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The purpose of this note is to point out a relationship between graph coloring
and monotone functions defined on posets. This relationship permits us to deduce
certain properties of the chromatic polynomial of a graph.

Theorem 1. Let G =(V, E) be a graph of order p and y;(x) = x(x) its chromatic
polynomial. The generating function

F0) = fol)= 3, 2w

is a rational function of the form
Q(x)
(1—-x)p*t’

where Q is a polynomial with nonnegative coefficients of degree p with leading
coefficient a(G), the number of acyclic orientation of G.

fx)=

Proof. We denote V =[p]={1,...,p}, A(G) is the set of acyclic orientations of
G and a(G) =|A(G))| is their number. An n-coloring of G, c: V— [n] induces an
acyclic orientation D € A(G) as follows: If [x,y]eE is an edge, where
c(x) > c(y) then in D, this edge is oriented from x to y. Every acyclic orientation
D € A(G) defines a partial order on V, which we denote by =,. If D € A(G),
then we think of D as both an acyclic orientation and as a partial order on V.
Note that for an n-coloring c: V—[n] the function ¢ is a strongly order-
preserving map from the poset (V,=p) into [n]. It is easily verified that the
correspondence between n-colorings and strong order preserving maps from
acyclic orientations into [n], is bijective. For a poset (P, =) we let up be its strong
order polynomial, namely, u(n)= up(n) is the number of strongly monotone
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functions (P, =)— [n]. Our basic observation is thus that
xx)=_2 pp), )
DeA(G)

where x(x) = xs(x) is the chromatic polynomial of G.
Now in [1] it is shown that for a poset D

21 up(n)x"

is a rational function of the form R(x)/(1 —x)**! where R is a polynomial of
degree p with nonnegative coefficients and with leading coefficient 1. Using (1)
the conclusion follows. [

In [1] the coefficients of R(x) are interpreted in terms of combinatorial
properties of the poset D. Except for the leading coefficient of Q which is a(G)
we do not have any relations between the coefficients of O and other parameters
of G. It may be worthwhile to find if such relations exist.
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