where T1, T2, T3 are
well defined. We turn to deal with the exceptional cases where some of the definitions
fail.

The matrix T2 is undefined for the column of y = c −1, z = −1, since row (1,−1)
is absent. But then

tk,1 + tk,3 = 1 − ω
log y
k + ω

log y
k − ω

log z
k = 1 − ω

log(−1)
k = 1 − ω

(n−1)/2
k = 0,

since k | (n − 1)/2. Also, T1, T3 are undefined when y = 0, z = −c−1. However, in
this case tk,2 = ω

− log(−c)
k − 1 = 0, a deduction from Corollary 5.2 since k | log(−c).

��

5.1 A Conjecture About a Single Criterion

Again let n be a prime, and c �= 0,±1,−2. As illustrated in Fig. 2, our computer
simulations suggest that for large n, Theorem 5.3 captures asymptotically almost all
cases in which X2,n,c is non-acyclic. For the acyclic cases, asymptotically almost all
other cases that Theorem 5.3 does not capture are acyclic.

This suggests that the following simple criterion asymptotically determineswhether
or not a complex is acyclic. The asymptotics is w.r.t. n → ∞.
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Conjecture 5.5 Let the complex X2,n,c with n prime and c ∈ F∗
n be as above.

• When n ≡ 1 mod 4:

– Recall that X2,n,c is non-acyclic if c ∈ F∗
n is non-primitive.

– We conjecture that X2,n,c is acyclic for asymptotically almost every primitive
c ∈ F∗

n.

• When n ≡ 3 mod 4:

– Recall that X2,n,c is non-acyclic if c ∈ F∗
n is neither primitive, nor of order

(n − 1)/2.
– We conjecture that X2,n,c is acyclic for asymptotically almost every c ∈ F∗

n
that is either primitive or of order (n − 1)/2.

In light of Fig. 2, we can state Conjecture 5.5 in terms of acyclic ratios:

Claim 5.6 By Theorem 5.3, for every prime n the acyclic ratio (i.e., the fraction of
complexes X2,n,c that are acyclic) is at most

ϕ((n − 1)/2)

(n − 1)/2
,

where ϕ is Euler’s function. Conjecture 5.5 posits that this bound is asymptotically
tight.

Fig. 2 Acyclic and Non-Acyclic ratios for all primes 11 ≤ n ≤ 1373. The acyclic ratio is An/(n − 4− En)

and the non-acyclic ratio is Nn/En . Here An and Nn are the number of c ∈ F∗
n \{±1,−2} for which X2,n,c

is acyclic, resp. non-acyclic. En is the number of non-acyclic complexes explained by Theorem 5.3
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Fig. 3 For each prime n, 11 ≤ n ≤ 1373, this is the probability that X2,n,c is acyclic over all eligible
c ∈ F∗

n \ {±1,−2}

Proof Recall that the number of elements of order d in a cyclic group of order m, is
ϕ(d) for every divisor d of m. Since the cyclic group F∗

n contains n − 1 elements, it
is left to prove that

• When n ≡ 1 mod 4:

ϕ((n − 1)/2)

(n − 1)/2
= ϕ(n − 1)

n − 1
.

• When n ≡ 3 mod 4:

ϕ((n − 1)/2)

(n − 1)/2
= ϕ(n − 1) + ϕ((n − 1)/2)

n − 1
.

These claims follow from the multiplicative properties of ϕ. Namely,

ϕ(m · k) = d · ϕ(m) · ϕ(k)

ϕ(d)
(5.4)

for two positive integers m, k, where d = gcd(m, k). The claim follows by applying
(5.4) with m = 2, k = (n − 1)/2. If n ≡ 1 mod 4, then ϕ(n − 1) = 2 · ϕ((n − 1)/2)
and when n ≡ 3 mod 4, ϕ(n − 1) = ϕ((n − 1)/2). ��
In Fig. 3 observe the good agreement with the function presented in Claim 5.6. For
example, the acyclic percentage is close to 1 for primes n of the form (n − 1)/2 = p,
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where p is prime. The lowest acyclic percentage is attained when (n − 1)/2 = 2 · 3 ·
5 · . . . All of this is in agreement with our Conjecture 5.5.

5.2 More Non-acyclic Cases

As the two last figures illustrate, Theorem 5.3 does not capture all the cases in which
Xn,c is non-acyclic. Indeed, the matrices S(1) and S(−1) may be singular even when
c is a generator of F∗

n or has order (n − 1)/2 when n ≡ 3 mod 4. For example, and
this is not captured by Theorem 5.3, Xn,c is non-acyclic when

c2 + c − 1 ≡ 0 mod n.

To seewhy, let k = (n − 1)/2, and define ṽn,k to be vn,k as in the proof of Theorem 5.3,
with the single change that ṽn,k[−c − 1] = 0. A small variation on the same proof
shows that ṽn,k · S(ωk) = �0, since −c − 1 ≡ −1/c mod n.

6 Full Matrices

In this section we sketch another possible approach to the construction of an infinite
family of 2-dimensional hyperpaths. A certain extension of the boundary operator
matrix plays a key role in these developments.

Definition 6.1 For a prime n and c ∈ {2, . . . , n − 3} the matrix F = Fn,c is an
(n2 − 1) × (n2 − 1) binary matrix. A row ρxy of F is indexed by an ordered pair
(x, y) ∈ F2

n \ (0, 0). A column f(xyz) is indexed by an ordered triple (x, y, z), where
(x, y) ∈ F2

n \ (0, 0) and z = −(x + y)/c, i.e., x + y + c · z = 0. The [(u, v), (x, y, z)]
entry of F is 1 iff

• (u, v) = (x, y), this is called an xy-entry;
• (u, v) = (y, z), this is called an yz-entry;
• (u, v) = (z, x), this is called an zx-entry.

Note that the xy entries in F form a permutation matrix which we call Pxy . Likewise
for Pyz and Pzx . Also Pxy = I . Consequently:

F = I + Pyz + Pzx , (6.1)

where Pyz, Pzx are permutation matrices. Note that rank(Fn,c) ≤ n2 − n since there
are n − 1 pairs of identical columns in Fn,c, namely, f(a,−(c+1)a,a) = f(−(c+1)a,a,a)

for every a ∈ F∗
n .

Claim 6.2 If rank(Fn,c) = n2 − n, then rank(An,c) = (n−1
2

)
, in which case Xn,c is a

hypertree.

Proof The proof is omitted, but can be found in the extended version of this work [3].
��

The reverse implication in Claim 6.2 does not hold. This suggests the study of Fn,c as
an approach to the construction of infinitely many 2-dimensional hyperpaths.

123



Discrete & Computational Geometry

Supporting Data

Data used to generate Fig. 3 is available from the authors.
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