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This article deals with random walks on arbitrary graphs. We consider the cover 
time of finite graphs. That is, we study the expected time needed for a 
random walk on a finite graph to visit every vertex at least once. We establish 
an upper bound of O(n 2) for the expectation of the cover time for regular (or 
nearly regular) graphs. We prove a lower bound of s log n) for the expected 
cover time for trees. We present examples showing all our bounds to be tight. 
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1. I N T R O D U C T I O N  

A random walk on a graph is a very simple discrete time process. A particle 
starts moving on the vertices of the graph. It starts at a specific vertex and 
at each time step it moves from its present vertex to one of its neighbors. 
This neighbor is chosen at random, and all neighbors are equally likely to 
be selected. Such walks have been extensively studied for various highly 
regular graphs such as the integer line, a k-dimensional grid, Cayley graphs 
of various groups, etc. They are not as well understood for general graphs. 

One exception is Ref. 1 dealing with random walks on general graphs. 
They have shown that for any undirected connected graph, a random walk 
will almost surely visit all the vertices in a polynomial number of steps. 
Specifically, they proved an upper bound of]VI3 for this expectation. This 
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served as a basis for a randomized algorithm for the undirected connec- 
tivity problem that runs in logarithmic space: To determine whether two 
vertices in the graph are connected, the algorithm simply takes a random 
walk starting from the first vertex, and checks whether it arrives at the 
target vertex within that polynomial number of time steps. 

In this paper we proceed with the investigation of the cover time. That 
is, we study the expected time needed until we first visit all the nodes in a 
graph. Let G be an undirected graph, and v a vertex in G. Let l be a walk 
originating at vertex v. We say the walk I covers the graph G if every vertex 
in G is visited at least once during the walk. For  every vertex v we define a 
random variable X~ to be the first time a random walk originating from v 
covers the graph G. 

Definition. The cover time of G starting from v, cv(G), is defined to be 
the expected value of X,. 

Reference 1 gave the first general bound for the cover time: 

Theorem I.  (1) For any graph G and vertex v, 

cv(G ) ~ 2  IV] IE[ 

Our main results are as follows: 

Theorem 2. 
any v 

Let dmi n be the minimal degree in a graph G; then for 

I vI [El 
c~(G) <~ 16 - -  

Corollary 3. Let G be a regular graph, then for any v: 

c~(G) <<. 0(I  VI 2) 

Theorem 3. Let G be any tree on n vertices, and let v be any vertex 
in G; then 

c~(G) >~ n log~ n - O(n) 

In all cases we give examples showing our results to be optimal. 
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2. P R E L I M I N A R I E S  

Let G =  (V, E) be a finite graph. We discuss the following random 
process: A particle starts at some vertex v. At each time step it moves at 
random to one of the neighbors of the vertex where it currently resides. We 
will be interested in several properties of such a random process, most 
notably the expected time needed to visit all the vertices in the graph 
during such a process. 

All graphs considered here are assumed to be connected. This causes 
no loss of generality, of course. We will also assume that this Markov chain 
is ergodic. This assumption simplifies the reasoning and it causes no loss of 
generality, since ergodicity may be guaranteed by adding a self-loop with 
an e probability of stay at each vertex. This will modify the quantities we 
are interested in by at most a constant factor. 

For  any u, v e V we define the random variable X~,~ to be the first time 
a random walk that originates from u reaches v. Define Tu,~ to be the 
expected value of Xu,~. For  any v ~ V let deg(v) be the degree of v in G, and 
N ( v )  be the set of neighbors of v in G. The following claims can be derived 
from standard properties of Markov  chains, and are shown in Ref. 1. 

Lemma 1. 

Corollary I. 

For  every vertex v ~ V, 

IEI 
Tv,~ = 2 deg(v---~ 

For  any vertex v, 

L , ~ = 2  IEI - 1  
ueN(v) 

Corollary 2. For  any (u, v) e E, 

r.,~<2 IEI 

3. C O V E R  T I M E S  F O R  F I N I T E  G R A P H S  

This section deals with the following question: How long may a 
random walk on a finite graph take in order to visit every vertex at least 
once? Let l be a walk originating at vertex v. We say the walk l covers the 
graph G, if every vertex in G is visited at least once during the walk. For  
any vertex v we can define a random variable X~ to be the first time a 
random walk originating from v covers the graph G. We are interested in 
this random variable, and in particular in its expected value. 



124 Kahn et  aL 

Definition. The cover time of G starting from v, cv(G), is defined to be 
the expected value of Xv. 

Reference 1 gave the first general bound for the cover time: 

Theorem 1. (1) For  any graph G and vertex v, 

c~(G) ~< 2 t Vl IEI 

The following example shows that without further constraints on the 
graph this result is optimal: 

Example 1. Let G consist of 2 cliques of n/3 vertices that are connec- 
ted to each other by a path of another n/3 vertices. 

Claim. For  all v" cv(G)= O(n3). 

The proof is left to the reader. Let us only indicate that when the walk is in 
one of the two cliques, the expected time to leave that clique is Q(r/2). Also 
in a one-dimensional walk with a reflecting barrier at the origin the 
expected number of returns to the origin until first reaching k is ~(k).  The 
remaining easy details may be filled in by the reader. 

3.1. Improved Bounds for Regular Graphs 

The last example showed that the bound of O(]V] ]E]) cannot be 
improved without further constraints on the graph. One feature of the last 
example was that some of the vertices had very low degree, while others 
had very high degree. The following theorem shows that indeed if the 
degrees of the vertices are balanced then the previous bound can be 
improved. 

Let drain be the minimal degree in a graph G; then for Theorem 2. 
any v 

Corollary 3. 

I vl IEI 
cv(G) <<, 16 - -  

dmin 

Let G be a regular graph then 

cv(G) ~ 8 Ivl 2 

Using different arguments we can improve the constant in the 
corollary to 4. Before we prove the theorem we will need the following 
combinatorial lemma. 
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L e m m a  2. Let G be a graph with minimal degree d, then there exists 
a collection of d/2 forests on V with the following properties: 

1. Each forest is a subgraph of G. 

2. Each edge of G appears in at most 2 forests. 

3. Each forest has at most 2 [VI/d components. 

Proof We construct the forests algorithmically: Start with the first 
component of the first forest. Pick any vertex, and let it mark one of the 
edges incident with it. Put this edge into the first forest and proceed to the 
vertex at the other end of the marked edge. Now this vertex marks one of 
the edges incident with it, adds this edge to the forest and we move to its 
other end. Continue with this procedure never marking an edge that 
creates a cycle. Stop this process when every edge incident with the current 
vertex creates a cycle, if added. 

We now start the second stage of constructing the first forest. Pick any 
vertex that was not used in the first stage and start the same process from 
this vertex. It is allowed to mark an edge whose other vertex was used in 
the previous stage, but if this happens this stage is ended (and our forest 
consists at the moment  of just one tree). Otherwise we mark an edge going 
to a new vertex and proceed with the construction. As above we stop when 
all edges incident with the current vertex would create a cycle if added. 
Now we start the next stage and so on until we use all the vertices of G. 
This finishes the construction of the first forest. Note that (1) this is a 
forest; (2) each component has at least d vertices, since all the edges 
incident with the last chosen vertex in a component close a cycle. 

We now start constructing the second forest. It is constructed like the 
first one, but with the restriction that no vertex marks an edge it had 
marked in the construction of the previous forest. Note that an edge may 
appear in two forests, but each time it is marked by a different vertex. The 
second forest has al! its components of size at least d -  1, since all the edges 
going out of the last vertex in a component must close a cycle, except 
possibly one edge which was marked during the creation of the previous 
forest, We repeat this construction d/2 times, generating d/2 forests, Each 
component, even in the last forest, must be of size at least d/2, since at 
most d/2- 1 of its incident edges were marked during the construction of 
previous forests. Thus there may be at most 21Vl/d components in each 
forest. Note also that each edge may appear in at most two forests since it 
can be marked only once by each of its two vertices. [] 

Let us comment that this lemma may also be derived from the matroid 
intersection theorem (Ref. 2, p. 130). 

We can prove the theorem now. 
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Proof For each edge e e E where e = (u, v) define the weight of e, 
W(e)= Tu,~+ T,,,. For a set of edges F, define the weight of F to be 
W(F) = ~e~e W(e). We will show that (1) there exists a spanning tree in G 
of weight at most 16 I vI IEl/dmi~, and that (2) this implies a similar bound 
~for the cover time. 

We first compute the total weight of all edges in E, using Corollary 3: 

W(E)= ~ IV(e)= ~ ~ T ~ , ~ = 2 1 V I ( I E I - 1 )  
e ~ E  v ~ V  u e N { ~ )  

We now invoke Lemma 2 on G, and get d~i,/2 forests: F 1 , . . .  , FdmJ2. 
Since each edge appears in at most two of these forests we get that 

W(F~) <~ 2W(E) <~ 4 I VI IEI 
i 

Thus the forest with least weight, say F, has weight bounded by 
8IV[ IEI/dm~n. We now wish to turn this forest into a spanning tree. This 
forest has at most 2 I VI/dmin components. Thus it is possible to add at most 
2 I Vl/dmin edges to it and turn it into a spanning tree, T. By Corollary 2, 
the weight of each such additional edge is at most 4 [El thus the total 
weight added does not exceed 81VI IEl/dmin. Thus the total weight of T is 
at most 16]VI IEl/dm~n. 

The cover time is upper bound by the weight of any spanning tree, as 
shown in Ref. 1. 

Can this result be improved? The following example shows that the 
result may be tight (up to a constant factor) even for d-regular graphs, of 
any degree d up to n/2. 

Example 2. Let d and n be integers with d + 1 dividing n. Consider 
the following d-regular graph, Gd, on n vertices: We start from n/(d+ 1) 
disjoint cliques of size d +  1 each. We now delete an edge [a,., bi] in the ith 
clique. Add edges [ai, bi+l] ,  indices taken rood n/(d+ 1). 

Claim. For any d, such that d +  1 properly divides n, and for any 
vertex v, cv(Gd)= O(n2). 

Proof (sketch). The expected time to exit any of the cliques is clearly 
O(d2). Our walk can be thus thought of as taking place on a circle of 
length n/(d+ 1), where the probability of moving either left or right is 
O(d-2). Since the cover time of a circle is quadratic, the claim follows. 

A trivial lower bound for the cover time in terms of IEl/dmin can also 
be given: 
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Proposition 1. Let drain be the minimal degree in G; then there exists 
a vertex v such that 

cv(G )>~2 IE] 1 

Proof Let v be a vertex of degree drain; then T~,~ = 2  IEl/d~in, so the 
average expected time to reach v from its neighbors is 2 ]E(dmin- 1. [] 

3.2. Lower Bound for Trees 

The previous section dealt with upper bounds for the cover time. In 
this section we address the question of how small the cover time may be. 
Consider the following example: 

Example 3. Let G be the complete graph on n vertices, and let T be 
a star on n vertices, then for any v, e , (G)=n logen 3-O(1), and c~(T)= 
2n loge n + O(1). 

Proof. Both are instances of the "coupon collector" problem. 
We conjecture that n log n is indeed a lower bound for the cover time 

of any graph. 

Conjecture 1. For  any graph G, and for any vertex v, 

c~(G)>~ IVI 1Oge I V I - o ( I V l  log IVI) 

We can prove this conjecture for the special case of trees. 

Theorem 3. Let G be any tree on n vertices, and let v be any vertex 
in G; then 

co(G ) >>. n log e n - O(n) 

Proof Let Tn be the minimum cover time over all trees on n vertices. 
We will show that 

7~n >~1+ 1+T55_ 2 v.-1 

The theorem follows by solving this recursion. 
We first prove the theorem when v is a leaf. The general result then 

follows since a walk covers the tree iff it visits all the leaves. Therefore the 
cover time when starting at a nonleaf u is bounded below by a convex corn- 
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bination of the cover times starting at the leaves, the coefficient 
corresponding to a leaf I being the probability that it is the first leaf to be 
reached when starting from u. 

Let x be the unique neighbor of v in G, and let G' stand for G - v. The 
cover time for G may be computed as follows: first we take one step from v 
to x (time taken: 1). Then we need to cover G' (expectation of the time 
taken: at least T, 1). What  needs to be added to this, in order to get the 
cover time of G, is the expected time spent on the edge (v, x) during the 
covering of G'. We will show that this time is at least Tn_ 1/(n - 2). 

This proof  is based on two facts. Let d be the degree of x in G'; then 
we claim: 

1. The expected number  of times the walk visits x before it covers G' is 
at least Tn_ ld/2(n - 2). 

2. The expected time spent taking the tour x ~ v--* x each time x is 
visited is 2/d. 

The total expected time spent on the edge (x, v) during the covering of 
G' will thus be the product of these two numbers, which is Tn_ 1/(n - 2). 

Fact  1 is proven by the following argument: Define a closed-x-tour to 
be a walk in G' originating at vertex x, covering all of G', then returning to 
x and which is minimal with respect to these properties. Define the random 
variable U to be the fraction of the time spent at vertex x during a random 
closed-x-tour. It is clear that the expected value of U is equal to the limit 
probability of residing in x, which is known to be d/2 IEI, where [El is the 
number of edges in G'. We are interested in the frequency of visiting x till 
G' is covered. This frequency is bounded below by U, since there are no 
visits to x between the time G' is covered and the first return to x. We 
conclude that the expected number of times x is visited before G' is covered 
is at least E ( U ) .  T , _ I  = T n _ l d / 2 ( n - 2 ) .  

The second fact is seen by observing that when x is reached, the 
number  of times the detour x ~ v --* x is taken is distributed geometrically 
with probability 1/(d + 1). The cost of each detour is 2, so the expected cost 
is 2/d. [] 
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