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A B S T R A C T  

Fr6chet's classical isometric embedding argument has evolved to become 
a major tool in the study of metric spaces. An important examt)le of 
a Fr(!chet embedding is Bourgain's embedding [4]. The authors have 
recently shown [2] that for every e > 0, any n-point metric space con- 
tains a subset of size at least n 1-~ which embeds into t'2 with distortion 
O( e ). The embedding used in [2] is non-Frtichet, and the purpose 
of this note is to show that this is not coincidental. Specifically, for every 

> 0, we construct arbitrarily large n-point metric spaces, such that the 
distortion of any Fr~chet embedding into ~p on subsets of size at least 
n 1/2+e is l~((log n)l/P). 
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1. I n t r o d u c t i o n  

Given two metric spaces (X, dx),  (Y, dy) and an embedding f :  X --+ Y, the 

d i s t o r t i o n  of f is defined as 

dy( f (x) ,  f(y)) dx (x, y) 
dist(f) = sup sup 

~,yex dx(x,y)  x,yex dy( f (x) , f (y ) )"  

We denote by cy(X)  the least distortion with which X may be embedded in Y. 

When cy(X)  < a, we say that  X a-embeds into Y and denote X r Y. When 

there is a bijection f between two metric spaces X and Y with dist(f)  _< a, we 

say that  X and Y are a-equivalent. For a class of metric spaces AJ, cM (X) 

is the minimum a such that  X a-embeds into some metric space in At. For 

p _> 1 we denote ct,,(X) by cp(X). The parameter c.2(X) is known as the 

E u c l i d e a n  d i s t o r t i o n  of X. A fundamental result of Bourgain [4] states that  

ce(X) = O(log n) for every n-point metric space (X, d). 

For a general metric space (X, d) with no additional a-priori structure, there 

is a dearth of genuinely "interesting" constructions of Lipschitz mappings on 

X. One significant exception to this rule is provided by the distance functions 

x ~ d(x, A) for some ~ ~ A C X. Of course, we can generate more examples by 

constructing Lipschitz functions to any finite dimensional normed space, the co- 

ordinates of which are distance functions. Observe that  a mapping f :  X ~ eoo 

is L-Lipschitz if and only if each of its coordinates is L-Lipschitz. These facts 

were put to good use in the classical observation of Fr~chet that  every metric 

space isometrically embeds into some goo(F) (see [3, 10]). l%~chet's embedding 

only uses distance functions for singleton A's, but more sophisticated refine- 

ments of this basic idea have appeared over the years. In what follows we call 

an embedding f :  X -+ l~ 2v \{0} a Fr~chet  e m b e d d i n g  if for every A C X there 

is a d  E ]~ such that  f (x)  = (and(x, A))Ae2X\{O}. 
Bourgain's embedding of finite metric spaces in g2 [4] is an instance of a 

Fr~chet embedding in which the coefficient aA E [0, 1] depends only on the 

cardinality of A. Bourgain's probabilistic method of producing a good Fr~chet 

embedding has subsequently found many applications [6, 7, 9, 8, 5, 12]. 

The present note is motivated by our recent Ramsey-type result: 

THEOREM 1 ([2]): There exists an absolute constant C > 0 such that for 
every a > 2, any finite metric M contains a subset N C M for which 
INI >_ IM] t-c'-%r~- and c2(N) <_ a. 

The embedding used in Theorem 1 is not a Fr~chet embedding. In view of 

the past success of Fr~chet embeddings, and in particular Bourgain's embedding 
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which gives tlle asymptotically best possible bound for embedding the whole 

metric space, it is natural to ask whether this (by now standard) method is 

applicable to Ramsey-type problems. This note provides a negative answer to 

this question. We find a certain range of the parameters for which Fr~chet 

embeddings fail to achieve tight bounds for Ramsey-type questions: 

THEOREM 2: For every 1/2 < (f < 1 there is a constant C(6) > 0 such that 

for infinitely many integers n there are n-point metric spaces Zn, such that for 

any Fr6chet embedding f: Zn -4 s and any subset V of Z ,  of size at /east  n ~, 

dist(f[v) > (C(5). logn) 1/p. 

We end the paper with a short discussion in which we comment on the em- 

bedding used in Theorem 1, showing that it can be viewed as a different natural 

generalization of Bourgain's embedding. 

2. The  cons t ruc t ion  

Theorem 2 is proved by exhibiting an explicit example of an unbounded family 

of metric spaces for which every Fr~chet embedding fails to yield the appropriate 

Ramsey-type result. The example, denoted Z = Zk,~,h,m, is an amalgamation 

of two types of metric spaces: 

�9 The elements of the first metric space, called X = Xh,k, are the leaves of a 

complete binary tree Th of height h. The metric on the leaves is defined by 

dx (Xl, x2) = k -l(lca(xl'x2)). 

Here, lca(xx, x2) denotes the least common ancestor of xl and x2 in Th and 

l(u) is the depth of the vertex u in T. The parameter k > 1 will be fixed later. 

A crucial property of X is that for any x , y , z  C X,  if dx(x ,y)  < dx(x ,z) ,  
then 

(1) dx(x ,z )  = dx(y ,z )  > kdx(x,y) .  

(Such a metric space is called a k-HST [1].) 

�9 The second metric space, Y = Ym,~, is the one-dimensional metric on the 

points 

{ ( ) 1  ( 1 1/ 
Y =  y 0 = r 1 6 2  1+ 5 , y 2 = r  1+~+1-~ , . . . , y m _ l = ~  ~ 4  -i  . 

i~---0 

The points set of Z is X x Y, hence its size is 2hm. The distance is defined 

by 

dy(y,y'),  x = x', 
dz((x, y), (x', y')) = dv (y, Yo) + dx (x, x') + dy (Y0, Y'), x ~ x'. 
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A schematic description of Z is given in Figure 1. 
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Figure 1. The metric space Z serving as the example in Theorem 2. 

Here is a sketch of our proof. A preliminary step (Lemma 1) shows that 

all sufficiently large (of size > n 1/2+~) subsets V C Z have a structure that is 

similar to the whole of Z. Namely, there is a large subset U C_ V that spans a 

complete binary subtree (of a slight modification) of T. Moreover, in each copy 

of Y that U meets, it contains at least two elements. 

From this point on, we may assume, then, that we are dealing with a space 

that is similar to the original Z with two modifications: The depth has shrunk 

to one half its original value, (since we moved from n to n 1/2+~ points), and 

attached to each leaf is a tail, i.e., a two-point metric space. On the other hand, 

we are now considering the whole of this (sub)space, and not subsets thereof. 

(We actually cannot ignore the points in Z \ U, which may participate in the 

subsets to which Pr~chet embedding assigns nonzero weights. However, this is 

only a technicality and can be ignored at this level of discussion.) 

Recall that we are dealing with Fr~chet embeddings f that are defined by 

assigning weights aA to subsets A. Consider a tail {Yl, Y2}, and suppose that A 

is disjoint from the copy of Y to which Yl, Y2 belong. Then Id(y~, A ) - d ( y 2 ,  A)I = 

d(yl ,  y'2), entailing a lower bound on Lip(f). In other words, if large weights 

aA are allotted to subsets A that miss many tails, then Lip(f) is big. This is 
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made precise in Lemma 2, which gives a lower bound on Lip(f)  in terms of the 

numbers aA and ~A--the fraction of tails that  A misses. 

It follows that in order to keep Lip(f)  small, we ought to put significant 

weights aA on subsets with large ~A, i.e., those that do not meet many tails. 

This, however, tends to increase L i p ( f - i ) ,  as we now explain. Let Zl and z2 

belong to two distinct tails. In order for [d(Zl, A) - d(z2, A)[ to be nearly equal 

to d(Zl, z2), the set A must meet exactly one of the two tails containing the zi 

(in which case we say that A spl i ts  the least common ancestor of Zl, z2). It 

is not hard to see (Equation 4) that if CA is large, then A can split only a few 

vertices, and these necessarily reside far from the root. Note also that  if A fails 

to split lca(zl, z2), then [d(zl, A) - d(z2, A)[ < ld(z l ,  z2), which is significant, 

since k is large. The precise argument is made in Lemma 4. 

Omitting some additional technicalities (Lemma 3), these two considerations 

can be traded off against each other to yield the desired result. 

SOME NOTATIONS AND DEFINITIONS CONCERNING TREES. 

�9 Let T be a tree. We denote its root by r(T)  and its set of leaves by 

leaves(T). For a subset A C leaves(T), let T(A)  be the subtree spanned by 

A, i.e., the union of all the simple paths between elements of A and lca(A). 

The subtree T~ rooted at u consists of the union of all the monotone paths 

in T between u and its descendants. We recall that IT(u) is the depth of 

u, i.e., its distance from r(T).  

�9 Let T = (V, E) be a tree and suppose that  T contains a vertex u ~ r(T)  

with exactly two neighbors v and w. We simplify T by removing the vertex 

u and adding the edge (v, w). Another type of simplification step takes 

place, if r(T)  has a single neighbor v. In this case, we remove r(T)  and 

declare v as the root. The skeleton skel(T) is the (uniquely defined) tree 

obtained from T by carrying out all possible simplifications. 

�9 For a subset U C Z, we denote Ux = {x �9 X; ({x} x Y) n U r 0}. 

LEMMA 1: Let h, m > 2 be integers and Z = Z k , e , h ,  m .  Let V C Z be such that 

IV[ > 2m + 2 h. Denote 
(]V] :2 h~l/h 

P= ~ m / 

Then there is a subset V C V such that for every x e Ux, [({x} x Y) N U[ > 2 

and skel( T(U x ) ) is a complete binary tree of depth at least P h 6 log(2/p) �9 

Proof'. Denote S = {x �9 X; IV n ({x} x Y)[ >- 2). Since ISIm + 2 h >_ IV[, we 
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have that  
IVl 2 h 

IS[ > - (1 + p)h > 2. 
m 

Set 0 < ~ = p/(2 + p) < 0.5. We will first construct inductively a subtree T'  

of T, as follows. Let r be the root of T and Ul, u2 its two children. Recursively, 

assume that  we have constructed ~ ~ T ~ T ul, is constructed according to "TU 2 �9 

the following rule: if min{I leaves(Tul) M S I, I leaves(T~2) M SI} _> ~lSI, then T'  

is obtained by attaching T~ul and T~u2 to r. Otherwise, assume without loss 

of generality that  I leaves(Tul) M S I > (1 - y)[S I. In this case T'  is obtained by 

attaching only T~I to r. Note that  in the previous step of this procedure, T~u~ 
were constructed with respect to sets leaves(Tu~ ) M S. 

Let u be a leaf of skel(T ~) and denote its distance from the root of skel(T ~) 

by A. Consider the path in T between r (the root of T) and u. Clearly A is 

precisely the number of times along this path that  the first option was taken 

in the above construction. We prove by induction on h, the height of T, that 

ISIS,(1 _ ~)h-~ < 1. The case h = 0 is trivial, so assume that  h > 0. Let 

r, ul ,  u2 be as above, and assume that ul belongs to the path connecting r and 

u. In the first case of the above construction, we get by the induction hypothesis 

that  

1 > I leaves(Tu,) D SIr/A-t(1 --  ? ~ ) h - l - ( A - 1 )  ~ ISI~:~(1 _ ,])h-~,. 

In the second case of the above construction we get 

1 > I leaves(%~) n s l ~ ( 1  - ~ ? - 1 - ~  > iSlv~(1 _ ~)h-~.  

Let /t be the minimal distance between a leaf of skel(T ~) and its root. From 

the discussion above (and noting that  p < 1) it follows that  

h log(1 + p) + hlog(~-~)  > p > logISI + hlog0 - ~ )  > h. 
- log(L~)  - log(~) - 6 log(2/p) 

Consider all the vertices of depth exactly i~ in skel(T'). The tree skel(T') 

truncated at these points forms a complete binary tree of height h. For each 
M t such vertex u we choose some s~ E S T ~. The set 

S' = {s~; u has depth ]~ in skel(T')} 

is easily seen to have the required properties. | 

Our next two lemmas provide a lower bound on the expansion of any Fr~chet 

embedding Z r gp, using (almost) only the structure of Y. 
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o2z\{~} 
Let f :  Z --+ ~p , 1 _< p < oc, be a Fr6chet embedding given by f(x)A -= 

amd(x, A), let V C_ Z be a large set as in Theorem 2 and let U C V be a subset 

a.s in Lemma 1. For every 0 # A C Z write 

~A = [{X E V x ;  ({x} • Y) N A = 0}I 

IUxl 

Namely, ~A is the fraction of the tails in U that  A misses. Define 

(2) ~(f ,  U) = [am [7'r 
0 Z 

Informally, 13(f) is a weighted average of the fraction of tails {x} x Y, x E U, 

that are missed by a subset of Z. If a subset A is disjoint fi'om a tail {x} x Y, that  

contains the points (x, u), (x, v), then Idz ( (x, u), A) - dz( (x, v), A)I = dy (u, v). 
Consequently, we can expect to obtain a lower bound on the Lipschitz constant 

of f in terms of/~. Indeed: 

LEMMA 2: Let U C Z be a subset as in Lemma 1. Then Lip(fl~] ) > fl(f,U). 

Proof: We may assume without loss of generality that  aA _> 0 for every 

0 # A C Z. Set ~ =/3( f ,  U). Note that  

1 
z 

A:AAZ~=O 

= I { x E U x : A M ( { x } •  
a ~  

ocAcz IUxl 
= ~P .  

Hence there is some x E Ux such that  )-~A:ANZ~:=O O~4 >--- tiP" As mentioned, if 
0 # A C Z is disjoint from {x} • Y, then 

dz((x,y) ,A) = dy(y, yo) +dz((x ,  yo),A) for every (x,y) C Z. 

Recall that  for x E Ux, there are y # y' such that  

(z, v), (x, y') e ({x} • Y) n u. 

Therefore 

I f ( x , y ) -  f(x,y')] ~ = ~ aPA]dz((x,y),A)- dz((x,y') ,A)l  p 
ACZ 

> Z a~ldy(yo,~)-dy(~o,y')L ~ 
ACZ 

Af3({~} • 

>_/3Pdz((x,y), ' p (x, y )) , 
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so that  Lip(f lu ) >/3. II 

Similar to the definition of fl(f, U), we also define 

\ l/v 

(3) 7 ( f , U ) =  Z a ~ )  . 
r 

In words, 7(f ,  U) is the weighted average of weights assigned to subsets that  do 

not contain U. The metric of Y was purposely chosen so that no two distances 

are equM. Consequently, a subset A ;3 U makes a nonzero contribution to 

Lip(f lu  ). Indeed: 

LEMMA 3: Let U C_ Z be as in Lemma 2. Assume that k >_ 4 and k -h > e. 
Then Lip(fiG) _> 4-m2-1Xl'lVl/P7(f , U). 

Proof'. We may assume again that O~A > 0 for every 0 # A C Z. Let A0 be 

such that  O~Ao = nla~x{o/A; 0 ~ A ~ U}. Clearly 

r # ,4:3 V 

Since Ao ;b U, there is some (x, u) e U \ Ao. By assumption, U contains some 

(x,v) with v # u. It is enough to show that Idz((x,u),  Ao) - d z ( ( x , v ) ,  Ao)[ 
_> 4 -m �9 diam(Y), since then 

[ f (x ,  u) - I (x ,  v)] v > aAoldz((x, ,*), ,40) - dz((x,  v), A0)l  

>_ 4-maA,, diam(Y) 

>_ 4-mamodv(u,  v), 

and the result will follow from the lower estilnate for amo. 

To verify that  [dz((x, u), Ao) - dz((X, v), ,40)1 _> 4 - 'n �9 diam(Y), distinguish 

between the possible points where the distances dz((x,  u), Ao) and dz((x,  v), Ao) 
are attained. Let (x', eL) E A0, (x", b) e A0 satisfy 

dz( (x ,u ) ,Ao)  = dz((x ,u) ,  (x' ,a)),  dz((x ,v) ,Ao)  = dz((x ,v) ,  (x",b)). 

Observe that  since k -h > r > diam(Y), if x E {x', x"} then x' = x" = x, in 

which case dz ( (x, u), Ao ) = dr (u, a), dz ( (x, v), Ao ) = dv (v, b), and we conclude 

since the definition of the metric on Y implies that 

Idy(u, a) - d~,-(u, b)[ >_ 4-Tn+le > 4 -m dianl(Y). 
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Therefore, assuming that x ~ {x t, x"}, 

dz ((x, u), Ao) = dv (u, Yo) + dx (x, x') + dv (Yo, a) 

and 

119 

and so 

Idz((x,u),Ao) - dz((x,v),  Ao)l >_ ]dx(x,x') - dx(x,x")] 

- Idy (u,  Yo) - d v  (v,  Yo)l - ]dy  (a, Yo) - d v  (b, Y0)[ 
_>~ - 2 diam(Y) _> diam(Y). | 

Our next lemma uses the special structure of X to bound from below the 

inverse of the contraction, L ip ( ( f [v ) - l ) ,  in terms of 13(f,U) and 7(f ,  U). In 
what follows we always use tile convention that Lip(f  -1) = oo if f is non- 

injective. 

LEMMA 4: Let U C Z be as in Lemma 1. Then for every Frdchet embedding 
/: z 

Lip((f lv)  -1) > [2/3(f~ U)p + ( 2 +  2khdiam(Y))pT(f,U)p] -1/p. 
- -  L h 

Proo[: We use a shorthand notation 7" = 7h, 7 = 7(f ,  U) and/3 = /~(f, U). 

We assume as usual that aA >_ 0 for every 0 ~ A C Z. Denote by 7" = Th(Ux) 
the subtree generated by Ux. By our assumption skel(T') is a complete binary 

tree of depth ]~. Let U;Ul,U2 be a vertex in skel(T') and its two children in 

T. We say that a subset A C Z spl i ts  u if A intersects exactly one of the sets 

leaves(Tul ) x Y, leaves(T~ 2 ) x Y. 

For u E skel(T'), denote by I(u) = lskel(T,)(U ) the depth of u in skel(T'). We 

first claim that for 0 # A C Z, 

(4) 2 < 2r 
u E s k e l ( 7  "t ) 

A s p l i t s  u 

dz ((x, v), Ao) = dv (v, yo) + dx (x, x") + dv (yo, b). 

If dx(x ,x ' )  = dx(x ,x") ,  we use the fact that if a, b,u,v e Y but {a,b} # {u,v} 
then we have that 

][dy (u, yo) + dv (Yo, a)] - [dy (v, Yo) + dy (Yo, b)]l >_ 4 - '~ diam(Y). 

On the other hand, if dx (x, x') # dx(x, x") then 

[dx(x,x') - dx(x,x")] >_ k -h >_ r 
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The proof is by induction on ]t, the height of skel(T'). Let r be the root of 

skel(T~). Denote by ul, u2 the children of r in T, and by vl, v2 the children of 

r in skel(T'). Set ~ = CA and define ~1, ~2 by 

I{x E leaves(T'.,); ({x} • Y)  M A = O}l 
r = I l e a v e s ( W ' . , ) l  , i = 1 , 2 .  

Note that since skel(T') is a complete binary tree, ff = (ffl ~t_ f f2) /2 .  If A does 

not split r, then by induction 

1( ) 
E 2--l(u) : 2 E 2 -(/(u)-l) "4- E 2--(/(u)--l) 

u E s k e l ( T  t ) uEskel(Ttvl ) u ( = ~ k e l ( ~ r  v2  ) 
A s p l i t s  u A s p l i t s  at A s p l i t s  u 

_< ~(211 + 2(2) = 2r 

On the other hand, if A splits r, it does not intersect one of leaves(T~l ) • Y, 

leaves(T~2) • Y; say it does not intersect leaves(T~2) • Y. In this case @ = 1, 

so that by the induction hypothesis 

E 2-'(~) = 1 + ~ (  E 2-(t(~)-1)) 
u E s k e l {  T t ) u E s k e l ( T t  Vl ) 

A s p l i t s  u A s p l i t s  u 

1 
< 1 + ~2~1 = ~2 T ~1 = 2ft. 

This finishes the proof of (4). Now, by the definition of ~ = fl(f, U), 

h-1 

E E 2- 'E 4= E E 2-,1o  
l : 0  n E s k e l ( T ' )  05~ACZ O r  u e s k c l ( T ' )  

u in  d e p t h  I A s p l i t s  u A s p l i t s  u 
in  s k e l ( T  I ) 

E OlPA2~A = ~flp" 
O#ACZ 

It follows that there exists some l E {0,. . . ,  h - 1} such that 

u E ~ k c l ( 7  - t  ) O ~ A C Z  - -  h 
u il~ d e p t h  I A s p l i t s  u 
in s k e l ( T  t ) 

So there exists a vertex u E skel(T') (in depth l in skel(T')) such that 

-s . 

O#ACZ h 
A s p l i t ~  u 
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Denote by Ul, u2 the two children of u ill T. Since u is a vertex of skel(Tr), 

there are xl E leaves(T~) N Ux and x2 E leaves(Tu:) n Ux (in particular, 

lca(xl,x2) = u). Fix (xl ,yl)  e U and (x2,y2) E U. The observation here is 

that if a subset A C Z does not split u, then one of the following two cases 

happens: 

�9 A N (T~ • Y) = 0. In this case, dz((x l ,y l ) ,A)  = dz((x2,y2),A), and 

therefore 

Idz((x,, Yl), A) - dz((z~, Y2), A)I = 0. 

�9 F o r / =  1,2 there is, " Eleaves(T~,)x i and Yi; Yi" E Y such that dz((xi ,yi) ,A) 
- d " - dy(yz,y~) + dx(xi,x'i) + Y(Y0,Yi ). Hence, 

I dz((xl,  Yl), A ) -  dz ((x2, Y2), A)I <_ dx (xl, x~) + dx (x2, x,~) + 2 diam(Y) 

2 
< ~dx (X l ,  X2) -]- 2 diam(Y) 

<_ 2 + 2k h kdiam(Y) dz((xl,  Yl), (x.2, Y2)). 

Therefore 

l f((xl,y~))-f((x2,y2))l ~, 

= ~ aPA]dz((xl,Yl),A)-dz((x2,y2),A)]" 
r162 

A ~l)litM u 

+ Z (~PAIdZ((xi'yl)'A) -- dz((x2'Y2)'A)iP 
Or 

A dq*~,~n't ~plito u 

O~ACZ 
A ~p l i t~  u 

(2 + 2k h diam(Y) )p 
-t- k dz((xl,yl) ,(x2,y2)) E aPA 

OCAT~U 

<L ]~ -I-- [ 2/~P (2 -I- 2khdialn(Y))pTp][dz((xl,yl),(x2,y2))]p.k | 

Proof of Theorem 2: Let h ,m  _> 2, where e = k-h/2. Define n = m2 h, so that  

IZ l  = n .  

Let f :  Z ~ t?~ ~\{~} be a Prdchet embedding. Fix 0.5 < 5 < 1. We can 

always choose h and m such that n ~ = [~(2 h -t- tort 2d-l) (2 h of order n 5 and m 

of order nl-~).  Fix such h and m, and let V C Z be such that IVI >__ n ~. By 

Lemma 1 there is a subset U C V which satisfies the conditions of Lcmma 4 

with h _> C(5)logn.  Set ~ = ~(f ,  U), 7 = 7(f,  U). It follows from Lemmas 2, 
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3 and 4 that  

Y. BARTAL, N. LINIAL, M. MENDEL AND A. NAOR 

max{fl , 2-n/P4-mT} 
dis t ( f lv  ) > dis t(f lv ) _> c 

max{ (c(5) log n)l/p ' 

Isr. J. Math. 

for some universal constant c > 0. 

If 

logn) /  > 

then we deduce that  d is t ( f Iy  ) _> (C(5) log n) 1/p, as required. Otherwise, we get 

the lower bound dis t ( f ly  ) > ck2-n/p4 -m. Recall that  we are still free to choose 

k, so that  the required result also follows from this case provided that  k is large 

enough. | 

3. Discuss ion  

The goal of Theorem 2 has been to provide an example for which Fr6chet em- 

beddings fail to achieve the best possible bounds. This is done for the problem 

of embedding subsets of size at least n ~ into ~p, where 5 > 1/2. We suspect that  

the same holds also for 5 < 1/2. However, the example presented here does not 

immediately apply to this case. 

Finally, we comment on a concept due to Matou~ek and Rabinovich [11] which 

is a different natural generalization of Bourgain's embedding. Given a finite 

metric space (V, p), we say that  a one-dimensional metric a on V is d o m i n a t e d  
by p if p(x, y) > a(x, y) for every x, y E V. The polytope ~do,n(p) is the convex 

hull of all one-dimensional metrics dominated by p. It is natural to ask whether 

embeddings into el d~ can be used for Ramsey-type problems. We observe that  

this is indeed the case. The following theorem is a consequence of the main 

Ramsey-type theorem of [2]: 

THEOREM 3: For every finite metric M and every (~ > 2, there exists a subset 

N C M of cardinality >_ IMI 1-C'''-~ that is O(a)-equivalent to some metric in 

fd~ Here, C > 0 is an absohlte constant. 

The proof of Theorem 3 is in two steps: (i) We recall that  Theorem 1 follows 

from a Ramsey-type theorem of [2] where the target metric space for the em- 

bedding is an ultrametric (which is isometrically embeddable in ~2). (ii) Every 

ultrametric p is O(1)-equivalent to some metric in s This is a simple 

fact, a proof of which is sketched below. 
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PROPOSITION 5: Every ultrametric p is 16-equivalent to some metric in gdl~ (p). 

Sketch of a proof.: As shown in [2], p has a 4-embedding in some 4-HST. 

So, it suffices to prove that  p is 4-equivalent to some metric in gdom(p) for the 

case where p itself is a 4-HST metric. Let us recall: A k-HST is defined by 

a tree T in which every internal vertex v is assigned a weight A(v) > 0. If 

v is a child of u, then A(u) >__ kA(v). The metric is defined on T's  leaves 

via d(x,y)  = A(lca(x,y)) .  The metric in fdom(p) that  is 4-equivalent to p 

is constructed through a probabilistic argument. Associate with every edge 

e = u v a w e i g h t e e E  { - 3  3 ~, ~ }. This is done uniformly and independently over 

all edges. Associated with this is a mapping ~ = ~ of T's  leaves to the real 

line, ~(x) = ~ A(U)euv. This sum extends over all edges uv in the directed 

path from T's  root to x. It is easy to verify that  the one-dimensional metric 

induced on the leaves is dominated by p. This is now averaged over all possible 

choices of the ee'S. | 
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