NOTE

GRAPH COLORING AND MONOTONE FUNCTIONS ON POSETS

Nathan LINIAL
Institute of Mathematics and Computer Science, Hebrew University, Jerusalem 91904, Israel

Received 13 December 1984
Revised 22 May 1985

The purpose of this note is to point out a relationship between graph coloring and monotone functions defined on posets. This relationship permits us to deduce certain properties of the chromatic polynomial of a graph.

Theorem 1. Let $G=(V, E)$ be a graph of order p and $\chi_{G}(x)=\chi(x)$ its chromatic polynomial. The generating function

$$
f(x)=f_{G}(x)=\sum_{n=1}^{\infty} \chi(n) x^{n}
$$

is a rational function of the form

$$
f(x)=\frac{Q(x)}{(1-x)^{p+1}}
$$

where Q is a polynomial with nonnegative coefficients of degree p with leading coefficient $a(G)$, the number of acyclic orientation of G.

Proof. We denote $V=[p]=\{1, \ldots, p\}, A(G)$ is the set of acyclic orientations of G and $a(G)=|A(G)|$ is their number. An n-coloring of $G, c: V \rightarrow[n]$ induces an acyclic orientation $D_{c} \in A(G)$ as follows: If $[x, y] \in E$ is an edge, where $c(x)>c(y)$ then in D_{c} this edge is oriented from x to y. Every acyclic orientation $D \in A(G)$ defines a partial order on V, which we denote by \geqslant_{D}. If $D \in A(G)$, then we think of D as both an acyclic orientation and as a partial order on V.

Note that for an n-coloring $c: V \rightarrow[n]$ the function c is a strongly orderpreserving map from the poset $\left(V, \geqslant_{D}\right)$ into $[n]$. It is easily verified that the correspondence between n-colorings and strong order preserving maps from acyclic orientations into $[n]$, is bijective. For a poset (P, \geqslant) we let μ_{P} be its strong order polynomial, namely, $\mu(n)=\mu_{P}(n)$ is the number of strongly monotone 0012-365X/86/\$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)
functions $(P, \geqslant) \rightarrow[n]$. Our basic observation is thus that

$$
\begin{equation*}
\chi(x)=\sum_{D \in A(G)} \mu_{D}(x) \tag{1}
\end{equation*}
$$

where $\chi(x)=\chi_{G}(x)$ is the chromatic polynomial of G.
Now in [1] it is shown that for a poset D

$$
\sum_{n=1}^{\infty} \mu_{D}(n) x^{n}
$$

is a rational function of the form $R(x) /(1-x)^{p+1}$ where R is a polynomial of degree p with nonnegative coefficients and with leading coefficient 1 . Using (1) the conclusion follows.

In [1] the coefficients of $R(x)$ are interpreted in terms of combinatorial properties of the poset D. Except for the leading coefficient of Q which is $a(G)$ we do not have any relations between the coefficients of Q and other parameters of G. It may be worthwhile to find if such relations exist.

Reference

[1] R. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc. 119 (1972).

