
Second International Workshop on

Optimisation in Multi-Agent Systems

11th May 2009

co-located with
the 8th International Joint Conference on Autonomous Agents and Multi-Agent Systems,

Budapest, Hungary

Editors:

Nicholas R. Jennings
Alex Rogers

Juan Antonio Rodriguez Aguilar
Alessandro Farinelli

Sarvapali D. Ramchurn

Foreword

11th May 2009

The number and variety of applications of multi-agent systems has increased sig-
nificantly over the last few years, ranging from online auction design, through
multi-sensor networks, to scheduling of tasks in multi-actor systems. In many
cases, however, the systems designed for these applications require some form of
optimisation in order to achieve their goals. Given this, a number of advances
have been made in the design of winner determination algorithms, coalition for-
mation techniques, and distributed constraint optimisation algorithms, among
others. Nevertheless, there are no general principles guiding the design of such
algorithms that would enable researchers to either exploit solutions designed in
other areas or to ensure that their algorithms conform to some level of applica-
bility to real problems.

Against this background, and based on the success of the first OPTMAS
08 workshop held at AAMAS in 2008, we present here the contributions to
the second workshop on Optimisation in Multi-Agent Systems (OPTMAS 09).
Our first aim here is to bring together researchers from different parts of the
multi-agent systems research area, to present their work and discuss acceptable
solutions, benchmarks, and evaluation methods for generally researched optimi-
sation problems. In this context, this collection ranges across contributions in
the are of Distributed Constraint Optimisation, Task Assignment, Game Theory
and Learning. The collection aims to support interactions between researchers
working on similar optimisation problems or techniques from various areas of
the multi-agent systems community.

Nicholas R. Jennings, Alex Rogers, Juan Antonio Rodriguez Aguilar,
Alessandro Farinelli, and Sarvapali D. Ramchurn

11th May 2009.

Table of Contents

eXtreme-Ants: Ant Based Algorithm for Task Allocation in Extreme
Teams . 1

Fernando dos Santos and Ana L. C. Bazzan

Multiagent Policy Teaching . 9
Lachlan Dufton and Kate Larson

Flexible Procurement of Services with Uncertain Durations 16
Sebastian Stein, Enrico Gerding, Alex Rogers, Kate Larson and Nicholas
Jennings

An Efficient Algorithm For Solving Dynamic Complex DCOP Problems . . 23
Sankalp Khanna, Abdul Sattar, David Hansen and Bela Stantic

Pick-A-Bundle: A Novel Bundling Strategy for Selling Multiple Items
within Online Auctions . 31

Ioannis Vetsikas, Alex Rogers and Nick Jennings

A complete algorithm for DisCSP: Distributed Backtracking with
Sessions (DBS) . 39

Pierre Monier, Sylvain Piechowiak and René Mandiau

Train Driver Rescheduling using Task-Exchange Teams 47
David G.A. Mobach, Erwin J.W. Abbink, Pieter J. Fioole, Ramon M.
Lentink, Leo G. Kroon, Eddy H.T. van der Heijden and Niek J.E. Wi-
jngaards

A Multi-Agent Learning Approach for the Multi-Mode Resource-
Constrained Project Scheduling Problem . 55

Tony Wauters, Katja Verbeeck, Greet Vanden Berghe and Patrick De
Causmaecker

Local Optimal Solutions for DCOP: New Criteria, Bound, and Algorithm 63
Zhengyu Yin, Christopher Kiekintveld, Atul Kumar and Milind Tambe

Generalizing DPOP: Action-GDL, a new complete algorithm for DCOPs . 71
Meritxell Vinyals, Juan Antonio Rodriguez Aguilar and Jesus Cerquides

Distributed Constraint Optimization for Time-Critical Domains 79
James Atlas and Keith Decker

Towards Efficient Coordination in Open MAS using Graphical Utility
Models . 87

Nicolas Stefanovitch, Amal El-Fallah Seghrouchni and Frédéric Peschan-
ski

Author Index

Abbink, Erwin J.W.47
Atlas, James . 79

Bazzan, Ana L. C. 1

Cerquides, Jesus 71

De Causmaecker, Patrick 55
Decker, Keith . 79
Dos Santos, Fernando 1
Dufton, Lachlan . 9

Fioole, Pieter J. 47

Gerding, Enrico 16

Hansen, David . 23

Jennings, Nicholas 16, 31

Khanna, Sankalp 23
Kiekintveld, Christopher 63
Kroon, Leo G. 47
Kumar, Atul . 63

Larson, Kate 9, 16
Lentink, Ramon M. 47

Mandiau, René .39
Mobach, David G.A. 47
Monier, Pierre . 39

Peschanski, Frédéric 87
Piechowiak, Sylvain 39

Rodriguez Aguilar, Juan Antonio . .71
Rogers, Alex 16, 31

Sattar, Abdul . 23
Seghrouchni, Amal El-Fallah 87
Stantic, Bela . 23
Stefanovitch, Nicolas 87
Stein, Sebastian 16

Tambe, Milind . 63

Van Der Heijden, Eddy H.T. 47
Vanden Berghe, Greet 55
Verbeeck, Katja 55
Vetsikas, Ioannis 31
Vinyals, Meritxell 71

Wauters, Tony . 55
Wijngaards, Niek J.E. 47

Yin, Zhengyu . 63

eXtreme-Ants: Ant Based Algorithm for Task Allocation in
Extreme Teams

Fernando dos Santos and Ana L. C. Bazzan
PPGC – Universidade Federal do Rio Grande do Sul

Caixa Postal 15064, CEP 91501-970, Porto Alegre, RS, Brasil
{fsantos,bazzan}@inf.ufrgs.br

ABSTRACT
This paper addresses the problem of multiagent task allo-
cation in extreme teams. An extreme team is composed
by a large number of agents with overlapping functionality
operating in dynamic environments with possible inter-task
constraints. We present an approximate algorithm for task
allocation in extreme teams, called eXtreme-Ants. The al-
gorithm is inspired in the division of labor in social insects
and in the process of recruitment for cooperative transport
observed in ant colonies. The model of division of labor of-
fers fast and efficient decision-making, while the recruitment
ensures the allocation of constrained tasks that require si-
multaneous execution. We show that eXtreme-Ants outper-
forms other two algorithms regarding communication and
computational effort.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms

Keywords
Multiagent Task Allocation, Swarm Intelligence

1. INTRODUCTION
How to efficiently allocate tasks among agents in large-

scale and dynamic environments? A large-scale environment
means thousands of agents that must coordinate themselves
to allocate and perform the available tasks. Scerri et al.
call these scenarios extreme teams [7]. Task allocation in
extreme teams is associated with four features: (i) dynamic
environments, in which task can appear and disappear; (ii)
agents perform multiple tasks given their available resources;
(iii) agents have overlapping functionality to perform the
tasks but with differing levels of capability; and (iv) inter-
task constraints can be present, imposing simultaneous ex-
ecution requirements.

Extreme teams can be formalized as an extended general-
ized assignment problem (E-GAP) [7]. The E-GAP model
captures precisely the characteristics of extreme teams and
defines the solution as the allocation which maximizes a re-
ward measure, given by the capabilities of the agents that
take part of the allocation. Efficient multiagent techniques
to deal with E-GAP are a prerequisite to build teams of

robots to act in extreme situations. Besides the reward,
the communication channel must be used in the best way
possible to avoid an excessive amount of communication.
Moreover, the computational effort employed by the agents
to decide which tasks to accept must be as low as possible,
enabling they to act in environments where the available
time to make a decision is highly restricted.

Social insects (e.g. ants) have the characteristics of ex-
treme teams. Thus, we can conclude that Nature, despite
the simplicity of the insects and over years of evolution, has
provided these insects with the capability to effectively act
in these teams.

To perform the tasks related to the nest survival, social
insects adopt a division of labor among workers. Theraulaz
et al. [8] present a mathematical model to replicate some
mechanics of division of labor. This model is based on indi-
vidual response thresholds and tasks stimuli. Moreover, it
is not required that individuals have complete information
about the environment and there is no need of team leaders.

Simultaneous execution of tasks also exists in social in-
sects, as for instance in some species of ants. The task
in question is the transportation of large preys. Instead of
seize and transport individually a large prey, some species
form groups of ants to cooperatively transport a prey. These
groups are formed via a process called recruitment [2]. In
this sense, the large prey can be seen as a set of interdepen-
dent subtasks, where each one is simultaneously executed by
an ant.

We propose a multiagent approximate task allocation al-
gorithm, called eXtreme-Ants, which is inspired in the divi-
sion of labor in social insects and in the process of recruit-
ment present in ants. Agents running eXtreme-Ants are
efficient to act in extreme teams, with low computa-
tional effort and communication. We empirically eval-
uate eXtreme-Ants in a domain independent simulator
and compare it with two other algorithms that are
GAP-based: Swarm-GAP [1] and LA-DCOP [7]. The al-
gorithm eXtreme-Ants achieves total rewards close to the
ones achieved by LA-DCOP, but with lower communica-
tion and computational effort. Regarding Swarm-GAP,
eXtreme-Ants yields better total rewards, particularly in the
presence of inter-task constraints that impose simultaneous
execution.

The remaining of this paper is organized as follows. Sec-
tion 2 discusses the GAP and its extension (E-GAP), the
model of division of labor in social insects, and the pro-
cess of recruitment used by ants to cooperatively trans-
port large preys. Section 3 details other two algorithms

1

for dealing with GAP-based task allocation, Swarm-GAP
and LA-DCOP. Section 4 presents the proposed algorithm.
Section 5 presents the empirical evaluation via a series of ex-
periments. Finally, section 6 points out the conclusion and
future directions.

2. BACKGROUND

2.1 GAP and EGAP models
The generalized assignment problem (GAP) is a model

used to formalize the multiagent task allocation problem [3].
A GAP is composed by a set J of tasks to be performed by a
set I of agents. Each agent i ∈ I has a capability to perform
each task j ∈ J denoted by Cap(i, j) → [0, 1]. Each agent
also has a limited amount of resource i.res and uses Res(i, j)
when performs task j. An allocation matrix M is used to
represent the allocation, where mij is given by Equation 1.

mij =


1 if i performs j
0 otherwise

(1)

The goal is to find M that maximizes the allocation re-
ward, which is given by the agents’ capabilities, as shown in
Equation 2.

M = argmax
M′

X
i∈I

X
j∈J

Cap(i, j)×m′
ij (2)

The allocation M must respect all agents’ resources limita-
tions (Equation 3) and each task must be allocated to at
most one agent (Equation 4).

∀i ∈ I,
X
j∈J

Res(i, j)×mij ≤ i.res (3)

∀j ∈ J ,
X
i∈I

mij ≤ 1 (4)

The GAP model was extended by Scerri et al [7] to incor-
porate two features related to extreme teams: scenario dy-
namics and inter-task constraints. This extended model was
called extended generalized assignment problem (E-GAP).

Inter-task constraints are interdependencies among tasks.
We focus on AND constraints here, but the formalization can
be extended to other constraint types as well. In the case
of an AND constraint the agents only receive the reward
if all constrained tasks are simultaneously executed. The
AND constrained tasks can be viewed as a decomposition
of a large task into interdependent subtasks. The execution
of some subtasks does not leads to the successful execution
of the large task, wasting the agents’ resources and not pro-
ducing the desired effect in the system. Moreover, in the
case of physical robots, they can be damaged attempting to
perform an effort greater than their capabilities (e.g. trying
to remove a large piece of collapsed building from a blocked
road).

To formalize AND constrained tasks, the E-GAP model
defines a set ./ = {α1, . . . , αp} containing p sets α of AND
constrained tasks in the form αk = {j1 ∧ . . . ∧ jq}. Each
AND constrained task j belongs to at most one set αk. The
number of tasks that are being performed in a set αk is given
by Equation 5.

xk =
X
i∈I

X
j∈αk

mij (5)

Let vij = Cap(i, j) × mij . Given the constraints of ./,
the reward V al(i, j, ./) of an agent i performing the task j
is given by Equation 6.

V al(i, j, ./) =

8
<
:

vij if ∀αk ∈./, j 6∈ αk

vij if ∃αk ∈./ with j ∈ αk ∧ xk = |αk|
0 otherwise

(6)
To represent the dynamics in the scenario all E-GAP vari-
ables are indexed by a time step t. The goal is to find a

sequence of allocations
−→
M one for each time step t, as shown

in Equation 7. A delay cost function DCt(jt) can be used
to define the cost of not performing a task j at time step t.

f(
−→
M) =

X
t

X

it∈It

X

jt∈J t

(V alt(it, jt, ./t)×mt
ij)

−
X

t

X

jt∈J t

(1−
X

it∈It

mt
ij)×DCt(jt)

(7)

Furthermore, the agents’ resource limitations must be re-
spected at each time step t (Equation 8) and each task must
be allocated to at most one agent (Equation 9).

∀t, ∀it ∈ It,
X

jt∈J t

Rest(it, jt)×mt
ij ≤ it.res (8)

∀t, ∀jt ∈ J t,
X

it∈It

mt
ij ≤ 1 (9)

2.2 Division of Labor in Social Insects
An effective division of labor is responsible for the ecolog-

ical success of insect societies. A social insect colony with
hundreds of thousand members operates without the exis-
tence of explicit coordination. An individual cannot assess
the needs of the colony; it just has a fairly simple local in-
formation, and no one is in charge of coordination. From
individual workers aggregation, the colony behavior emerges
without any type of explicit coordination or planning. The
key point is the plasticity of the individuals, in other words,
the existence of a behavioral flexibility. This flexibility al-
lows the individuals to engage in different tasks responding
to changing conditions in the colony.

Observations regarding this behavior are the basis of the
theoretical model described by Theraulaz et al. [8]. In this
model, interactions among members of the colony and indi-
vidual perception of local needs result in a dynamic distri-
bution of tasks. The model is based on individuals’ internal
response threshold related to tasks stimuli. Assuming the
existence of J tasks to be performed, each task j ∈ J has
an associated stimulus sj . The stimulus is related to the
demand for the task execution, and can be a number of en-
counters, a chemical concentration, or any quantitative cue
sensed by individuals. Given a set of I individuals which can
perform the tasks of J , each individual i ∈ I has an internal
response threshold θij , which is related to the likelihood of
reacting to the stimulus associated with task j.

The threshold can be seen as a genetic characteristic (also
called polymorphism, which is responsible for the existence
of differences in the morphologies of insects belonging the
same society), or as a temporal polyethism (in which indi-
viduals of the same age tend to perform identical sets of
tasks), or simply as individual variability.

In the model of Theraulaz et al. [8] the individual internal
threshold θij and the task stimulus sj represent the proba-

2

bility (tendency) Tij(sj) of the individual i to perform task
j, as shown in Equation 10.

Tij(sj) =
s2

j

s2
j + θ2

ij

(10)

This tendency means that any individual is able to per-
form any task if the corresponding task stimulus is high
enough to overcome the individual’s internal threshold. This
flexibility enables the survival of the colony in an eventual
absence of specialized individuals, since other individuals
start to perform the tasks when the stimulus exceeds their
thresholds.

2.3 Recruitment for Cooperative Transport
In some species of ants the transportation of large preys in

a cooperative way involves two or more ants that cannot do
the transport alone [6]. The main purpose of the cooperative
transport is to maximize the trade off between the gained
energy (food) and the energy spent to take it to the nest.
Further, this process speeds up the transport.

The group involved in the cooperative transport is formed
by a process called recruitment. When a single scout ant
discovers a prey, it firstly attempts to seize and trans-
port it individually. After unsuccessful attempts, a recruit-
ment process starts. To recruit nestmates the ants employ
a mechanism called long-range recruitment (LRR). Some
species also employ a second mechanism, called short-range
recruitment (SRR). In both mechanisms the ants use com-
munication through the environment (stigmergy) [2].

In the SRR the scout that discovers the prey releases a
secretion. Shortly thereafter, nestmates in the vicinity are
attracted to the prey location by the secretion odor. When
the prey cannot be moved by the scout and the ants recruited
via SRR, one of the ants begins the LRR. Hölldobler et
al report that SRR is sufficient to summon enough ants to
transport the prey in the majority of the cases [2].

In the LRR the scout ant that discovers the prey returns
to the nest to recruit nestmates. In the course towards the
nest, the scout lays a pheromone trail. Nestmates encoun-
tered in the course are stimulated by the scout via direct
contact. After, the stimulated nestmate also begins to lay a
pheromone trail even though it had not yet experienced the
prey stimulus itself, thus establishing a chain of communica-
tion among nestmates. When the scout arrives at the nest,
nestmates are attracted by the pheromone and run to the
prey site.

After the recruited ants arrive where the prey is, they be-
gin the cooperative transport. The number of ants engaged
in the transport is regulated at the prey site and depends
on its characteristics, such as weight, size, rotational forces,
and difficulty to move. When the number of ants present
is not enough to move the prey, more ants are recruited by
one of the aforementioned processes, until the prey is suc-
cessful transported. Although in a more economic approach
the scout ant should recruit an exact number or nestmates,
it was suggested that the scout cannot make a fine assess-
ment of the number of ants required to retrieve the prey
[6]. Therefore, the most effective strategy may be to recruit
a constant number of ants followed by a regulation of the
group size during the transport.

In summary, the recruitment for cooperative transport
consists in three steps:

1. The scout ant that discovered the prey starts the re-
cruitment, inviting netstmates with pheromones;

2. The ants that accept to join the recruitment move to
the prey site;

3. The size of the transportation group is regulated to
the prey characteristics.

3. RELATED WORK
The research regarding multiagent task allocation has

shown significant advances in the last few years (auction,
contracting, coalition formation, organizations, etc). A com-
plete review of the subject is outside the scope of this pa-
per. We just mention that auctions are normally centralized
mechanisms, in which agents put bids to an auctioneer, de-
pending on their capabilities and resources. After receiving
all bids, the auctioneer makes the allocation of the tasks
among the bidders. Centralized auctioneers can have se-
vere bottlenecks. Further, auctions require high amounts of
communication [9].

Here we concentrate in the line of research that deals with
coordination for task allocation. Within this research line,
one approach is the framework of distributed constraint op-
timization problem (DCOP). A DCOP consists of a set of
variables that can assume values from a discrete domain.
Each variable is assigned to one agent which has the control
over its value. The goal of the agents is to choose values for
the variables to optimize a global objective function. This
function can be described as an aggregation over a set of cost
functions related to pairs of variables. A DCOP can be rep-
resented by a constraint graph, where vertices are variables
and edges are cost functions between variables. Despite the
existence of complete algorithms for DCOP, such as Adopt
[4], and DPOP [5], these are not efficient to deal with the
problem of multiagent task allocation. Due to dense con-
straint graphs generated to represent the problem, Adopt
and DPOP demand high communication and space respec-
tively.

To deal with the particular characteristics of extreme
teams, Scerri et al. present an approximate algo-
rithm called Low-communication Approximate DCOP (LA-
DCOP), which uses tokens to represent tasks and further
minimize communication [7]. An agent decides whether or
not to accept a task based both on its capability and on
a threshold associated to the task. To deal with inter-task
constraints, LA-DCOP uses a differentiated kind of token,
called potential token. If an agent in LA-DCOP is able to
allocate more than one task, it must select the ones that
maximize its capability given its resources. This selection is
a maximization problem, which can be reduced to a binary
knapsack problem (BKP), proved to be NP-Complete. The
computational complexity of LA-DCOP thus depends of the
complexity of its function to deal with the BKP.

Another approximate algorithm which can deal with
extreme teams is the Swarm-GAP [1]. An agent in
Swarm-GAP decides whether or not to accept a task based
on the model of division of labor used by social insects
colonies. This algorithm also uses tokens to represent
tasks. To deal with inter-task constraints, the agents in
Swarm-GAP just increase the tendency to allocate a con-
strained task by a factor called execution coefficient. The
execution coefficient is computed using the rate between the

3

number of constrained tasks which are allocated and the
total number of constrained tasks.

4. eXtreme-Ants

4.1 Basic Ideas
eXtreme-Ants is an approximate algorithm that solves

E-GAPs. Agents running eXtreme-Ants use the model of
division of labor in social insects (Equation 10) to decide
whether or not to perform the tasks. The notation used
hereafter to represent agents, tasks, and all other terms is
the one from the E-GAP model (Section 2.1) and from the
model of division of labor (Section 2.2). The internal thresh-
old θij of an agent i related to a task j is defined via the
concept of polymorphism and corresponds to the inverse of
the capability Cap(i, j), as shown in Equation 11. If an
agent is not capable regarding a particular task, then its
internal threshold is set to infinity, avoiding the allocation
of the task to the agent. This makes sense if we consider
the capability as a kind of morphism. For example, a fire
brigade agent is more capable of fighting fires than rescuing
civilians. Thus it have low thresholds related to fire fighting
tasks and high thresholds to rescue civilians.

θij =


1− Cap(i, j) if Cap(i, j) > 0
∞ otherwise

(11)

Each task j ∈ J has an associated stimulus sj . The stim-
ulus controls the allocation of the tasks by the agents. Low
stimuli mean that the tasks will only be accepted by agents
with low thresholds (thus, more capable). High stimuli in-
crease the chance of the tasks to be accepted, even by agents
with high thresholds (less capable).

Since in the E-GAP each task must be allocated to at most
one agent, eXtreme-Ants uses tokens to represent the tasks
and ensure this mutual exclusion constraint. A token con-
tains a list of tasks it represents. An agent that holds a to-
ken has the exclusive right to accept the tasks contained in a
token. If the agent does not accept all tasks, it passes the to-
ken to another teammate. In this way, eXtreme-Ants avoid
conflicts in the allocation and reduces the communication.

To deal with AND constraints among tasks, agents in
eXtreme-Ants reproduce the recruitment process of ants.
When an agent detects that it is not capable of accepting all
AND constrained tasks perceived, it recruits other agents to
form a group committed with the simultaneous execution.

4.2 Algorithm Details
Algorithms 1 and 2 present the details of our approach.

Each agent i reacts to two events: perception of a set of tasks
(which can be AND constrained), and receipt of messages.
In the following we detail the algorithm operation.

When the agent perceives a set J of tasks (line 1) it cre-
ates a token to store the perceived tasks. The agent then
decides whether or not to accept the tasks contained in the
token, given its tendency and the available resources (lines
21-30). When a task is allocated to agent i, the available
resources at i is decreased by the amount required. If some
tasks contained in the token remains unallocated, the agent
sends the token to a randomly selected teammate. As in [7],
to avoid agents passing token back and forth, each token
maintains a list of visited agents. The token can revisit an
agent only after all were visited.

Algorithm 1: eXtreme-Ants for agent i

when perceived set of tasks J1

token := newToken();2

add each j ∈ J to token.tasks;3

evaluateToken(token);4

end5

when perceived set of AND constrained tasks αk6

/* firstly try to accept all tasks by itself */7

foreach j ∈ αk do8

if roulette() < Tij and i.res ≥ Res(i, j) then9

accept task j and decrease i.res;10

end11

end12

if there are non accepted tasks in αk then13

discard previous accepted tasks of αk (lines 7-9);14

performsRecruitment(αk);15

end16

end17

when received token18

evaluateToken(token);19

end20

procedure evaluateToken(token)21

/* decides whether or not to accept the tasks */22

foreach j ∈ token.tasks do23

if roulette() < Tij and i.res ≥ Res(i, j) then24

accept task j and decrease i.res;25

token.tasks := token.tasks− j;26

end27

end28

if there are non accepted tasks in token.tasks then29

send token to a teammate;30

end31

end32

When the agent perceives a set of AND constrained tasks
αk (line 6), it acts as a scout ant. Firstly it attempts to
accept all the constrained tasks. If it fails, it begins a re-
cruitment process. We develop a protocol that reproduces
the three steps of the recruitment process of ants via the use
of messages. There are five kinds of messages used in the
recruitment protocol of eXtreme-Ants:

request: to invite an agent to join the recruitment for a
task j ∈ αk and to commit to it;

committed: to inform that the agent joins the recruitment
for a task j ∈ αk and commits to it;

engage: to inform that the agent was indeed selected to
perform the task j ∈ αk;

release: to inform that the agent was not selected to per-
form the task j ∈ αk and must uncommit with it.

timeout: to inform that a request for a task j ∈ αk reaches
its timeout.

For the first step of the recruitment, the scout agent
sends a certain number of request messages for each task
j ∈ αk (lines 33-37). These requests are sent to randomly

4

Algorithm 2: eXtreme-Ants for agent i (cont.)

procedure performsRecruitment(AND set αk)33

repeat34

j := pick a task from αk;35

send(“request”, j) to a teammate;36

until the maximum number of requests sent for all37

j ∈ αk is reached or the recruitment for αk is
finished or aborted.

end38

when received (“request”, j) from agent is39

/* decides whether or not to commit */40

if roulette() < Tij and i.res ≥ Res(i, j) then41

commit to j;42

send(“committed”, j) to is;43

else44

if request timeout reached then45

send(“timeout”, j) to is;46

else47

forward(“request”, j) to a teammate;48

end49

end50

end51

when received (“committed”, j) from ic52

αk := AND group which contains j;53

if recruitment for αk is finished or aborted then54

send(“release”, j) to ic; return55

end56

if at least one agent committed with each j ∈ αk57

then
recruitment for αk is finished;58

/* forms the group of engaged agents */59

foreach j ∈ αk do60

pick a committed agent ip with probability61

proportional to Cap(ip, j);
send(“engage”, j) to ip;62

send(“release”, j) to non selected agents;63

end64

end65

end66

when received (“engage”, j)67

accept task j and decrease i.res;68

end69

when received (“release”, j)70

uncommit to j;71

end72

when received (“timeout”, j)73

αk := AND group which contains j;74

if the number of received timeouts for each j ∈ αk is75

equal the number of requests sent then
recruitment for αk is aborted;76

foreach j ∈ αk do77

send(“release”, j) to committed agents;78

end79

end80

end81

selected teammates and act as the pheromone released in
the air (SRR) or released on the way to the nest (LRR).
As it occurs with the scout ant, which recruits a fixed
number of nestmates independently of prey characteristics,
eXtreme-Ants fixes a maximum number of requests that
must be sent for each AND constrained task. This maximum
number must be experimentally determined to maximize the
total reward.

In the second step, the agents must decide whether or not
to join the recruitment. When an agent receives a request
originated by a scout agent is for a task j (lines 39-48),
it uses the tendency (Equation 10) to decide if it accepts
the request and then joins the recruitment, avoiding double
commitment. If the request is accepted, the agent commits
to perform the task, reserving the amount of resources re-
quired by the task. A committed message is send to the
scout to inform the commitment. If the request is not ac-
cepted, the agent forwards it to another randomly selected
teammate, reproducing the chain of communication present
in the LRR.

In the third step, the size of the group of agents engaged
in the simultaneous execution of the AND constrained tasks
must be regulated. In eXtreme-Ants the regulation is done
by the scout agent. When the scout receives enough commit-
ments for each constrained task j ∈ αk (line 57), it forms the
group of agents which will execute the tasks simultaneously.
Following the E-GAP definition, just one agent must be se-
lected among those committed for each constrained task.
The scout then performs a probabilistic selection, picking
an agent ip with probability proportional to its capability
Cap(ip, j). The scout then informs ip that it was the se-
lected one and thus must engage in the execution of j (via an
engage message, line 62). All other non selected agents are
released (via a release message, line 63). Agents that com-
mit to an already allocated task are also released to avoid
deadlocks. At this moment the recruitment is finished. As
the result, a group of agents is formed, in which each agent
is allocated to a task j ∈ αk, enabling the simultaneous
execution of all AND constrained tasks in αk.

After the group of engaged agents is formed, the re-
quests not yet accepted by some agent become obsolete.
To avoid agents passing obsolete requests back and forth,
eXtreme-Ants introduces a timeout mechanism. The time-
out is a number of agents that a recruitment request is al-
lowed to visit. When the timeout of a request is detected
(line 45), the scout is notified via a timeout message. When
the scout agent receives a timeout notification for all re-
quests sent, it aborts the recruitment and releases the com-
mitted agents.

It is important to note that due to the algorithm asyn-
chronism, the scout agent can perform another actions while
the recruitment occurs. These actions comprise the percep-
tion of another tasks, and even a recruitment for other AND
constrained task groups. Although eXtreme-Ants reproduce
the inter-agent communication via messages, it can be easily
modified to use some kind of indirect communication (e.g.
pheromones) when the environment allows it.

5. EXPERIMENTS AND RESULTS
We compare eXtreme-Ants to Swarm-GAP[1] and

LA-DCOP[7]. We have evaluated eXtreme-Ants in a do-
main independent simulator that allows experimentation
with large number of agents and tasks, performing exper-

5

iments similar to Swarm-GAP and LA-DCOP which have
also used such a simulator.

Basically, each experiment consists of 2000 tasks, grouped
in five classes, where each class determines the task charac-
teristics. The number of agents varies from 500 to 4000.
This means that the load (ratio between tasks and agents)
is 4 in the first case and 0.5 in the latter. Each agent has
a 60% probability of having a non-zero capability for each
class. In this case the agent has a randomly assigned capa-
bility ranging from 0 to 1. Regarding the AND constraints
among tasks, 60% of the tasks are related in groups of five
tasks. The simulated communication channel is reliable (ev-
ery sent message is received) and fully connected (each agent
is connected to every other agent). Each experiment consists
of 1000 time steps. The total number of tasks is kept con-
stant. At each time step, each task has a probability of 10%
to be replaced by a task potentially requiring a different ca-
pability. The tasks are persistent, which means that non
allocated tasks are kept in the next time step. At each time
step, each token or message is allowed to move from one
agent to another only once. Despite that each task can have
a particular stimulus value, we adopt the same value for all
tasks. Each datapoint in the plots we show here represents
the average over 20 runs. The standard deviations are not
shown due to their low values.

As defined by the E-GAP, the goal is to maximize the total
reward, which is the sum of the reward at each time step over
the length of the simulation. The first experiment compares
the total reward achieved by each algorithm. The param-
eters used for each algorithm are shown in Table 1. These
parameters, which were selected among a large set of tested
values, yield the maximum total reward in each scenario,
and will be used in the comparisons. Additionally, in the
case of eXtreme-Ants the total rewards are obtained with
five recruitment requests for each AND constrained task,
and with a timeout of 20 visited agents.

Table 1: Parameter values that yield the maximum
total reward for each algorithm.

eXtreme-Ants Swarm-GAP LA-DCOP
Agents

(Stimulus) (Stimulus) (Threshold)
500 0.3 0.2 0.0

1000 0.3 0.3 0.4
1500 0.2 0.2 0.6
2000 0.2 0.2 0.6
2500 0.2 0.2 0.6
3000 0.2 0.2 0.6
3500 0.2 0.2 0.7
4000 0.2 0.2 0.7

Figure 1 shows the total rewards achieved by each algo-
rithm. On average, eXtreme-Ants yields rewards that are
25% higher than those of Swarm-GAP and 19% lower than
those of LA-DCOP (t-test, 99% confidence).

When an agent accepts a task, it uses an amount of its
resources. Thus, the agents must avoid to waste their re-
sources accepting tasks that do not yield any reward (e.g.
tasks that belong to an AND constrained, but are not si-
multaneously accepted). The second experiment, shown
in Figure 2, compares the percentage of resources used
by each agent to accept tasks at each time step. As we
can see, all algorithms use almost the same percentage
of resources. There is no significative difference between

500 1000 1500 2000 2500 3000 3500 4000
Number of agents

4e+05

6e+05

8e+05

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

T
ot

al
 r

ew
ar

d

eXtreme-Ants
Swarm-GAP
LA-DCOP

Figure 1: Total reward versus the number of agents.

eXtreme-Ants and Swarm-GAP in the cases with 3000, 3500,
and 4000 agents, and between eXtreme-Ants and LA-DCOP
in the cases with 500 and 1000 agents (t-test, 99% confi-
dence).

500 1000 1500 2000 2500 3000 3500 4000
Number of agents

0

20%

40%

60%

80%

100%

U
se

d
re

so
ur

ce
s

eXtreme-Ants
Swarm-GAP
LA-DCOP

Figure 2: Percentage of resources used by each agent
at each time step to allocate tasks.

From these two experiments, we can see that despite the
fact that agents in Swarm-GAP use almost the same per-
centage of resources, the achieved total rewards are worse
than those achieved by eXtreme-Ants and LA-DCOP. This
is due to the way Swarm-GAP deals with AND constrained
tasks. The use of an execution coefficient (see Section 3)
does not ensure the simultaneous allocation of the AND
constrained tasks. Thus, the agents use their resources
to accept tasks, but this allocation does not translate into
a reward. Both eXtreme-Ants and LA-DCOP outperform
Swarm-GAP regarding the total reward. This is due to the
existence of explicit coordination mechanisms to deal with
AND constrained tasks, ensuring their simultaneous alloca-
tion.

LA-DCOP yields higher rewards than eXtreme-Ants be-

6

cause each agent maximizes its capability when accepting
the tasks, taking into account the available resources. On
the other hand, agents in eXtreme-Ants make a simple one-
shot decision to allocate tasks. The maximization leads to
a better exploitation of the agents’ resources. However, as
we show in the next experiments, there is a tradeoff between
the achieved reward and the communication/computational
effort.

In the next experiment, shown in Figure 3, we compare
the amount of communication used in each algorithm. The
communication is measured as the sum of messages sent by
the agent over all time steps, regardless of message type
(e.g. token, recruitment request, etc.). The results are
statistically significant at 99% confidence t-test. On aver-
age, agents in eXtreme-Ants sent 121% fewer messages than
those in LA-DCOP and 80% more messages than those in
Swarm-GAP. The smallest difference to LA-DCOP occurs
with 3000 agents. Even in this case LA-DCOP sends 66%
more messages than eXtreme-Ants.

500 1000 1500 2000 2500 3000 3500 4000
Number of agents

0

4e+07

8e+07

1.2e+08

1.6e+08

2e+08

2.4e+08

2.8e+08

N
um

be
r

of
 m

es
sa

ge
s

eXtreme-Ants
Swarm-GAP
LA-DCOP

Figure 3: Total number of messages sent versus the
number of agents.

As mentioned Swarm-GAP sends fewer messages than
eXtreme-Ants and LA-DCOP due to its difficulty to deal
with AND constrained tasks. The absence of an explicit co-
ordination mechanism to ensure the simultaneous allocation
leads to a small number of messages, but has a great impact
in the total reward of Swarm-GAP.

The last experiment aims at evaluating the computational
effort of the agents in each algorithm. We define the com-
putational effort as the number of evaluated tasks by each
agent at each time step. This number is computed as fol-
lows. Each time an agent decides whether or not to accept
a task, an internal counter is incremented. In the case of
eXtreme-Ants and Swarm-GAP, each probabilistic decision
causes just one increment in the counter. On the other hand,
since an agent in LA-DCOP solves a BKP to decide which
tasks to accept, the increment in the counter is related to
the number of retained tasks. To solve a BKP our imple-
mented version of LA-DCOP uses a greedy approach, which
sorts the tasks by the agent’s capability and then selects the
tasks to accept constrained by the agent’s resources. If n is
the number of retained tasks, the sort causes a increment of

n log n in the counter, followed by a increment of at most
n to select the accepted tasks.

Low computational effort means that the agents are more
efficient to act in environments in which the available time
to make a decision is restricted. Figure 4 shows the average
computational effort of each agent at each time step. The
external plot emphasizes the area which concentrates the
majority of the points. The internal plot shows the full area
just to present the points not shown in the external plot.
The results are statistically significant at 99% confidence
t-test.

500 1000 1500 2000 2500 3000 3500 4000
Number of agents

0

10

20

30

40

50

60

70

80

C
om

pu
ta

tio
na

l e
ff

or
t

eXtreme-Ants
Swarm-GAP
LA-DCOP

500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

800

900

Figure 4: Computational effort as the number of
evaluated tasks by each agent at each time step.

The computational effort of Swarm-GAP is, on aver-
age, 55% lower than those from eXtreme-Ants. Since in
Swarm-GAP there is no explicit coordination mechanism
to deal with AND constrained tasks, the agents do not
have to make additional evaluations regarding the simulta-
neous allocation of constrained tasks, reducing the computa-
tional effort of Swarm-GAP. However, the absence of such
mechanism affects the total reward, as shown previously.
The higher computational effort of both eXtreme-Ants and
LA-DCOP are due to the presence of an explicit coordina-
tion mechanism to deal with constrained tasks.

eXtreme-Ants outperforms LA-DCOP, with computa-
tional efforts on average 151% lower than those from
LA-DCOP. The most significant result is for the case of
500 agents, in which the computational effort of LA-DCOP
is 493% higher than that of eXtreme-Ants.

As shown in the experiments, the probabilistic allocation
of eXtreme-Ants, based on the model of division of labor,
reduces the amount of communication and the computa-
tional effort. The reduction in the computational effort
is due to the simple one-shot decision, which does not re-
quire any local maximization. The low computational ef-
fort causes the reduction in the number of messages sent,
since in LA-DCOP the tasks which are not selected in
the local maximization are sent do other agents. In both
eXtreme-Ants and LA-DCOP the presence of an efficient
coordination mechanism to deal with inter-task constraints
leads to better total rewards regarding Swarm-GAP.

Finally, we emphasize that the choice of one particular

7

algorithm must be related with the constraints of the sce-
nario. When the total reward is a key point and there
are no constraints in the communication and in the time
the agents have to make a decision, LA-DCOP is a good
choice. On the other hand, in scenarios with such constraints
eXtreme-Ants is more appropriate. It achieves low total re-
wards, but the decision is faster and there is a better use of
the communication channel.

6. CONCLUSIONS
In this paper we have presented a multiagent approxi-

mate algorithm for task allocation in extreme teams, called
eXtreme-Ants. The algorithm is inspired in the division
of labor in social insects and in the process of recruitment
present in ants that transport preys cooperatively.

The experimental results show that the use of the model
of division of labor to decide whether or not to allocate the
tasks allows the agents to make reasonable coordinated ac-
tions. Since the decision is probabilistic, it is fast, efficient,
and requires a reduced communication and computational
effort, enabling the agents to act in environments where
the available time to make a decision is highly restricted.
Moreover, the incorporated recruitment process provides ef-
ficient allocation of constrained tasks that requires simul-
taneous execution. This avoid that agents waste they re-
sources and leads to better total rewards. The efficiency of
eXtreme-Ants regarding communication and computational
effort suggests that techniques which are inspired in social
insects can be considered for multiagent task allocation.

We intend to work in the direction of changing the stim-
uli values dynamically, indicating different priorities in the
execution of the tasks. More than one kind of resource for
an agent can also be considered. Besides, these resources
can change over time, as for instance, a battery charge of a
robot. We also intend to evaluate the performance in unre-
liable communication channel, with failures and noises, and
to apply this approach in the RoboCup Rescue simulator.

7. ACKNOWLEDGMENTS
This research is partially supported by the Air Force Office

of Scientific Research (AFORS) (grant number FA9550-06-
1-0517) and by the Brazilian National Council for Scientific
and Technological Development (CNPq).

8. REFERENCES
[1] P. R. Ferreira, Jr., F. Boffo, and A. L. C. Bazzan.

Using swarm-gap for distributed task allocation in
complex scenarios. In N. Jamali, P. Scerri, and
T. Sugawara, editors, Massively Multiagent Systems,
number 5043 in Lecture Notes in Artificial Intelligence,
pages 107–121. Springer, Berlin, 2008.

[2] B. Hölldobler, R. C. Stanton, and H. Markl.
Recruitment and food-retrieving behavior in
Novomessor (formicidae, hymenoptera). Behavioral
Ecology and Sociobiology, 4(2):163–181, 1978.

[3] S. Martello and P. Toth. Knapsack Problems:
Algorithms and Computer Implementations. John
Wiley & Sons, New York, NY, USA, 1990.

[4] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for distributed
constraint optimization. In Proc. of the Second
International Joint Conference on Autonomous Agents

and Multiagent Systems, pages 161–168, New York,
USA, 2003. ACM Press.

[5] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In L. P. Kaelbling
and A. Saffiotti, editors, Proceedings of the Nineteenth
International Joint Conference on Artificial
Intelligence, pages 266–271, Edinburgh, Scotland,
August 2005. Professional Book Center.

[6] S. K. Robson and J. F. A. Traniello. Resource
assessment, recruitment behavior, and organization of
cooperative prey retrieval in the ant Formica schaufussi
(hymenoptera: Formicidae). Journal of Insect Behavior,
11(1):1–22, 1998.

[7] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe.
Allocating tasks in extreme teams. In Proc. of the
Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 727–734, New
York, USA, 2005. ACM Press.

[8] G. Theraulaz, E. Bonabeau, and J. Deneubourg.
Response threshold reinforcement and division of
labour in insect societies. In Royal Society of London
Series B - Biological Sciences, volume 265, pages
327–332, 2 1998.

[9] Y. Xu, P. Scerri, K. Sycara, and M. Lewis. Comparing
market and token-based coordination. In Proc. of the
Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006), pages
1113–1115, New York, NY, USA, 2006. ACM.

8

Multiagent Policy Teaching

Lachlan Dufton
Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

ltdufton@cs.uwaterloo.ca

Kate Larson
Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

klarson@cs.uwaterloo.ca

ABSTRACT
Recently Zhang and Parkes [11, 12] introduced the idea of
value-based policy teaching. In their framework, an inter-
ested party is able to provide incentives, by changing the
environment, in order to encourage an agent to follow a par-
ticular policy. In this paper, we extend the Zhang-Parkes
framework to a multiagent setting where all agents are in a
common environment so that any modifications made by the
interested party are experienced by all agents. We charac-
terise when it is possible for the interested party to provide
incentives so that all agents follow a particular desired pol-
icy. For the case where the interested party is unable to
induce all agents to follow a particular desired policy, we
propose that a behaviour-based policy comparison approach
be used, where the interested party maximises the similarity
of each agent’s behaviour to some target behaviour.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Design, Performance

Keywords
Multiagent Learning, Co-ordination, Decision/Utility The-
ory, Markov Decision Processes

1. INTRODUCTION
Recently Zhang and Parkes [11, 12] introduced the idea of

value-based policy teaching. In their framework, an inter-
ested party is able to provide incentives, by changing the en-
vironment, in order to encourage an agent to follow a partic-
ular policy. The focus of these papers was on a single-agent
setting, and the authors studied computationally tractable
methods for finding incentives.

In this paper, we study the problem of extending the envi-
ronment design framework to a multiagent setting. In par-
ticular, we focus on the case where agents do not interact,
but act in a common environment. Website management is

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

a real-world example of such a scenario. The developer of
a website may want visitors to view certain key pages in a
particular order. Through well-chosen modifications to the
website, it may be possible to lead many, and possibly all,
visitors to act as the developer desires. Each visitor has dif-
ferent opinions and goals and none interact with each other,
but the website is the same for all. The main challenge we
examine in this paper is discovering the types of modifica-
tions or incentives that lead a heterogeneous collection of
agents to act as desired.

In this paper, the agents are modelled as simple plan-
ners in a Markov Decision Process (MDP), and an interested
party has a desired behaviour for these agents. While the
interested party is unable to directly modify the behaviour
of each agent, it can modify the environment, and thus agent
behaviour.

We provide a linear programming solution for finding a
minimal environmental modification that teaches a specific
MDP policy to all agents. This is not always possible, and
we show how to detect the feasibility of teaching a policy as
well as a method for teaching the largest feasible subset of
agents. In this case, attempting to teach the policy exactly
can be inflexible. An interested party may not be interested
in teaching an exact policy, but simply a policy with similar
behaviour to a target policy. In this paper we look at how
to quantify this behavioural similarity, based on short-term
through to long-term behaviour.

This paper begins with an overview of policy teaching and
environment design in the single agent setting, and a sum-
mary of other related work. Next, we discuss our multiagent
model and our solution to the problem of teaching a specific
policy to a set of agents. We then examine a value-based
approach to policy teaching, that changes the policies of
agents to maximise the aggregate value of each agents’ pol-
icy. We present two methods of individual policy appraisal,
based on the states visited when following the policy or by
behavioural similarity to a target policy. We also provide
a method of finding incentives that maximise the similarity
of all agents’ behaviours to the target behaviour. This is
followed by empirical tests of our new methods and finally
conclusions and directions for future work.

2. BACKGROUND
In this section we discuss the problem of policy teach-

ing through the method of environment design. This begins
with an overview of the problem in a single-agent setting.
The single-agent model forms the foundation of our multi-
agent model and our work in this paper extends the solu-

9

tion for this single-agent problem. We also examine some
other works related to the problem of achieving a desired
behaviour in a setting with multiple agents.

2.1 Single Agent Environment Design
There are existing methods that modify an agent’s en-

vironment to teach a specific policy to the agent [11] or
to teach a policy that maximises the value of the policy
from the perspective of an interested party [12]. In the sin-
gle agent setting, the environment is simply a finite-horizon
Markov Decision Process (MDP), M , and the agent follows
the optimal policy, π. Formally, M = {S,A,R, P, γ}, where

• S is the finite set of states.
• A is the finite set of actions.
• R : S → R is a reward function, giving the agent’s

utility for each state. This can be represented as a
vector R ∈ R|S|.
• P : S ×A× S → [0, 1] is the state probability transfer

function. If the agent plays action a in state si, then
the probability of transitioning to state sj is P (si, a, sj).
• γ ∈ (0, 1) is the discount factor.
• π : S → A is the policy that determines the action

taken by the agent at each state.

In direct policy teaching, the interested party (IP) knows
the MDP, M , and has a single target policy for the agent,
πt. The goal of the IP is to find some set of state incen-
tives, ∆ ∈ R|S|, such that the optimal policy of the MDP
MR+∆ = {S,A, (R+ ∆), P, γ} is πt. These incentives model
environment modifications that increase the agent’s reward
for each state by the incentive amount.

Value based policy teaching [12] does not have a specific
target policy for the agent, but instead uses a reward func-
tion for the IP,G ∈ R|S|. While the agent forms a policy that
maximises the expected sum of discount rewards on MR+∆,
the interested party values the policy according to the ex-
pected sum of discounted rewards on MG = {S,A,G, P, γ}.

In both direct and value based policy teaching, incentives
are limited to admissible incentives [11]. This limits indi-
vidual incentives to be non-negative (i.e. no punishments)
and the expected discounted sum of incentives must be no
greater than some value Dmax. Stated formally, ∆ is admis-
sible if it satisfies the following constraints:

∆(s) ≥ 0 ∀s ∈ S
V π∆ (start) ≤ Dmax

where the expected discounted sum of incentives V π∆ (s) for
an agent’s policy π is defined as:

(1)

V π∆ (s) = ∆(s) + γ
X
s′∈S

P (s, π(s), s′)V π∆ (s′) ∀s ∈ S (2)

Zhang and Parkes provided a linear programming solu-
tion for direct policy teaching with environment design [11].
This solution minimises the expected incentive spending,
V πt∆ (start), while satisfying constraints both for admissibil-
ity and those found through inverse reinforcement learning
(IRL) [7]. IRL takes a policy, π, and an MDP without re-
ward function, M−R and calculates a space of reward func-
tions, IRLπ ⊆ R|S|, such that any reward function in this
space has an optimal policy π. This space is defined by the

following constraints:

(Pπt − Pa)(I − γPπt)
−1R � 0 , ∀a ∈ A

where Pa and Pπt are the state probability transfer matrices
for action a and target policy πt, respectively. The target
policy becomes uniquely optimal in IRLπ ⊆ R|S| if the in-
equality is replaced with a strict inequality.

The direct policy teaching linear program finds the incen-
tive function with minimal expected cost that, when added
to the agent’s rewards, is in the space of reward functions
determined by IRL. Zhang and Parkes also provide a mixed
integer program for single-agent, value-based policy teach-
ing [12]. Instead of minimising incentive costs, this program
maximises the interested party’s value of the policy taken
by the agent. However, for the remainder of this paper we
will focus on multiagent policy teaching.

2.2 Related Work
At a high level, multiagent policy teaching is related to the

game theoretic technique of mechanism design [8]. Mecha-
nism design seeks to achieve certain behaviours in the agents
of a system by defining the rules of the system. This is sim-
ilar to policy teaching and environment design, which seeks
to achieve a specific behaviour in one or more agents by
modifying the environment of the agents. However, mecha-
nism design is more concerned with the interactions between
agents, and in this paper we will assume that agents do not
directly interact.

Policy teaching is also related to applications such as ap-
prenticeship learning. Apprenticeship learning uses the ac-
tions of an expert to guide the behaviour of an agent. Abbeel
and Ng [1] provided a method of extracting an expert’s re-
ward function given the expert’s behaviour, and used this to
determine the behaviour of an agent. The authors extend
this work to solve apprenticeship learning when dynamics
(state transition probabilities of the MDP) are unknown [2].
Syed and Schapire [9] modify the work of Abbeel and Ng
to provide a method that not only learns from the expert,
but also attempts to find a better policy than the expert.
However, these apprenticeship learning techniques assume
we have complete control over the agent’s reward function,
while we will be interested in only allowing limited changes
to agent’s rewards.

The problem examined by Monderer and Tennenholtz [6]
does not assume complete control over an agent’s reward
function as in apprenticeship learning, but does still allow
unlimited, non-negative incentives. In k-implementation, an
interested party influences the behaviour of agents in a game
through the use of incentives. This is closely related to mul-
tiagent policy teaching. However, the models of the environ-
ment and the incentives are different in k-implementation
and our setting. Firstly, k-implementation deals with games
of interaction between the agents in a single-shot setting,
whereas policy teaching works in a sequential planning set-
ting. More significantly, incentives in k-implementation are
provided to agents based on their particular strategy, rather
than state-based incentives. These incentives are concep-
tually in the form of bonus payments made specifically to
agents rather than environmental modifications, and as such
each agent can receive different incentives.

Eidenbenz et al. [4] discuss how incentives added to a
game can be used to manipulate the outcome. An interested
party can modify the outcome both to increase or to decrease

10

the social welfare of the agents. In this paper, however, we
assume the interested party has no interest in the actual
utility of the agents. The interested party merely assumes
the agents will act so as to maximise their utility in the
current environment.

3. MULTIAGENT POLICY TEACHING
In multiagent policy teaching, the goal of the interested

party is to direct a set of agents to a particular policy by
adding incentives to the environment. When moving to the
multiagent setting, several additional challenges occur that
were not originally present in the single-agent approach. In-
centives are no longer specifically tailored for a particular
agent, but rather for several agents. A key point in the
multiagent model is that each agent acts in the same en-
vironment and thus has the same incentives. Due to this,
the multiagent problem cannot be solved by simply running
the single agent policy teaching method separately for each
agent.

With direct policy teaching, the IP has a single policy it
wishes all the agents to adopt. However, in a multiagent
setting, the IP may not be able to teach the target policy
to all agents simultaneously. In this case the IP can instead
look for the largest subset of agents that can be taught the
target policy with a single incentive function. Alternatively,
the IP can use a value-based approach, which we discuss in
Section 4.

3.1 The Multiagent Model
Before progressing any further, we explicitly outline the

model and assumptions used in this paper. The multiagent
extension of policy teaching and environment design in this
paper deals with non-interacting agents. Agents that inter-
act must anticipate the strategies of the other agents and
act accordingly. With non-interacting agents, each agent
only needs to consider its own actions and the current en-
vironment. Without interaction, we can model all agents as
planners in MDPs that have the same M−R = {S,A, P, γ}.
However, each agent, i, has a different reward function, Ri,
and it is assumed that these values are known to the inter-
ested party.

The abilities of the interested party remain unchanged
from the single agent setting. The IP performs policy teach-
ing though environment design by adding an incentive func-
tion ∆ to the reward function of each agent. However, this
incentive function must be applied to all agents equally,
rather than through individual incentive functions. The
motivation for this restriction is that, conceptually, the in-
centives are modifications to the environment rather than
additional rewards provided separately by the IP to the
agents. Thus, a particular environmental modification af-
fects all agents.

3.2 Teaching All Agents
If there is a single incentive function that can lead all

agents to the desired policy, this can be found with a simple
linear program. This linear program has the same number
of constraints and variables as in the single agent case, re-
gardless of the number of agents.

Let Pa denote the state probability transfer matrix for
playing action a in each state. Let Pπt denote the state
probability transfer matrix for following policy πt. That is,
Pa(s1, s2) is the probability of transferring from state s1 to

Figure 1: The dotted lines and dashed lines are the
constraints for two agents. Taking the most restric-
tive of each pair of parallel constraints defines the
overlapping (shaded) region.

s2 given action a. Pπt(s1, s2) = Pa(s1, s2) ∀s2 if π(s1) = a.
For each agent i ∈ N , by applying inverse reinforcement
learning, we obtain a set of up to |S|×|A| linear constraints.
These are calculated as follows, starting with the constraints
obtained from IRL [7].

(Pπt − Pa)(I − γPπt)
−1| {z }

Ca

(Ri + ∆) � ε ,

∀a ∈ A \ πt(s), i ∈ N
⇒CaRi + Ca∆ � ε ∀a ∈ A \ πt(s), i ∈ N
⇒Ca∆ � ε− CaRi| {z }

Dia

∀a ∈ A \ πt(s), i ∈ N

⇒Ca∆ � Dia ∀a ∈ A \ πt(s), i ∈ N

Note that the ε > 0 is to ensure that πt is a unique optimal
policy. If πt(s) = a then row (Pπt(s)−Pa(s)) = 0⇒ Ca(s) =
0. Thus, these rows are removed from the set of constraints.
All other rows ensure actions not in the target policy result
in expected rewards that are at least ε lower than those of
the target policy. This makes all πt actions strictly preferred
and so πt is the unique optimal policy.

If we wish to find an incentive function to induce the de-
sired policy in all agents, we must satisfy the |S| × |A| con-
straints for each agent simultaneously. That is, we must
meet all |S| × |A| × |N | constraints. However, an observa-
tion about the set of constraints allows us to greatly reduce
the total number. Let Ca(s) and Dia(s) denote the sth row
of Ca and Dia respectively. For any state s and action a the
constraint Ca(s)∆ ≥ Dia(s) is parallel to Ca(s)∆ ≥ Dja(s)
for every pair of agents i, j ∈ N , as Dia(s) is simply a scalar
constant. This observation means that we can run a pre-
processing step that reduces the number of contraints to
|S| × |A| by keeping only the most restrictive constraint for
each state-action pair (see Figure 1).

If we let

D̂a(s) = max
i∈N

Dia(s) ∀a ∈ A, s ∈ S (3)

we get the following set of constraints:

Ca∆ � D̂a ∀a ∈ A \ πt(s) (4)

Now, finding the minimal ∆ to induce the desired policy

11

Figure 2: Each polygon represents the space of in-
centive functions that satisfy all constraints for a
particular agent. There is no point that satisfies the
constraints of all agents but the shaded region sat-
isfies those of the greatest number of agents.

in all agents can be found with the following linear program:

min
∆

V πt∆ (start) (5)

subject to:

Ca∆ � D̂a ∀a ∈ A \ πt(s)
0 ≤ ∆ ≤ ∆max

V πt∆ (start) ≤ Dmax

The final two constraints ensure the incentives are admis-
sible. Here V πt∆ (start) is defined as in Equation (2), as the
expected discount incentive spending. The linear program
has the same number of constraints and variables as the so-
lution for a single agent [11], and this remains constant with
respect to the number of agents.

3.3 Determining If All Agents Can Be Taught
As shown in the previous section, we can define the space

of possible incentives that induce the target policy in a par-
ticular agent. Combining all the constraints gives the space
of possible incentives that induce the target policy in all
agents. This space is defined by the constraints in Equa-
tion (4).

If these constraints, coupled with the admissibility con-
straints, define an empty region, then no such admissible in-
centive function exists that can teach all agents the desired
policy (as in Figure 2). Linear programming techniques such
as the simplex method or extensions to the interior point
method will detect the infeasibility of a set of constraints
[10]. If, when running the linear program in Equation (5)
on the set of constraints for all agents, it declares the prob-
lem infeasible, then no incentive can teach the policy to all
agents. However, if all agents can be taught, the linear pro-
gram will return the incentive function that achieves this.

3.4 Teaching The Largest Subset
Given a set of agents, N , where |N | = n, the interested

party may desire to find the largest subset of N such that
all agents follow the desired policy, given an incentive func-
tion. Geometrically, let K = {K1,K2, . . . ,Kn}, where Ki

is the space of admissible incentives functions that induce
the desired policy for agent i ∈ N . The goal is to find the
largest subset of K such that the intersection of all elements
(e.g. the shaded region in Figure 2) is non-empty.

Given the results in Subsection 3.3, a brute force approach
to this problem is to find the largest set of agents that leads
to a feasible linear program by testing all possible subsets
of agents in order of decreasing cardinality. As soon as a

feasible linear program is found based on the constraints of
the subset of agents, the algorithm returns the solution to
the linear program. If a specific application is likely to only

have feasible subsets of size strictly less than |N|
2

, then the
algorithm should test subsets in increasing order of cardi-
nality.

4. MULTIAGENT VALUE-BASED POLICY
TEACHING

In the previous section, the interested party was only
concerned with agents following the target policy exactly.
Where the requirements of the interested party aren’t so
strict, a value based approach to policy teaching is more
appropriate. As an example, consider a simple grid world
where an agent’s actions allow it to move to adjacent tiles
in the grid. The interested party has a desired path for the
agents to traverse the grid from the start state to a goal tile.
Instead of only accepting solutions where the agents follow
the path precisely, a value-based approach permits devia-
tions. The larger the deviation from the target policy or
behaviour, the lower the value the IP places on the agent’s
policy.

In the value-based setting, the IP has a policy valuation
function V : AS → R that assigns a value to each policy.
A state-based valuation has a value for each state in the
MDP, and calculates a policy value based on the states it
visits. An alternative measure is to evaluate each policy
based on its behavioural similarity to the target policy. In
such a setting, the IP needs a function to aggregate these
individual policy valuations for the group of agents. While
this is not an issue in the single agent setting as there is
only one policy to evaluate, it becomes very important in
the multiagent case. There are two intuitive methods of
determining a total value for a set of policies, motivated by
social welfare functions. Where the policy valuation directly
represents the utility of the interested party, it makes sense
to use a utilitarian approach and sum over all valuations.
Thus, the value of a set of policies {πi} is calculated asP
i∈N V (πi). Alternatively, the interested party may prefer

to have reasonable values for all agents rather than high
values for some and poor values for others. In this case, the
egalitarian value of a set of policies is determined by the
worst policy, that is mini∈N V (πi).

4.1 State-Based Policy Valuation
In state-based policy valuation, the value of a policy is

calculated as the discounted sum of future rewards, using
the reward function of the interested party. This approach
was used in the single agent setting by Zhang and Parkes
[11]. A multiagent solution is simply a basic extension to
the mixed integer program (MIP) used for the single agent
problem.

Unlike in direct policy teaching, the additional constraints
for multiple agents can not be trivially collapsed together.
The MIP needs to calculate the value of each agent’s policy,
which also requires constraints for each agent to determine
this policy. However, as the agents do not interact, the
number of constraints and variables only grow linearly with
the number of agents. The multiagent MIP has a copy, for
each agent, of all the constraints of the single agent solu-
tion, except for those bounding the state incentive values,
∆(s). The minimised function of the MIP aggregates the

12

policy values for all agents, for example, by summing over
all values.

4.2 Comparison-Based Policy Valuation
In some cases, the interested party has a single desired

policy or behaviour, but may be satisfied if agents follow a
similar policy. In such a setting, it is easier for the inter-
ested party to appraise policies using some similarity score
to the target function than to calculate a state-based reward
function that captures this. Unfortunately, there is no clear
definition of policy similarity. For policy teaching, we pro-
pose that appropriate comparison methods involve looking
at the short-, medium-, or long-term behavioural similarities
of the policies. In the rest of this section we describe our
proposed methods.

Two policies are similar in short-term behaviour if their
state transition probabilities are close for most states. This
captures similarity in how an agent moves from each par-
ticular state and takes into account different actions that
have similar state transition probabilities. Stated formally,
the short-term difference between policies π1 and π2 can be
defined as

P
i,j∈S (Pπ1 (i, j)− Pπ2 (i, j))2, where Pπ (i, j) is

the probability of transitioning from state i to state j play-
ing action π(i). To convert this difference into a policy value
based on similarity to a target policy πt we have:

V (π) = e−
P
i,j∈S(Pπt (i,j)−Pπ(i,j))2

Another measure of similarity between policies is based
on the medium-term behaviour. In this metric, two policies
are similar if they follow similar paths through the state
space, or visit states with similar probabilities. An example
where such a measure is useful is when an interested party
wants the agents to explore a grid world. The desired policy
may visit every state with probability at least p after t time
steps. There are multiple ways of exploring a grid world,
and the interested party is happy with any policy that visits
each state with probability close to or greater than p after
t time steps. This behaviour is less well defined and thus
more difficult to quantify formally.

The long-term behaviour of a policy is measured by the
probability distribution over final states as the number of
time steps approaches infinity. In this case, the interested
party is only concerned with where the agents are likely to
end up and not how they get there. A policy’s transition ma-
trix Pπ defines a Markov chain, and the long term behaviour
can be captured by the stationary distribution, r.

Given the stationary distribution for two policies, rπ1 and
rπ2 , the long-term difference between the two policies can
be defined as sum of squared difference in stationary distri-
butions:

P
s∈S |rπ1(s) − rπ2(s)|2. A policy valuation for a

policy π compared to a target policy πt based on long-term
behaviour is:

V (π) = e−(rπt−rπ)(rπt−rπ)T (6)

For policy teaching, the incentive function is found by
maximising some enumeration of policy valuations over all
agents. Using the valuation in Equation (6), the maximisa-
tion is:

max
∆

X
i∈N

e−(rt−ri)(rt−ri)T

where rt is the stationary distribution of the target policy
πt, a constant value, and ri is the stationary distribution

Figure 3: Time taken to find the incentive function
to induce a target policy in all agents.

Figure 4: Time taken to find incentives that max-
imise long-term behavioural similarity of the agents
to the target policy.

for the optimal policy played by agent i on the MDP with
added incentives ∆.

While this can be converted into a mixed integer program,
it requires O(|S|2|A||N |) constraints and variables. Given
that mixed integer programs are typically NP-hard to solve
[3], this solution rapidly becomes infeasible. This complex-
ity is further worsened using more sophisticated objective
functions that appraise agent policies according to a mix of
short-, medium-, and long-term behaviour.

As shown in the next section, good empirical performance
is possible by optimising incentives through metaheuristic
methods, such as simulated annealing [5].

5. EXPERIMENTAL RESULTS
We conducted empirical tests to verify the solution quality

and time requirements of our methods. All tests were run
using GNU Octave version 3.0.3 on a 2.4 GHz MacBook Pro
with 2 GB of RAM.

The test domain is that of a simple grid world. An agent
can either move in one of the four cardinal points or stay
put. There is uncertainty added to the environment, where
an agent may move in a direction different to the action.

First, we tested the linear program for teaching all agents
(Equation (5)). The target policy in these tests was to take
the shortest path from the current state to the centre of the
grid (with ties broken arbitrarily). The agents’ reward func-
tions were generated randomly, with one random “preferred”

13

state having a value of 1 and all others having a value drawn
uniformly from [0, 0.001]. The discount factor γ was 0.99.
Figure 3 shows the time required to solve the linear pro-
gram with varying numbers of states and agents. The time
required was roughly linear on the number of agents due to
calculating the maximum values in Equation (3). The value
of Dmax was chosen such that it was possible to teach all
agents the desired policy. In each run, all agents followed
the target policy precisely. The difference in solving time
on an MDP where an action always moved in the intended
direction and where an action had a 10% chance of moving
in an unintended direction was not significant.

We also tested the efficacy of a simulated annealing ap-
proach to solving comparison-based multiagent policy teach-
ing, as presented in Subsection 4.2. These tests used the
same set up of target policy and rewards as in the linear
program tests. However, in this comparison-based approach,
we looked at policy similarity based on long-term behaviour
(using Equation (6)). A high-value policy should have a high
long-term probability of being in the centre state with lower
probabilities further from the centre. The plot in Figure 4
shows the time required to find the optimal set of incentives,
where the algorithm was halted as soon as the method had
found a solution within 0.01% of the optimal value. Here,
the optimal value was when all agents follow the target pol-
icy precisely, and each had a value of 1. The tests used
for Figure 4 aggregated agent policy values through sum-
mation, but tests using an “egalitarian” measure showed the
same linear trend with number of agents. As the simulated
annealing algorithm is non-deterministic, the values plotted
are the average over 100 different runs. These results show
that, while simulated annealing doesn’t have the guaranteed
performance of a mixed-integer formulation, it is still able
to find good solutions in reasonable time.

6. CONCLUSIONS AND FUTURE WORK
This paper examined multiagent extensions to environ-

ment design and policy teaching. These procedures allow
an interested party to achieve a desired behaviour in a set
of agents through environmental modifications. The envi-
ronmental modifications are in the form of value-increasing
incentives added to each state in the environment.

In the case where a policy is being taught to all agents, the
paper provided a linear program to solve this problem. The
number of constraints and variables in the linear program
does not change as the number of agents increases. The
linear program is feasible if and only if the policy can be
taught to all agents with a single incentive function.

This paper also examined the problem of maximising the
aggregate value of agents’ policies, from the perspective of
the interested party, in particular, when the value of a pol-
icy reflects its similarity to some target policy. Policy sim-
ilarity is defined as the behavioural similarity of two poli-
cies, ranging from short-term to long-term behaviour. A
comparison-based approach gives added flexibility to the in-
terested party, as a target policy may not need to be ex-
plicitly stated. Using long-term behavioural similarity, the
IP can compare policies to a target stationery distribution
rather than a target policy. The aggregation of values for
each agent’s policy can be a summation of values, or the
minimum of all values. This problem can be solved with
metaheuristic optimisation techniques, as a mixed integer
programming solution rapidly becomes infeasible. Empirical

tests showed that simulated annealing is one such technique
that is effective in solving this problem.

A key assumption in this paper was that of no agent inter-
action. There is added complexity when agents interact, in
modelling the environment, determining policies and finding
incentives. In this setting, the MDP model is no longer suffi-
cient, but a stochastic game framework would be one appro-
priate option to examine. Stochastic games are sufficiently
general that a conceptually simple, but perhaps computa-
tionally difficult environment design method could be devel-
oped by adding the interested party as an extra agent to the
game. In this method, the interested party’s actions do not
affect agents’ payoffs in the current stage game, but lead to
different sets of stage games with modified agent rewards.

Another assumption that can be relaxed in future work is
that of complete knowledge of agent rewards. If rewards are
unknown, then the policy teaching methods need to incor-
porate preference elicitation techniques to narrow the space
of possible rewards. A multiagent extension of active indi-
rect elicitation [11] will let the interested party narrow the
space of possible agent rewards until enough information is
known to determine appropriate incentives.

7. REFERENCES
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via

inverse reinforcement learning. In ICML ’04:
Proceedings of the twenty-first international conference
on Machine learning, page 1, New York, NY, USA,
2004. ACM.

[2] P. Abbeel and A. Y. Ng. Exploration and
apprenticeship learning in reinforcement learning. In
ICML ’05: Proceedings of the 22nd international
conference on Machine learning, pages 1–8, New York,
NY, USA, 2005. ACM.

[3] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and
R. Wunderling. Mixed-integer programming: A
progress report. In The Sharpest Cut: The Impact of
Manfred Padberg and His Work. SIAM, 2004.

[4] R. Eidenbenz, Y. Oswald, S. Schmid, and
R. Wattenhofer. Manipulation in games. Algorithms
and Computation, pages 365–376, 2007.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[6] D. Monderer and M. Tennenholtz. k-implementation.
In EC ’03: Proceedings of the 4th ACM conference on
Electronic commerce, pages 19–28, New York, NY,
USA, 2003. ACM.

[7] A. Y. Ng and S. Russell. Algorithms for inverse
reinforcement learning. In in Proc. 17th International
Conf. on Machine Learning, pages 663–670. Morgan
Kaufmann, 2000.

[8] S. Parsons and M. Wooldridge. Game theory and
decision theory in multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 5(3):243–254, 2002.

[9] U. Syed and R. Schapire. A game-theoretic approach
to apprenticeship learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 1449–1456.
MIT Press, Cambridge, MA, 2008.

[10] M. J. Todd. Detecting infeasibility in
infeasible-interior-point methods for optimization. In

14

Foundations of Computational Mathematics,
Minneapolis 2002, London Mathematical Society
Lecture Note Series 312, pages 157–192. University
Press, 2004.

[11] H. Zhang and D. C. Parkes. Enabling environment
design via active indirect elicitation. In Proc.
Workshop on Preference Handling, Chicago, IL, July
2008.

[12] H. Zhang and D. C. Parkes. Value-based policy
teaching with active indirect elicitation. In Proc. 23rd
National Conference on Artificial Intelligence
(AAAI’08), Chicago, IL, July 2008.

15

Flexible Procurement of Services with Uncertain Durations

Sebastian Stein
School of Electronics and

Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
ss2@ecs.soton.ac.uk

Enrico Gerding
School of Electronics and

Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
eg@ecs.soton.ac.uk

Alex C. Rogers
School of Electronics and

Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
acr@ecs.soton.ac.uk

Kate Larson
Cheriton School of Computer

Science
University of Waterloo

200 University Avenue West
Waterloo, ON, N2L 3G1,

Canada
klarson@cs.uwaterloo.ca

Nicholas R. Jennings
School of Electronics and

Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
nrj@ecs.soton.ac.uk

ABSTRACT
Emerging service-oriented technologies allow software agents
to automatically procure distributed services to complete
complex tasks. However, in many application scenarios,
service providers demand financial remuneration, execution
times are uncertain and consumers have deadlines for their
tasks. In this paper, we address these issues by develop-
ing a novel approach that dynamically procures multiple,
redundant services over time, in order to ensure success by
the deadline. Specifically, we first present an algorithm for
finding optimal procurement solutions, as well as a heuris-
tic algorithm that achieves over 99% of the optimal and is
capable of handling thousands of providers. Using experi-
ments, we show that these algorithms achieve an improve-
ment of up to 130% over current strategies that procure only
single services. Finally, we consider settings where service
costs are not known to the consumer, and introduce several
mechanisms that incentivise providers to reveal their costs
truthfully and that still achieve up to 95% efficiency.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, multiagent systems

General Terms
Algorithms, Economics, Reliability

Keywords
Service-oriented computing, service procurement, mechanism
design, optimisation

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Increasingly, participants in large distributed systems are

able to discover and automatically procure the services of
others. This allows service consumers to complete complex
computational tasks on demand, but without the need to
invest in and maintain expensive hardware. Already, such
a service-oriented approach is gaining popularity in a large
range of application areas, including Grids, peer-to-peer sys-
tems, cloud and utility computing [7].

Despite its benefits, flexible service procurement poses
new challenges that have not been addressed satisfactorily
by current research. In particular, services offered by exter-
nal providers are beyond the consumer’s direct control and
may therefore display uncertainty in their behaviour. Thus,
the execution time of services can be highly uncertain, due
to concurrent access by other consumers, hardware or net-
work problems and the provider’s scheduling policies. This
is particularly problematic when services take a long time to
complete, as is common for many computationally-intensive
tasks, and when consumers need to obtain their results by a
certain deadline. Furthermore, in large systems, many dif-
ferent providers may offer functionally equivalent services
that are heterogeneous in their quality and costs. This re-
quires consumers to make appropriate decisions about which
services to procure, balancing the probability of success with
the overall cost. It also necessitates the design of appropriate
economic mechanisms that incentivise providers to truth-
fully reveal their private information, such as their costs
and the estimated execution time, thus resulting in good
procurement decisions and removing the need for strategic
behaviour.

Related to this work is the literature on task allocation
under execution uncertainty such as [6]. Here, researchers
have studied problems where providers have private infor-
mation about both their costs for executing tasks, as well
as the probability that they will successfully complete their
tasks. However, this and similar works do not consider re-
dundancy to increase the overall success probability of task.
Now, there is some work that employs redundancy, combin-
ing several unreliable services to achieve a higher probability

16

of success. This includes deployed systems, such as Google’s
MapReduce [2], but the techniques used for determining how
many services to procure are typically ad hoc, and they also
do not consider costs. A decision-theoretic approach for ad-
dressing the latter is described in [8], but this work assumes
that costs are known and focusses on heuristic techniques for
complex workflow scenarios. A slightly different approach is
taken by work on restarting Web queries, which examines
when such queries should be timed out and re-issued (pos-
sibly to a different provider) to ensure timely completion
[1, 4]. However, such work typically assumes that only one
query is active at any time and the costs of multiple queries
are not explicitly balanced with the resulting benefit.

To address these shortcomings, we present an abstract
model of a procurement scenario with service execution un-
certainty. We begin by outlining a generic approach for find-
ing an optimal procurement strategy when service costs and
duration distributions are known. This approach is the first
to employ redundancy in a flexible and optimal manner as
to balance the probability of completing within its deadline
and the costs for doing so. More specifically, our approach
allows a consumer to invoke multiple services in parallel for
executing the same task, and it can dynamically procure fur-
ther services during execution as the deadline draws closer.
To find the optimal strategy, we combine analytical expres-
sions with computational search methods. As brute force
is computationally intractable, we present a novel branch-
and-bound algorithm that reduces the search, on average,
by over 99.9%. We also discuss a heuristic algorithm capa-
ble of handling problems with thousands of heterogeneous
service providers, and we show that its solutions are, on av-
erage, within 0.12% of the optimal. For a range of settings
we then experimentally demonstrate that dynamic redun-
dancy achieves an improvement of up to 130% over current
approaches.

Next, we examine settings where service costs are private
and known only by the providers. For this scenario, we pro-
pose a VCG-like mechanism that is incentive-compatible,
i.e., that incentivises rational, self-interested participants to
reveal their true costs. In this context, it is the first such
mechanism that allows consumers to procure multiple, re-
dundant services to increase its probability of success. More-
over, we show that this mechanism can achieve an average
95% efficiency when some prior information about service
cost distributions is known to the consumer. To address
settings where this is not available, we propose two further
novel mechanisms, which have lower information require-
ments, but still achieve an average 86% efficiency.

In the remainder of this paper, we first present the pro-
curement problem (Section 2) and discuss its optimal solu-
tion (Section 3). This is followed by our mechanisms (Sec-
tion 4) and an empirical evaluation (Section 5). Section 6
concludes.

2. PROBLEM SPECIFICATION
We consider a single service consumer A, which needs to

complete a task T . The consumer derives a utility V ∈ R
+

if the task is successfully completed within a given dead-
line D ∈ R

+, and 0 otherwise. Furthermore, there are m
service providers, given by the set M = {1, . . . , m}, which
can complete the task on the consumer’s behalf. A con-
sumer can invoke a provider i ∈ M at any time in the in-
terval [0, D]. We assume that, once invoked, the provider

remains committed to the task until it is completed (pos-
sibly beyond the deadline), and incurs an (expected) cost
ci, where this cost may represent both the running costs of
its computational resources and opportunity costs from not
being able to use these resources for other tasks. To com-
pensate for these costs, the consumer pays the provider a
transfer τi ∈ R

+ on invocation of i, which is paid regardless
of whether the task is completed by the deadline D. Al-
though a provider will always successfully complete the task,
the execution time is uncertain, and is given by a continu-
ous cumulative distribution function Fi(t). This denotes the
probability that provider i completes the task within time t,
and we assume this includes any time needed for pre-/post-
processing, queueing and data transfers. We also assume
that the execution times of different service providers are
independently drawn.

Although we only consider a single task in this paper, cru-
cially we allow multiple providers to execute it concurrently
and independently. In this case, the task is considered suc-
cessful if at least one provider completes it by time D. We
assume that all participants are expected utility maximisers.

Now, the key problem is to find an optimal procurement
strategy that determines which providers should be invoked
and when, such that the consumer’s utility is maximised. We
compactly represent such a strategy as a vector ρ = ((s1, t1),
. . . , (sn, tn)) with n ≤ m, where each element represents
the invocation time ti ∈ [0, D] of a provider si ∈ M . A
provider i is then only invoked at time ti (and only receives
τi) if no provider has so far completed the task. Without
loss of generality, we assume that ti ≤ ti+1, and si 6= sj

if i 6= j. For example, assume there are four providers
and ρ = ((2, 0), (3, 0), (1, 2.5)), i.e., providers 2 and 3 are
invoked immediately. Then, if the task has not been com-
pleted by t = 2.5, provider 1 is also invoked, causing the
three providers to run concurrently. Provider 4 is never in-
voked.

Given a strategy ρ, the consumer’s expected utility is:

UA(ρ) = V ·

(

1 −
n
∏

i=1

(1 − Fsi(D − ti))

)

−
n
∑

i=1

(

τsi ·
i−1
∏

j=1

(1 − Fsj (ti − tj))

)

. (1)

Furthermore, the expected utility of each provider si is:

Usi(ρ) = (τsi − csi) ·
i−1
∏

j=1

(1 − Fsj (ti − tj)), (2)

if si is included in ρ, and zero otherwise. Furthermore,
although our main concern is maximising the customer’s
utility, as a measure of how well the available services are
utilised, we define the overall efficiency, also referred to as
the social welfare, of a procurement strategy as:

U(ρ) = UA(ρ) +

n
∑

i=1

Usi(ρ)

= V ·

(

1 −
n
∏

i=1

(1 − Fsi(D − ti))

)

−
n
∑

i=1

(

csi ·
i−1
∏

j=1

(1 − Fsj (ti − tj))

)

. (3)

17

This measures the overall quality of a strategy for all par-
ticipants and therefore ignores any transfers, as these only
re-distribute utility between the agents.

3. OPTIMAL SERVICE PROCUREMENT
We now consider the problem of finding the optimal pro-

curement strategy that maximises the consumer’s expected
utility, given that the consumer has full information about
both the providers’ costs ci and the duration distributions
Fi. This corresponds to a service-oriented system where
providers advertise their services at a fixed price, and thus
ci denotes the advertised price. In this case, we set the
transfers to the providers so that they equal these prices,
i.e., τi = ci.

More formally, let ρ∗ = argmaxρ UA(ρ). Finding the opti-
mum, ρ∗, is non-trivial since it involves selecting an appro-
priate subset of providers, ordering them and then deter-
mining invocation times. To solve this, we initially assume
that the optimal subset of providers and their ordering is
given. That is, we are given an ordered set of providers
ρ∗

s = (s1, . . . , sn) where si is invoked before si+1. To com-
pute the optimal procurement schedule, we must determine
ρ∗

t = (t1, . . . , tn), where ti is the invocation time of si. To
this end, we compute the gradient of the expected welfare,
∇U(ρ∗

t), and find its root, i.e., ∇U(ρ∗
t) = 0. This results

in a system of n simultaneous equations, with one equa-
tion for each ti, with constraints, ∀i : 0 ≤ ti ≤ D, and
∀i, j : i ≤ j ↔ ti ≤ tj . Solving these equations depends
on the family of duration distributions and can be done ei-
ther analytically or numerically using standard optimisation
software. In what follows, we focus on the exponential dis-
tribution as this is commonly used for modelling uncertain
service durations [9].

3.1 Exponentially Distributed Durations
We now derive analytical expressions for the invocation

times ρ∗
t , given ρ∗

s and given that the duration distributions
of providers i ∈ M are given by Fi(t) = 1 − e−λit, where
λi > 0 is a rate parameter. Re-writing Equation 1 with
these distributions, and computing the gradient, allows us
to compute the optimal invocation time ti of provider si by
solving:

0 = − V · λsi

n
∏

j=1

e
−λsj

D
n
∏

j=i+1

e
λsj

tj + ci

i−1
∑

j=1

λsj

i
∏

k=1

e−λsk
ti

− λsi

m
∑

j=i+1

(

csj

j−1
∏

k=1

e−λsk
tj

j−1
∏

k=i+1

eλsk
tk

)

(4)

Here, we note that ti is independent of any tj , j < i, i.e.,
the invocation time of a provider does not depend on the
invocation time of those already running. This is a result of
the exponential function being memoryless, i.e., the proba-
bility of completing the task within the next time interval
∆t is independent of when it was invoked. Hence, we can
calculate each ti by backward induction, starting with the
last provider, n. The invocation time of this can be ob-
tained directly by taking the derivative with respect to tn

(as in Equation 4):

tn =
ln (V · λsn) − ln

(

csn ·
∑n−1

j=1 λsj

)

− D ·
∑n

j=1 λsj

∑n

j=1 λsj

(5)
Furthermore, we can obtain a simpler closed-form solu-

tion for the remaining invocation times by combining and
manipulating the partial derivatives for ti and ti+1, result-
ing in:

csi

λsi

i−1
∑

j=1

λsj

i−1
∏

k=1

e
−λsk

(ti−tk)
−

m
∑

j=i+1



csj

j−1
∏

k=1

e
−λsk

(tj−tk)





=

csi+1

λsi+1

i
∑

j=1

λsj

i
∏

k=1

e
−λsk

(ti+1−tk)
−

m
∑

j=i+2



csj

j−1
∏

k=1

e
−λsk

(tj−tk)





Then, using algebraic manipulations, we isolate ti, and
derive an expression that is based solely on ti+1:

ti = ti+1 −
1

∑i

j=1 λsj

ln

(

csi+1λsi

∑i+1
j=1 λsj

csiλsi+1

∑i−1
j=1 λsj

)

(6)

Note that Equation 6 is not well defined for t1, and the
optimal here is to set t1 = 0. This is because the cost will
be incurred in any case and any delays would only reduce
its probability of success by the deadline. Furthermore, we
note that the equations can yield negative values for some ti,
indicating that the optimal values lie outside the constraints
of the problem (i.e., before the task can be started). In
this case, as ti does not influence the procurement times of
later providers, the optimal choice is to set ti = 0, i.e., the
provider is invoked at the earliest possible time. Finally,
the equations can sometimes yield inconsistent values, i.e.,
ti > D or ti > ti+1 for some i, but this only occurs when
the ordering and/or the set of providers was non-optimal in
the first place.

So far, Equations 5 and 6 allow us to efficiently calculate
the optimal procurement times for a given, optimal ordered
sequence of service providers ρ∗

s . However, it is not obvious
how to find this order. Related work on economic search,
such as [10], does not apply to this case, due to the overlap of
concurrently invoked providers. Furthermore, our problem
includes a fixed time constraint, by which the task has to
be completed. Other greedy approaches that order services
by increasing costs, decreasing rate parameters, the ratio
of these, or approaches that first select providers who indi-
vidually yield a higher expected utility, also do not always
find optimal solutions. This is because it is often best to se-
lect cheaper, slower providers first and only invoke the more
expensive and faster ones later, to ensure that the task is
completed successfully. However, when the deadline of the
task is particularly short, the consumer may be forced to
immediately invoke the faster, expensive providers.

As a simple example of this, we consider a set of two pro-
viders, M = {1, 2}. The first is cheap and slow with c1 = 0.2
and λ1 = 0.1, while the second is expensive and fast with
c2 = 5 and λ2 = 10. If we then assume that a consumer
has a task T with deadline D = 1.5 and utility V = 100,
the optimal procurement strategy is ρ∗ = ((1, 0), (2, 0.75)).
However, if we decrease the deadline slightly to D = 1, the
optimal strategy becomes ρ∗ = ((2, 0), (1, 0.84)), thereby re-
versing the order of invoked providers.

This observation suggests that a simple greedy search for

18

Algorithm 1 Branch-And-Bound Algorithm.

1: ρ∗s ← () ⊲ Best ordering found so far
2: ulower ← 0 ⊲ Best current lower bound
3: Q← {ρ∗s} ⊲ Unexpanded orderings
4: while Q 6= ∅ do ⊲ More unexpanded?
5: ρs ← argmaxρs∈Q Lower(ρs) ⊲ Pick best

6: Q← Q \ {ρs} ⊲ Remove ρs from Q
7: P ′

s ←Expand(ρs) ⊲ Expand ρs

8: P ′
s ←FilterDominated(P ′

s) ⊲ Remove dominated
9: for all ρ′s ∈ P ′

s do

10: ǔ←Lower(ρ′s) ⊲ Find lower bound
11: û←Upper(ρ′s) ⊲ Find upper bound
12: if û > ulower then ⊲ Sufficient upper bound?
13: if ǔ > ulower then ⊲ Better lower bound?
14: ρ∗s ← ρ′s ⊲ Keep as current best
15: ulower ← ǔ

16: Q← Q ∪ {ρ′s} ⊲ Keep for future expansion

17: Q← {x ∈ Q | Upper(x) > ulower} ⊲ Filter orderings

18: return FindTimes(ρ∗s) ⊲ Return best strategy

the optimal strategy is insufficient. Hence, in the follow-
ing sections, we present an optimal branch-and-bound al-
gorithm. As this becomes slow when there are dozens of
providers, we also discuss a fast heuristic algorithm.

3.2 The Branch-And-Bound Algorithm
Finding an optimal subset and ordering of providers ρ∗

s us-
ing a brute-force search is clearly infeasible when the number
of providers rises beyond a handful, as the number of pos-
sible orderings for m providers is given by

∑m

i=0

(

m

i

)

· i! =
∑m

i=0
m!

(m−i)!
. However, it is possible to significantly reduce

the number of provider orderings that need to be searched
by noting that we can use information about some exam-
ined orderings to exclude others. For example, assume we
have three providers, and we have just considered the order-
ing ρs = (2, 1). This already promises a high utility, and,
in fact, we note it is higher than what could possibly be
achieved by invoking provider 3 first (e.g., if V − c3 is low).
Hence, we can immediately discard all five orderings starting
with 3.

This intuition is generalised in our branch-and-bound tech-
nique given by Algorithm 1. In more detail, we begin with
an empty ordering ρ∗

s = () (line 1), and then repeatedly con-
sider any new ordering that can be created by appending a
single provider to the end of an existing ordering. This is
implemented by keeping a set of orderings, Q in line 3, that
have not yet been expanded in this manner. During each
iteration of the main loop of the algorithm (lines 4–17), we
then remove one1 ordering ρs from Q (lines 5 and 6) and
expand it. Here, Expand in line 7 takes an ordering ρs and
returns the set of all orderings that can be obtained by ap-
pending a single remaining service provider from M to ρs.
From this set of new orderings, we then remove any that in-
clude providers that are dominated by others not currently
in the ordering (line 8).2

For each new ordering ρ′
s, we now find both a lower bound

1We remove the ordering that promises the highest lower
bound on the expected utility. This allows us to quickly
increase the best lower bound, thereby pruning the search
space more effectively.
2A provider i dominates j if and only if (ci ≤ cj ∧ λi >
λj)∨ (ci < cj ∧ λi ≥ λj). Clearly, it is suboptimal to invoke
j before i.

and an upper bound for the expected utility that is achiev-
able by any procurement strategy beginning with the pro-
viders in ρ′

s (lines 10 and 11). Finding these allows us to
exclude any orderings starting with ρ′

s if the associated up-
per bound is less than the best lower bound found so far.
This pruning and updating of the lower bound is performed
in lines 12–16.

We now describe Lower(ρ′
s) and Upper(ρ′

s). To find the
lower bound, we simply restrict ourselves to the providers in
ρ′

s, and find the optimal times ρ′
t for this ordering and re-

turn the associated utility, i.e., UA(FindTimes(ρ′
s))), where

FindTimes returns the optimal procurement strategy using
the Equations from Section 3.1. Calculating an upper bound
is less obvious, because we may be able to derive significantly
higher utility by invoking further services. To this end, we
let M ′ be the remaining service providers that are not in
ρ′

s. If M ′ = ∅, then the upper bound is equal to the lower
bound discussed above. Otherwise, we create a virtual ser-
vice provider sρ with csρ = mini∈M′ ci and λsρ =

∑

i∈M′ λi.
This is based on the rationale that if any providers from M ′

are invoked in any order, their cost is bound to be at least csρ

and their combined probability of success within any given
time interval after invocation will never be higher than when
immediately invoking all in parallel. With this reasoning, we
obtain a new ordering ρ′′

s by appending sρ to ρ′
s and then

calculate the upper bound as U(FindTimes(ρ′′
s)). If that is

less than the lower bound, this indicates that it is not possi-
ble to achieve a higher utility by invoking further providers,
and we can set the upper bound equal to the lower bound.

At the end of each iteration, only unexpanded orderings
with an upper bound that is higher than the currently high-
est lower bound are retained (line 17). This limits the size
of Q (which we implemented using a priority queue), and
also ensures that it is empty when all necessary orderings
have been searched. When this happens, the best ordering
and associated optimal times are returned (line 18). This fi-
nal procurement strategy is optimal, because the algorithm
searches all orderings, except for those that are known to
have a lower expected utility than those already considered.
Hence, the optimal ordering will never be discarded from
the search.

However, while significantly reducing the search space in
most realistic settings, this algorithm still searches for the
optimal solution and may sometimes consider a large pro-
portion of the entire search space. This may be the case,
for example, when there are large numbers of highly similar
providers and when the value of the task is very large in
relation to the service costs. To address such scenarios, we
introduce a fast heuristic approach in the following section.

3.3 The Heuristic Algorithm
Although we argued in Section 3.1 that a greedy approach

does not generally result in an optimal strategy, it can still
achieve good results in practice and is more scalable than
exhaustive approaches. Hence, we present such an algo-
rithm that starts with an empty ordering and then greedily
adds, removes or switches providers until a local optimum
is reached.

In more detail, given a current ordering ρs and a set of
providers M ′ that are currently not in ρs, the greedy ap-
proach picks one of the following three actions, in order to
maximise the expected utility of its next ordering: (1) it
selects a provider x ∈ M ′ and adds it to ρs at position

19

i ∈ {1, 2, . . . , n + 1} (shifting other providers as necessary),
(2) it selects a provider si in ρs and removes it, or (3) it se-
lects two providers si and sj in ρs and swaps their positions.
This continues until the algorithm cannot find another bet-
ter ordering. In this case, the current best is returned.

4. MECHANISMS FOR ELICITING COSTS
Whereas so far we have assumed that the consumer, A,

has complete information about both the costs and the dura-
tion distributions of the providers, here we consider a setting
where the cost information is private and unknown to the
consumer. Instead, the consumer has to provide incentives
so as to induce the providers to reveal this information truth-
fully. Note that we still assume that the providers’ duration
distributions are known by the consumer, as this informa-
tion may be obtained from past and shared experiences, e.g
using a trust or reputation system, or simply given by the
provider.3

4.1 (k + 1)th Price Mechanism
Typically, when mechanism design is applied to task al-

location problems, the well-known Vickrey-Clarke-Groves
(VCG) mechanism is used. Providers are asked to reveal
their private information (called their type) and in exchange
are paid a transfer equal to their marginal contribution to
the system. This payment structure provides the correct
incentives so that each provider willingly reveals their type
truthfully [5].

Unfortunately, however, the VCG mechanism is not ap-
plicable in our setting, since it is only suited for situations
where the types (i.e. the costs) of the providers are indepen-
dent. In our domain, this property does not hold, since the
cost incurred by a provider depends significantly on which
other providers are selected in the procurement strategy.
Thus, our problem falls into the class of interdependent types,
and it is well known from the literature that providers no
longer have an incentive to reveal their private information
truthfully if the VCG mechanism is used [5]. Moreover, any
mechanism which ensures that providers truthfully reveal
their costs is inefficient [3].

Our first mechanism is the (k + 1)th mechanism which
works as follows. First, the consumer, A, announces k,
1 ≤ k < m. Then, each of the m providers reports a cost,
ĉi, which may differ from their true cost ci. We assume
that providers are ordered so that ĉi ≤ ĉi+1, and we define
K = {i | i ∈ M and ĉi < ĉk+1}. That is, K is the set
of k providers with the lowest reported costs. These form
the candidate providers for the procurement strategy. After
finding the set K, the payment value τi of each candidate
provider is set to τi = ĉk+1. Now, the procurement strategy
used by A is calculated by finding ρ′ = argmaxρ|si∈K UA(ρ)
where only providers in K are (potentially) selected to be
part of the strategy. It is important to notice that the pay-
ment τi for i ∈ K is conditional. That is, a payment or
transfer to agent i ∈ K only occurs if the candidate provider
is both selected as part of the procurement strategy ρ′, and
is subsequently invoked. Otherwise, it receives no payment
(and incurs no cost).

3To verify these distributions in the latter case, a payment
scheme based on scoring rules could be used in conjunction
with our mechanism, see [11], but we leave a more detailed
investigation of this issue for future work.

Theorem 1. Let M be the set of service providers, |M | =
m. For any k such that 1 ≤ k < m, the (k + 1)th mech-
anism is incentive compatible in dominant strategies (i.e.,
truthtelling is optimal, irrespective of what other agents do)
and (ex-post) individually rational (i.e., the providers always
receive zero or positive utility).

Proof Sketch. Since the probability of being invoked and
the resulting payment are independent of an agent’s report,
there is no incentive to overreport the cost. Nor is there
an incentive to underreport, since this could only result in
a situation where ci > ĉk+1, in which case agent i would
make a loss. Individual rationaility holds when ci = ĉi since
τi = ĉk+1 ≥ ci for i ∈ K, and thus τi − ci ≥ 0.

While this mechanism has desirable properties, it also suf-
fers from some key limitations. First, it selects providers
based solely on their cost information, ignoring the dura-
tion distributions, leading to the possibility that expensive
providers with fast completion times are excluded. Second,
the parameter k must be announced before providers reveal
their costs. To set k optimally requires a priori information
about the distribution of the costs, and expensive calcula-
tions and/or simulations (as done in Section 5). To address
this last problem, we now introduce two variations of our
mechanism.

4.2 Grouping Mechanisms
We introduce two new mechanisms: Pairing and Halving.

These mechanisms differ from the (k + 1)th mechanism in
both the provider-selection process and the calculation of
the (conditional) payment, τ .

In the Pairing mechanism, every provider i ∈ M reports
a cost, ĉi. Then, all providers are randomly paired with
another provider (if |M | = m is odd, then a single triplet
is formed). For each pair, the provider with the lower an-
nounced cost is placed in the set K and the conditional
payment is set equal to the announced cost of the other
provider (in the case of a triplet, the provider with the low-
est announced cost is placed in K and the conditional pay-
ment is equal to the second lowest announced cost in the
triplet). All providers not in K are not selected and there-
fore receive no payment. This results in |K| = ⌊m/2⌋ and
ρ′ = argmaxρ|si∈K UA(ρ) as before.

In the Halving mechanism all providers in M announce
costs as is done in the Pairing mechanism. Then, ⌊m/2⌋
providers are randomly selected and placed into a set G.
All other providers are randomly paired and are then treated
identically to those in the Pairing mechanism. For members
of G, the provider with the lowest announced cost is placed
in K and its conditional payment is equal to the cost of
the second lowest announced cost from G, while all other
providers are discarded. The procurement strategy is com-
puted as before.

Theorem 2. The Pairing and Halving mechanisms are
incentive compatible and (ex post) individually rational.

Proof Sketch. Since the pairs and G are formed indepen-
dently of the agents’ reported costs, the proof follows di-
rectly from Theorem 1.

We note that there are many possible variations of these
mechanisms, but all would share some key features. First,

20

the size of K is solely determined by the number of providers,
and thus does not rely on the consumer choosing an appro-
priate value. Second, the mechanisms require no a priori
information about the cost distributions. Finally, they im-
plement discriminatory pricing (i.e., different providers re-
ceive different payments), information which is then used to
form the optimal procurement strategy (given K). On the
other hand, the payments are always based on the higher
costs (except in the Halving mechanism), and it is therefore
not clear whether these variations offer any real benefits in
practice. To this end, we experimentally evaluate them in
the next section.

5. EVALUATION
We now evaluate our proposed approaches in a variety of

simulated environments, to determine if they provide ben-
efits over existing techniques, and to investigate the cost
of incentivising providers to reveal their private informa-
tion. Throughout this section, we randomly generate each
provider i by drawing its cost ci and duration rate λi inde-
pendently and uniformly at random from [0, 1]. To consider
a range of settings, tasks have either a low (Vlow = 2) or a
high value (Vhigh = 8) and their deadline is either normal
(Dnormal = 2) or urgent (Durgent = 0.5). Furthermore, we
repeat experiments 1000 times and use ANOVA and t-tests
to ensure statistical significance at the p < 0.05 level. As
the associated confidence intervals are small, we omit these
here for clarity.

5.1 Optimal Service Procurement
First, we consider environments where providers charge

their true costs, i.e., τk = ck, and compare the average
utility obtained by the optimal procurement strategy4 de-
scribed in Section 3 (Optimal) to a strategy that always
selects the single provider that individually maximises the
consumer’s expected utility (Single). This latter strategy
represents current task allocation approaches that do not
include redundancy.

The results are shown in Figure 1. Here, we vary the num-
ber of providers in the system and plot the average expected
consumer’s utility, which is equal to the overall efficiency in
this setting, as a proportion of V . Observing these trends, it
is obvious that using redundancy can significantly improve
the consumer’s utility and does so in almost all settings con-
sidered. In fact, when averaging over all cases considered,
the Optimal approach achieves more than a 35% improve-
ment over the Single approach. In particular, when the
deadline is small (Durgent) and the task value high (Vhigh),
the Optimal strategy is able to employ high redundancy to
ensure the task is completed within the deadline, while the
higher task utility justifies the additional investment. For
example, when there are 50 providers, the Single approach
achieves 35.87% of V , while the Optimal achieves 82.65% —
a 130% improvement.

4This is found using our branch-and-bound algorithm when
there are up to ten providers. We then use the heuristic
algorithm to obtain a lower bound for the optimal when
there are more providers. However, as we show later, the
heuristic obtains near-optimal results.

0

25

50

75

100

A
ve

ra
ge

 C
on

su
m

er
’s

 U
til

ity
 U A

/V
 (

in
 %

)

Durgent, Vlow

Optimal
Single

Durgent, Vhigh

0

25

50

75

100

1 10 20 30 40 50

Number of Available Providers (m)

Dnormal, Vlow

1 10 20 30 40 50

Dnormal, Vhigh

Figure 1: Performance in full information setting.

Next, we note that when solving the above problems, our
branch-and-bound approach significantly reduces the com-
putational time required when compared to a brute-force al-
gorithm. For example, when there are 12 providers and we
consider Vhigh and Durgent, a brute force approach searches
over 1.3 billion provider ordering, which takes an average 3.3
hours (using a Java implementation on a Windows-based
Intel 2.2 GHz laptop with 4 GB RAM). By contrast, the
branch-and-bound algorithm searches an average 42000 or-
derings (0.003% of the total search space), finding the op-
timal in half a second. While the latter still finds solutions
for 18–23 providers in minutes (where the brute-force would
take over 2 · 1010 years — longer than the age of the uni-
verse), our heuristic approach is better suited for larger set-
tings with hundreds or thousands of providers. To investi-
gate how its performance compares to the optimal, we have
applied both to all settings described above with ten or less
providers. Over these, the heuristic achieved 99.88% of the
optimal.

5.2 Incentive Compatible Mechanisms
Now we consider the mechanisms described in Section 4

and investigate how close the resulting procurement deci-
sions are to the optimal (both in terms of the consumer’s
utility and the overall efficiency). To this end, Figure 2 com-
pares the performance of a range of (k + 1)th price mecha-
nisms with varying k, and our Halving and Pairing mecha-
nisms to the optimal (for brevity, we consider only two rep-
resentative scenarios here, but similar results are obtained
in other settings).

It is immediately obvious here that all mechanisms suffer
from a loss in utility for the consumer — a cost that re-
sults from incentivising providers to report truthfully. More
specifically, the best (k + 1)th price mechanism in each case
achieves an average 85% of the optimal, while Pairing and
Halving both achieve over 70%. We also note that the per-
formance of the (k +1)th depends heavily on the choice of k
and can be as low as 25% of the optimal if the wrong param-
eter is chosen. Furthermore, the best parameter depends on
the scenario. For example, for the task with Vlow, k = 3 is
the best choice, achieving over 83% of the optimal. However,

21

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

O
ptim

al
P

airing
H

alving
1+1
2+1
3+1
4+1
5+1
6+1
7+1
8+1
9+1
10+1
11+1
12+1
13+1
14+1
15+1
20+1
30+1
40+1

O
ptim

al
P

airing
H

alving
1+1
2+1
3+1
4+1
5+1
6+1
7+1
8+1
9+1
10+1
11+1
12+1
13+1
14+1

M
ec

ha
ni

sm
 U

til
ity

/E
ffi

ci
en

cy
 (

in
 %

 o
f V

)
Consumer’s Utility UA

Efficiency U

15 providers, Dnormal, Vlow50 providers, Durgent, Vhigh

Figure 2: Performance of incentive-compatible mechanisms.

for Vhigh, it is one of the worst, achieving only 58%. Hence,
these results indicate that a consumer can achieve a good
utility by using appropriate k parameters. However, when
insufficient information is available to set k, it can obtain
good results by using a Pairing or Halving mechanism.

Next, we consider the overall efficiency, or social welfare.
This ignores utility transfers between the consumer and the
providers, and therefore gives a better indication of how ef-
fectively the available services are used to complete the task
at hand. Here, we note that the mechanisms consistently
achieve a good overall efficiency. The best (k + 1)th mech-
anism now reaches, on average, over 95% of the optimal ef-
ficiency while the Pairing and Halving mechanisms achieve
86% and 84%, respectively.

6. CONCLUSIONS
In this paper, we considered a setting where multiple pro-

viders can be redundantly procured to perform a single task
which has to be completed within a given deadline. The
providers have uncertain execution times, which are given
by probability distributions, and incur different costs for ex-
ecuting the task. We first considered the setting with known
costs and introduced an algorithm for calculating the opti-
mal procurement strategy, as well as a near-optimal heuristic
algorithm for settings with a large number of providers. We
then introduced several incentive-compatible mechanisms for
eliciting the costs when these are unknown, and we evalu-
ated our approaches empirically. The results showed that re-
dundancy significantly outperforms the standard approach
where only a single provider is selected for each task, and
it continues to perform well in the incomplete information
setting.

In future work, we are interested in investigating a setting
where the execution duration distributions are also privately
known, and need to be elicited by a consumer. Furthermore,
we intend to apply this approach to larger settings with mul-
tiple, interdependent tasks.

7. ACKNOWLEDGMENTS
This research was undertaken as part of the ALADDIN

(Autonomous Learning Agents for Decentralised Data and
Information Systems) project and is jointly funded by a
BAE Systems and EPSRC (Engineering and Physical Re-
search Council) strategic partnership (EP/C548051/1). The

research was also undertaken as part of the EPSRC (Engi-
neering and Physical Research Council) funded project on
Market-Based Control (GR/T10664/01).

8. REFERENCES
[1] P. Chalasani, S. Jha, O. Shehory, and K. Sycara.

Query restart strategies for web agents. In Proc.
AGENTS ’98, pages 124–131, 1998.

[2] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[3] P. Jehiel and B. Moldovanu. Efficient design with
interdependent valuations. Econometrica,
69(5):1237–1259, 2001.

[4] R. M. Lukose and B. A. Huberman. A methodology
for managing risk in electronic transactions over the
internet. Netnomics, 2(1):25–36, 2000.

[5] A. Mas-Colell, M. Whinston, and J. Green.
Microeconomic Theory. Oxford University Press, 1995.

[6] R. Porter, A. Ronen, Y. Shoham, and M. Tennenholtz.
Fault tolerant mechanism design. Artificial
Intelligence, 172(15):1783–1799, 2008.

[7] M. P. Singh and M. N. Huhns. Service-Oriented
Computing : Semantics, Processes, Agents. John
Wiley & Sons, Inc., USA, 2005.

[8] S. Stein, N. R. Jennings, and T. R. Payne. Flexible
service provisioning with advance agreements. In Proc.
AAMAS08, pages 249–256, 2008.

[9] K. Trivedi. Probability and Statistics with Reliability,
Queuing, and Computer Science Applications. John
Wiley & Sons, Inc., USA, 2nd edition, 2001.

[10] M. L. Weitzman. Optimal search for the best
alternative. Econometrica, 47(3):641–654, 1979.

[11] A. Zohar and J. S. Rosenschein. Mechanisms for
information elicitation. Artificial Intelligence,
172(16–17):1917–1939, 2008.

22

An Efficient Algorithm For Solving Dynamic Complex
DCOP Problems

Sankalp Khanna1,2
1Institute for Integrated and

Intelligent Systems
2The Australian e-Health

Research Centre
S.Khanna@griffith.edu.au

Abdul Sattar
Institute for Integrated and

Intelligent Systems
Griffith University, QLD 4111.

Australia
A.Sattar@griffith.edu.au

David Hansen
The Australian e-Health

Research Centre
71/918,RBWH, Herston, QLD

4029. Australia
David.Hansen@csiro.au

Bela Stantic
Institute for Integrated and

Intelligent Systems
Griffith University, QLD 4111.

Australia
B.Stantic@griffith.edu.au

ABSTRACT
Multi Agent Systems and the Distributed Constraint Op-
timization Problem (DCOP) formalism offer several asyn-
chronous and optimal algorithms for solving naturally dis-
tributed optimization problems efficiently. There has been
good application of this technology in addressing real world
problems in areas like Sensor Networks and Meeting Schedul-
ing. Most of these algorithms however exploit static tree
structures and are thus not well suited to modeling and
solving problems in rapidly changing domains. Also, while
in theory most DCOP algorithms can be extended to han-
dle complex local sub-problems, we argue that this gener-
ally results in making their performance sub-optimal, and
thus their application less suitable. In this paper we present
new measures that emphasize the interconnectedness be-
tween each agent’s local and inter-agent sub-problems and
use these measures to guide dynamic agent ordering during
distributed constraint reasoning. The resulting algorithm,
DCDCOP, offers a robust, flexible, and efficient mechanism
for modeling and solving dynamic complex problems. Ex-
perimental evaluation of the algorithm shows that DCD-
COP significantly outperforms ADOPT, the gold standard
in search-based DCOP algorithms.

1. INTRODUCTION
Despite being a relatively young research area, with the first
asynchronous Distributed Constraint Satisfaction Problem
(DisCSP) algorithm proposed in 1992 [17], and the first com-
plete Distributed Constraint Optimization Problem (DCOP)
algorithm, ADOPT, proposed in 2003 [10], the Distributed
Constraint Reasoning formalism has developed rapidly to of-

fer efficient and sophisticated algorithms to model and solve
a variety of naturally distributed multi-agent problems. Sev-
eral notable DCOP approaches employing techniques from
search (e.g. ADOPT and its several variants), dynamic pro-
gramming (e.g. DPOP [12] and its several variants) and
cooperative mediation (e.g. APO [8]) have emerged and are
being successfully used to model and solve problems in sen-
sor networks, meeting scheduling, etc.

This research was motivated by our effort to model and solve
naturally distributed complex optimization problems in the
health domain, a typical example being the scheduling of
elective surgery in a large public hospital. The problem
involves several departments, each with its own complex
scheduling problem. The departments need to negotiate
with each other to build, and maintain, the elective surgery
schedule in the face of a dynamic health landscape. Allo-
cation of airport slots to airlines, or public infrastructure
to utilities companies, are examples of similar problems in
relatively dynamic environments where several agents, each
with complex sub-problems, are negotiating in a privacy pre-
serving manner, to optimize a common cost function.

Working towards this aim, the first natural observation is
that most current algorithms are based on tree-structures,
which are static in nature and would continually need to be
rebuilt in dynamic environments. Also, given the nature of
the problem domain, partial centralization based strategies
would not be a good fit here because of obvious privacy and
decision control concerns.

We also note that the metrics used to compare algorithms
are questioned by most researchers. Silaghi and Yokoo [16]
have shown that it is possible to construct problems that
can be exploited by algorithms such as ADOPT and DPOP
to exhibit their superiority. Also, Maheswaran et al. [7]
show that the performance of ADOPT in solving real world
problems is significantly worse than in solving similar-sized
map coloring problems.

We draw from Zhou’s work [18] in the DisCSP field and gen-

23

(a) Current Model (b) Proposed Model

Figure 1: Scheduling Elective Surgery at the Princess Alexandra Hospital

eralize the novel measures of constraint density 1, to intro-
duce new DCOP measures of Dynamic Cost Density (DCD)
and Degree of Unsatisfaction (DU), and then use these mea-
sures to dynamically guide agent ordering in our new Dy-
namic Complex Distributed Constraint Optimization Prob-
lem (DCDCOP) algorithm. We compare DCDCOP’s perfor-
mance to ADOPT, the current standard in DCOP search,
and show that the new algorithm offers a significant im-
provement over ADOPT.

The rest of this paper is organized as follows. In section 2,
we describe our case study of the elective surgery schedul-
ing problem at a large Australian public hospital. Section
3 presents our Multi-Agent System (MAS) architecture for
modeling and solving this class of problems. Section 4 fol-
lows with a discussion of the DCOP formalism and the short-
comings of the current state of the art in DCOP algorithms
in addressing real world dynamic complex problems. In sec-
tion 5, we present the new measures of DCD and DU , and
the DCDCOP algorithm, and explain these with a simple
example. Section 6 reports on the empirical evaluation of
the algorithm as compared to ADOPT. Lastly, in section 7,
we present our main conclusions and discuss ongoing work.

2. SCHEDULING ELECTIVE SURGERY AT
THE PRINCESS ALEXANDRA HOSPITAL

Elective surgery is a planned, non-emergency surgical proce-
dure, which can be scheduled at the patient’s and surgeon’s
convenience. The escalating demand for elective surgery
is however compounded by a shortage of trained surgeons,
anaesthetists and nurses. Recent Queensland statistics show
that, as of 1 October 2008, 34, 514 patients were waiting for
elective surgery of which almost 21% had waited longer than
a clinically desirable time [15].

We conducted an extensive study of scheduling processes
followed at the Princess Alexandra Hospital (PAH), a large
public hospital in Queensland’s capital city of Brisbane. PAH

1Not to be confused with the traditional measure, i.e. ra-
tio of actual number of constraints to possible number of
constraints.

offers 21 operating theaters that can be utilized by various
departments for elective surgery. For the process of schedul-
ing, the theater schedule is divided into AM and PM slots of
3.5 hours each. These slots are allocated to various doctors
or departments but can be utilized for trauma or emergency
if urgently required.

Each department connected (i.e. allocating staff or other re-
sources) to the surgery carries out their individual schedul-
ing activity. The bookings department books patients into
the Bookings Schedule in consultation with the relevant sur-
gical teams, and records these bookings into the Operating
Room Management Information System (ORMIS). The dif-
ferent departments can access this information by looking
into ORMIS or accessing the latest Bookings Schedule on
the shared drive, where it is updated everyday at 3PM.

Every Thursday, the managers of the different departments
meet and review bookings for the week ahead (Figure 1).
Each session is discussed and conflicts in the departmen-
tal schedules are worked out by negotiation. Unexpected
emergencies, variation in patients’ health state, sudden per-
turbations in staffing, and surgeon availability etc. lead to
further changes being often required. However, all changes
made to the system after this meeting are dealt with indi-
vidually by the departments, and resolved on a case-by-case
basis using conventional communication such as telephone
and emails, or even by face-to-face meetings. In keeping
with the dynamics of the domain, the schedule needs to be
updated quickly and efficiently. This is often not possible,
because of delays in inter-departmental communication, and
this leads to the adoption of an easy but inefficient solution
resulting in a compromised schedule. For example, if a pro-
cedure is canceled at the last minute, because new medical
reports say it is no longer required, the bookings department
would want to offer the slot to another procedure. They may
however be unable to confirm availability of specialist staff
or equipment, because the charge nurse or theater manager
were temporarily unavailable, which would lead to the slot
being unused.

24

3. PROPOSED MAS ARCHITECTURE
Given the naturally distributed nature of problems like elec-
tive surgery scheduling, an intelligent agent based approach
is a promising paradigm for modeling the environment.

We propose a methodology where intelligent agents, trained
with the constraints, preferences, priorities etc. of the ad-
ministrators, optimize schedule for their respective depart-
ments (Figure 1). They then negotiate in a privacy-preserving
manner (i.e. without sharing more information than is es-
sential) to resolve inter-agent constraints. The architecture
of each agent (see Figure 2) incorporates an interface module
to handle internal and external communication, an intelli-
gence module to handle decision making and learning, and
a DCOP engine to drive the optimization.

Figure 2: Proposed Architecture for Agent

The agents thus incorporate learning from domain-expert
interaction, and have the ability to use intelligent reasoning
to translate environmental changes and negotiation requests
to constraints for the DCOP engine. Using an appropriate
DCOP algorithm the agents optimize their local solution,
and then collaborate with each other to resolve inter-agent
constraints and align themselves.

The DCOP algorithm thus needs to be robust enough to
handle the complexity of each agent’s sub-problems and per-
form inter-agent negotiation in a truly distributed manner,
efficient enough to solve the problem in a timely and opti-
mal manner, and flexible enough to adapt to the dynamics
of the environment. Additionally if it can shield the local
solver mechanism from the inter-agent negotiation process,
each agent will have the ability to use a local solver strategy
to suit its own need.

4. RELATED WORK
We start with discussing the DCOP formalism and some
of the current approaches to solving DCOPs. We then re-
visit real world dynamic complex problems and discuss the
shortcomings of current approaches in addressing these.

4.1 The DCOP formalism
In solving a DCOP, the goal for each agent is to assign values
to its variables such that a given global objective function
is minimized. The cost functions in DCOP are analogous

to constraints in DisCSP, and DCOP is thus regarded as a
generalization of the DisCSP formalism. For simplicity, we
use the term constraints and cost functions interchangeably.
Formally, we can define a DCOP as consisting of:

1. A finite ordered set of Agents A = {A1, A2, A3, ..., An|n ∈
Z+}, where, for each Agent A there exists :

(a) A finite ordered set of variables V = {V1, V2, ..., Vn|n ∈
Z+},

(b) A domain set D = {D1, D2, ..., Dn}, containing
a finite and discrete domain Di for each variable
Vi,

(c) A constraint set C = {C1, C2, ..., Cm}, m ∈ Z+,
where each Cj ,∀j ∈ [1, m] is defined as a cost func-
tion on a pair of variables, fi,i′ : DiDi′ → N, ∀Vi, Vi′ ∈
V , and

(d) An ordered solution set S = {v1, v2, v3, ..., vn|vi ∈
Di, ∀i ∈ [1, n]} where the aggregate cost F (A) =∑

(xi,xi′∈V) fii′(di, di′), xi ← di, xi′ ← di′ ∈ A.

2. The solution set of the DCOP S? is defined as the set
of the solution sets of each agent.

In keeping with the norm, all constraints are assumed to be
binary, and optimization functions are assumed to be asso-
ciative, commutative, and monotonic [10]. In dealing with
complex DCOPs however, we do not assume one variable
per agent.

4.2 Current State of the Art
Several DCOP algorithms and their variants have been in-
troduced by recent research. Due to space constraints, we
focus on the following key complete optimal algorithms, each
representing a significantly different approach. Also, we do
not critique each variant as they all still have the same short-
comings when applied to dynamic complex problems.

Asynchronous Distributed OPTimization, or ADOPT [10],
is a complete and asynchronous DCOP algorithm. In ADOPT,
agents are first prioritized into a Depth First Search (DFS)
tree, whereby each agent maintains lower and upper bounds
for the subtree rooted at their node. The agents then use
opportunistic best-first search to assign their variables such
that the lower bound is minimized. Cost messages propagate
up the tree and threshold and value messages are sent down
the tree, iteratively tightening the lower and upper bounds
until the lower bound of the minimum cost solution is equal
to its upper bound. If an agent detects this condition, and
its parent has terminated, then an optimal solution is found
and it may also terminate. The other key idea in ADOPT
is to store lower bounds as a threshold and discard partial
solutions before they are proven to be definitely suboptimal,
thus maintaining linear space complexity at each agent. In
the worst case, ADOPT may require an exponential number
of messages to arrive at a solution.

Distributed Pseudotree Optimization Procedure, or DPOP
[12], is a complete dynamic programming algorithm that in-
volves a three phase process. Similar to ADOPT, the first

25

phase involves the formation of the DFS tree. Phase two in-
volves calculating and propagating the utility (cost) bottom-
up, i.e. from the leaves upwards to the root. Phase three
involves a downward value propagation, initiated by the root
node. Each agent then calculates its optimal value based on
the utility message received from its subtree and the value
message received from its parent. DPOP thus generates only
a linear number of messages, but the message size grows with
every traversal up the tree and the algorithm thus requires
large amounts of memory, up to space exponential in the
induced width of the problem.

Optimal Asynchronous Partial Overlay (OptAPO) [8] is an
alternative approach to DCOP that utilizes partial central-
ization to solve difficult portions of a DCOP problem. While
partial centralization offers an excellent mechanism to solve
DCOPs in several scenarios, it is generally unsuitable in the
kind of problems we seek to address. In most such cases,
negotiating agents would normally refuse to share informa-
tion or relinquish decision making control of their private
sub-problems.

4.3 Solving Dynamic Complex Problems
Since both ADOPT and DPOP utilize static DFS tree struc-
tures, changes to the constraints would often result in the
need for the tree to be rebuilt. Also, since ADOPT discards
no-goods to maintain linear space complexity, changes to the
constraints would result in bounds being discarded and the
search restarted.

Both ADOPT and DPOP also offer variants to deal with
dynamic environments. Modi [9] offers a formalism for map-
ping and solving dynamic resource allocation problems but
this is applied in the DisCSP domain. This is extended to
map over-constrained problems into DCOP but can handle
only static problems as the author concedes to the lack of
an effective DCOP algorithm for dynamic problems. Petcu
et al. [11][13] propose S-DPOP and RS-DPOP, which uti-
lize self stabilizing DFS trees to guarantees optimal solution
stability in distributed continuous-time combinatorial opti-
mization problems. Lass et al. [6] present another mecha-
nism to deal with the complicating factor of dynamism by
wrapping ADOPT in an Adapter that receives and handles
dynamic event requests.

In dealing with the issue of complex sub-problems, algo-
rithms can theoretically utilize decomposition or compila-
tion. In practice however, decomposition results in failure
to exploit the inherent benefit of domain centralization, and
also blows the distributed problem size out of proportion.
Burke and Brown [2] show that the compilation outperforms
decomposition in case of large local sub problems but only
small domain size, whereas decomposition is more appropri-
ate when the number of inter-agent constraints and domain
size is large but only for small problems. Several ADOPT
variants use techniques such as decomposition [9], compila-
tion [4], interleaving [3], and relaxation [1], to name a few, to
deal with complex sub-problems. All of the above variants
however still suffer from the problem of working off a static
tree structure that needs rebuilding from time to time.

Further, applying decomposition to DPOP would result in
a significant increase in the message sizes, while compilation

would need a novel mechanism of calculating the agent util-
ity for different combinations of local variable assignments.
It would however be interesting to evaluate the effect of uti-
lizing our measure of DU as the utility metric on DPOP.

We thus conclude that the DCOP algorithms used in all
of the above are optimal only in a static environment, and
there is need for a more flexible robust algorithm, which
can model the complexity and adapt better to a dynamic
environment.

5. THE DCDCOP ALGORITHM
We present the new measures of DCD and DU and a new
Dynamic Complex Distributed Constraint Optimization Prob-
lem (DCDCOP) algorithm and explain these measures, and
algorithm execution, with a simple example.

5.1 Defining DCD and DU
Zhou [18] offers innovative measures of Dynamic Constraint
Density (DCD) and Degree of Unsatisfaction (DU) (a mea-
sure of how far an agent’s instantiation is from reaching
a consistent state) and presents algorithms based on these,
which can handle complex and dynamic constraint reasoning
problems efficiently. These however are suited only to satis-
faction and constraint relaxation approaches as the measure
does not take varying constraint costs into account.

We generalize the definitions of Zhou to define the following
new static measures of Intra-Agent Cost Density (IACD)
and Inter-Agent Cost Density (I ACD):

IACDi =





0, if |intraVi|=0

∑|intraCi|
j=1 (δm(intraC

j
i))

|intraVi| ,otherwise

(1)

I ACDi =





0, if |interVi|=0

∑|interCi|
j=1

(
δm(interC

j
i)+

∑|κC
j
i
|

l=1 (δm(intraCl
i))

)

|interVi|
,otherwise

(2)

where intraCi is the set of intra-agent constraints for agent i,
δm represents the maximum cost of the constraint, intraCj

i

is the jth intra-agent constraint of agent i, intraVi is the
set of variables constrained by intraCi, interCi is the set of
inter-agent constraints for agent i, interCj

i is the jth inter-

agent constraint of agent i, κCj
i is the set of intra-agent

constraints belonging to i and connected to interCj
i , and

interVi is the set of variables constrained by interCi and
controlled by agent i.

The measure of I ACD takes into account the interconnect-
edness of the variables that are attached to an inter-agent
constraint. So the higher the cost of intra-agent constraints
attached to the variable, the greater the impact of the vari-
able on the cost density. This is quite apt as changing the
value of this variable would attract a much higher effort to-
wards optimizing the problem. Also, the measures of IACD
and I ACD both equate to zero if there are no intra-agent or

26

inter-agent variables connected to constraints respectively.
This follows from the general idea that a lower value of cost
density would mean the problem is closer to the solution.
Thus no variables, and a consequent cost density of 0, would
imply that this component of the problem does not need to
be solved further. We now define the measure of Static Cost
Density (SCD):

Static Cost Density of an agent is defined as the sum of the
maximum possible Intra-Agent Cost Density and the maxi-
mum possible Inter-Agent Cost Density.

SCDi = IACDi + I ACDi (3)

In equations 1 and 2 we replace δm by δc, which gives us the
current cost of the constraint, to get our dynamic measures
of IntraUnsat (IU), and InterUnsat (I U), which represent
the dynamic intra-agent and inter-agent cost densities re-
spectively. We utilize these to calculate the measure of Dy-
namic Cost Density (DCD).

IUi =





0, if |IACDi|=0

∑|intraCi|
j=1 (δc(intraC

j
i))

|intraVi| ,otherwise

(4)

I Ui =





0, if |I ACDi|=0

∑|interCi|
j=1

(
δc(interC

j
i)+

∑|κC
j
i
|

l=1 (δc(intraCl
i))

)

|interVi|
,otherwise

(5)

Dynamic Cost Density of an agent is defined as the sum of
the current Intra-Agent Cost Density and the current Inter-
Agent Cost Density.

DCDi = IUi + I Ui (6)

We now redefine the measure of Degree of Unsatisfaction for
agent i (DUi) based on the above :

Degree of Unsatisfaction of an agent is defined as the ratio
of the current Dynamic Cost Density to Static Cost Density.

DUi =
DCDi

SCDi
(7)

The DU for a problem with |i| agents can similarly be cal-
culated as the ratio of the sum of agent DUs to the number
of agents |i|. The measure of DU provides a measure of how
far away that agent’s (or problem’s) current instantiation is
from reaching a optimal state. It does not provide a direct
measure to compare the level of complexity to two agents’
problems or the time it may take to solve them. However,
unlike a simple summation of max cost or current cost, it at-
taches a higher cost to the changing of more interconnected
constraints, thus providing a more realistic measure.

5.2 An Example of Calculating DU

(a) Step 1

(b) Step 2

(c) Step 3

Figure 3: Example of DCDCOP Execution

To better understand the above measures, we utilize a simple
example as shown in Figure 3(a). Here, we calculate the
values of SCD, DCD and DU for agent D, which has four
variables, three intra-agent constraints and three inter-agent
constraints. The max cost of each constraint (from the cost
table shown in the figure) is 1. In calculating the static
measures for the problem, we have:

IACDD =
(1 + 1 + 1)

4
= 0.75

I ACDD =
((1 + (1)) + (1 + (1)) + (1 + (1)))

2
= 3

SCDD = 0.75 + 3 = 3.75

Now, assuming a snapshot view of the scenario, where each

27

agent has received the communicated values of DU , we can
calculate the dynamic measures:

IUD =
(0 + 0 + 0)

4
= 0

I UD =
((1 + (0)) + (0 + (0)) + (0 + (0)))

2
= 0.5

DCDD = 0 + 0.5 = 0.5

DUD =
0.5

3.75
= 0.13

Note that the constraint between variables 1 and 2 of agent
D is counted twice in the calculation of I ACDD and I UD.
The calculated value of DU = 0.13 will be sent to neighbors
A and E.

5.3 Details of Algorithm
The DCDCOP algorithm is implemented as follows :

• All agents start by calculating the values of IACD,
I ACD and SCD. Then the agents instantiate their
local variables using a Branch and Bound algorithm
[5], thus ensuring that the cost at the end of this step
is the minimum as per its current context. Each agent
then calculates its dynamic measures of DCD and DU
and sends its DU and the related context to its neigh-
bors (i.e. those agents with whom it shares an inter-
agent constraint).

• All agents then start to receive and handle messages
on incoming links. When a message is received, the
context of the message is checked to ensure that it is
compatible with the agent’s CurrentContext. If not,
the message is discarded and the agent continues to
listen on its incoming links. If the message is compati-
ble, the messageContext is added to CurrentContext
and the messageDU is compared with the agent’s own
DU . If the agents own DU is higher, it will reassign its
variables, recalculate its dynamic measures and resend
messages on outgoing links. If the agent’s own DU is
lower than messageDU , it will not reassign its vari-
ables, but if relevant, it will recalculate its dynamic
measures and resend messages on outgoing links. In
the event that messageDU = DU , the agent with a
higher static ordering will reassign its variables, re-
calculate its dynamic measures and send messages on
outgoing links.

• The search stops when each agent has achieved a stable
state and no more messages are transacted. In the case
of a solvable problem, this equates to a situation when
the agent, and all its neighbors, arrive at DU = 0. In
the case of an optimization problem, this equates to a
situation when the agent with a higher DU does not
change its local solution as doing so would raise the
cost of its solution.

The pseudo code of the algorithm is shown in Algorithm 1.
As agents negotiate, each negotiation is handled in one of
the following ways: if the values of DU are not identical,

Algorithm 1: The DCDCOP Algorithm

Calculate static measures
Solve local problem
Calculate dynamic measures
Send message (DU, CurrContext) to all neighbors
Receive messages
when received (messageDU, msgContext) do

if msgContext and CurrContext are consistent then
add msgContext to CurrContext
if DU > msgDU then

Solve local problem
end
else if DU = msgDU and higher order then

Solve local problem
end
Calculate dynamic measures
Send message (DU, CurrContext) to all neighbors

end

end do
Procedure : Solve local problem
Branch and Bound to solve local problem

the agent with a higher value of DU will change its value; if
the values of DU are identical, the agents will follow a fixed
ordering between them to decide who changes their value.
When an agent with a higher DU finds no better instan-
tiation for its local variables, it will return the same, thus
reaching a steady state until it receives a context message
from other agents causing it to reevaluate its cost function.

Given that we use Branch and Bound, a proven complete
algorithm [5], as a local solver, and that inter-agent negoti-
ation results in a stable state, we can intuitively infer that
the DCDCOP algorithm is sound and complete. Given the
characteristic of the Branch and Bound algorithm, we can
also infer that the algorithm exhibits linear space complexity
but exponential complexity in time and number of messages
in the worst case.

Note that in the case of a dynamic real world problem, the
agent with the lower value of DU can force the agent with
the higher DU to negotiate by raising the cost attached to
the inter-agent constraint.

5.4 Example of DCDCOP Execution
In continuing the example from section 5.2, assuming agents
A B and C are first to receive their messages, A and C will
both reassign their variables and send out new messages,
as they have received DU messages less than theirs. This
results in the state shown in Figure 3(b).

Now assume D and E receive both messages together. Act-
ing on the newer messages, both D and E will attempt to
reassign their variables because their last calculated DU is
higher than the messageDU from A and C respectively, but
with the updated values from A and C, both will arrive at
the same local solution as being the lowest cost. Similarly,
B will arrive at the same local solution as being the lowest
cost and they will send out their DU messages (Figure 3(c)).

At this stage, since all agents will detect that they have a

28

(a) Log(Number of Messages) (b) Log(Number of Cycles) (c) Log(Time in Seconds)

Figure 4: Performance of ADOPT vs DCDCOP (LD = 2)

(a) Log(Number of Messages) (b) Log(Number of Cycles) (c) Log(Time in Seconds)

Figure 5: Performance of ADOPT vs DCDCOP (LD = 3)

DU of 0 and their neighbors have a DU of 0, the algorithm
will terminate.

6. EXPERIMENTAL EVALUATION
Given the need for agents to negotiate in a privacy preserv-
ing manner, otherwise optimal approaches like OptAPO,
that use partial centralization, are not suitable in this con-
text. And while DPOP and its variants are good DCOP
algorithms, we choose ADOPT for our experimental evalua-
tion because, like DCDCOP, it is based on constraint-guided
search and thus provides a more realistic comparison. Fur-
ther, ADOPT’s source code can handle multiple variables
per agent without any modification to the algorithm, and is
thus well suited to a fair and accurate comparison. To fur-
ther ensure a reasonable comparison, the new algorithm is
developed within the original ADOPT source code [14] and
evaluated on the same graph coloring problems that were
used to report ADOPT’s performance in [9] and come bun-
dled with the source code. Also, ADOPT’s original messag-
ing and performance evaluation procedures are utilized for
the evaluation.

The original graph colouring problem data (8-40 variables)
is evenly distributed between 3-5 agents. Also as in the
original evaluation, we analyze the performance of both al-
gorithms on problems with link density (LD) of 2 and 3. The
performance is compared using three measures: number of
messages, number of concurrent cycles, and time(secs). To
prevent a large disparity between the results, the algorithms
are run with a maximum time, timeMax of 30 mins. Also,
for a meaningful display of results, we report results on a

logarithmic scale (base 10) (Figures 4 and 5).

We observe that DCDCOP outperforms ADOPT signifi-
cantly on all three scales of measurement. The speedup can
be attributed partly to the algorithm exploiting domain cen-
tralization and performing each local reassignment within
one cycle, and partly to the novel dynamic measures used
to guide the inter-agent negotiation part of the algorithm.

The results allow for some extremely interesting observa-
tions. We observe that the difference in DCDCOP’s perfor-
mance for LD = 2 and LD = 3 is not significant as in the
case of ADOPT. This can be attributed to computational su-
periority over I/O speeds, the factor responsible for DPOPs
performance gains over ADOPT [12]. Further, the perfor-
mance of DCDCOP with 40 variables (distributed among 5
agents), is reasonably similar to the left side of the ADOPT
charts, i.e. 8 agents with 1 variable per agent. Also, the
performance of DCDCOP does not deteriorate much as we
increase the problem size from 8 variables (in 3 agents) to
40 variables (in 8 agents). This further asserts the computa-
tional superiority of the centralized optimization algorithms
such as Branch and Bound, and reinforces common belief
that communication is the bottleneck in distributed prob-
lem solving.

We thus observe how problems that cannot be solved ef-
ficiently by DCOP algorithms can benefit greatly if there
is a component of domain centralization that they can ex-
ploit. Further, a flexible robust algorithm like DCDCOP
can help model the departmental centralization structure of

29

large real world optimization problems, not only offering a
natural mapping from real world problem solving structure
to DCOP problem solving structure, but also exploiting this
to provide an order of magnitude improvement in perfor-
mance.

7. CONCLUSION AND FUTURE WORK
Several real world optimization problems translate to agents
with complex sub-problems in a dynamic environment, that
need to negotiate in a manner where privacy and decision
making authority is preserved. The current state of the art
in DCOP deals with such problems by offering extensions
to algorithms best suited for optimization of single-variable
agents in a static environment and this often lead to sub-
optimality.

We present a flexible, robust algorithm, DCDCOP, that
is capable of exploiting the inherent domain centralization
found in such problems, and uses a novel measure, DU,
to dynamically guide agent ordering during optimization.
Experimental evaluation shows that DCDCOP significantly
outperforms ADOPT, the current state of the art DCOP
search algorithm.

We are currently developing realistic and significant bench-
mark problems based on scheduling process information and
data collected during our extensive interviews and interac-
tions with schedulers and domain experts at the PAH. Fur-
ther evaluation of DCDCOP and other DCOP algorithms on
these benchmarks, and investigating the use of the measure
of DU to guide agent based negotiation in various DCOP
algorithms, are proposed as future work.

8. ACKNOWLEDGMENTS
The authors wish to thank Dr. Peter Moran and his col-
leagues at the PAH for their ongoing support over the last
three years, for allowing us into their world, and sharing
their invaluable expertise.

9. REFERENCES
[1] D. Burke and K. Brown. Using relaxations to improve

search in distributed constraint optimisation. Artificial
Intelligence Review, 28(1):35–50, June 2007.

[2] D. A. Burke and K. N. Brown. A comparison of
approaches to handling complex local problems in
DCOP. In Sixth International Workshop on
Distributed Constraint Reasoning, page 27–33, Italy,
2006.

[3] D. A. Burke and K. N. Brown. Interleaved search in
DCOP for complex agents. In Proceedings of the
Doctoral Program, Principles and Practice of
Constraint Programming - CP 2006, Nantes, France,
2006.

[4] J. Davin and P. J. Modi. Hierarchical variable
ordering for distributed constraint optimization. In
Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, pages
1433–1435, Hakodate, Japan, 2006.

[5] E. C. Freuder. Partial constraint satisfaction. In
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, USA, page
278–283, 1989.

[6] R. N. Lass, E. A. Sultanik, and W. C. Regli. Dynamic
distributed constraint reasoning. In Proceedings of the
Twenty-Third AAAI Conference on Artificial
Intelligence, pages 1466–1469, Chicago, 2008.

[7] R. T. Maheswaran, M. Tambe, E. Bowring, J. P.
Pearce, and P. Varakantham. Taking DCOP to the
real world: Efficient complete solutions for distributed
Multi-Event scheduling. In Proceedings of the Third
International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 1, pages 310–317,
New York, 2004.

[8] R. Mailler and V. Lesser. Solving Distributed
Constraint Optimization Problems Using Cooperative
Mediation. In Proceedings of the Third International
Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 1, pages 438–445, New
York, 2004.

[9] P. J. Modi. Distributed Constraint Optimization for
Multiagent Systems. PhD thesis, University of
Southern California, USA, 2003.

[10] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for distributed
constraint optimization. In Proceedings of the second
international joint conference on Autonomous agents
and multiagent systems, pages 161–168, Melbourne,
2003.

[11] A. Petcu and B. Faltings. S-DPOP: superstabilizing,
fault-containing multiagent combinatorial
optimization. In Proceedings of the Twentieth National
Conference on Artificial Intelligence, AAAI-05, page
449–454, Pittsburgh, Pennsylvania, USA, 2005.

[12] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In Proceedings of
the Nineteenth International Joint Conference on
Artificial Intelligence, pages 266–271, Edinburgh,
Scotland, Aug. 2005.

[13] A. Petcu and B. Faltings. Optimal solution stability in
dynamic, distributed constraint optimization. In
Proceedings of the 2007 IEEE/WIC/ACM
International Conference on Intelligent Agent
Technology, pages 321–327. IEEE Computer Society,
2007.

[14] C. P. Portway. USC DCOP Repository.
http://teamcore.usc.edu/dcop, 2008.

[15] Queensland Health. Quarterly Public Hospitals
Performance Report September Quarter 2008.
http://www.health.qld.gov.au/surgical access, 2008.

[16] M. C. Silaghi and M. Yokoo. DFS Ordering in
Nogood-based Asynchronous Distributed Optimization
(ADOPT-ng). In Sixth International Workshop on
Distributed Constraint Reasoning, Italy, 2006.

[17] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
Distributed constraint satisfaction for formalizing
distributed problem solving. In International
Conference on Distributed Computing Systems, pages
614–621, 1992.

[18] L. Zhou, J. Thornton, and A. Sattar. Dynamic Agent
Ordering in Distributed Constraint Satisfaction
Problems. In Australian Conference on Artificial
Intelligence, pages 427–439, 2003.

30

Pick-A-Bundle: A Novel Bundling Strategy for Selling
Multiple Items within Online Auctions

Ioannis A. Vetsikas, Alex Rogers and Nicholas R. Jennings
School of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ, UK

{iv,acr,nrj}@ecs.soton.ac.uk

ABSTRACT
In this paper, we consider the design of an agent that is able to
autonomously make optimal bundling decisions when selling mul-
tiple heterogeneous items withinexistingonline auctions. We show
that while bundling the items together into a single lot is effective
at reducing listing costs, it also results in a loss in auction revenue.
To address this loss we introduce a novel bundling strategy, that
we callpick-a-bundle, that can be implemented within any existing
auction format. We show, mainly using simulations, that this new
bundling strategy generates greater expected revenue than the com-
plete bundle of all items, and, by inducing additional competition
between bidders, it usually generates greater expected revenue than
using separate auctions for each item. In order for our agent to ac-
curately and efficiently calculate its expected revenue when using
our new strategy, we derive a novel polynomial time algorithm for
calculating the probability distributions of the sum of the top order
statistics of i.i.d. variables drawn from any arbitrary distribution.
Furthermore, we include in our analysis the strategic behaviour, in
terms of bid shading, that the buyers may consider in our new auc-
tion format.

1. INTRODUCTION
The bundling of a number of heterogeneous items into a single lot
is a common strategy when sellers participate in auctions. For ex-
ample, within an online auction, such aseBay.com or taobao.com,
sellersmay bundle together a small number of low cost items, such
as DVDs or computer games, in order to avoid incurring separate
listing fees. Likewise, in traditional auctions it is common to find
furniture items bundled together into a single lot in order to reduce
the time overhead (and cost) involved in selling each item sepa-
rately.

While the cost saving of bundling items together is self-evident
in the examples described above, these savings must be set against
the effect that bundling has on the expected revenue of the auc-
tion. Specifically, when the items being sold exhibit complemen-
tary valuations (i.e. the valuation of the bundle is greater than the
sum of the valuations of each individual item) then the rationale
for bundling is clear. However, the formal economic literature has
little to say regarding the seller’s revenue when bundling items that
exhibit non-complementary valuations within auctions (as in the
example of a bundle of DVDs described above). In particular, re-

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman,
Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp.
XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

search in this area has so far only addressed the problem faced by a
multi-product monopolist offering single items or bundles of items
at fixed prices [1, 12]. While this setting is somewhat different
to the one that we consider, this work shows that the bundling of
goods can yield an increase in revenue, even when the items of-
fered exhibit non-complementary valuations. Similarly, more re-
cent work on the bundling of information goods on the internet,
again shows profitability even in the absence of network external-
ities or economies of scale [2, 3]. Jehielet al. [2007] examine a
setting with additive valuations, which is similar to ours, however
as the authors point out in their conclusions, their results do not
work within “standard auctions”. This limitation is also present in
the computer science literature, where the bundling of items is of-
ten studied within the context of combinatorial auctions (see [5] for
a review). Furthermore, this work has largely addressed the issue
of complementary valuations, and has proposed novel auction pro-
tocols that allow bidders to express their preferences for specific
bundles of goods [13, 4, 6, 11]. While such results are useful to the
designers of new online or real-world auctions, they do not help a
seller who is attempting to use an existing auction format (such as
the English auctions of eBay or the sealed bid second price auction)
in which bidders may only submit bids on the lot offered (and not
on subsets of items).

Against this background, in this paper we consider for the first
time the effects of bundling non-complementary goodswithin a
standard auction format1. Our goal is to develop an autonomous
auction agentthat can advise on, and ultimately automate, the pro-
cess of selling multiple heterogeneous items within such online
auctions. To this end, we present a novel bundling strategy, that
we callpick-a-bundle, in which a seller lists a set of items and an-
nounces a bundle size, and the buyers bid for the right to select a
number of items from this set, which is equal to the bundle size;2

the remaining items, which were not selected by the winner in his
bundle, are then sold in a second round of separate auctions. For
example, five DVDs may be listed and a bundle size of three might
be announced, thus the winner of the auction would select the three
DVDs that he would like to receive and the remaining two would
be sold in a second round of separate auctions afterwards.

The design of our pick-a-bundle auction is informed by the in-
tuition that bundling items will in general reduce the transaction or

1We specifically consider a sealed bid second price auction in our
analysis, but due to the revenue equivalence theorem, our results
apply to any efficient auction protocol.
2The idea of choosing the top valued items has also been used in [9,
17]. However, in these settings, the prices are fixed. Furthermore,
information goods can be copied, whereas in our setting the fact
that the bidders are competing for limited unclonable resources is
what creates additional revenue.

31

listing fees of the seller, but by offering just a subset of the items
to the buyer, it will also induce competition between bidders who
may actually prefer different items. This second factor has been
observed in real world auctions that are sometimes used to sell a
number of individual apartments within an apartment block. Here,
rather than bidding for individual apartments, the buyers bid for the
opportunity to select one of the remaining remaining unsold apart-
ments. This procedure generates competition between bidders who
prefer different apartments, and results in increased revenue for the
seller [Personal communication from Michael H. Rothkopf, 2007].
We show that the same factors influence our pick-a-bundle auc-
tion, and show that it generates greater expected revenue than an
auction where all items are included in a single bundle, and more-
over, in the vast majority of the cases examined, it also generates
greater expected revenue than selling each item in separate single-
item auctions. Thus, in more detail, this paper makes the following
contributions:

• We prove that the standard bundling strategy, in which multi-
ple items are sold together in a single bundle, generates, with
few exceptions, less revenue than separate single-item auc-
tions (proposition 1). We address the loss of revenue incurred
in this complete bundle auction by describing our novel pick-
a-bundle format. Contrary to pre-existing work on bundling,
this format can be implemented within any existing standard
auction, as it does not require a redesign of the auction.3 We
motivate our decision, by showing theoretically that there al-
ways exists a pick-a-bundle auction which generates greater
revenue than selling the items separately (proposition 2).

• We empirically evaluate our new bundling strategy through
simulation, and show that it generates greater expected rev-
enue than separate single-item auctions and the complete bun-
dle (regardless of whether listing costs are taken into ac-
count).

• We then address the problem that the aforementioned simu-
lations scale poorly as the the size of the problem (i.e. the
number of items and bidders) increases. In order to calcu-
late, rather than simulate, the expected revenue of the pick-
a-bundle auction, in the cases where the items are relatively
similar,4 we propose a novel polynomial time algorithm (sec-
tion 5) for calculating the probability distributions of the sum
of the top order statistics of i.i.d. variables drawn from arbi-
trary discrete distributions.

• Finally, we examine how the presence of the second round
of auctions for selling the remaining items, which were not
selected by the winner of the pick-a-bundle, affects the bids
of the buyers. While in some cases, the bids will not be af-
fected (claim 1), in some others the buyers are going to shade
(reduce) their bids. We compute these bids and integrate this
effect into our analysis of the pick-a-bundle revenue and our
experiments.

The remainder of this paper proceeds as follows: In section 2 we
formalize the problem setting. In section 3 we describe and moti-
vate the pick-a-bundle strategy, before discussing how to optimize
its performance (by selecting the optimal bundle size) in section 4.
3While we have specifically addressed the needs of an autonomous
auction agenthere, we note that all the results of this paper are
also of immediate use to current sellers using existing traditional or
online auctions.
4We assume that they have the same prior distributionsfi(u) (de-
fined in section 2).

In section 5 we present the algorithm for computing the expected
revenue without simulations, for the case of similar items. In sec-
tion 6 we examine the effect of the second round of auctions on the
buyers’ bids. In section 7 we generate empirical results that, unlike
those of section 4, take the effect of bid shading into account; the
algorithm of figure 2 is also used to generate the results without the
need for simulations. Finally, we conclude.

2. PROBLEM STATEMENT
In this section we formally describe the auction setting to be ana-
lyzed and the auction format choices that a seller has in order to
maximize her revenue. First, however, we introduce the basic no-
tation. We assume that a seller hasm > 1 items to sell. There
are n buyers interested in purchasing some of these items. The
valuationuij of item i to each bidderj is drawn from a known
distribution with probability density function (pdf),fi(u), and as-
sociated cumulative density function (cdf),Fi(u). The exact valu-
ationsuij , ∀i are known only to the bidderj himself. These distri-
butions represent the prior knowledge available to all participants
about the valuations of the other agents in the auction and are com-
mon knowledge to all.5 We assume thatfi(u) take non-zero values
in [0, L], and thus for∀u < 0 and∀u > L, it is fi(u) = 0, ∀i.
Although there is nothing to limit the applicability of our exper-
imental results to any distribution, in the experiments we assume
that the item valuations and corresponding bids take discrete val-
ues. This represents no loss in accuracy since in all real auctions
bidders can only place bids that are whole denominations of the
currency used (i.e. a bid can’t be95.3 pence, but rather either95 or
96 pence). Given this, the distributionsfi(u) used, are discrete, and
can take valuesu = 0, . . . , L. In our analysis, we assume that the
value of items is additive, meaning that a set of items is worth the
sum of the individual item valuations; this is a result of the limited
number of results in the literature about how bidders bid in cases of
complementary and substitutable items (they don’t bid truthfully),
which makes it impossible to analyze the expected revenue in such
cases.6

Sellers sell the items in second price auctions (i.e. auctions in
which the top bidder is awarded the item for sale, and the payment
is equal to the second highest bid). These auctions are incentive
compatible, and thus we assume that bidders place bids equal to
their true valuations [10]. Because of the revenue equivalence the-
orem, our results are also valid in cases that a first price auction
would be used (or indeed any other efficient auction mechanism).

Finally, we assume that the seller has a certain degree of freedom
when she sets up the auction; even though the auction format must
follow that of the online or traditional auction house being used
(i.e. in our case it must be a sealed bid second price auction). In
particular, the good for sale is determined by the seller, and thus,
instead of selling a single item, bundles of items may also be listed.

In real world auctions, there is often alisting costassociated with
this auction which is levied on the buyer, the seller or both. In our
experiments we assume a fixed listing costC extracted from the

5Thesevaluations can model a wide variety of scenarios, simply
by selecting the correct distribution. For example, the distribution
could incorporate the value of a potential resale by selecting the
item valuations (given by the distribution) to be equal to the resale
value in the cases when the actual bidder value from keeping the
item is lower than the resale value.
6On eBay, for example, sometimes a seller will offer to sell substi-
tutable items, like “choose a black or a white iPod”. In such cases,
the analysis is much easier than in our model, because here bid-
ders are interested in exactly one item; in our model they could be
interested in buying both.

32

seller’s revenue for each auction that is conducted. This is inspired
from the actual listing costs levied by online auction houses such
as eBay, which charge a listing cost consisting of a fixed feeC and
a percentage cost (which can be ignored as it reduces the revenue
in all cases by the same percentage).7

3. THE BUNDLING STRATEGY
A seller with multiple items for sale may choose to do so insepa-
rate auctions each selling a single item. Another option, which is
the main bundling technique used by sellers on sites such as eBay,
is to offer acomplete bundleof items for sale; the winning bid-
der gets all of the items listed. This is usually done in order to
reduce the listing costs. However, as we show below (for the case
of identical distributionsfi(u)), the complete bundle generates less
revenue, except in the case of few bidders:

Proposition 1 For a symmetric distributionf(u), when the item
distributionsfi(u) = f(u),∀i, an auction for a complete bundle
of m items, andm separate single-item auctions generate the same
expected revenue for the seller when there aren = 3 bidders, more
for n = 2 bidders, and less for every other case (n > 3 bidders).

PROOF (SKETCH). Due to space constraints, we only present
here the proof for the case whenn = 3. The proofs for the other
cases (whenn = 2 andn > 3) follow some of the same steps
as the part of the proof presented here and also use the observa-
tion that taking the convolution of a pdf with itself (any number of
times) will concentrate the probability mass towards the mean of
the distribution and that the effect is more pronounced as the num-
ber of convolutions performed increases. Also note that sincef is
symmetric, it isf(u) = f(L− u),∀u ∈ [0, L], and the cdf is thus
F (u) = 1− F (L− u), ∀u ∈ [0, L].

Now, whenn = 3 bidders participate, the expected revenue from
each single-item auction,Rsingle, is the expected value of the2nd

order statistic (the second highest valuation) of the valuation that
each of the3 bidders have for that item. This can be computed to be
equal toRsingle = L−R L

0
(F 3(u)+3F 2(u)(1−F (u)))du = L

2
,

andcan be seen to be equal to the mean of the original symmetric
distribution with pdff(u).

Furthermore, ifg(u) andG(u) are the pdf and cdf respectively of
the distribution of the sum ofm i.i.d. random variables which are
drawn from distributionf(u), then, sincef(u) is symmetric, we
know thatg(u) must also be symmetric. Using the same reasoning
as in the case of distributionf above, we deduce that the expected
revenue from selling the complete bundleRbundle is equal to the
mean of distributiong(u), which is equal toRbundle = m·L

2
=

m · Rsingle. Therefore the expected revenue in both cases is the
same.

Thecomplete bundle suffers from a loss in revenue, because the
second highest valuation of the bundle is generally less than the
sum of the second highest valuations for each separate item, since
a bidder’s high valuation for one item is likely to be balanced by
a lower valuation for another item. We can generalize this obser-
vation based on our experimental evidence for any combination of
distributionsfi(u) (see sections 4 and 7) and conclude that, while
for n = 2 the complete bundle is the best option, forn ≥ 4 bidders
participating, one would be better off using separate single-item
auctions.

7To be more precise, eBay charges an “insertion fee”, which is
a fixed cost depending on the starting price of the auction and a
“final value fee” which is, for the most part, a percentage of the
final closing price of the auction.

In order to address this loss in revenue, we propose ourpick-
a-bundlestrategy. Under this scheme, the seller advertises allm
items that are for sale, but each buyer bids for the right to buyk
of these items (wherek ≤ m). The winner of the auction informs
the seller which are thek items that it actually wants to receive
(i.e. thek items that have the highest valuations for that agent).
The remaining items, which are not selected, still need to be sold
by the seller, and this is done by having another round of separate
single-item auctions.8 Note that the case whenk = m is exactly
the complete bundle auction, which is why the complete bundle is a
special case of pick-a-bundle. However, whenk = 1, this is not the
same as selling in separate auctions, because there is one auction
in which the highest valuation among all agents for all items wins,
and then the leftover items are sold in separate auctions.

The intuition behind our bundling strategy is clear. By reduc-
ing the size of the bundle compared to the complete bundle, the
magnitude of the revenue loss due to the fact that a seller might
be primarily interested in only some of the items is reduced. At
the same time, the preference of different subsets of items by dif-
ferent bidders also induces additional competition into the auction,
as buyers interested in different subsets of items will now compete
against each other. This leads our pick-a-bundle auction to outper-
form both the complete and the separate single-item auctions in the
vast majority of settings we examined.

In fact we can further motivate this approach even before we
discuss how to evaluate the different auction settings:

Proposition 2 For any distributionsfi(u), using the pick-a-bundle
auction, whenk = 1 item is chosen, will always generate the same
or more revenue than separate auctions each selling one of these
items.

PROOF. Let ui,j be the valuation that bidderi has for thejth

item. In the pick-a-bundle auction with bundle sizek = 1, the
revenueRb is equal to the second highest among the highest val-
ues of each bidder. Leti1 be the bidder with the highest valuation
ui,j ,∀i, j, for itemj1, andi2 6= i1 the bidder with the second high-
est among the bidders’ high valuations; this valuation is for itemj2.
ThusRb = ui2,j2 and this revenue is obtained for selling objectj1.

The revenueRj1 obtained in selling itemj1 on its own is the
second highest value amongui,j1 ,∀i. We examine the following
two cases:

1. Whenj1 = j2. ThenRj1 = ui2,j1 = ui2,j2 = Rb. The
revenue in this case is exactly the same.

2. Whenj1 6= j2. We know thatui2,j2 = arg maxi6=i1,j ui,j .
SinceRj1 is equal to one of the elements of set{ui,j}, ∀i 6=
i1, j, thereforeRj1 ≤ ui2,j2 = Rb.

Thus, the pick-a-bundle auction, when one item is chosen (i.e.
k = 1), will always generate the same or more revenue than any of
the individual auctions selling these items. Thus, the revenue from
our new auction setting (fork = 1) is always at least as high as that
from selling the items in separate auctions.

This shows that, in the case of scenarios where buyer strategic
bidding is not an issue (see section 6), the pick-a-bundle auction for
bundle sizek = 1 generates more revenue than separate auctions.
This does not mean that selectingk = 1 is indeed the best bundle
size; in fact quite often it is not. Rather it means that in this setting,
it is always preferable to use a pick-a-bundle auction in preference
to separate auctions.
8Notethat given sufficient remaining items, another pick-a-bundle
auction could be used on the remaining items. We do not explicitly
consider this case, but the analysis that we present could easily be
extended to cover it.

33

2 4 6 8 10 12 14 16
20

30

40

50

60

Number of Bidders

E
xp

ec
te

d
A

uc
tio

n
R

ev
en

ue

 k=1
 k=2
 k=3
 k=4
Complete Bundle
Separate Auctions

Figure 1: Seller’s revenue for a bundle ofm = 5 items, as the
number of participating buyers n increases, when using (i) sep-
arate single-items auctions to sell each item individually, (ii) a
pick-a-bundle auction initially where k = 1, . . . , 5. The item
valuations are drawn from five different, non-independent dis-
tributions.

4. OPTIMIZING THE BUNDLE SIZE
Now that we have presented the seller’s choices (i.e. separate auc-
tions, complete bundle and pick-a-bundle), she needs to find out
which of these choices gives the highest revenue. This involves
computing the expected revenue for all these choices, and in the
case of the pick-a-bundle auction, also selecting the best value ofk
(the size of the bundle offered). For the general scenario described
in section 2, we need to run a simulation in order to compute the
expected revenue of the various cases; we take a large number of
random samples of item valuations for all bidders, and average the
revenue of the auction across all samples.

To illustrate the wide applicability of our new auction format
we carried out a number of simulations with different distributions.
Here we show the results for a particular representative case. More
specifically, we assume that item valuationsuij are drawn from
the following 5 distributions: (i)u1j are drawn uniformly from
{3, . . . , 12} (prob. 1

10
for each value), (ii)u2j are correlated with

u1j and areu2j = u1j + z, wherez is drawn uniformly at random
from {−2, . . . , 2}, sou2j take values from1 to 14, (iii) u3j are
drawn uniformly from{0, . . . , 14}, (iv) u4j are equal to0 with
prob. 4

10
andtake values{5, . . . , 10}, each with prob. 1

10
, and (v)

u5j are equal to0 with prob. 1
2

andequal to12 with prob. 1
2
.9

We present the mean value of the revenue generated in the sim-
ulation for all possible cases in figure 1. We repeat the simulation
up to100000 times such that the standard error in the mean values
shown is less than the thickness of the line, and hence, we do not
show error bars in the figure. As we expected (based in part on
the theoretical results of propositions 1 and 2), the complete bun-
dle is not a good option no matter how many bidders participate
in the auction. The same is also true for the revenue from sepa-
rate auctions. The pick-a-bundle auction generates more revenue,
no matter whether the listing costs are considered or not.10 Now,

9We selected to present here an example with many different dis-
tributions and valuations that are not always independent of each
other (hereu1j andu2j are not), in order to show how generally
applicable our work is. In all the cases that we considered, the
same broad pattern of results were observed.

10Based on the closing price of these auctions, the proper listing cost
would beC = 0.35, if these were eBay auctions. The listing fees
saved through bundling are equal to(λ − 1) · C, whereλ = k for
the pick-a-bundle auction,λ = 1 for separate auctions, andλ = m

we consider how the choice of the bundle size (i.e. the value ofk)
affects the revenue of the pick-a-bundle auction, and hence, show
how to determine which bundle size is optimal in any given case.
For onlyn = 2 bidders,k = 3 is the best choice, for a small num-
ber of bidders (n = 3, . . . , 5), k = 2 is the best choice, whereas
for larger numbers (n ≥ 6), k = 1 is the best choice. Depending
on the prior belief about possible numbers of bidders participating,
n, the auction used should be the pick-a-bundle auction withk = 1
or k = 2. If the listing cost is included, thenk = 2 is the best
choice for almost all cases (n ≥ 4), andk = 3 is the best choice
only whenn ≤ 3.

While these simulations allows us to compute the auction param-
eters that maximize the seller’s expected revenue for any specific
setting, they are impractical in cases where the number of bidders,
n, or items,m, increases significantly. This is due to the fact that, in
this case, each individual simulation run takes longer to compute,
and also that each simulation must be repeated multiple times in
order to ensure the statistical significance of the final results (e.g.
in the experiments of figure 1 we repeat the simulation100000
times). Thus, in the next section we address this practical issue by
presenting an alternative algorithmic approach.

5. ALGORITHMIC COMPUTATION OF THE
EXPECTED REVENUE

Given the comments above, we now present an algorithm that al-
lows us to compute the revenue of our new bundle auction, in the
case that the items are similar. This algorithm is exact, is much
faster than the simulation approach presented in the previous sec-
tion, and scales extremely well (i.e. as the number of bidders par-
ticipating in the auction increases, the corresponding increase in
computational cost is minimal). However, it is restricted to cases
where the valuations of each item are i.i.d. and are drawn from the
same distribution,f(u). (for other cases the simulations are still
the best method) This constraint implies that all of the items have
similar values. While not always applicable, it certainly applies to
our motivating example of selling a number of DVD movies when
these movies are of the same class (e.g. new blockbusters).

To compute the expected revenue of the pick-a-bundle auction,
we first need to calculate the probability density function that de-
scribes the bidders’ valuation for the subset ofk items that they
value most highly (and hence will bid for). Since the topk order
statistics are not independent, this is not at all trivial, and in fact,
algorithms that can compute this pdf accurately for general valu-
ation distributions and arbitrary numbers of items do not exist.11

Here, we propose an algorithm that is polynomial with respect to
variablesk, m andL; it is shown in pseudo-code in figure 2. Once
this pdf is computed, we compute the expected revenue of the pick-
a-bundle auctions in time polynomial ton.

The main idea behind our algorithm is that we use three “for”
loops to execute the computation. The main loop changes the value
of variablex, which represents the value of thekth order statistic.
Once this is known, we use the other two loops to enumerate all the
possible values of variablesωb andωa, which represent the number
of order statistics, which are respectively below (i.e.(k + 1)th to
mth order statistics) and above12 (i.e. 1st to kth order statistics)

for the complete bundle.
11There are asymptotic methods that give approximations of this pdf
as the size of the problem increases to infinity [15]. However, we
consider relatively small numbers of items, and these methods do
not provide sufficiently accurate approximations in these cases.

12Actually here we also count thekth order statistic as well, so it
is ωa ≥ 1. When we say that some order statistic is above the
kth, this means it is one of the1st to (k − 1)th order statistics and

34

1. pa := 1, pb := 0, peq := 0, gk
m(u) = 0,∀u

2. for x := 0 to L do
3. pb := pb + peq [Note: pb =

Px−1
i=0 f(i)]

4. peq := f(x)

5. pa := pa − peq [Note: pa =
PL

i=x+1 f(i)]

6. ~h := [f(x + 1) . . . f(L)]

7. ~h′ := [1]
8. for ωa := k to 1 step−1 do
9. p := 0

10. forωb := 0 to (m− k) do
11. p := p + m!

(m−k−ωb)!(ωa+ωb)!(k−ωa)!
p

ωa+ωb
eq p

m−k−ωb
b

12. end for loop (variableωb)
13. if (ωa = k) then increasegk

m(k · x) by p
14. else
15. ~h′ := ~h′ ⊗ ~h
16. Increasegk

m(i + k·x + k − ωa) by p · ~g′(i), ∀i
17. end else
18. end for loop (variableωa)
19. end for loop (variablex)

Figure 2: Algorithm for computing the probability distribution
of the sum of the k top order statistics of m i.i.d. variables
drawn from distribution f(u)

the kth order statisticx, and that have a value equal tox. The
probability that(ωa +ωb) variables have value equal tox, (k−ωa)
have values greater thanx and (m − k − ωb) have values smaller
thanx, is:

p(x, ωa, ωb)=
m!(
Px−1

i=0 f(i))m−k−ωbf(x)ωa+ωb (
PL

i=x+1f(i))k−ωa

(m− k − ωb)!(ωa + ωb)!(k − ωa)!
(1)

The precise values that the bottom(m − k − ωb) order statistics
have are not important, because they correspond to the least valued
items; only the values of the top(k − ωa) order statistics must be
taken into account. What we know is that in this case, all these
values are greater thanx. Therefore, we can take the pdfh(u) to
denote the conditional probability when we know thatu > x. This
is given by:

h(u) =
f(u)PL

i=x+1 f(i)
, if u ∈ {x + 1, . . . , L} (2)

andh(u) = 0, otherwise. Given that the valuations are i.i.d. we can
compute the distribution of their sum by taking the convolution:

hk−ωa (u) = h(u)⊗ . . .⊗ h(u)| {z }
(k−ωa) times

(3)

Now, we also know that anotherωa order statistics are equal tox,
meaning that the pdf of thek top order statistics for this case is:ehk−ωa (u + ωax) = hk−ωa (u),∀u ∈ {0, . . . , (k − ωa)L} (4)

andehk−ωa(u) = 0, otherwise. As this case happens with proba-
bility p(x, ωa, ωb), and we account for all possible values ofx, ωa

andωb with the three loops, the pdf of the sum of the topk order
statistics is finally given by:

gk
m(u) =

LX
x=0

kX
ωa=1

m−kX
ωb=0

p(x, ωa, ωb)ehk−ωa (u) (5)

It should be noted that the algorithm in figure 2 has some addi-
tional optimizations (which are not described here due to limited
space). Its complexity depends onk, m andL and isO(k2mL3),

thereforeits value is the same or higher than that of thekth order
statistic.

because we use a convolution algorithm with quadratic costO(kL2).
An even more efficient algorithm could make use of a Fast Fourier
Transform to compute the convolution, which would reduce the
complexity toO(k2mL2 ln(kL)).

Given that the probability distribution of the sum has been com-
puted, the expected revenue,ER, of each auction is given by:

ERG = n(n− 1)

Z mL

0
[1−G(u)]n−2g(u)uG(u)du (6)

whereG() andg() are, respectively, the cdf and pdf of the distri-
bution of the valuation of the commodity sold in the auction; hence
g = gk

m for the pick-a-bundle auction, andg = f for the sepa-
rate auctions. This can be done inO(mL ln(n)) time, since the
computation of a powerxn is done inO(ln(n)) time. Thus, the
complexity of computing the revenue of one pick-a-bundle auction
is O(k2mL2 ln(kL) + mL ln(n)), which is low polynomial com-
plexity with the size of the problem. Consequently, this allows us
to compute the best auction very fast and efficiently.

6. ACCOUNTING FOR THE SECOND ROUND
OF AUCTIONS

In this section, we examine the effect of the second round of auc-
tions on the buyers’ bids, which has not been included in the work
presented until this point. Initially, we examine dynamic settings,
where the effect of the second round can be ignored (thus for these
scenarios the analysis of the previous sections can be applied as
presented), and then we examine settings in which it cannot. For
the second case, we first compute accurately the bid shading that
occurs due to the second round of auctions in the case where sim-
ilar items are being sold (as discussed in the previous section) and
we then proceed to examine more general settings.

In more detail, online auctions constitutedynamic scenarios, in
which there are many external opportunities for buyers to acquire
equivalent items (e.g. from other sellers in an online auction house
such as eBay), and thus, the second round of the pick-a-bundle auc-
tion does not represent the last chance to acquire any particular
item. In this case, there is no bid shading since its effect is already
incorporated within the buyers’ valuations for the items:

Claim 1 In a dynamic auctions setting, we can ignore the effect of
bid shading due to the second round of auctions.

DISCUSSION. We can assume that the true internal valuations
of bidder i in this setting areui,j , which are drawn from a dis-
tribution with pdf f j(u) for each itemj. Since online auctions
are often dynamic scenarios where bidders and buyers come and
go and the same item is being sold in many different auctions, the
bidders will indeed shade their bids in any auction in which they
participate, because of the possibility of getting the item that they
are interested in from another seller (in another auction). To prove
this fact more rigourously, we will use the sequential auction model
and the subsequent analysis presented in [14]. This analysis pro-
vides the mappinggj : ui,j → ui,j from the real valuationsui,j

to the “shaded” onesui,j . Using the same mapping, we can gen-
erate the new “shaded” prior distributionsfj(u) from which the
shaded valuationsui,j are drawn. Because the number of potential
sellers is sufficiently large in an online auction setting, following
the analysis in [14], we can conclude that the bidder’s bids will not
change (more than a tiny amount), because of the presence of one
more seller, or, equivalently, one additional chance to buy the item.
Therefore, we can use the shaded valuationsui,j , in our analysis of
how bidders will bid in the pick-a-bundle format, to represent the
valuations of bidders in both rounds of bids; the effect of additional
bid shading is minuscule, if not non-existent.�

35

However, there are alsostatic scenarios, in which a fixed number
of buyers are participating and the items being sold are not available
from any other sources (i.e. because they are rare or difficult to
find). Within our pick-a-bundle auction, the buyers will thus have
two opportunities to acquire each item: in the pick-a-bundle auction
as part of a bundle ofk items, and in the second round of separate
single-item auctions, if that item was not sold in the bundle auction.
Because of this second opportunity to purchase items if they don’t
win, buyers shade (i.e. strategically reduce) the bids placed in the
bundle auction. We can initially consider the case of similar items:

Proposition 3 Assume w.l.o.g. thatui1 > ui2 > . . . > uim are
the valuations of buyeri for the items offered for sale. If he partic-
ipates in a pick-a-bundle auction wherek items are sold in the first
round, then, because of the chance to get the remaining(m− k) of
these items in the second round of auctions, he will bid:

bi =
kX

j=1

�
uij − m− k

m

uij−1X
x=0

Ω(x)
�

(7)

whereΩ(x) is the distribution of the top bid of the opponents it will
face in the second round.

PROOF. Since the seller sellsk out of m items in the pick-a-
bundle auction initially (first round), then there is am−k

m
chance

that any item that a buyer wishes to purchase might be available
for sale in the second round (i.e. there is an equal probability that
each item is not among the topk most desired items of the winner
of the first auction and therefore left for sale in the second round).
Let us assume that itemj for which a certain buyeri has valuation
uij , is relisted in the second round. From his point of view, buyeri
competes against a number of other bidders, whose maximum bid
is B (the top order statistic of these bidder’s private valuations).
Since we assumed thatB is drawn from distribution with pdfΩ(),
it is Prob[B ≤ x] = Ω(x). Then bidderi with valuationuij , will
bid truthfully and win this auction with probabilityΩ(uij). The
payment he will make is equal toB. Thus, his expected profit in
this auction is given by:

EProfitij =

uij−1X
x=0

(uij − x) · Prob[B = x] =

uij−1X
x=0

Ω(x) (8)

Therefore, if we assume w.l.o.g. thatui1 > ui2 > . . . > uim are
the valuations of buyeri, then he has a chance to win each of his
k most valued items in the second round, if he does not win in the
first. His expected total profit in this case is:

Ci =
m− k

m
·

kX
j=1

EProfitij =
m− k

m
·

kX
j=1

uij−1X
x=0

Ω(x) (9)

Now this buyeri will gain a profit of (
Pk

j=1 uij − t), wheret
is the payment and is equal to the second highest bid, if he wins
the pick-a-bundle auction, and an expected profitCi if he loses it
(since he then has a chance to buy some of the items he desires in
the second round auctions). It is then trivial to show that the bid
that maximizes his overall expected profit is(

Pk
j=1 uij −Ci), and

thus, he should shade his true valuation for the bundle (given byPk
j=1 uij), by an amount equal to his expected profitCi.

Thiseffectively means that each bidder shades his true valuation
uij for each item bym−k

m

Puij−1

x=0 Ω(x).13

13In the case that this bidder facesN = n − 1 other bidders, the
valuation of each being drawn from distribution with cdfF (u),
then the top opponent bid is drawn from distribution with cdf
Ω(x) = F (x)n−1. This is not exactly the distribution that we
will use in our experiments in section 7, because we need to ac-
count for the fact that the valuations of one bidder (the winner of

Now, we describe how to modify the algorithm of figure 2 in
order to incorporate the bid shading. The easiest way to do so is
to modify the prior distribution of the valuationsf(u), and to map
every valueu ∈ {0, . . . , L} to u − m−k

m
· Pu−1

x=0 Ω(x). Note,
however, that this equation does not always give integer values.
For example, valueu = 3 might need to be mapped to2.4. If the
new pdf bf(u), that we input in the algorithm, were generated from
these mappings by rounding each value to the closest integer (i.e.
2.4 becomes2), then the sum of bids could have a significant error
(as much asb k

2
c). To alleviate this, we can simply createk virtual

valuations. For example, iff is defined at{0, 1, . . .}we can decide
to define it at values{0, 1

k
, 2

k
, 3

k
, . . .} and then round the shaded

bids to these values rather than the integer values. By doing this,
we guarantee that the total error in the computation is less than1

2
.

As the bidders must bid integer values, this means that we would
have to round the final bidbi anyway, and therefore with this trick
we can guarantee that our algorithm computes as a value eitherbbic
or dbie. The algorithm now should have complexityO(k5mL3),
but by taking advantage of the sparsity of the pdf in this case, we
derive an algorithm with lower complexityO(k3 ·m · L3).

The previous case described accounts for bid shading in the case
that the items are similar. So it’s now time to examine the case that
they are not and therefore they have different priorsfj(u). In this
case, we assume that the winner of the first round (i.e. the pick-a-
bundle auction) will always select his top valued items. Then we
can extend the results of the previous subsection to get:

bi =
kX

j=1

�
uij − πj

uij−1X
x=0

Ωj(x)
�

(10)

whereΩj(x) is now the distribution of the top opponent bid for
thejth item, which is computed in the same way as in the previous
case, andπj is the probability that this item will be available in the
second round; this probability is computed from the distributions
fj(). Due to the assumption made that thek highest valued items
are always selected, this is really a fair, albeit not absolutely accu-
rate, estimate of the bid placed, unlike equation 7 which is accurate
for the previous case. We would like to explain why, in a few cases,
the winner will not select hisk most valued items in the first round.
Let us give an example of when this happens. Assume that thekth

top valued items of winning bidderi has valueui,jk = 10 and
the prior for that item isfjk = U [0, 10] (uniform). Also the next
highest valued item (i.e. the(k + 1)th order statistic among bidder
i’s valuations) has valueui,jk+1 = 9 and the prior distribution for
that item isfjk = U [9, 12] (also a uniform distribution). In most
cases, it would be in bidderi’s interest to select itemjk+1 rather
thanjk to get from the pick-a-bundle auction, even though its value
is lower. This is due to the fact that this bidder will have a much
easier time winning itemjk compared to itemjk+1 in the second
round, and thus make even more profit.

Even though this case of a winner not selecting one of hisk
highest valued items in the first round is not very common, it does
complicate the analysis quite a bit. This is the reason why, we leave
this analysis for future work.

7. EMPIRICAL RESULTS

thepick-a-bundle auction) are drawn from a different distribution,
which we denoteH(u). In this caseΩ(x) = F (x)n−2H(x). In
the experiments presented in the next section, we used a simulation
to computeH(u). The expected revenue of the separate auctions
selling the remaining items is now computed by taking the expected
value of distributionΨ(x) = (F (x))n−1 + (N − 1) ·H(x) · (1−
F (x)) · F (x)n−2, rather than equation 6.

36

2 4 6 8 10 12 14 16
5

10

15

20

25

30

35

40

45
E

xp
ec

te
d

A
uc

tio
n

R
ev

en
ue

Number of Bidders

 k=1
 k=2
 k=3
 k=4
Complete Bundle

2 4 6 8 10 12 14 16
5

10

15

20

25

30

35

40

45

E
xp

ec
te

d
A

uc
tio

n
R

ev
en

ue

Number of Bidders

 k=1
 k=2
 k=3
 k=4
Complete Bundle

2 4 6 8 10 12 14 16 18 20
10

15

20

25

30

35

40

45

E
xp

ec
te

d
A

uc
tio

n
R

ev
en

ue

Number of bidders

Separate Single−Item Auctions
Complete Bundle
Pick a Bundle (for k=2)
Pick a Bundle (k=2 − bids shaded)

(a) (b) (c)

Figure 3: Seller’s revenue for a bundle ofm = 5 items, as the number of participating buyersn increases. In (b) the bids are shaded,
whereas in (a) they are not. In (c) we include only the best pick-a-bundle auction (k = 2). The distribution of the buyer valuations
f(u) is uniform for values {0, . . . , 9}.

In section 4, we showed how to compute the best bundle size for the
pick-a-bundle auction and determine whether this is the best choice
available to the seller. In this section, we give additional empirical
results that make use of both the algorithmic computation (from
section 5), which is faster and more efficient, and our analysis of
the strategic buyer behaviour (from section 6).

The first experiment uses the algorithms of figure 2 and its ex-
tension which accounts for the buyers shading their bids for several
scenarios (i.e. distributions) when all the items are similar. More
specifically, we examine the seller’s revenue, who hasm = 5 items
for sale, ton participating bidders. The valuations of the items are
i.i.d. variables drawn from the same distributionf(u). In figure 3
we graph the expected revenue, whenf(u) is a uniform distribu-
tion for values{0, . . . , 9}, sof(u) = 0.1,∀u ∈ {0, . . . , 9}, and
f(u) = 0,∀u /∈ {0, . . . , 9}. We use uniform distributions, be-
cause they are the ones most commonly used in analyzing auction
scenarios in the literature. We have also done the same analysis
with several other distributions14 and, though we don’t present the
results here, they lead to similar conclusions as those drawn here.

In figure 3(a), the expected revenue of the pick-a-bundle format
is examined for all the values of the bundle sizek,15 when no bid
shading occurs. The expected revenue of all cases is computed
using equation 6. This figure allows us to consider how the choice
of the bundle size (i.e. the value ofk) affects the revenue of the
auction, and hence, show how to determine which bundle size is
optimal in any given case. As seen in the plot, the pick-a-bundle
auction withk = 2 generates more revenue over a wide range of the
number of bidders. More specifically, it yields the highest revenue
for n ∈ {3, . . . , 19} and is thus the best choice for these values;
whenn = 2 (resp.n ≥ 20), then the best choice isk = 3 (resp.
k = 1). These results must also be set against the(k − 1) · C
listing fees saved through bundling. In this case,k = 2 is the best
choice whenn ≥ 4, while k = 3 is better for very small numbers
of participating bidders, such asn ≤ 3.

Figure 3(b) presents the equivalent results to figure 3(a), when

14For example, as there is evidence to suggest that in many cases,
there is a substantial probability that a buyer is either not interested
at all or is interested very little in a specific item, e.g. the exper-
imental distribution used for the TAC game analysis in [16], we
used (among others) distributions that place substantial probability
at value0. This is a situation which is very likely to occur within
the motivating example concerning bundles of DVDs; for example,
if the buyer already has a copy of a DVD, he is likely to have little
interest in acquiring a second one.

15The reader is reminded that selectingk = m is the complete bun-
dle case.

bid shading does take place. The results in this case are very similar
to those of figure 3(a); the pick-a-bundle auctions fork = 1 and
k = 2 give almost the same expected revenue for most values ofn
(although, of course in practice,k = 2 would be preferred due to
the listing fee savings). For very small values ofn (n ≤ 3), k = 3
can be the best choice, especially if listing costs are considered.

Based on the results of figures 3(a) and 3(b), the overall best
choice for the bundle size isk = 2. We use this value in fig-
ure 3(c), where we compare the revenue obtained from the pick-a-
bundle auction with those of the complete bundle and of using sep-
arate single-item auctions. When bid shading does not occur, the
new bundling strategy is the clear winner, and when bid shading is
taken into account it still outperforms the other two in almost all
cases (the exception being whenn = 2, when one should select the
complete bundle). If we consider listing costs these observations
do not change; for small values ofn the complete bundle might
be better (and only in the case where the bids are shaded) and for
every other case the pick-a-bundle format is the best choice.

The second experiment is the same as that presented in section 4.
Here, however, we also include the effect of bid shading and, thus,
the buyers’ bids are computed using equation 10. The results are
presented in figure 4 and they reinforce the observations made in
the previous experiments. Furthermore, comparing with figure 1,
we notice that, while accounting for the bid shading reduces the
benefit of using pick-a-bundle compared to the complete bundle
and the separate auctions, it is still the best choice. More specifi-
cally, n = 2 bidders is the only case in which the complete bundle
would be preferable (especially when including listing costs), while
for small number of bidders (n = 3, . . . , 6) the pick-a-bundle with
sizek = 2 is best, and forn > 6 bidders the pick-a-bundle of
sizek = 1 yields that highest revenue (even accounting for the
listing costs). In addition, when the number of bidders becomes
significant (n ≥ 14 in this experiments) the difference between the
pick-a-bundle and the separate auctions becomes small (less than
the standard error for the number of samples that we used in our
simulations). From all these, we can conclude that pick-a-bundle
is the best option, with the optimal bundle size depending on the
number of participating biddersn; however when there is sufficient
competition (a large number of biddersn) the best choice is to use
pick-a-bundle with bundle sizek = 1 closely followed by separate
auctions.

General ObservationsIn general, from all the experiments we
conducted, both the representative ones we presented in this paper
and others we also performed, we observe that the complete bundle

37

2 4 6 8 10 12 14 16
20

30

40

50

60

Number of Bidders

E
xp

ec
te

d
A

uc
tio

n
R

ev
en

ue

 k=1
 k=2
 k=3
 k=4
Complete Bundle
Separate Auctions

Figure 4: The same experiment as that of figure 1, when bid
shading is also considered.

only makes sense in the case of few bidders (n = 2) and only in
cases that the effect of listing costs and bid shading on the auction
revenue is considered. The cases when relatively few (i.e.n ≤ 10)
bidders participate is when the pick-a-bundle gives the highest ben-
efit compared, in particular, to the case of separate single-item auc-
tions. While bid shading causes a drop of the pick-a-bundle rev-
enue, this mainly happens when the number of bidders is small, be-
cause the chance of winning an item in the second round is highest
for a small number of opponent bidders; and even with this effect,
the pick-a-bundle is better (provided that the correct bundle size is
choosen) than separate auctions. Finally, when we know that the
number of biddersn is large (the exact number depending on the
scenario), then, while the pick-a-bundle format with bundle size
k = 1 is best in most cases, the revenue improvement over that of
selling in separate auctions is small. The observations should pro-
vide a rule of thumb in the case that the seller would not wish to
perform the complete analysis and yet still make a good choice as
to the auction format that would yield maximal revenue.

8. CONCLUSIONS
In this paper, we examined the revenue of the auctioneer, when she
sells items in bundles, rather than individually. Because we want
these results to be applicable within existing online auctions, we
rule out the design of new auction mechanisms; this is the main
reason why the preexisting literature on bundling is not applicable
here. On eBay, for example, it not uncommon to see a seller listing
bundles of several similar items (i.e. DVDs), in order to save on
the listing costs. However, our analysis has shown that this does not
yield a higher profit for the seller due to the loss in expected revenue
that is incurred. To address this loss, we propose the novel pick-a-
bundle strategy, in which the seller lists the items in a single bundle,
but the buyers bid for the opportunity to select a predetermined
number of items from this bundle, with the remaining unsold items
being sold in subsequent separate single-item auctions. We showed
that not only does this policy reduce the loss in revenue incurred
by the complete bundle, but it usually generates greater revenue
than using separate single-item auctions as well (even before the
savings in terms of listing fees are considered). This occurs because
the pick-a-bundle auction induces additional competition between
buyers who may actually prefer distinct subsets of the items. To
compute the optimal bundle swiftly and accurately we developed
the novel algorithm of figure 2. This algorithm can also be used in
a variety of other settings, e.g. to compute the distributions of (i) the
revenue that a seller makes in a position auction (Google Adwords

is a variation of a position auction) from the distributions of the
bids, and (ii) the social welfare (sum of winners’ valuations) in a
multi-unit auction. Furthermore, we examined how the strategic
behaviour of the buyers changes the expected revenue of the pick-
a-bundle auction and incorporated it into our analysis.

As future work, we will extend our analysis of the bid shading to
the complete case of heterogeneous items. We also plan to exam-
ine what happens if we add an extra option to the bundle auction,
for the winner of the first round to be able to buy additional items,
e.g. by paying a predetermined percentage of the closing price, or
paying the expected profit of the seller if she were to relist these
items. This has the potential of increasing the seller’s revenue, es-
pecially in the static case, where the bidders shade their bids in
the first round; if there exists some chance that the winner selects
more items in the first round, then the probability of having a sec-
ond chance to buy each item decreases, therefore bidders will shade
their bids less in the first round. Furthermore, the costs (listing and
shipping) would be reduced. This extension also ties as well with
another extension: examining how shipping fees would affect the
revenue. Furthermore, we would like to investigate the applica-
tion of previous results that show how the valuation distributions
of participating bidders can be learned through observation of pre-
vious auctions [8]. This will allows us to apply our autonomous
auction agent in setting in which these distributions are not known.

9. ACKNOWLEDGMENTS
We would like to thank Dr. Edith Elkind for comments on this
work. This research was undertaken as part of the ALADDIN
project and is jointly funded by a BAE Systems and EPSRC strate-
gic partnership (EP/C548051/1).

10. REFERENCES
[1] W. Adams and J. Yellen. Commodity Bundling and the Burden of

Monopoly.Quarterly Journal of Economics, 90(3):475–498, 1976.
[2] Y. Bakos and E. Brynjolfsson. Bundling information goods: Pricing,

profits, and efficiency.Management Sci., 45(12):1613–1630, 1999.
[3] Y. Bakos and E. Brynjolfsson. Bundling and competition on the

internet.Marketing Science, 19(1):63–82, 2000.
[4] W. Conen and T. Sandholm. Preference elicitation in combinatorial

auctions. InACM EC’01, pages 256–259, New York, USA, 2001.
[5] P. Cramton, Y. Shoham, and R. Steinberg.Combinatorial auctions.

MIT Press, 2006.
[6] A. Giovannucci, J. Rodrıguez-Aguilar, and J. Cerquides. Multi-unit

combinatorial reverse auctions with transformability relationships
among goods. InWINE 2005, pages 858–867, Hong Kong, 2005.

[7] P. Jehiel, M. Meyer-ter Vehn, and B. Moldovanu. Mixed bundling
auctions.Journal of Economic Theory, 134(1):494–512, 2007.

[8] A. X. Jiang and K. Leyton-Brown. Bidding agents for online
auctions with hidden bids.Machine Learning J., 67:117–143, 2007.

[9] J. O. Kephart, C. H. Brooks, and R. Das. Pricing information bundles
in a dynamic environment. InEC-01, pages 180–190, Oct. 2001.

[10] V. Krishna.Auction theory. Academic Press, 2002.
[11] A. Likhodedov and T. Sandholm. Approximating

revenue-maximizing combinatorial auctions. InAAAI-05, pages
267–274, Austin, Texas, USA, 2005.

[12] R. P. McAfee, J. McMillan, and M. D. Whinston. Multiproduct
monopoly, commodity bundling, and correlation of values.The
Quarterly Journal of Economics, 104(2):371–383, 1989.

[13] D. C. Parkes. iBundle: An efficient ascending price bundle auction.
In ACM EC’99, pages 148–157, Denver, Colorado, USA, 1999.

[14] M. Said. Sequential auctions with random arrivals.(working paper),
Yale University, 2008.

[15] R. J. Serfling.Approximation Theorems of Mathematical Statistics.
New York, John Wiley, 1980.

[16] I. A. Vetsikas, N. R. Jennings, and B. Selman. Generating
Bayes-Nash equilibria to design autonomous trading agents. In
IJCAI-07, pages 1543–1550, Hyderabad, India, 2007.

[17] S. Wu, L. Hitt, P. Chen, and G. Anandalingam. Customized bundle
pricing for information goods: A nonlinear mixed-integer
programming approach.Management Science, 54(3):608–622, 2008.

38

A complete algorithm for DisCSP: Distributed
Backtracking with Sessions (DBS)

Pierre Monier, Sylvain Piechowiak and René Mandiau
LAMIH UMR CNRS 8530

Université de Valenciennes et du Hainaut Cambrésis
F-59313 Valenciennes Cedex 9, France,

{pierre.monier;sylvain.piechowiak;rene.mandiau}@univ-valenciennes.fr

ABSTRACT
Many algorithms for Distributed Constraints Satisfaction
Problem (DisCSP) resolution use additional links between
variables not connected by constraints. This causes a higher
needed memory space. In this paper, we propose an algo-
rithm for DisCSP resolution, called Distributed Backtrack-
ing with Sessions (DBS) which does not use such additional
links so that the initial problem’s topology is respected. This
algorithm is complete and requires a low space complexity.
The main feature of this algorithm is to use the concept of
sessions to provide a context for the exchanged messages.

Keywords
MAS, Distributed CSP, session, Backtracking

1. INTRODUCTION
Early researches on Constraints Satisfaction Problems (CSP)

began in Artificial Intelligence in the 1970s. The CSP for-
malism addresses many problems in a simple and efficient
way such as road traffic management [2].

However, some problems which use physically distributed
data cannot be solved in a classical and centralized way. The
causes can be multiple :

• The time to gather stored data on a single site can be
prohibitive.

• Too much memory space is needed to store the whole
problem.

• The data exchanges on many sites can bee limited for
confidentiality or safety reasons.

Distributed CSPs (DisCSP) were proposed in order to
solve naturally distributed problems. The problem to be
solved is thus distributed on all agents. These agents inter-
act in order to find a global solution based on each agent’s
local solutions. DisCSP are usually applied to solve dis-
tributed problems such as timetabling [7].

More formally, a DisCSP is a 4-tuple (X, D, C, A) where:
X is a finite set of p variables: {x1, x2, ..., xp}, D is a set
of domains associated with these variables D = {Dom(x1),

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Dom(x2), ..., Dom(xp)}, C is a finite set of m constraints:
{c1, c2, ..., cm} and A is a finite set of n agents: {A1, A2, ...,
An} where each agent is given a subset of X.

Many algorithms for DisCSP resolution have been de-
scribed. The first and most known is ABT [8]. It is often
used as a reference in many papers such as [1].

In this paper, we propose a complete algorithm to solve
variable-based distributed problems (different from AAS [6]
which is constraint-based). Our algorithm, called Distributed
Backtracking with Sessions (DBS) does not add links be-
tween agents during the search.

Unlike most DisCSP algorithms such as ABT , DBS prior-
ity does not consist in minimizing the number of exchanged
messages but aims at minimizing the time required to pro-
cess a message. The less an agent requires CPU time to
process a message, the less the message will be exact and
complete. This brings about an augmentation of the total
number of messages (but less costly messages) to solve the
DisCSP. The work exposed in this paper is based on this
trade-off

Another characteristic of DBS consists in using the con-
cept of sessions to provide a context for each exchanged
message. Moreover, these sessions allow the use of heuris-
tics to remove obsolete messages containied in the inboxes
(messages awaiting process) of each agent without eliminat-
ing possible solutions from the problem. Consequently, the
number of exchanged messages is reduced.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our contribution for the DBS algorithm
initially described in [3, 5]. The properties of this algo-
rithm are exposed in section 3. Section 4 describes different
heuristics used to delete obsolete messages. Performances of
DBS with and without the proposed additional heuristics
are compared using a DisCSP generator. Finally, section 5
discusses conclusions and possible improvements of the pro-
posed algorithm.

2. DBS
The algorithm called Distributed Backtracking with Ses-

sions (DBS) is detailed in this section. We start by giving
assumptions and notations required by this algorithm and
we explain in detail how it works (section 2.1). The behavior
of DBS is illustrated in section 2.2 using a simple example.

2.1 Algorithm
A total order, called ≻, is established between the dif-

ferent agents (a priority is assigned to each agent) to avoid
infinite loop problems. For example, a change for A1 implies

39

a change for A2 which involves a change for A1. Given two
agents A1 and A2, A1 ≻ A2 means that A1 has a higher
priority compared to A2. In this paper, agent’s priority is
given according to the lexicography order (A1 ≻ A2 ≻ · · · ≻
An). Given a generic agent called self , Γ−(self) (respec-
tively Γ+(self)) represents self ’s higher priority (respec-
tively lower priority) acquaintances, those acquaintances be-
ing connected with self by a constraint.

In this paper, only one variable is assigned to each agent.
Each agent assigns (in a concurrent way) a value for its
variable and sends it to agents in Γ+(self) with an “ok?”
message. If an agent self cannot find an instantiation in
agreement with the received values (stored in a set called
agent view(self)), self informs an agent Ai ∈ Γ−(self)
with a “backtrack” message.

To determine if a message is obsolete or not, the session
concept is used: a session number is attached to each mes-
sage.

Definition 1. Given an agent self and Γ+(self) the set
of acquaintances whose priority is lower than self ’s priority.
A session between self and Γ+(self) is an integer indicating
for each element of Γ+(self) the state of the global search
from self ’s point of view.

During the initialization step of the algorithm, the session
of each agent is set to 0. When self receives a backtrack
message, called mb, this one is processed only if the session
number attached to mb is equal to self ’s session number.
Otherwise mb is considered obsolete. When self receives
an ok? message, it closes its session (its session number is
incremented).

For a given pair of agent, we suppose that messages are
received in the same order they are sent. DBS uses three
types of messages :

• (“ok?”, (Ak, vk, sk)): This message contains a triple
which is composed of the sender of this message (Ak),
the agent’s value (vk) and the agent’s session (sk).

• (“nogood”,(Ak, vk, sk), listeBT). Backtrack request
addressed to the agent Ak for its value vk in the session
sk. A set of triple (xi, vi, s) called listeBT is attached
to this request. listeBT is used by Ak to proceed, if
needed, a backtrack message to an agent contained in
listeBT .

• (“stop”): No solution exists and the receiver agent
stops.

The context of an agent, called self , is defined by :

• Self ’s current value.

• Self ’s current session.

• A set called propose used to know, for each value vi ∈
Dself , if vi has already been transmitted to Γ+(self)
in the self ’s current session.

• A set called agent view containing triple (xi, vi, si)
used to determine the value vi and the session si re-
ceived from agents xi ∈ Γ−(self).

• An integer set called receivedBtV al used to know, in
the self ’s current session, values in Dself which have
already received a backtrack request.

• A set called totalBtSet containing triple (xi, vi, si).
When self has to send a backtrack request, this set
allows self to transmit, if needed, a backtrack message
addressed to an agent in totalBtSet.

There are two different ways to terminate DBS. If a solu-
tion exists, there are no more exchanged messages between
agents. This stable state allows to affirm that a solution has
been found. If no solution exists, an agent will detect this
lack of solution and will send a stop message.

Given A and B two sets of triples (s, v, s), we note: A ⊎
B = A ∪ {(x, v, s) ∈ B|(x, ,) /∈ A}. This operator is used
by DBS algorithm (for example, to update agent view).

DBS algorithm is composed of different procedures num-
bered from 1 to 6 and presented below. Procedures 1 and 2
are respectively used when self receives an ok? or a nogood
message.

Procedure 1 is used to update agent view (line 1), to close
self ’s session (line 2) and to check if there exists a value
which is consistent with agent view (line 3).

Procedure 2 checks if a received nogood message is not ob-
solete (line 1). receivedBtV al and totalBtSet are updated
(lines 2 and 3), then self checks again if there exists a value
which is consistent with agent view. When self receives a
stop message, it terminates.

Procedures 3 and 4 are respectively used to close self ’s
session and to submit self ’s current assignation.

Procedure 5 is used to check if a value in Dself which
is consistent with agent view in order to transmit an ok?
message (line 4) or a backtrack message (lines 2 and 6).

Procedure 6 is used when it is necessary to send a back-
track request. The code given from lines 1 to 10 is used to
determine the information to be attached to the backtrack
request. If DisCSP is inconsistent, the triple (x, v, s) (line
12) will be equal to null for a given agent and a stop mes-
sage will be transmit. After the emission of the backtrack
message, totalBtSet is updated (line 17). If the backtrack
message has been sent to an agent in agent view, this set
is updated (line 19), else self closes its session and then
submits an assignment to Γ+(self) (lines 21 and 22).

Algorithm 1 when received (“ok?”, (xj , dj , sj)) from Aj

do

1: agent view ← {(xj , dj , sj)} ⊎ agent view
2: close session()

3: check agent view(Aj,“ok?”)

Algorithm 2 when received (nogood, (xj , dj , sj),
BtSet) do

1: if sj = current session ∧ dj /∈ receivedBtV al then

2: receivedBtV al← receivedBtV al ∪ {dj}
3: totalBtSet← BtSet ⊎ totalBtSet
4: if dj = current value then

5: current value← null
6: end if

7: check agent view(null,“backtrack”)

8: end if

40

Algorithm 3 close session

1: current value← null
2: current session← current session + 1
3: receivedBtV al← ∅
4: for all d ∈ D do

5: propose[d]← false
6: end for

Algorithm 4 submit assign

1: select d ∈ D | ¬propose[d]∧ consistent(d, agent view)
2: current value← d
3: propose[d] = true
4: send(“ok?”, (xself , current value, current session)) to

outgoing links

Algorithm 5 check agent view(Agent: Ak, String: type)

1: if Ak 6= null ∧ (∀d ∈ D, propose[d] ∨
¬consistent(d, {(A � Ak, ,) ∈ agent view}))
then

2: backtrack(Ak, type)
3: else if ∃d ∈ D | ¬propose[d]∧ consistent(d, agent view)

then

4: submit assign()
5: else

6: backtrack(null, type)
7: end if

Algorithm 6 backtrack(Agent: Ak, String: type)

1: if Ak 6= null then

2: (x, v, s)← {(x′, v′, s′) ∈ agent view|x′ = Ak}
3: BtSet ← {(x′, v′, s′) ∈ agent view ⊎ totalBtSet|x′ >

x}
4: else if type = “ok?′′ then

5: (x, v, s) ← {(x′, v′, s′) ∈ agent view|∀A ∈
agent view, A � x′}

6: BtSet ← {(x′, v′, s′) ∈ agent view ⊎ totalBtSet|x′ >
x}

7: else

8: BtSet← agent view ⊎ totalBtSet
9: (x, v, s)← {(x′, v′, s′) ∈ BtSet|∀A ∈ BtSet, A � x′}

10: BtSet← BtSet− {(x, v, s)}
11: end if

12: if (x, v, s) = null then

13: broadcast to other agents “stop” message
14: terminate this algorithm
15: end if

16: send (backtrack, (x, v, s), BtSet) to x
17: TotalBtSet← TotalBtSet− {BtSet ∪ (x, v, s)}
18: if {(x, ,)} ∈ agent view then

19: agent view ← agent view − {(x, v, s)}
20: else if type = “backtrack′′ then

21: close session()
22: submit assign()
23: end if

2.2 Example
A simple illustration of DBS algorithm is given in figure 1.

This problem is composed of four variables {x1, x2, x3, x4}

connected by three constraints (x1 6= x3), (x1 6= x4) and
(x2 6= x4). One possible execution of DBS appears in figure
2.

Figure 1: DisCSP example.

Figure 2: Echanged messages between Ai and Aj.

Initially, each agent chooses the first value of its domain D
and then sends it to agents in Γ+(self). Indeed, M1, M2 and
M3 messages are sent. Upon receiving M1, A3 adds (x1, a, 0)
to agent view(A3). Since A3 cannot satisfy the constraint
(x1 6= x3), it transmits a backtrack message (M4) to A1 then
removes the triple containing A1 from agent view(A3).

A4 receives M2 and M3. Since it cannot find a possible in-
stantiation in agreement with agent view(A4) = {(x1, a, 0),
(x2, b, 0)}, it sends a backtrack request to the lowest prior-
ity agent contained in agent view(A4), i.e. A2. It attaches
to this message (M5) BtSet = {(x1, a, 0)} in order to allow
A2 to proceed, if needed, the backtrack request. Then A4

removes (x2, b, 0) from agent view(A4).
A1 receives M4 and modifies its current value then sends

its new value to A3 and A4 using M6 and M7 messages.
A2 receives M5 and updates totalBtSet with BtSet(M5).
Since it cannot find a value, it transmits a backtrack request
(M8) to A1 which is the lowest priority agent contained in

41

agent view(A2) ⊎ totalBtSet. A2 forgets all previous ref-
erences to A1 because A2 removes them from totalBtSet.
Then, since A2 has just sent a backtrack request to an agent
not included in agent view(A2), it closes its session (the ses-
sion become 1) and sends again its current value to agents
in Γ+ (here A4) using M9 message.

A1 receives M8 but does not process it because A1 has
already received a backtrack request about the same value
in its current session (0). A4 receives M9. There are no
more exchanged messages. The solution is found: {(x1 =
b), (x2 = b), (x3 = a), (x4 = a)}.

3. DBS PROPERTIES
In this section, we will demonstrate that DBS is sound

(section 3.1), complete and that it terminates (section 3.2).
Then, we show that its spatial complexity is polynomial
bounded (section 3.3). In order to prove the DBS’s com-
pleteness, we use the completeness proof of both ABT [8]
and DDB [1].

3.1 Soundness

Theorem 1. DBS is sound, in that it only claims a so-
lution if one exists.

Proof 1. Whenever DBS detects a solution, all agents
are in a stable state, waiting for messages. Such a state is
incompatible with constraint violations, which would entail
at least one message.

3.2 Completeness
To demonstrate that DBS is complete and terminates,

we consider DBSall, an alternate implementation of DBS
(similar to ABT) with full Forbidden Instantiation Combi-
nation (FIC)1 recording. The use of FIC is needed to prove
the completeness. We will show that DBSall is equivalent
to ABT whose completeness has been proved [8]. Indeed,
the DBSall completeness proof will be shown. Then, in a
second step, we will shown that it is not needed to store all
FIC during the search. next, we will prove that DBS pre-
serves all properties related to DBSall. DBS completeness
proof will be achieved.

3.2.1 DBSall completeness proof
DBS algorithm uses temporarily stored Forbidden Instan-

tiations (FI). A FI (for DBS) corresponds to a forbid-
den value by self ’s variable. FI are stored in a set called
receivedBtV al2. When self ’s session changes, this set is
re-initialized.

To prove DBS completeness, we will modify this algo-
rithm so that it can record FIC during all the solution
search. The objective aims to describe the same complete-
ness proof than for ABT . DBS algorithm with FIC record-
ing is called DBSall. Now, we will explain why DBSall is
similar to ABT (in four steps).

Nogood (FIC) recording.
In ABT , when self receives a nogood, it adds this nogood

message to its set of nogoods. In DBSall, when self receives
a backtrack request (“backtrack”, (self, default value, ses-
sion), BtSet), it checks agent view.

1A FIC for DBSall is equivalent to a nogood for ABT .
2DBSall stores FIC in a set called FICset.

Let us suppose agent view(self) = {(x1, v1, s1), ..., (xk,
vk, sk)}. Unlike DBS which adds default value to the set
called receivedBtV al, DBSall completes default value in
order to create a FIC. This FIC, which is stored in a
set called FICset, is {(x1, v1, s1), ..., (xk, vk, sk), (xself ,
default value, session)} ∪BtSet.

FICset is never re-initialized. Now, DBSall records FIC
as ABT records nogood. Note that FICset contains triple
(variable, value, session) but that would be exactly the same
if it contained (variable, value) pairs.

Backtrack message context.
Unlike ABT which attached a nogood set for each back-

track message, DBSall uses the concept of session. The set
called BtSet attached to these messages is only used to pro-
ceed, if needed, the backtrack request.

Concerning with the behavior of ABT , suppose that self
receives the nogood: {(x1, v1), ..., (xk, vk), (xself , default
value)}. There will be a backtrack, for ABT , if the two
following conditions are respected:

1. default value is equal to self ’s current value.

2. for each (xi, vi) pair in nogood, if xi belongs to a-
gent view then vi (of the nogood) must be equal to
the value contained in self ’s agent view.

Concerning with the behavior of DBSall, suppose that
self receives (backtrack, (self, default value, session), Bt-
Set). There will be a backtrack, for DBSall, if the two
following conditions are respected :

1. default value is equal to self ’s current value.

2. session attached to this message is equal to self ’s ses-
sion.

For DBSall, the first condition is the same as the first
condition for ABT . The second one (for DBSall) is true if
self does not receives an ok? message between the time it
sends its current value and the time it receives a backtrack
message on this same value (so called default value). In
this case, self ’s agent view is not modified (it is equivalent
to the second condition for ABT). Indeed, DBSall uses a
message context equivalent to the one used in ABT .

Choice of the backtrack message receiver (after receiv-
ing an ok? message).

ABT and DBSall differ on the choice of the backtrack
message receiver. For these two algorithms, when self re-
ceives an ok? message from an agent Ak, self update self ’s
agent view. Suppose that no value in self ’s domain is com-
patible with agent view.

1. In ABT , self build a nogood set with self ’s agent view
subsets where no solution exists. Then, for each sub-
set, a backtrack message is sent to lowest priority agents
in the subset.

2. In DBS, if no partial solution is found (a value for self
which is consistent with Ai ∈ agent view|Ai � Ak),
the backtrack message is sent to Ak (line 2 of backtrack
procedure). If a partial solution exists, the backtrack
message is addressed to the lowest priority agent in
self ’s agent view (line 5 of backtrack procedure).

42

ABT directly sends the backtrack message to the faulty
agent; while DBS transmits the backtrack message to the
faulty agent or to an agent having a lower priority than the
faulty agent. It results in the exploration of irrelevant bran-
ches of the search tree but no solution is eliminated.

Backtrack message to Ak /∈ agent_view.
For both ABT and DBS algorithms, each agent knows

the address of the other agents. Indeed, a message emitting
is possible for all agent pairs.

In DBSall, a backtrack message addressed to Ak /∈ a-
gent view can appear when self has to send a backtrack
request upon the reception of a backtrack message. We know
that each agent in DBSall knows all other. Indeed, in a first
step, we need to know the receiver of this backtrack message.
Next, we need to define the message’s content.

In ABT , the choice of the backtrack message receiver upon
the reception of a backtrack message is based on the follow-
ing method. When self receives a nogood containing xj

(xj /∈ Γ−(self)), self adds xj to agent view and searches a
solution. If there are no solution, self searches inconsistent
subsets from agent view, then, for each subset, self trans-
mits a backtrack message for the lowest priority agent and
removes it from agent view (this agent can be xj).

In DBSall, when self receives a backtrack message mb

where BtSet(mb) contains an agent xj /∈ self ’s agent view,
self does not add xj to self ’s agent view opposite to ABT
(self adds xj to totalBtSet). Not adding xj to agent view
is similar to ABT behavior because even if self adds it to
agent view, since there are no constraint between self and
xj , the search for a solution will be the same. Then self
searches a solution. If no solution exists, self sends the
backtrack message to the lowest priority agent in agent view⊎
totalBtSet. This is similar to the behavior of ABT .

Finally, we need to determine the content of the backtrack
message. Suppose that the message must be transmit to
xj . In ABT , the value vj from xj (which is included in
self ’s agent view) is included to the nogood ready to be
send. With DBSall, the triple (xj , vj , sj)

3 contained in
self ’s agent view ⊎totalBtSet is included to the backtrack
message. Moreover, in DBSall, self adds a set of triple
(x, v, s) called listeBT to the message so that xj can proceed
the backtrack message.

To conclude on the first step of the completeness proof,
we have described an alternative implementation for DBS,
called DBSall, with full FIC recording during the search.
We have shown that DBSall is similar to ABT : nogoods
recording (FIC for DBSall), context of backtrack message,
choice of the a backtrack message receiver following an ok?
message and a backtrack message. ABT is complete and
terminates [8] indeed is DBSall. In section 3.2.2, we will
prove that DBS algorithm (with removal obsolete forbidden
instantiations) is complete too.

3.2.2 DBS completeness proof
DBS differs from DBSall on FIC recording. In this sec-

tion, we will prove that eliminating Forbidden Instantiations
(FI) cannot cause an infinite loop between agents. This
equivalent to proof that DBS terminates.

3We add the session sj because DBS uses the concept of
session to determine message context.

Lemma 1. Let A1 be the agent with the highest priority.
A1 can never fall into an infinite loop because of the way
obsolete Forbidden Instantiations (FI) are discarded.

Proof 1. DBS re-initializes the set called receivedBtV al
containing FI when an agent Ai ∈ Γ−(self) sends an ok?
message to self or when self sends a backtrack message
to an agent Aj ∈ Γ−(self) /∈ self ’s agent view. A1 is
the highest priority agent so Γ−

A1
= ∅. Values stored in

receivedBtV al for A1 can never be removed. Moreover A1

have a finite domain, so the size of the set called received-
BtV al will be, in the worst case, equal to d where d is the size
of the A1’s domain. A1 can never re-initialize receivedBtV al
and A1 can only receive a finite number of values d, A1 can-
not fall into an infinite loop.

Lemma 2. If the first (k − 1) agents, in the order de-
fined by DBS, are not trapped in an infinite loop, Ak cannot
fall into an infinite loop because of the way receivedBtV al
(containing obsolete Forbidden Instantiations FI) is reini-
tialized.

Proof 2. Let us suppose Ak is actually looping. That
means that it forgets FI because Ak’s predecessors which
continuously change their values. FI are removed from Ak

(procedure close session) when :

• Ak receives an ok? message from an agent in Γ−(Ak).
Ak’s session is so incremented.

• Ak sends a backtrack message to an agent Ai in Γ−(Ak)
not included in Ak’s agent view because Ai has mod-
ified its value. Ak’s session is so incremented.

But since we assume that no agent among A1, ..., Ak−1

is in an infinite loop, they will stabilize in a finite time.
Indeed, Ak exits its so-called infinite loop or find there are
no solution to the DisCSP. Ak is not in an infinite loop.

Theorem 2. DBS is sound, complete, and terminates.

Proof 2. By recurrence about lemmas 1 and 2, we affirm
that none of DBS agents can fall into an infinite loop, de-
spite the fact that DBS discards obsolete Forbidden Instan-
tiations (FI). DBS has the same properties than DBSall

and terminates.

We have shown an alternative DBS implementation called
DBSall. This one is equivalent to ABT whose the com-
pleteness proof is known. We have proved that DBSall is
complete too. Then, we have shown that none of DBSall

agents can fall into an infinite loop. We have demonstrated
that DBS is sound, complete, and terminates.

3.3 Spatial complexity

Theorem 3. Each agent performing DBS requires a poly-
nomially bounded storage space.

Proof 3. Section 2.1 underlines that each agent has a
domain (of size d), a set called agent view (of size n in the
worst case), a set called propose (of size d in the worst case),
a set called receivedBtV al (of size d in the worst case) and
a set called totalBtSet (of size n in the worst case). So,
memory space needed for each agent is O(d + n).

Memory space needed for each agent performing DBS is
(O(d+n)). It is better than both DDB (O(d∗n)) and ABT
(O(dn)).

43

4. EXPERIMENTAL RESULTS
We describe four heuristics for DBS algorithm. These

heuristics (section 4.1) allow a reduction of the number of
exchanged messages during the solution search without elim-
inating solutions. Results obtained by DBS, described in
section 4.2, are compared to ABT , a classical algorithm used
as a reference.

4.1 Heuristics
Given a generic agent self , self ’s inbox containing un-

processed messages is called IBself .

Heuristic 1. If self has, in IBself , several ok? mes-
sages from an agent Ak, only the last ok? message sent by
Ak is processed, others are removed. This heuristic, called
h1, does not remove any solutions.

Proof 1. A session, for a given agent, cannot be decre-
mented. If an agent Ak sends several ok? messages to self ,
then the last ok? message, called mlast, have an attached
session superior or equal to others ok? messages sent by
Ak.

Suppose that several ok? messages sent by Ak (received by
self) are contained in IBself . The last received ok? mes-
sage is: mlast = (“ok?”, (Ak, vk, sk)). Four cases are pos-
sible for others (“ok?”, (Ak, vi, si)) messages, received from
Ak :

1. (vi = vk and si = sk): Impossible because an agent
cannot submit multiple times the same value during a
given session.

2. (vi = vk and si < sk): The context of a message is de-
fined by a session number. Messages containing an ob-
solete session number are not processed. In this case, if
self processes the ok? message containing sk (mlast),
then ok? messages containing si become obsolete and
can be removed.

3. (vi 6= vk and si = sk): Each agent uses values in its
domain in an order defined in the initialisation step.
This order does not change during the solution search.
Indeed, value vi from session si is an obsolete value
compared to vk (in the same session). h1 does not re-
move any solution even if DBS uses (after the session
closing) a value ordonnancing heuristic like those cited
in [4]. In fact, if Ak sends a new value vk, it is be-
cause it has received a backtrack message for vi. Ok?
messages containing si are obsolete compared to mlast

and are removed.

4. (vi 6= vk and si < sk): Messages containing si < sk

are deleted (see second case).

Heuristic 2. If self has in IBself , many backtrack mes-
sages and, at least, an ok? message then backtrack messages
are removed from IBself . This heuristic, called h2, does not
remove any solutions.

Proof 2. Suppose that self first processes an ok? mes-
sage, self ’s session is incremented. Backtrack messages
contained in IBself become obsolete because they contain a
value from an obsolete self ’s session. All backtrack mes-
sages are removed because they are not processed by DBS
(line 1 from procedure 2).

Heuristic 3. If self has sent a backtrack message to
Ak ∈ self ’s agent view, then as long as self has not re-
ceived an ok? message from Ak, self removes all backtrack
messages from IBself . This heuristic, called h3, does not
remove any solutions.

Proof 3. Suppose that self has sent a backtrack mes-
sage to Ak. Self will receive, in a finite time, an ok? mes-
sage, called mk, from Ak. If self waits for this message
(then processes it) before processing backtrack messages al-
ready contained in IBself then, using h2, self removes all
received backtrack messages.

Heuristic 4. If self have many ok? messages in IBself ,
then self processes, in priority, those coming for higher pri-
ority agents. This heuristic, called h4, does not remove any
solutions.

Proof 4. Using this heuristic, no message is removed
from IBself . DBS is complete (section 3.2), so this algo-
rithm works for all message reception orders (even with the
order obtained with h4). However, hypothese from section
2.1 must be respected: “For a given pair of agent, we sup-
pose that messages are received in the same order they are
sent”.

4.2 Results
We evaluate the efficiency of DBS algorithm using JADE

multi-agent platform. Our purpose here is to obtain a not-
deterministic scheduling agent. In many papers, a discrete
event simulator is used: each agent is activated one after an-
other using cycles. One cycle consists in reading all incoming
messages (during a cycle t) and sending messages (available
to others agents’ inboxes in cycle t + 1). In real conditions,
agents are not activated one after another. Moreover, this
method would favour DBS when it uses message suppres-
sion heuristics. Indeed, the more messages there are in in-
boxes (which have not already been processed), the more
our heuristics are efficient.

Unlike ABT , DBS’s priority does not consist in minimiz-
ing the number of exchanged messages but aims at minimiz-
ing the time required to process a message. Table 1 shows
that DBS, for a DisCSP example, uses more messages than
ABT but requires less CPU time. Moreover, the maximal
number of messages contained simultaneously in the differ-
ent inboxes and waiting for process is lower for DBS using
heuristics than for ABT . For ABT , when an agent sends a
backtrack message to an agent Ak ∈ Γ−, messages will be
processed with a longer time than for DBS using heuristics.

We performed experimental evaluations on DisCSP cre-
ated with a randomly DisCSP generator. This one requires
four parameters: the number of agents/variables (N), the
domain’s size for each variable (D), the percentage of con-
straints between agents (P1) and the percentage of forbid-
den tuples per constraint(P2). The number of constraints

is n×(n−1)
2

× P1. The number of forbidden tuples per con-
straint is d × d × P2. A disCSP is represented as a tuple
< N, D, P1, P2 >.

For example, the following problems have been generated:
Problems with a constraint density equal to 40% < 15, 10,
0.40, P2 > and equal to 80% < 15, 10, 0.80, P2 >. For each
problem, percentage of forbidden tuples for each constraint
ranges from 10% to 90%. Each dot in the plots presented in
figures 3 and 4 corresponds to the average CPU time (over

44

Table 1: < 20, 10, 0.20, 0.60 > DisCSP: average on 200 experiments.

Used CPU Number of checked Number of Maximal number of present Standard
algorithm times constraints exchanged messages in inboxes deviation

(in seconds) (in millions) messages awaiting processing (in seconds)
ABT 29.3 2.7 19 650 1 340 104
DBS 26.7 2.8 236 076 1 554 74

DBS using heuristics 14.8 1.3 101 5105 9 60

Table 2: < 15, 10, 0.50, 0.50 > DisCSP: average on 200 experiments.

Used CPU Number of checked Number of Maximal number of present Standard
algorithm times constraints exchanged messages in inboxes deviation

(in seconds) (in millions) messages awaiting processing (in seconds)
ABT 428,2 24,1 109 700 15 471 751
DBS 20,5 2,6 170 137 18 823 13

DBS using heuristics 9,3 0,8 44 915 10 6

Figure 3: DisCSP constrained with 40% of the max-

imal constraint number.

100 instances) required by different DisCSP algorithms. Re-
sults are obtained with an Intel Core 2 duo 2.4 Ghz (4 Go
of Ram).

On figures 3 and 4, we can observe that DBS is generally
slightly faster than ABT for over-constrained and under-
constrained DisCSP. For problems located in the transition
phase, DBS outperforms ABT in terms of CPU time. More-
over, heuristics (see section 4.1) allow a reduction of the
number of exchanged messages and CPU time. For DisCSP
constrained with 80% of the maximal constraint number,
during the transition phase, we stopped ABT after four
hours of computation and we do not report it in the av-
erage.

Table 1 shows the results obtained with < 20, 10, 0.20,
0.60 > DisCSP. We observe that the number of exchanged
messages for ABT is lower compared to DBS. DBS re-
quires less operations than ABT to process received back-
track messages: ABT computes all inconsistent agent view
subsets and sends, for each subset, a backtrack message (It
requires high computation costs). Unlike ABT , DBS trans-
mits a backtrack message to the faulty agent or an agent
with a lower priority than the faulty agent (It requires less
computation costs but more messages).

Following a similar protocol, another experiment using the
following parameters < 15, 10, 0.50, 0.50 > was run (Table
2). ABT solves DisCSP using 109 700 messages in 428 sec-
onds. DBS without heuristic solves DisCSP using 170 137
messages in 20 seconds and DBS using heuristics 44 915

Figure 4: DisCSP constrained with 80% of the max-

imal constraint number.

messages in 9 seconds. We can observe that the standard
deviation is very important. This is caused by the topology
of the problems. Indeed there are simple problems which can
be solved within 100 ms and much harder problems (gener-
ated with the same parameters) which require more than
500 seconds to be solved.

5. CONCLUSION
In this paper, we have proposed a DisCSP resolution al-

gorithm. Its main feature is the use of sessions to determine
message context. Moreover, DBS does not add communica-
tion links during the solution search between agents which
are not sharing constraints. Indeed, when an agent trans-
mits a backtrack message to an agent Ai /∈ Γ−, no trace
of Ai is kept after the message has been sent. The DBS
completeness proof has been shown. A comparison between
DBS and ABT , a classical algorithm often used as a refer-
ence, has been given.

Currently, DBS only solves DisCSP where one variable is
assigned to each agent. We plan to improve our algorithm
in order to solve DisCSP containing multiple variables per
agent. A more detailed comparison of DBS with recent
DisCSP algorithms proposed in the litterature is also con-
sidered as a perspective of our work.

45

6. REFERENCES
[1] C. Bessiere, A. Maestre, and P. Meseguer. Distributed

dynamic backtracking. In M. Silaghi, editor, IJCAI’01
workshop on Distributed Constraint Reasoning, pages
9–16, Seattle WA, 2001.

[2] A. Doniec, R. Mandiau, S. Piechowiak, and S. Espié.
Anticipation based on constraint processing in a
multi-agent context. Journal of Autonomous Agents
and Multi-Agent Systems (JAAMAS), 17:339–361,
2008.

[3] A. Doniec, S. Piechowiak, and R. Mandiau. A discsp
solving algorithm based on sessions. In I. Russell and
Z. Markov, editors, FLAIRS’05 : Recent advances in
artificial intelligence: Proceedings of the eighteenth
International Florida Artificial Intelligence Research
Society Conference, pages 666–670, Menlo Park,
California, may 2005.

[4] C. Lecoutre, L. Sais, and J. Vion. Using sat encodings
to derive csp value ordering heuristics. Journal on
Satisfiability, Boolean Modeling and Computation,
1:169–186, 2007.

[5] P. Monier, S. Piechowiak, and R. Mandiau. Multi-agent
reasoning based on distributed csp using sessions : Dbs.
In 7th International Conference on Practical
Applications of Agents and Multi-Agent Systems
(accepted paper), 2009.

[6] M. Silaghi, D. Sam-Haroud, and B. Faltings.
Asynchronous search with aggregations. In American
Association for AI National Conference (AAAI’00),
pages 917–922, 2000.

[7] T. Tsuruta and T. Shintani. Scheduling meetings using
distributed valued constraint satisfaction algorithm. In
14th European Conference on Artificial Intelligence
(ECAI), pages 383–387, 2000.

[8] M. Yokoo. Distributed Constraint Satisfaction:
Foundation of Cooperation in Multi-agent Systems.
Springer, 2000.

46

Train Driver Rescheduling using Task-Exchange Teams

David G.A. Mobacha Erwin J.W. Abbinkb Pieter J. Fiooleb Ramon M. Lentinkb
Leo G. Kroonb,c Eddy H.T. van der Heijdena Niek J.E. Wijngaardsa

aD-CIS Lab
Thales Research & Technology NL

P.O. Box 90, 2600 AB
Delft

bNetherlands Railways
NSR Logistics Innovation
P.O. Box 2025, 3500 HA

Utrecht

cRotterdam School of Management
Erasmus University Rotterdam

P.O. Box 1738, 3000 DR
Rotterdam

{david.mobach,eddy.vanderheijden,niek.wijngaards}@icis.decis.nl
{erwin.abbink,pieterjan.fioole,ramon.lentink,leo.kroon}@ns.nl

ABSTRACT
Crew rescheduling in response to disruptions is a difficult
problem, due to the additional (social) constraints imposed on
human workforce. In the real-world domain of train driver
rescheduling in the Netherlands, an actor-agent based approach is
taken to (a) support human dispatchers and (b) accommodate
individual train drivers’ preferences. This paper outlines the task-
exchange team-configuration process including the role of the
various rescheduling constraints. The rescheduling approach is
designed for operation in a real world environment: to this end, a
number of heuristics are discussed that are currently being
examined to optimize the solution finding process with respect to
three dimensions: performance, quality and clarity. The heuristics
have been implemented in a research system, supporting the full
driver-agent population, working on real world data. This effort is
an ongoing study on novel multi-agent approaches to crew
rescheduling, and is the result of cooperation between
Netherlands Railways and D-CIS Lab.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solving,
Control Methods, and Search – scheduling; I.2.11
[ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence – multi-agent systems; I.2.1 [ARTIFICIAL
INTELLIGENCE]: Applications and Expert Systems – actor-
agent systems; J.m [COMPUTER APPLICATIONS]:
Miscellaneous – transportation

General Terms
Algorithms, Design, Economics.

Keywords
Distributed Systems, Experimental, Multi-agent planning, Crew
rescheduling, Railway, Actor-Agent.

1. TRAIN DRIVER RESCHEDULING
Applied research on advanced autonomous systems in a real-
world domain provides a stimulating environment to demonstrate
‘state of the art’ research results and address the encountered
pragmatic and fundamental challenges. In this paper a research
system is described for the complex task of rescheduling tasks of
train drivers in response to disruptions. The work results from
cooperation between Netherlands Railways and D-CIS Lab.

1.1 Problem Domain
The railway operations of Netherlands Railways (NS) are based
on an extensive planning process. In the planning process, the
timetable is planned first, consisting of the line system and the
arrival and departure times of trains. Next, the rolling stock stage
supplies each train with sufficient rolling stock. Finally, the crew
scheduling stage supplies each train with a train driver and
sufficient conductors, as well as their duties (scheduled tasks).
The total number of NS train drivers is about 3000. Each day, ca.
1000 duties are carried out while, at any moment in time, the
number of active duties is ca. 300. NS train drivers operate from
29 crew depots. Each day a driver carries out a number of tasks,
which means that he/she operates a train on a trip from a certain
start location and start time to a certain end location and end time.
The trips of the trains are defined by the timetable. Other ‘tasks’
include shunting, standby (i.e., being a spare driver), passenger
(en-route via a train to a driving task), meal-breaks and free time.
The tasks of the drivers have been organized in a number of
duties: the tasks carried out by a single driver on a single day.
Crew scheduling in the railway domain is a relatively new area of
research, as indicated by Ernst et al. [3] in their staff scheduling
and rostering survey. Other transportation domains encountered
include airline crew scheduling and bus crew scheduling. Freling
et al. argue in [4] that compared to bus crew scheduling, train
crew scheduling differs in a number of ways: Train crews travel
more often as passengers; Train crews can be scheduled relatively
far from crew home bases; Delays are more critical due to the
high degree of connectivity in the train network (knock-on effect).
Furthermore, scheduling of (train) crews is subject to many
restrictions and constraints, such as, e.g., crew workload laws and
agreements, familiarity of crew with rolling stock types and (parts
of) the rail network, and constraints regarding the tasks within a
duty (e.g. presence of meal breaks, buffer times to allow for
changing of trains). After the planning process has finished, the
daily plans are carried out in the real-time operations. Plans have
to be updated continuously to deal with delays of trains and larger
disruptions of the railway infrastructure. Disruptions may be due
to incidents, delays, a breakdown of infrastructure or rolling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

47

stock. On the Dutch rail network, on average 10 disruptions of a
route occur per day. Delays occur more frequently: On average
450 trains experience one or more delays (> 3 minutes) out of the
approximately 5000 train services per day. These delays lead to
the removal of on average 10 train services per day.
The NS timetable and rolling stock circulation are cyclic in
nature. NS crew duties, however, do not have a cyclic nature and
thus require different rescheduling approaches. An additional
complicating issue in a disrupted situation is the fact that the exact
duration of the disruption is usually not known. That is, the initial
estimate of the duration of a disruption often turns out to be
incorrect. Currently, the NS crew rescheduling process is carried
out by dispatcher-teams operating from four regional control
centres. This organization requires extensive communication
between these centres since many trains and duties operate in
more than one region.
Jespersen-Groth et al. discuss crew rescheduling as part of
railway disruption management in [5], describing both the
disruption management process and the directly involved
organizations. Railway disruption management consists of the
following processes: timetable adjustment, rolling stock
rescheduling, and crew rescheduling. These processes are carried
out sequentially; where failure of a process leads to backtracking.
A major objective in the disruption management process is to
minimize the number of affected passengers. In the crew
rescheduling process, more specific objectives are balanced:
feasibility, operational costs, and stability (i.e. minimize the
number of modified duties). Jespersen-Groth et al. further
mention the lack of computerized support for railway disruption
management, and a case is made for the use of Operations
Research techniques in the disruption management process.
In the past years, NS has successfully applied novel Operations
Research models to significantly improve the crew scheduling
process for which they received the Edelman Award 2008 [6].
The current methods and techniques are very useful for generating
the initial daily schedules, yet their calculation time is multiple
hours, making them unfit for in-time rescheduling purposes. The
cooperation between NS and D-CIS Lab studies a (decentralised)
actor-agent based application for rescheduling of train drivers to
support human dispatchers.

1.2 Research System
The work presented in this paper has been implemented in a
research system, using real-world timetable and rolling stock
schedule data and driver duty data. The research system currently
focuses on rescheduling train driver duties in real-time over the
course of a single day. It is assumed that any timetable and rolling
stock plan modifications to cope with disruptions have been
implemented, and a new rolling stock plan is in place, to which
the driver schedules must be adapted.
The main goal of the solution process is to ensure that all trains
are assigned drivers, whereby the solution-finding process as well
as the solutions found by the research system must perform well
in three separate dimensions:

• performance: to prevent knock-on effects, solutions
must be found quickly (i.e. in the same order of time as
human dispatchers, preferably much better),

• quality of solutions: although not as critical as
performance, the solutions found must minimize

adverse effects of modifying duties (e.g. introducing
overtime, idle time, etc.),

• clarity of solutions: as human dispatchers remain
responsible for implementing rescheduling solutions,
the research system must ensure that solutions are
understandable (e.g. minimizing the number of duty
modifications, involved drivers, etc.)

Optimizing the solution-finding process for all three dimensions
simultaneously is not always possible: for example, decreasing
calculation time will limit the number of solution alternatives that
can be examined. Tradeoffs have to be made between these areas
to ensure solutions are applicable in the real world.
The aim of the research system is to construct a reliable and
scalable operational system which can run together with the NS’
current rescheduling systems in place. The current version
(January 2009) is able to find rescheduling solutions for relatively
large disruptions (e.g. blockages lasting 1~2 hours) with a full-
size driver-agent population, faster than human dispatchers can
resolve a single disrupted duty (solution time in the order of
minutes). In [11], more details on the implementation,
performance and results are presented. The following sections
describe the actor-agent approach taken, the task-exchange team-
configuration process, the role of the various team formation
heuristics, and the route-analyzing capabilities. The paper
concludes with a discussion on the balance between solution
quality and performance of the solution finding process, and ends
with indications of future research possibilities.

2. Actor-Agent Approach
The main objective of the train-driver rescheduling application is
to realize a decentralized (multi-agent based) application which
provides solutions faster than human dispatchers. In addition, the
solutions should preferably minimize changes to original duties.
The research system is designed according to the actor-agent
paradigm [10], which explicitly recognizes both human actors and
artificial agents as equivalent team members, each fulfilling their
respective roles in order to reach the team objectives. The actor-
agent based design process provides the system with several
useful global system characteristics. First, the decentralized
approach in which agents use local knowledge, world views, and
interactions, contributes to an open system design. This openness
facilitates easy reconfiguration and/or adaptation to changing
system requirements. Second, combining humans and agents
within the system design allows for integrating them at their
appropriate abstraction levels: Human dispatchers at the
strategic/management level, train drivers at the level of defining
and guarding their personal interests, and their respective agents
at the level of implementing the strategic/management decisions
and resolving actual schedule conflicts.

2.1 Architecture
The following actors and agents are recognized in the research
system (see Figure 1):

Dispatcher-actor: A (human) dispatcher at one of the regional
control centres, who interacts with the rescheduling system via
one dispatcher-agent.

Driver-actor: A (human) train driver who imposes constraints on
the rescheduling process based on the preferences he/she may
have with respect to performing his/her duties. These constraints

48

can be hard (e.g., familiarity with rolling stock types) or soft (e.g.,
preferences for certain lines). Each driver-actor is associated with
one driver-agent.

Dispatcher-agent: Presents a monitoring and control interface on
the rescheduling process to the dispatcher-actor.

Process-manager-agent: The process-manager-agent (PMA)
manages the rescheduling process, and provides a contact point
for the rescheduling subsystem to dispatcher-agents. The PMA
coordinates the rescheduling process by communicating the
disruption information and parameters to the driver-agent
population. The PMA maintains status information of the
negotiation process and informs the dispatcher-agents.

Driver-agent: Responsible for resolving conflicts arising in
duties due to disruptions. Each driver-agent (DA) represents a
specific driver-actor in the rescheduling process. Driver-agents
are capable of forming task-exchange teams to resolve a
scheduling problem and participating in multiples of such teams.

Route-analyzer-agent: Driver-agents interact with a route-
analyzer-agent (RAA) to determine the impact of changes to their
existing duties. The RAA interacts with network-agents.

Network-agent: A network-agent (NA) maintains an up-to-date
view of the railways network, reflecting any changes in timetable
and rolling stock due to disruptions. The NA processes queries
from the route-analyzer-agent.

Figure 1: Actors, agents and their relations.

2.2 Agent-based Crew Scheduling
Agent-based crew-rescheduling is a relatively new area of
research. To our knowledge, no research has been published on
agent-based crew rescheduling applications in the railway
domain. Shibghatullah et al. [8] propose an agent-based
framework for bus crew scheduling including crew-reassignment.
The paper provides an overview of the potential advantages of
agent-based approaches (e.g., modelling individual preferences,
more suited for partial, on-demand rescheduling), but lacks
further details of the proposed framework. In [2], an agent-based
approach to airline operations recovery is described, part of
which concerns crew recovery. The architecture consists of
specialized agents representing parts of the traditional Airline
Operations Control Center organization. Similar to our approach,

costs are assigned to various factors such as hotels and extra crew
travel between the different operational bases.
The dynamics of the environment are an important factor in this
domain: disruption estimates constantly change as more
information is gathered; crews are constantly on the move
between stations; knock-on effects, etc. De Weerdt et al. state in
their overview of multi-agent planning [9] that although most
researchers recognize the importance of dealing with changing
environments, most planning approaches still assume fairly stable
worlds. The authors mention contingency planning (plan for all
contingencies that might occur) as a traditional approach of
handling changes in the environment. As in many situations
planning for all possible contingencies is not feasible, the authors
argue that so-called plan repair approaches are more realistic:
Detecting deviations from the original plan through monitoring,
and adjust the plan as needed. Our approach can be viewed as
plan repair, as we reactively resolve conflicts in driver duties
upon the occurrence of disruptions. Furthermore, our research
system uses distributed, local interactions to resolve duty
conflicts. DesJardins et al. [1] present an overview of approaches
in the field of distributed planning: Approaches are classified
according to the properties they share with cooperative distributed
planning (emphasis on forming a global (optimal) plan and
negotiated distributed planning (emphasis on satisfying local
goals). The authors argue that only recently research in this field
addresses coping with dynamic, realistic environments. To cover
this emerging work, the authors introduce the distributed,
continual planning paradigm. This paradigm considers planning
to be a dynamic ongoing process combining both planning &
execution. Our work fits this paradigm, as the crew rescheduling
process is performed in real-time and disruptions continuously
require agents to revise their duties to cope with new
circumstances.

3. TASK-EXCHANGE TEAMS
The basic principle underlying the solution process is that of task
exchange. Each driver’s schedule consists of a number of tasks. If
in the event of a disruption a driver can no longer perform one or
more tasks due to a schedule conflict, these tasks are taken over
by another driver. In turn, this driver may have to hand over tasks
which conflict with the newly accepted tasks to another driver.
Using cost functions, the most favourable sequence of task
exchanges can be selected as the solution for a team leader.
Schedule conflicts can be divided into two categories [5]: time-
based and location-based. A location-conflict can occur when one
or more tasks are removed from a schedule due to a disruption. A
time-conflict occurs when due to a delay the arrival-time of the
first task is later in time than the departure-time of the following
task. Other disruptive circumstances (such as a train driver
becoming unavailable to perform the remainder of his duty) are
translated into these two types of conflicts. As a result of these
conflicts, one or more tasks in the schedule become impossible
for this driver to perform: These tasks have to be transferred to
another driver. The process of finding task-exchanges which are
feasible and desirable is performed by the driver-agent
population.
In a task exchange, driver-agents assume the role of team leader
or team member. In both cases, the aim of the agent is to resolve a
conflict: In case of the team leader role, the conflict is due to
modified tasks (e.g. as a result of a disruption, tasks may have

Teams
TL

RAA

DA
NA

PMA

Dispatcher-agent

Driver-actors Dispatcher-
actors

49

been removed or delayed). In case of the team member role, the
conflict is due to tasks originating from another driver-agent.

A team leader starts a recursive team extension process by
announcing its set of conflicting tasks to the driver-agent
population. The team is subsequently extended with additional
team members able to take over these conflicting tasks. Driver-
agents can take over tasks either unconditionally (i.e. without
creating a new conflict) or conditionally (i.e. creating a new
conflict due to overlapping existing tasks). Driver-agents that
respond conditionally announce their conflicts in a manner similar
to a team leader. Driver-agents can participate multiple times in
task-exchanges within the same team (and in other teams). This
allows for teams to discover configurations in which driver-agents
‘trade’ tasks. Figure 2 shows an example of three team configu-
rations: A-B, A-C-D and A-C-A. In this example, for each agent,
the conflicting tasks that need to be resolved are shown: Agent C
needs to resolve a conflict consisting of a single train driving task
from station b to station c. The example also shows that agent A
participates in the team both as team leader and as team member.
A sequence of task-exchanges is considered successful when the
last task-exchange in the sequence does not result in a new
conflict (or the conflict is sufficiently shifted forward in time to
be resolved at a later point in time). At this point, the recursive
team formation process is ‘backtracked’: Each team member
selects the task exchange associated with the lowest cost. The
protocol is explained in more detail in the following section.

3.1 Task Exchange Protocol
When a driver-agent is team leader or left with a new conflict as a
result of accepting a task-exchange, an attempt is made to hand
over the conflict to another driver-agent using the task-exchange
protocol. In Figure 3, the message exchange is shown for a
number of scenarios, discussed below. The commitment levels
CL:1 and CL:2 are explained in section 3.2.
The protocol is initiated by a driver-agent in the role of team
leader (TL): A call is issued by TL announcing the conflicting
tasks to all driver-agents. Driver-agent DA1 has determined that it
cannot participate in the task-exchange (i.e. either the exchange is
infeasible or the associated costs are too high), and informs the
TL by responding with a not-interested message.
Driver-agent DA2 on the other hand, is able to participate in the
exchange, and indicates this by responding with an interested
message. DA2 indicates that its interest is interested conditional,
meaning that DA2 first has to exchange a new conflict to another
driver-agent to solve the conflict from TL. DA2 now initiates its
own task-exchange protocol, to which DA3 responds with an
interested message. In this case, DA3 does not generate a new

conflict. Instead, the costs for the task-exchange are calculated by
DA3 and communicated to DA2 using a quote message.
When DA2 has received all quotes, the most favorable quote is
selected (i.e. lowest quote value). In this example DA3’s quote is
selected and DA3 is informed using an accept message. DA3
confirms the acceptance using a confirm message. Based on the
confirmed quote received from DA3, and the costs calculated for
its own task-exchange with TL, DA2 can now report the total
costs for the takeover to TL by sending a quote to TL. Similar to
DA2 TL collects quotes, and confirms the quote from DA2.
The TL can finally decide on finishing the task-takeover process
by issuing an order to DA2 (which is passed on to DA3): the
returned confirm messages indicate that the team is ready to be
finalized, which is the final message sent by TL. The protocol
ends by DA3 returning a team done message to TL.

Figure 3: Task exchange protocol

3.2 Commitment Management
The design of the task-exchange process explicitly supports
agents participating multiple times in task-exchange teams. To
prevent driver-agents from committing in conflicting task-
exchanges, a commitment management mechanism is included,
based on commitment-levels [7]. The task-exchange protocol is
divided into sections with commitment levels. Commitment level
changes occur at specific points in the protocol (i.e. between these
sections), as shown in Figure 3 (CL). At these points, a driver-
agent applies a commitment strategy which specifies whether
ongoing task-exchanges are allowed to proceed to the next level:

• CL 1: Upon receiving an accept message, a driver-
agent needs to decide whether the task-exchange is still
favourable, before confirming the acceptance.

• CL 2: Upon receiving an order message, a driver-agent
must ensure that only non-overlapping task-exchanges
are allowed to proceed, before confirming the order.

Every commitment level increase makes it more difficult for that
driver-agent to decommit from this specific task exchange. CL:1

A (team leader)

B C

D A

e g f

b c
no conflict

no conflict no conflict

call
call

not interested

Interested (conditional) call
interested

quote
accept

confirmquote
accept

confirm

order order

confirmconfirm

finalize finalize

team done

TL DA 1 DA 2 DA 3

CL: 1

CL: 1

CL: 2
CL: 2

Figure 2 : Team configuration example.

50

influences the behaviour of the team formation process, while in
CL:2 consistency of the final solution is ensured.

3.3 Determining Duty Impact
Upon receiving a request for a task takeover, a driver-agent sends
its (up-to-date) duty and the received conflict (i.e. tasks to be
taken over) to the route-analyzer-agent (RAA). The RAA
processes the request. In case the RAA has determined that the
conflict can be integrated into the current driver’s duty, the
RAA’s reply to the driver-agent contains two parts: a delta on the
original duty (∆d) describing the required modifications to the
duty, and a new conflict (NC) resulting from the modifications
(i.e. tasks replaced with tasks from the conflict). The second part
may contain zero or more tasks: in this case ∆d did not lead to any
tasks being replaced (i.e., the conflict is resolved without
introducing another conflict, e.g. because the new tasks are
replacing a break in the driver’s duty).
In Figure 4 an example of this process is shown: The takeover of
the conflict-tasks e-f, f-g by agent C results in a ∆d consisting of
tasks b-e, e-f, f-g and g-c. Due to the takeover, a new conflict is
created consisting of task b-c, which may not include any part of
the original conflict. For more information on the process of
determining routes, see Section 5.

4. Team Formation Heuristics
Due to the large number of driver-agents engaged in various roles
in the team formation process and the fact that a short calculation
time is an important success factor, heuristics are used to
constrain the extension of teams with additional team members.
The main goal behind the applied heuristics is to ‘only let driver-
agents participate that have a high probability of improving the
solution found’. In this section, the applied heuristics are
described: interest determination, cost calculation, evaluating
team score and decommitment determination. These will be
discussed in more detail below.

4.1 Interest Determination
Based upon the schedule impact determined earlier, a driver-agent
decides whether it is interested in joining a team. Several domain-
specific criteria are evaluated to determine a takeover desirability:

• If the impact of taking over a conflict results in a new
conflict which is larger than the original, the agent is
not interested.

• Taking over tasks from a driver-agent may only result
in introducing a new conflict if the tasks in the new
conflict are situated later in time.

• If the new conflict introduced by taking over tasks from
a driver-agent consists of the same set (or superset) of
tasks introduced by this agent elsewhere in the team, the
agent will not be interested. This prevents repeating
evaluation of sequences of task-exchanges that are
already being evaluated.

4.2 Costs Calculation
A driver-agent interested in taking over tasks must determine the
costs associated with this takeover. The cost function is non-
decreasing and assigns costs to the following elements:

• Amount of overtime introduced by extending a schedule
past the original end time;

• Affecting meal break;

• Use of spare drivers. Spare drivers are preferred in case
of larger disruptions, and should not be used for
resolving small/simple conflicts;

• Size of team (e.g. preferring recurring team members);

• Individual train driver preferences (i.e., modifiers to the
above elements).

The relative weights of the cost elements can be varied to
prioritize different aspects of the solutions that are found (e.g.
prevent the use of spare drivers by increasing their relative cost).
The costs are subsequently compared to costs of other exchanges
using a scoreboard mechanism, described below.

4.3 Team-Configuration Scoreboard
Upon starting a task exchange process, each team leader publishes
a scoreboard, which can be used by team members to inform
other driver-agents of the progress within a task-exchange team.
The scoreboard is based on the principle that every driver-agent in
a configuration of a team has knowledge of the ‘cost’ of the
exchange configuration (the task exchanges leading up to the
task-exchange this driver-agent is currently examining).
The moment a driver-agent has determined that a conflict can be
resolved without generating a new conflict, it publishes the value
of the current solution (i.e., cost of one complete (possible)
configuration) on the scoreboard. All driver-agents can access the
scoreboard and examine the costs of the solutions which are
already found. Driver-agents can use the values on the scoreboard
to decide whether to continue a task-exchange or not. If the cost
of the current partial solution is already the same or higher than
the scoreboard value, the driver-agent will terminate its
involvement in this branch of the task-exchange.
In Figure 5, an example is shown: First, driver-agent B determines
that it can solve the conflict of A(TL). It finds that the scoreboard
is still empty, and updates it with the calculated costs (arrow 1).
Subsequently, C finds that in order to solve the teamleader’s
conflict, it has to introduce a new conflict. Before continuing, it
checks the scoreboard to determine if the current costs still are an
improvement. In this case C continues. Agent D determines that it

= passenger

b c

conflict received from A
e g f

∆ duty agent C

new conflict agent C

b c b a
initial
duty agent C break

b g c e f

a

updated
duty agent C b g c e f

=conflict task

Step 0

Step 2

Step 3

Step 4

Step 1

= original task

Figure 4: Example of duty impact.

51

can solve the conflict of B without introducing a new conflict. It
also determines that the cost of the solution improves the current
score on the scoreboard. D updates the scoreboard (arrow 2).
Finally, agent A(DA) aborts, as it has determined that its (partial)
solution does not improve the team’s current score.
The scoreboard mechanism ensures that only solution alternatives
are evaluated which improve the currently found solution(s). Note
that this mechanism depends on the cost function to accurately
discriminate between ‘better’, ‘similar’ and ‘worse’ solutions.

5. ANALYZING ROUTES
In this section, the agents involved in determining the feasibility
and impact of schedule changes on driver schedules are discussed.
This rather computationally expensive functionality is
deliberately separated from the driver-agents task-exchange
capabilities to enhance performance and ensure cleaner division
of responsibilities. The route-analyzer-agent (RAA) is the central
point of contact for the driver-agents; distributed network-agents
(NA) support the RAA.

5.1 Route-Analyzer-Agent
Requests for route calculations from the driver-agents are handled
by a RAA. A request consists of a duty and a conflict. The duty is
the current duty of the requesting driver-agent. The conflict
consists of one or more tasks to take over from another driver-
agent. The answer returned by the RAA can either be feasible,
feasible conditional or not feasible. Feasible indicates that it is
possible to add the conflict to the duty of the driver-agent without
introducing a new conflict. In addition to the conflict one or more
passenger tasks (trips to/from the conflict) may be added to the
duty. If it is possible to add the conflict to the duty of the driver-
agent, yet a new conflict is introduced in the process, the answer
is feasible conditional. In this case, as mentioned earlier in section
3.3, the new conflict may not contain any tasks contained in the
old conflict. When it is not possible to add the conflict to the duty
of the driver-agent at all, the answer will be not feasible.

The RAA attempts to determine the correct answer to a request
without having to take into account the detailed current state of
the rail network. To this end, the RAA performs three steps. First,
a check is performed to determine if a negative answer can be
given quickly. After this the request is compared to a history of
previously received requests. If no answer is found the requests
are distributed over the available NAs for detailed examination.
These steps are described in more detail below.

Step 1: Sanity Check: In a large number of cases (~50%) it can
be easily determined that a request is not feasible. Consider for
example a request where a driver-agent’s current location is
Rotterdam and tasks to take over are in the vicinity of Groningen,
and take place within 15 minutes. The distance between
Rotterdam and Groningen is more than 200 kilometers: this
clearly is an impossible takeover. The RAA uses an origin-
destination matrix with lower bounds on the travel time between
all stations. These lower bounds are static and calculated
beforehand by taking into account only the tracks in the network
and maximum driving speeds of the available train-units. If the
lower bound is larger than the available time we know it is not
possible to find any route.

Step 2: Request History: The RAA retains all calculated routes
in memory. If the same request is received more than once
(possibly by different driver-agents), the answer is retrieved from
this history (~4-5% of the remaining requests). Furthermore, if a
previous request with a wider time-interval for the same route
resulted in not feasible, the route-analyzer-agent can conclude the
current request also results in a not feasible answer. This history
is reset when changes on the rail network.

Step 3: Send to network-agent: If no relevant requests are found
in the request history, the RAA sends the request to one of the
NAs and returns the thus obtained answer to the driver-agent.

Table 1: Example duty for driver-agent.
Departure Destination Departure time Arrival time
Rotterdam Utrecht 7:45 8:24
Utrecht Woerden 9:08 9:22
Woerden Rotterdam 9:32 10:08
Rotterdam Maassluis 10:58 11:21
Maassluis Rotterdam 11:29 11:53
Rotterdam Eindhoven 11:47 13:00
Eindhoven Rotterdam 13:32 14:42

As an illustration, consider a driver-agent with a duty as shown in
Table 1. This driver-agent wants to know if he can take over a trip
from another agent. This trip departs at 10:51 from Den Haag and
arrives at 11:10 in Gouda (not shown in Table 1; this driver-agent
is not a team leader, i.e. not directly affected). The driver-agent
sends this request to the route-analyzer-agent when the actual
time is 9:00. The RAA determines that the driver-agent’s current
location is Utrecht. The minimal time to get from Utrecht to Den
Haag is 35 minutes. In this case the driver-agent has 111 minutes
available (i.e., from 9:00 tot 10:51) so a route might exist.
Similarly, the RAA concludes that a route from Gouda back to
Rotterdam could also exist. The RAA concludes that further
examination of the request is necessary.

When all NAs are unavailable the RAA maintains a priority
queue of requests to send to a network-agent. For each request the
RAA assigns a prediction-value and keeps the queue sorted
according to this value. When a NA becomes available the RAA
sends the request with the best prediction-value. The prediction-
value represents an expectation by the RAA of how well the
conflict can be fitted into the duty. This is the weighted sum of:

• Train driver duty task lengths in the conflict time
interval.

Figure 5 : Scoreboard example

Yes, Cost: 5+10, update SB

2
check score,

continue?

Cost: 25
Yes, Cost: 5, continue

25 15

No, Cost:25, abort

A (TL)

B

D A (DA)

1 check score,
continue?

check score,
continue?

C

scoreboard

52

• Lower bounds on travel time from current location to
start of conflict, and lower bounds on travel time from
end of conflict to base.

These items are determined by an initial analysis of the outcome
of a couple of thousand requests; where the weights were
determined by regression analysis. For example, it is straight-
forward to understand that if a driver-agent has a lot of work
within the time-interval of the conflict he will surely have to send
out a new conflict if he takes over the current conflict in his
request. Similarly agents that are located closer to a conflict are
more likely to take over the conflict in an efficient way. An
important factor contributing to the success of this scoreboard
mechanism is a first value being published as soon as possible.
Sorting the requests this way helps to find good solutions more
quickly. Once a good solution is found in a team the scoreboard is
seeded with this first score, activating the score-board mechanism
(see section 4.3).

5.2 Network-Agents
The NA maintains knowledge of the current time-table, including
all disruptions and delays. In the actor-agent community at least
one NA has to exist, but possibly more. NAs can easily be
distributed over multiple platforms (no cooperation is necessary
and the data can be replicated). Based on this time-table the NA
can determine, by using a shortest-path algorithm, if a route
between two stations exists, and if so, which route. The objectives
in this process are to (i) maintain as much of the original duty of
the driver-agent as possible, and (ii) to arrive at the destination
(i.e. the conflict’s location) as soon as possible. To illustrate this
consider again the example of Table 1, continued in Table 2.

Table 2: New duty for driver-agent
Departure Destination Departure time Arrival time
Rotterdam Utrecht 7:45 8:24
Utrecht Woerden 9:08 9:22
Woerden Rotterdam 9:32 10:08
Rotterdam Den Haag 10:14 10:40
Den Haag Gouda 10:51 11:10
Gouda Rotterdam 11:16 11:38
Rotterdam Eindhoven 11:47 13:00
Eindhoven Rotterdam 13:32 14:42

The NA attempts to find a route from Utrecht to Den Haag
between 9:00 and 10:51. The fastest way to get to Den Haag is a
direct connection which departs from Utrecht at 9:03 and arrives
in Den Haag at 9:51. This means a route actually does exist. But
there also exists a better alternative for this driver-agent: The NA
also finds a direct connection between Rotterdam and Den Haag
departing at 10:14 and arriving at 10:40. This way the train driver
can still perform the tasks of its own duty until 10:08 and still be
in time for the task-exchange trip.

Finally the NA is able to find a trip from Gouda to Rotterdam, so
the driver-agent can also perform the last two tasks from its own
duty. This means, if the driver-agent wants to take over the
requested trip, its new duty will be as shown in Table 2. The
underlined trip is taken over by this driver-agent, while for the
bold trips the driver rides the train as a passenger. In this case the
driver-actor can no longer perform the task from Rotterdam to
Maassluis (10:38-11:21) and from Maasluis to Rotterdam (11:29

– 11:53). This is the feasible conditional answer the NA will
return to the RAA, which forwards this to the driver-agent.

Note that this change to the driver-agent’s duty also means that
the 50 minute break in Rotterdam from 10:08 until 10:58 no
longer exists. The driver-agent will take this into account when
examining the schedule changes (∆d); the NA only assesses if a
route is possible, not whether the route is desirable.
In case the conflict can be fitted into the duty (as specified in the
request received by the NA), the returned answer consists of the
necessary duty adjustments and a set of tasks which can no longer
be performed. This set of tasks can be empty; in that case the
conflict can be fitted into the duty without introducing a new
conflict. When the conflict cannot be fitted into the duty
(‘failure’), the NA returns no duty adjustments nor a set of tasks.

6. DISCUSSION
In the real-world domain of train driver rescheduling in the
Netherlands, an actor-agent based approach is taken to (a) support
human dispatchers and (b) accommodate individual train drivers’
preferences. The previous sections have provided an outline of the
task-exchange team-configuration process including the heuristics
used to regulate the process and the role of the various
rescheduling constraints. Summarizing, two multi-agent sub-
systems have been co-developed in the research system: train-
driver rescheduler and route-analyzer.
The research system aims to find a balance between optimizing
for performance, quality and clarity of solutions. With respect to
performance and quality, good results have already been obtained
(see [11]). Human dispatchers are currently being consulted to
assess the clarity of the solutions. An important factor
contributing to the clarity of the solutions is the fact that the basic
principle of task-exchange teams is straightforward and resembles
in many ways the rescheduling process human dispatchers use.
Although the team formation process supports multiple
simultaneous team formations, some coordination of teams
remains necessary: when dealing with teams resulting from a
single disruption, teams are highly likely to consist of the same
driver agents, resulting in a high probability of decommitment
(and thereby team re-formation processes). A relatively simple
way to reduce the overhead of decommitments is running teams
sequentially while allowing teams related to other (geographically
spaced) disruptions to run in parallel.
The scoreboard mechanism must also take decommitment
behavior into account: as it is possible for an agent that has
previously posted a score to decommit from the solution related to
this (now possibly invalid) score, the (use of the) scoreboard can
be configured in the following ways:

• Increase the number of scores that may be posted on the
scoreboard: this reduces the chance of all scores on the
scoreboard to be decommitted.

• Increase the penalty on decommitting if an agent has
posted a score on the scoreboard.

• Ensure that an agent that posts a score in a team
decommits from all other teams.

In this paper a number of optimizations are discussed that are
currently being researched and implemented. These optimizations
are aimed at improving the performance of the solution finding

53

process and quality as well as clarity of the solutions found. With
respect to performance, the main factor impacting performance is
the route finding process. In addition to the mechanisms described
in this paper, the route finding capacity of the system can be
scaled up relatively easy by adding more network-agents and
additional supporting hardware. With respect to solution quality,
the effectiveness of the heuristics influencing the team formation
process is the determining factor. The heuristics described in this
paper are currently being evaluated and improved as part of
ongoing research. Current research focuses on comparing results
of realistic scenarios against actual solutions determined by
human dispatchers, in order to assess and improve our heuristics.

7. FUTURE RESEARCH
One of the current research efforts focuses on extending the
research system for train-driver rescheduling with agents
representing train stations, thereby introducing a different view on
the railway network than driver-agents, who are mainly concerned
with their own duties. Station-agents aim to improve the
robustness of the resulting driver duties against future disruptions.
When facing new disruptions, a robust set of duties requires little
modifications to deal with the disruptions. The proposed
extension is to measure such robustness by monitoring the
‘inventory’ of train drivers at interesting (i.e. large) stations
during the day: the station fitness.
Another extension is to acquire more understanding of the
(emergent) behavior of the research system, e.g., by analyzing
communication patterns. One potential advantage is to improve
the route-analyzer-agent further in handling requests without
involving network-agents. Another potential advantage is to
forward messages faster to relevant driver-agents. It is important,
though, to avoid dependencies on structures in the original crew
schedule, as these may be changed by NS over time.
An important factor in the formation of teams is to ensure that
driver-agents decommit from less promising task-exchanges at the
right moment. Decommitting too early will mean that potential
solutions will be lost, decommitting too late will impact
performance as entire task-takeover structures are ‘rolled back’
and need to be redone. This tradeoff between performance and
solution quality is (also) subject of ongoing research.
Future extensions concern handling stochastics (e.g., uncertain
duration of blockages), and partially accepting conflicts (without
breaking the properties of the protocol).

8. ACKNOWLEDGMENTS
The authors express their gratitude to NS and Cor Baars (DNV /
Cibit) for starting this project. The following D-CIS Lab
colleagues provided valuable contributions: Hilbrandt van Boven,
Pascal Hoetmer, Michel Oey, Reinier Timmer, Louis Oudhuis,
Martijn Broos, Sorin Iacob, Thomas Hood, and Kees
Nieuwenhuis. The research reported here is part of the Interactive
Collaborative Information Systems (ICIS) project
(www.icis.decis.nl), supported by the Dutch Ministry of
Economic Affairs, grant nr: BSIK03024. The ICIS project is
hosted by D-CIS Lab (www.decis.nl), the open research

partnership of Thales Nederland, the Delft University of
Technology, the University of Amsterdam and the Netherlands
Organisation for Applied Scientific Research (TNO).

9. REFERENCES
[1] desJardins, M.E., Durfee, E.H., Ortiz, C.L., and Wolverton,

M.J. (1999). A Survey of Research in Distributed, Continual
Planning, AI Magazine, 4, pp. 13-22.

[2] Castro, A.J.M., Oliveira, E. (2007), Using Specialized
Agents in a Distributed MAS to Solve Airline Operations
Problems: a Case Study. In: Proceedings of the 2007
IEE/WIC/ACM Int. Conf. on Intelligent Agent Technology,
pp. 473-476, IEEE Computer Society

[3] Ernst, A.T., Jiang, H., Krishnamoorthy, M., and Sier, D.
(2004), Staff Scheduling and Rostering: A Review of
Applications, Methods, and Models. In: Eur. Jnl of
Operational Research, 153, pp. 3-27.

[4] Freling, R., Lentink, R.M., Odijk, M.A. (2000), Scheduling
Train Crews: a Case Study for the Dutch Railways.
In: Proceedings of CASPT 2000.

[5] Jespersen-Groth, J., Pothoff, D., Clausen, J., Huisman, D.,
Kroon, L., Maróti, G., and Nyhave Nielsen, M. (2007),
Disruption Management in Passenger Railway
Transportation. Report EI2007-05, Econometric Institute,
Erasmus University Rotterdam (2007), 35 pages. (Submitted
to Computers & Operations Research in January 2007).

[6] Kroon, L., Huisman, D., Abbink, E., Fioole, P.J., Fischetti,
M., Maróti, G., Schrijver, L., Steenbeek, A., Ybema, R.
(2009). The New Dutch Timetable: The OR Revolution. In:
Interfaces, 39(1), pp. 6-17.

[7] Sandholm, T. and Lesser, V. (2002). Leveled-commitment
contracting: a backtracking instrument for multiagent
systems. AI Mag. 23, 3 (Sep. 2002), 89-100.

[8] Shibghatullah, A.S., Eldabi, T., Rzevski, G. (2006), A
Framework for Crew Scheduling Management System Using
Multi-Agents System. In: 28th Int. Conf. on Information
Technology Interfaces (ITI 2006), Cavtat, Croatia.

[9] de Weerdt, M., ter Mors, A., and Witteveen, C. (2005),
Multi-agent Planning: An introduction to planning and
coordination. In: Handouts of the EASSS, pp. 1-32.

[10] Wijngaards, N., Kempen, M., Smit, A., and Nieuwenhuis, K.
(2006), Towards Sustained Team Effectiveness. In:
Lindemann, G., et al. (Eds.), Selected revised papers from
the workshops on Norms and Institutions for Regulated
Multi-Agent Systems (ANIREM) and Organizations and
Organization Oriented Programming at AAMAS’05, LNCS,
Springer Verlag, 3913, pp. 33-45.

[11] Abbink, E.J.W., Mobach, D.G.A., Fioole, P.J., Kroon, L.G.,
van der Heijden, E.H.T., Wijngaards, N.J.E. (2009), Actor-
Agent Application for Train Driver Rescheduling.
In: Proceedings of AAMAS 2009, in press.

54

A Multi-Agent Learning Approach for the Multi-Mode
Resource-Constrained Project Scheduling Problem

Tony Wauters, Katja Verbeeck,
Greet Vanden Berghe

Vakgroep IT
KaHo Sint-Lieven

Gebroeders Desmetstraat 1
B-9000 Gent, Belgium

{FirstName.LastName}@kahosl.be

Patrick De Causmaecker
Faculty of Sciences, Department of

Computerscience
K.U. Leuven Campus Kortrijk

Etienne Sabbelaan 53
B-8500 Kortrijk, Belgium

patrick.decausmaecker@kuleuven-
kortrijk.be

ABSTRACT
This paper introduces a novel approach for solving the multi-
mode resource-constrained project scheduling problem (MR-
CPSP), in which multiple execution modes are available for
each of the activities of the project. The new approach ap-
plies simple agent learning devices, i.e. learning automata,
to construct the project schedules. We present some com-
parative results, to show that our decentralized method can
easily compete with the best performing algorithms for the
MRCPSP.

1. INTRODUCTION
In the last few decades, the resource-constrained project

scheduling problem (RCPSP) has become a popular subject
in operations research. It consists of scheduling the activi-
ties from a project by respecting the resource requirements
and precedence relations between the activities.
The MRCPSP is a generalized version of the RCPSP, where
each activity can be performed in one out of a set of modes,
with a specific activity duration and resource requirements
(e.g. 2 people each with their own shovel need 6 days to dig
a pit, while 4 people each with their own shovel and one ad-
ditional wheelbarrow need only 2 days). A comprehensive
survey of the project scheduling problem can be found in
[3]. The latter paper presents a unifying notation, a model,
a classification scheme, i.e. a description of the resource
environment, the activity characteristics, and the objective
function, respectively. The notation is similar to machine
scheduling and allows to classify the most important mod-
els. It also introduces some exact and heuristic methods for
both single and multi-mode problems. In [6] Herroelen et al.
discuss the problem and its practical relevance. Kolisch and
Hartmann [13] provide an update of their survey that was
first published in 2000. They summarize and categorize a
large number of heuristics that have recently been proposed
in the literature together with some detailed comparitive re-
sults. The RCPSP is shown to be an NP-hard optimization
problem [1], thus so is the MRCPSP, because it is a general-

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

isation of the RCPSP [11]. In order to produce good quality
solutions in a short amount of time, different kinds of (meta-
)heuristics have been proposed to address the problem. A
tabu search metaheuristic is applied in [5] for solving the
MRCPSP with generalized precedence relations. In [4, 7,
16, 17] a genetic algorithm is presented for the MRCPSP.

Agent-based approaches have also been succesfully applied
to the MRCPSP. In [10] two types of agents (basic and en-
hanced agents) are used, together with a set of different
priority rules. The two agent types differ by the feasible
execution mode that is selected for each resource. A basic
agent, which is purely reactive, chooses the first feasible ex-
ecution mode that it finds. In contrast, an enhanced agent
deliberates the mode selection according to several rules.
In [9] a number of agents, each representing a different op-
timization algorithm including local search, tabu search, as
well as several specialized heuristics, have been used to work
on a population of solutions in parallel on different comput-
ers. In [8] a population learning algorithm is presented for
solving both the single and the multi-mode rcpsp.
In this paper we present a novel multi-agent based approach,
fundamentally different from these other agent based ap-
proaches. It is based on a graph representation in which
the nodes are agents representing activities. Each agent is
responsible for one activity. The agents make use of two
learning devices, i.e. learning automata (LA) to construct a
schedule. We use a smart coupling mechanism of rewards to
learn both the order of the activities and the modes at the
same time. Further on our approach is inspired by theoreti-
cal results that show how interconnected LA devices are able
to find attractor points in MDP’s and Markov Games [18,
19]. Altough the activity-on-node model for the MRCPSP
problem as we consider here does not satisfy the Markov
property as was assumed in [18, 19], good results are pro-
duced.

This paper is structured as follows. Section 2 gives a brief
problem description, followed by our model and multi-agent
learning algorithm in Section 3. In Section 4 we present
some computational experiments and comparative results.
Finally in Section 5 we draw conclusions and discuss future
work.

2. PROBLEM FORMULATION
The MRCPSP can be formulated as follows. A project

has N activities a1, . . . , aN ; ai ∈ A, with A the set of activ-

55

ities, where each activity can be performed in one out of a
set of K modes mi1, . . . ,miK ;mij ∈Mi, with Mi the set of
modes for activity i. Each mode corresponds to a specific ac-
tivity duration dmij and resource requirements (renlmij

for

the renewable resources and nrenlmij
for the non-renewable

resources). The dummy start and end activities 1 and N
have zero duration and zero resource usage. These activities
have to be scheduled according to their finish-start prece-
dence relations. Any activity i has a set Pi of activities as
its predeccessors, and also a set Si of activites as its suc-
cessors. The project has some renewable and non-renewable
resources available each with their own availability. For each
renewable resource l the total availability renl is constant
throughout the problem horizon, while the non-renewable
resources have a limited total usage nrenl.

In the MRCPSP, the objective is to find an activity order -
mode combination that produces a schedule that minimises
the project makespan and is subject to two hard constraints:
1) an activity should not be scheduled until all its predeces-
sors have finished (precedence constraint) and 2) the number
of assignments of a resource at any time should not be larger
than the availability of that resource (resource constraint).
With si the start time and di the duration of activity i we
can also formulate the problem as follows:

min sN (1)

s.t.
K∑
j=1

mij = 1 i = 1, . . . , N (2)

sp + dp ≤ si ∀i; sp ∈ Pi (3)

di =

K∑
j=1

mij dmij i = 1, . . . , N (4)

N∑
i=1

K∑
j=1

mij nren
l
mij
≤ nrenl ∀l (5)

N∑
i=1

K∑
j=1

mij ren
l
mij

eit ≤ renl ∀l; t = s1, . . . , sN(6)

{
eit=1 if si≤t<si+di
eit=0 o.w.

}
∀i,t (7)

mij , eit ∈ {0, 1} ∀i,j,t (8)

dmij , si ∈ N ∀i,j (9)

s0 = 0 (10)

3. THE MULTI-AGENT LEARNING
APPROACH

The (M)RCPSP can be presented with an activity-on-
node diagram. It uses a graph to show the precedence rela-
tions between the activities. In Figure 1 we see an example
of a project with 7 activities according to the problem de-
scription in Section 2 (1 and 7 are dummy activities) and
their relations. That respresentation is the starting point,
for the multi-agent based learning algorithm we developed.

Our goal is to create an activity order list and a mapping
from activities to modes, which can later be used to con-
struct a schedule. The activity order list is a permutation of
all the activities, and determines in which order the sched-
ule construction algorithm handles the activities. The mode

A1 A7

A2

A3

A4

A5

A6

Figure 1: An example of an activity-on-node dia-
gram for a project with 7 activities.

Act 1 Act N

Agent 1 Agent N

Dispatcher

Act 2

Agent 2

Act 6

Agent 6

Act 4

Agent 4

Act 5

Agent 5Act 3

Agent 3

Activity Order List:

Mode mapping:

Initial situation

A1 AN

M1 MN

We start in

agent 1

Figure 2: Initial situation, one agent in every activ-
ity node + one extra dispatching agent.

mapping determines in which mode each activity will be ex-
ecuted. We start by placing an agent in every activity node.
Further on we add an extra dispatching agent (dispatcher)
which is needed by our algorithm to construct schedules that
respect the two hard constraints. In contrast to the other
agents, the dispatcher does not represent an activity and
only chooses an other agent to hand over the control. This
initial situation is presented in Figure 2.
The main idea of the algorithm is to enable every agent to
learn which decisions to make, concerning:

1. in which order to visit its successors, and

2. in which mode the activity needs to be performed.

The algorithm works as follows: we start in the situation
as in Figure 2, we give the control to agent 1, this agent
chooses an order to visit its successors and picks the first
agent from this order (Agentnext). Its activity is already in
the activity list so it does not need to choose a mode. Now
the control is given to Agentcurrent ⇐ Agentnext, which also
decides upon an order to visit its successors (e.g. A2 chooses
order |A5, A4|, so it will first take A5 and then A4) and takes
the first agent from this order (Agentnext). Agentcurrent has

56

Act 1 Act N

Agent 1 Agent N

Dispatcher

Act 2

Agent 2

Act 6

Agent 6

Act 4

Agent 4

Act 5

Agent 5Act 3

Agent 3

Activity Order List:

Mode mapping:

A1 AN

M1 MN

STOP
All nodes are visited at

least once.

We can now construct a

schedule using the activity

order list and mode

mapping.

Order: 2 6 3

A2

M2

Order: 5 4

A5

M5

Order: N

Order: N

A4

M4

Order: N

A6

M6

A3

M3

Order: 5

Figure 3: Final situation, all agents have been vis-
ited at least once.

not been visited before. Consequently the activity it repre-
sents is added to the activty order list, and the agent also
chooses a mode which is added to the mode mapping. This
process is continued until the agent in the last dummy node
is visited. This node is special in the sense that its agent does
not need to choose an activity order or a mode, but always
forwards the control to the dispatcher. The dispatcher has a
certain probability (PrRandToV isited) to choose a random el-
igible agent from the list of already visited agents, otherwise
it chooses a random eligible unvisited agent. An agent is el-
igible when all the predecessors of the activity it represents
have been visited. Note that this simple random dispatcher
strategy can be changed into something else (e.g. a heuristic
strategy). These steps are carried out subsequently until all
agents have been visited at least once.

In addition to all the previous, the agents behave stochas-
tically. At any time they can give the control, with a small
probability PrToDisp, to the dispatcher. This makes it pos-
sible to naturally consider all possible activity-order permu-
tations and hence all the possible schedules.

Now we can construct a schedule with the activity order
and mode mapping with a serial schedule generation scheme
that uses a standard heuristic method for RCPSP (see [12]
for details).

3.1 Algorithm
In this section we present the algorithm behind our ap-

proach in a more formal way by using pseudo code. In Al-
gorithm 1 the global control of the algorithm for construct-
ing an Activity Order List and Mode Mapping is presented.
From there the control is given to individual agents which
use Algorithm 2. The latter returns the next agent to visit
(Agentnext) which is given control by the global control.
For clarity we left out the implementation of the method to
determine if an Agent is eligble.

The method described above for constructing a schedule
can now be used in an iterative way. We use the sched-
ule’s quality (makespan) for the agents to learn the actions
to take. We apply some simple learning automata devices

Algorithm 1 Global Control

Input: Project data and Algorithm parameters
Output: A precedence constraint feasable schedule

initialize ActivityOrderList and ModeMappingList
Agentcurrent ⇐ Agent1
while Not all agents visited do

give the control to Agentcurrent
Agentnext determined by Agentcurrent using Algo. 2
if Agentnext is eligible then
Agentcurrent ⇐ Agentnext

else
Agentcurrent ⇐ Dispatcher

end if
end while
Schedule ⇐ construct a schedule using the obtained
ActivityOrderList and ModeMappingList
return Schedule

Algorithm 2 Single Agent Control

Input: ActivityOrderList, ModeMappingList
Output: Agentnext

rand ⇐ random number between 0 and 1
if (rand < PrToDisp) or (this is AgentN) then
Agentnext ⇐ Dispatcher

else
if Agentcurrent not yet visited then

add Agentcurrent to the ActivityOrderList
Mode ⇐ chooseMode() using Mode LA
add the Mode to the ModeMappingList
Order ⇐ chooseOrder() using Order LA
Agentnext ⇐ first Agent in Order

else
Agentnext ⇐ next Agent in Order

end if
end if
return Agentnext

57

which we will describe in the next Section.

3.2 Learning Automata
Learning Automata are simple reinforcement learners orig-

inally introduced to study human and animal behavior. The
objective of an automaton is to learn an optimal action,
based on past actions and environmental feedback. Formally
the automaton is described by a quadruple {A, β, p, U}, where
A = {a1, . . . , ar} is the set of possible actions the automa-
ton can perform, p is the probability distribution over these
actions, β is a random variable between 0 and 1 representing
the evironmental response, and U is a learning scheme used
to update p.

A single automaton is connected in a feedback loop with
its environment. Actions chosen by the automaton are given
as input to the environment and the environmental response
to these actions serves as input to the automaton. Several
automaton update schemes with different properties have
been studied. Important examples of linear update schemes
are linear reward-penalty, linear reward-inaction and linear
reward-ε-penalty. The philosophy of these schemes is essen-
tially to increase the probability to select an action when it
results in a success and to decrease it when the response is
a failure. The general algorithm is given by:

pm(t+ 1) = pm(t) + αreward(1− β(t))(1− pm(t))

− αpenaltyβ(t)pm(t) (11)

if am is the action taken at time t

pj(t+ 1) = pj(t)− αreward(1− β(t))pj(t)

+ αpenaltyβ(t)[(r − 1)−1 − pj(t)] (12)

if aj 6= am

The constants αreward en αpenalty are the reward and
penalty parameters respectively. When αreward = αpenalty,
the algorithm is referred to as linear reward-penalty (LR−P),
when αpenalty = 0, it is referred to as linear reward-inaction
(LR−I) and when αpenalty is small compared to αreward it
is called linear reward-ε-penalty (LR−εP).

A motivation for using learning automata is that nice the-
oretical convergence properties are proven to hold in both
single and multi automata environments. One of the princi-
pal contributions of LA theory is that a set of decentralized
learning automata using the reward-inaction update scheme
is able to control a finite Markov Chain with unknown tran-
sition probabilities and rewards. Recently this result was
extended to the framework of Markov Games, a straight-
forward extension of single-agent markov decision problems
(MDP’s) to distributed multi-agent decision problems [15].

3.3 LA for the MRCPSP
For learning the activity order and the best modes we ap-

plied the (LR−I) method because of its ε-optimality prop-
erty in all stationary environments. The learning rate (re-
ward parameter) that is used for learning the activity order,
and the one that is used for learning the mode are named
LRO and LRM. The application of the reinforcement will be
presented in what follows.

After a schedule was constructed, we update all the learn-
ing automata using the following reinforcements. If the
makespan of the constructed schedule was:

• Better: reinforcement = 1

• Equal: reinforcement = req (req ∈ [0, 1])

• Worse: reinforcement = 0

Both req and the learning rates LRO and LRM deter-
mine the speed of learning. A higher req can speed up the
learning, especially for a problem like the MRCPSP where
attempts only rarely result in improvements.
The settings of the 2 learning rates are dependent. A proper
combination will be important for a good overall perfor-
mance.

The viewpoint of a single agent is presented in Figure 4.
Each agent has two learning devices. When the agent is
visited for the first time, the algorithm will ask an agent to
choose an order to visit its successors and a mode. For
both choices the agent consults the corresponding learn-
ing automaton. These learning automata make a choice
according to their probability vector (probability distribu-
tion). When all the agents have been visited at least once,
the algorithm constructs a schedule. Using the information
from this schedule, the reward system will update all the
agents according to the reinforcement (reward) rules men-
tioned above (Equation 11 and 12). The agents forward
the reinforcement signal to their learning automata devices.
These learning automata will then update their probability
vector using the (LR−I) method.

4. EXPERIMENTAL RESULTS
In this section we evaluate the performance of the multi-

agent learning algorithm. The algorithm has been imple-
mented in Java Version 6 Update 11 and run on an Intel
Core 2 Duo E8400 3.0GHz processor, 4GB RAM. To test
the performance of the algorithm, we applied it to instances
of the project scheduling problem library (PSPLIB) [14],
which is available from the ftp server of the University of
Kiel (http://129.187.106.231/psplib/).

First we present the experimental results for the multi-
mode RCPSP in Section 4.1. In Section 4.2 we consider the
single-mode version.

4.1 Multi-Mode
The PSPLIB library contains a number of MRCPSP datasets

with a number of activities ranging from 10 to 30 (J10, J12,
J14, J16, J18, J20 and J30). For all except the last dataset
the optimal solutions are known. All the instances from
these datasets have two renewable and two nonrenewable re-
sources. Each dataset contains 640 instances, of which some
are infeasible. We exclude the infeasible instances from the
tests.

When testing the algorithm we found that the required
number of iterations depends largely on the initial settings.
For that reason we used the algorithm in the common multi-
restart way. This involves restarting the algorithm a number
of times on the same instance and taking the best solution
over all the runs. In Table 1,2,3 and 4 we present the re-
sults of the multi-agent based algorithm for the J10 to J20
datasets from the above mentioned PSPLIB library, using
the following parameters for all the tests: 0.01 for the order
learning rate (LRO), 0.2 for the mode learning rate (LRM),
req = 0.05, 0% PrToDisp, 5% PrRandToV isited and differ-
ent Restarts × Iterations combinations each with a total
of 100, 000 iterations. For these Restarts× Iterations com-
binations we used: 5 × 20, 000 iterations (5 restarts with
20, 000 schedule constructions each), 10× 10, 000 iterations

58

Algorithm (Control)Agent

LA – Order Learning

LA – Mode Learning

| 1 2 3 | | 1 3 2 |

| 2 3 1 | | 2 1 3 |

| 3 1 2 | | 3 2 1 |

Action set

Action set

Mode 1
Mode 2

Mode 3

Action

Probability

Vector

Action

Probability

Vector

Update

Probabilities

Choose action

Update

Probabilities

Choose action Choose Mode

Choose Order

Update

New ScheduleReward system

Reward

LRO

LRM

Figure 4: The single agent view.

and a tuned combination (see later). The results have been
evaluated in terms of the average procentual deviation from
optimum over all the instances or the relative error (RE),
the maximum RE, the standard deviation over all RE, the
% of optimal solutions found, and the average runtime in
seconds. We compared our algorithm with an other agent
based approach [9], a population learning algorithm (PLA)
[8] and a simulated annealing algorithm [2]. For the pop-
ulation learning algorithm we took the results for 50, 000
schedule constructions and for 2 PLA runs, which is similar
to the total of 100, 000 iterations of the agent based learning
approach.

In Table 5 we present the results for the J30 dataset using
5 × 20, 000 iterations and 5 × 50, 000 iterations. For this
dataset the optimal solutions have not been found by the
research community. We therefore calculated the average
procentual deviation from the best known solutions.

The learning rates LRO and LRM have been determined
empirically by measuring the average performance of some
learning rate combinations on several instances from the dif-
ferent datasets. In Figure 5 we present the average result-
ing makespan of different learning rate combinations for the
J2054 2 instance. Here it seems that the [0.01 − 0.2] and
[0.2 − 0.2] combinations perform best. Similar conclusions
have been made when considering other instances. In any
case, the LRM must be large enough (e.g. LRM = 0.2)
to give good results in the limited interval of 20, 000 itera-
tions. This is probably due to the importance of choosing
proper modes in the MRCPSP. We also added the learning
rate combination [0.0− 0.0] which means that the agents do
not learn, but select random actions. As we expected the
method without learning performs the worst.

To determine the number of restarts together with the
number of iterations per restart we did some experimen-
tal tests on the hardest instances for every dataset(i.e. in-
stances for which our approach performed the worst in ear-
lier tests). For every hard instance we performed 20 runs for
some Restarts× Iterations combinations. These combina-
tions all have a total of 100, 000 iterations. We averaged the
procentual difference with the optimum over the 20 runs. All
tests have been executed using the default parameter values
mentioned in the beginning of this Section. In Figure 6 we
see the results for some hard J20 instances, which shows us
that the 10× 10, 000 combination is the best performing for
this dataset. We can draw similar conclusions from Figure

Figure 5: A comparison of different learning rate
combinations for the J2054 2 instance.

7 and 8 for the J30 and J10 dataset. 5 × 20, 000 seems the
best combination for J30, while 50 × 2, 000 appears to be
the best for the J10 dataset. Using these best performing
Restarts × Iterations combinations for every dataset, we
obtained the ‘Tuned’ results from Figure 4. In general we
can see that larger problem instances need more iterations,
taking into account the fixed 100, 000 iterations this auto-
matically results in fewer restarts.

When considering these results for the MRCPSP we can
conclude that the multi-agent approach performs very well
when comparing it to the methods from the literature. We
even reach 100% optimality for the J10 dataset when using
the Tuned version of the algorithm.

4.2 Single-Mode
Since the MRCPSP is a more general definition than the

RCPSP, the multi-agent learning approach is also suitable
for solving the latter problem. In Table 6 we present the
results for the J120 RCPSP dataset, which is the largest
dataset for RCPSP in the PSPLIB library. The tests were
carried out with the same parameters as in Section 4.1 but
only 5×5, 000 iterations. Since not all the optimal solutions
are known for this dataset we calculate the average procen-
tual deviation from the critical path length. We also provide
the average procentual deviation from the best known solu-

59

Figure 6: Number of restarts vs number of iterations
for some hard J20 instances

Figure 7: Number of restarts vs number of iterations
for some hard J30 instances

Figure 8: Number of restarts vs number of iterations
for some hard J10 instances

tions.
When looking at these single-mode RCPSP results, which

reveal average performance when comparing it to the best
algorithms reported in the literature, we can conclude that
the power of the approach is its coupling between learning
the activity order and learning the modes.

Note that although our approach is distributed, it does
not require mutual communication between the learning au-
tomata. The coupling of the LA happens through the com-
mon global reward signal. For both the RCPSP and MR-
CPSP, specialized Genetic Algorithms (GA) are among the
best performing algorithms in the literature. When we com-
pare our results, with one of the very best GAs for the MR-
CPSP [17], the results of the multi-agent learning approach
have similar quality and even performs slightly better on
some multi-mode datasets. However this comparison is not
completely fair, because we did use more schedule construc-
tions (> 5, 000).

5. CONCLUSIONS
In this paper we have presented a novel approach for solv-

ing the multi-mode resource-constained project scheduling
problem (MRCPSP) using agents. The agents make use of
simple learning automata for learning both the activity or-
ders and the mode assignments simultaneously.

Based on the results presented in this paper, we can con-
clude that the multi-agent approach performs very well when
comparing it to the methods from the literature, especially
to other agent-based and learning methods. In the future we
will speed up the learning (±5, 000 iterations), by parameter
tuning or incorporation of heuristic information (e.g. dis-
patcher strategy), so we can make a fair comparison with
the most competitive algorithms, which are specialized Ge-
netic Algorithms for the MRCPSP.

Instead of only testing the multi-agent approach on bench-
marks, we expect that the presented approach is also capable
of handling real practical problems.

The ‘rough-and-ready’ aspect of the experimental config-
uration coupled with the good results, strongly suggests a
promising future for further research and the practical ap-
plication of learning automata to several scheduling prob-
lems. Further on, this method can be applied to problems
where one needs to find a permutation of elements which is
restricted by precedence constraints, as in the Precedence
Constraint Traveling Salesman Problem (PCTSP) or the
Sequential Ordering Problem. Finally, we will also investi-
gate how to relate the developed algorithm to the theoretical
frameworks [18, 19] for interconnected LA learning devices.

6. REFERENCES
[1] J. Blazewicz, J. Lenstra, and A. R. Kan. Scheduling

projects subject to resource constraints: Classification
and complexity. Discrete Applied Mathematics,
5:11–24, 1983.

[2] K. Bouleimen and H. Lecocq. A new efficient
simulated annealing algorithm for the
resource-constrained project scheduling problem and
its multiple mode version. European Journal of
Operational Research, 149:268 – 281, 2003.

[3] P. Brucker, A. Drexl, R. Mohring, K. Neumann, and
E. Pesch. Resource-constrained project scheduling:
Notation, classification, models and methods. EJOR,
112:3–41, 1999.

60

Table 1: Experimental results MRCPSP
J10 J12 J14 J16 J18 J20

Average deviation from optimal (RE) (%):
P. Jedrzejowicz and E. Ratajczak (2007) [9] 0.72 0.73 0.79 0.81 0.95 1.80
P. Jedrzejowicz and E. Ratajczak (2006) [8] 0.36 0.50 0.62 0.75 0.75 0.75

K. Bouleimen and H. Lecocq (2003) [2] 0.21 0.19 0.92 1.43 1.85 2.10
Multi-Agent Learning Approach (5× 20, 000) 0.04 0.11 0.28 0.34 0.45 0.81
Multi-Agent Learning Approach (10× 10, 000) 0.01 0.02 0.17 0.23 0.36 0.72

Multi-Agent Learning Approach (Tuned) 0.00 0.02 0.11 0.18 0.36 0.72

Average runtime (s) 5 6.5 7.5 9 10 11.5

Table 2: Experimental results MRCPSP - 5× 20, 000
J10 J12 J14 J16 J18 J20

Average RE (%) 0.04 0.11 0.28 0.34 0.45 0.81
Std. Dev. RE (%) 0.55 0.79 1.08 1.20 1.36 1.83

Max RE (%) 11.11 8.70 7.69 8.70 12.50 10.71
Optimal (%) 99.44 97.99 93.47 91.82 88.41 80.40

Table 3: Experimental results MRCPSP - 10× 10, 000
J10 J12 J14 J16 J18 J20

Average RE (%) 0.01 0.02 0.17 0.23 0.36 0.72
Std. Dev. RE (%) 0.17 0.28 0.80 0.93 1.14 1.67

Max RE (%) 4 4.76 5 6.25 6 10
Optimal (%) 99.81 99.63 95.64 93.64 90.40 82.03

Table 4: Experimental results MRCPSP - Tuned
J10 J12 J14 J16 J18 J20

Average RE (%) 0.00 0.02 0.11 0.18 0.36 0.72
Std. Dev. RE (%) 0.00 0.29 0.63 0.82 1.14 1.67

Max RE (%) 0.00 5.56 5.26 7.14 6 10
Optimal (%) 100 99.63 96.73 94.91 90.40 82.03

Table 5: Experimental results MRCPSP - J30
Average deviation from

best known solutions (%) Max RE (%) Average runtime (s)
5× 20, 000 iterations 2.03 16.13 39
5× 50, 000 iterations 1.10 11.90 157

Table 6: Experimental results RCPSP - J120
Average deviation from Average deviation from
critical path length (%) best known solutions (%) Average runtime (s)

5× 5, 000 iterations 36.98 4.36 120

61

[4] S. Hartmann. Project scheduling with multiple modes:
a genetic algorithm. Annals of Operations Research,
102:111–135, 1997.

[5] W. Herroelen and B. De Reyck. The multi-mode
resource-constrained project scheduling problem with
generalized precedence relations. EJOR, 119:538–556,
1999.

[6] W. Herroelen, B. De Reyck, and E. Demeulemeester.
Resource-constrained project scheduling: a survey of
recent developements. Computers and Operations
Research, 25:297–302, 1998.

[7] J.Alcaraz and C. Maroto. A new genetic algorithm for
the multi-mode resource-constrained project
scheduling problem. page 4, 2002.

[8] P. Jedrzejowicz and E. Ratajczak. Population
Learning Algorithm for the Resource-Constrained
Project Scheduling, volume 92 of International Series
In Operations Research & Management Science,
chapter 11, pages 275 – 296. Springer US, 2006.

[9] P. Jedrzejowicz and E. Ratajczak-Ropel. Agent-based
approach to solving the resource constrained project
scheduling problem. 4431/2007(8th International
Conference, ICANNGA 2007):480–487, 2007.

[10] M. D. G. Knotts. Agent-based project scheduling. IIE
Transactions, 32:387–401, 2000.

[11] R. Kolisch. Project scheduling under resource
constraints - efficient heuristics for several problem
cases. Physica-Verlag, 1995.

[12] R. Kolisch and S. Hartmann. Heuristic algorithms for
solving the resource-constrained project-scheduling
problem: Classification and computational analysis.
Handbook on recent advances in project scheduling,
1998.

[13] R. Kolisch and S. Hartmann. Experimental
investigation of heuristics for resource-constrained
project scheduling: An update. European Journal of
Operational Research, 174:23–37, 2006.

[14] R. Kolisch and A. Sprecher. Psplib - a project
scheduling problem library. European Journal of
Operational Research, 96:205–216, 1996.

[15] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In In Proceedings
of the Eleventh International Conference on Machine
Learning, pages 157–163. Morgan Kaufmann, 1994.

[16] M. Masao and C. Tseng. A genetic algorithm for
multi-mode resource constrained project scheduling
problem. EJOR, 100:134–141, 1997.

[17] V. Van Peteghem and M. Vanhoucke. A genetic
algorithm for the multi-mode resource-constrained
project scheduling problem. Working paper, January
2008.

[18] P. Vrancx, K. Verbeeck, and A. Nowé. Decentralized
learning in markov games. IEEE Transactions on
Systems, Man and Cybernetics, 38(4):976 – 981,
August 2008.

[19] R. M. Wheeler and K. Narendra. Decentralized
learning in finite markov chains. IEEE Transactions
on Automatic Control, AC-31:519 – 526, 1986.

62

Local Optimal Solutions for DCOP: New Criteria, Bound,
and Algorithm

Zhengyu Yin, Christopher Kiekintveld, Atul Kumar, and Milind Tambe
Computer Science Department

University of Southern California, Los Angeles, CA, 90089
{zhengyuy, kiekintv, atulk, tambe}@usc.edu

ABSTRACT
Distributed constraint optimization (DCOP) is a popular formal-
ism for modeling cooperative multi-agent systems. In large-scale
networks, finding a global optimum using complete algorithms is
often impractical, which leads to the study on incomplete algo-
rithms. Traditionally incomplete algorithms can only find locally
optimal solution with no quality guarantees. Recent work on k-
size-optimality has established bounds on solution quality, but size
is not the only criteria for forming local optimization groups. In
addition, there is only one algorithm for computing solutions for
arbitrary k and it is quite inefficient. We introduce t-distance-
optimality, which offers an alternative way to specify optimization
groups. We establish bounds for this criteria that are often tighter
than those for k-optimality. We then introduce an asynchronous lo-
cal search algorithm for t-distance-optimality. We implement and
evaluate the algorithm for both t and k optimality that offer signifi-
cant improvements over KOPT – the only existing algorithm for k-
size-optimality. Our experiment shows t-distance-optimality con-
verges more quickly and to better solutions than k-size-optimality
in scale-free graphs, but k-size-optimality has advantages for ran-
dom graphs.

1. INTRODUCTION
In various cooperative multi-agent domains, agents have limited

information and can directly communicate with only a subset of
other agents. Typically, in these domains, the utility generated by
an individual action of one agent depends only on the actions of a
set of nearby agents. Distributed constraint optimization (DCOP)
is a popular formalism for modeling such cooperative multi-agent
systems in which agents work together to optimize a global objec-
tive. The objective function can be decomposed into constraints
with associated utility matrixes across local subsets. There are
lots of applications of DCOP including multi-agent plan coordi-
nation [5], sensor networks [15], allocation of resources in peer-to-
peer networks [6], and meeting scheduling [13].

Various complete algorithms have been developed for finding
globally optimal solution to DCOPs, e.g. ADOPT [10], OptAPO [9],
DPOP [13], and NCBB [4]. However, DCOP is NP-hard [10]. It
is hard for complete algorithms to scale up because the computa-
tion burden might increase exponentially with the increasing num-
ber of variables. Therefore, researchers have been studying incom-

Cite as: Local Optimal Solutions for DCOP: New Criteria, Bound, and
Algorithm, Z. Yin, C. Kiekintveld, A. Kumar, and M. Tambe, Proc. of
8th Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

plete algorithms, in which agents normally form local groups with
small size and optimize within these groups. Incomplete algorithm
have better scalability and robustness in dynamic environments.
Existing incomplete algorithms include MGM/DBA [12, 15] and
DSA [7]. Recent studies with k-size-optimality by Pearce et al. [11]
have begun to provide theoretical quality guarantees of locally op-
timal solutions with certain properties. k-size-optimality is char-
acterized by the size of local groups, i.e. the minimum number
of variables which must change their values to improve the overall
solution quality.

Unfortunately, k-size-optimality suffers from several shortcom-
ings. First, our theoretical analysis shows the quality lower bound
for k-size-optimality is inversely related to the graph density. The
worst case is complete graphs, where the lower bound for k-size-
optimality decreases to k−1

2n−k−1
[11]. As n increases, this bound

gets unacceptably low for some domains. Second, k-size-optimality
considers all types of k-size groups, among which some may have
nodes that are far apart from each other. In such groups, coordina-
tion to perform a joint move can be expensive, as messages have to
be delivered to some nodes far away from the center node. Third,
the number of possible k-size groups in the graph grows combi-
natorially with increasing values of k. Basically, any combination
of k connected nodes can form a k-size group. The complexity of
enumerating and optimizing all k-size groups makes it difficult to
design efficient algorithms for k-size-optimality with k ≥ 3. This
explains why most local search algorithms have limited group size
to 1 or 2. “KOPT” [8], recently introduced by Katagishi and Pearce,
is the only known algorithm for k-size-optimality that supports ar-
bitrary values of k. However it suffers from significant messaging
overhead, particularly in highly dense graphs.

In this paper, we introduce a new locally optimal criteria – t-
distance-optimality which has fixed number of local optimization
groups defined by graph distance. We provide formal quality bounds
for t-distance-optimal solutions with and without prior knowledge
about graph structure, and show these bounds can yield signifi-
cantly better guarantees than comparable k-size-optimal solutions.
Furthermore, we present an asynchronous local search algorithm
for t-distance-optimality based on standard lock/commit protocol,
and show its significant improvements over KOPT in various met-
rics. Finally we conducted comprehensive experiments to evalu-
ate tradeoffs between algorithms for t-distance-optimality and k-
size-optimality considering a variety of metrics. Our experiments
show t-distance-optimality converges more quickly and to better
solutions than k-size-optimality in scale-free graphs, but k-size-
optimality has advantages in random graphs.

2. BACKGROUND

63

2.1 DCOP Definition
A finite distributed constraint optimization (DCOP) problem com-

prises sets of variables V := {v1, . . . , vn} and constraints C :=
{c1, . . . , cm}. Variables have finite domains and are each con-
trolled by a decision-making agent (for convenience we assume
one variable per agent). A joint assignment for all variables is
given by A := {a1, . . . , an}. We follow the convention in the
literature and consider only binary constraints. For some pair of
variables (vi, vj), a constraint c defines a real-valued reward for
all possible joint assignments, c(ai, aj). The reward function R(·)
of an assignment A is defined as the sum of rewards, R(A) =∑

c∈C c(ai, aj). The agents’ objective is to find an assignment A∗

that maximizes the reward function, i.e. A∗ = arg maxA R(A).
The constraint graph has a node for each variable and an edge for
each constraint. In the sequel, we use the terms node, variable and
agent interchangeably. Agents initially know only their own con-
straints, and can communicate only with neighbors in the constraint
graph.

v4v3 v5

v1

v6

v2
0 1

0

1

3 0

0 4

vj

vi

Figure 1: An example DCOP with six binary variables. Each con-
straint has the same reward table.

DCOP shown in figure 1 contains 6 variables, and 6 constraints
with the same reward matrix. The optimal assignment of this prob-
lem is A = {1, 1, 1, 1, 1, 1} with a reward R(A) = 24.

2.2 k-Size Optimality
Pearce et. al. recently introduced k-size-optimality (as “k-optimality”

in the original work) as a local optimality criteria that offers theoret-
ical guarantees on solution quality. In their approach, agents form
groups of one or more agents until no group of k or fewer agents
can possibly improve the DCOP solution. This type of local opti-
mum is defined as k-size-optimal. Let A be a DCOP assignment
and A(i) be the value of vi in A.

DEFINITION 1. The deviation group D(A, A′) is defined as the
set of nodes with a different assignment in A and A′, i.e. D(A, A′) =
{vi|A(i) 6= A′(i)}.

DEFINITION 2. A DCOP assignment A is k-size optimal if R(A) ≥
R(A′) for all A′ for which |D(A, A′)| ≤ k.

In Figure 1, the assignment A = {0, 0, 0, 0, 0, 0} with reward
R(A) = 18 is a k-size optimal solution for k = 1, 2, 3, 4, but
not for k = 5, 6. It is 1-size optimal because the reward is re-
duced if any single variable changes assignment, and by carefully
examining all possibilities it can also be proved to be 2, 3, 4-size
optimal. However, it is not 5-size-optimal because if we change
the values of v1, v2, v3, v4, and v5 from 0 to 1, the solution reward
is improved to 20. For any binary DCOP with n variables, a k-size
optimal solution A has quality R(A) ≥ k−1

2n−k−1
R(A∗), where A∗

is the globally optimal solution [11]. This bound is independent
on the graph structure and reward structure, but tighter bounds are
possible given additional information about the problem [3]. Many
incomplete DCOP algorithms including MGM and DSA yield 1-
size optimal solutions. General k-size-optimality offers a spectrum
of solutions with stronger guarantees in exchange for greater com-
putation [11].

3. T -DISTANCE OPTIMALITY
We introduce a novel local optimality criteria, t-distance-optimality,

that defines local optimization groups based on graph distance. We
begin with a formal definition, and discuss the relationship be-
tween k-size-optimality and t-distance-optimality. Then, we give
a general lower bound on solution quality of t-distance-optimality
regardless of graph structure. Finally, we present graph-specific
bounds on sets of graphs with varying properties.

For a pair of variables u and v, let T (u, v) be the shortest dis-
tance between them in the constraint graph.

DEFINITION 3. Denote by Ωt(v) the group of variables that
can be reached from v within t hops, i.e. Ωt(v) = {u|T (u, v) ≤
t}.

DEFINITION 4. A DCOP assignment A is t-distance optimal if
R(A) ≥ R(A′) for all A′, where D(A, A′) ⊆ Ωt(v) for some
v ∈ V .

There are at most n distinct t-distance groups centered on n vari-
ables. Some groups may be redundant when they are subsumed by
or equivalent to others. For example, in a complete graph, only
one group is not redundant because all n 1-distance groups com-
prise the full set of variables and are thus identical. Furthermore,
consider the example shown in Figure 1. There are no two identi-
cal 1-distance groups, however Ω1(v3) = {v3, v4} is subsumed by
Ω1(v4) = {v3, v4, v1, v5}, leading to redundance of Ω1(v3). To
better understand the difference between t-groups and k-groups,
we consider another example shown in Figure 2. Figure 2(a) shows
all three 3-size groups in the graph: {v1, v2, v3}, {v1, v3, v4}, and
{v1, v2, v4}. Figure 2(b) shows the only non-redundant 1-distance
group: {v1, v2, v3, v4}.

v3
v3

v1
v1v2

v2 v4
v4

(a) 3-size groups

v3
v3

v1
v1v2

v2 v4
v4

(b) 1-distance groups

Figure 2: k-size groups and t-distance groups

Consider, again, the example in Figure 1, where we show as-
signment A = {0, 0, 0, 0, 0, 0} is 0-distance optimal with quality
R(A) = 18. In 0-distance optimality, each group contains exactly
one variable, which is equivalent to 1-size optimality. Changing
the value of any single variable from 0 to 1 will reduce the qual-
ity. This is because flipping the value of either v3 or v6 leads to
reward 15, flipping the value of either v1 or v2 leads to reward
12, and flipping the value of either v4 or v5 leads to reward 9.
Since none of these groups has an incentive to deviate, A is 0-
distance optimal. Similarly we can test whether A is 1-distance op-
timal by checking all 1-distance groups. In this example, there are
four non-redundant 1-distance groups: Ω1(v4) = {v1, v3, v4, v5},
Ω1(v1) = {v1, v2, v4}, Ω1(v2) = {v1, v2, v5}, and Ω1(v5) =
{v2, v4, v5, v6}. After enumerating all possible deviations in these
groups, we find no group can improve solution quality by local op-
timization. Therefore A is also 1-distance optimal. However, it is
not 2-distance optimal because {1, 1, 1, 1, 1, 1} is a better assign-
ment whose deviation group is fully comprised by Ω2(v4). In this
example, 2-distance optimality already guarantees global optimal-
ity because Ω2(v4) contains exactly all variables in the network.

64

3.1 Comparing t and k Optimality
Both t-distance-optimality and k-size-optimality are criteria for

local optimality, but there is a key distinction between them. In k-
size-optimality, the size of local optimization group is fixed, but the
number of possible k-size groups may be very large, especially in
dense graphs. In contrast, in t-distance-optimality, the number of
optimization groups is fixed, but the size of t-distance groups can
be very large, particularly in dense graphs. For example, in a com-
plete graph with n variables, there are

(
n
3

)
distinct 3-size groups

where each has a fixed size 3. However, there is only one unique
1-distance group comprising all n variables. One of our primary
contributions in this paper is to empirically test the implications of
this tradeoff for local search methods.

To further understand the connection between k-optimality and
t-optimality, we examine some special cases. The first observation
is that 1-size optimality is equivalent to 0-distance optimality. In
both criteria, one single node forms the local optimization group.
Furthermore, in ring graphs, t-distance-optimality is also equiva-
lent to k-size-optimality for k = 2t + 1. For example, 3-size
optimality is exactly the same as 1-distance optimality in a ring
graph, because every section of 3 connected nodes is an optimiza-
tion group for both k = 3 and t = 1 and no additional groups exist
for either case.

There are several reasons to believe t-distance-optimality poten-
tially offers benefits over k-size-optimality as a criterion for dis-
tributed local search algorithms. First of all, a t-distance optimal
solution always guarantees (2t + 1)-size optimality, since every
(2t + 1)-size group must be contained in some t-distance group.
But the reverse is not true; there are (2t + 1)-size optimal solu-
tions that are not t-distance optimal. For example, in a complete
graph, t-distance optimal solution always guarantees global opti-
mality for t ≥ 1, while a k-size optimum can possibly reach the
lower bound given in Section 2.2 which is known to be tight for
complete graphs. While complete graphs are a somewhat artificial
example, we might expect to find similar advantages for t-distance
optimality when there are hub nodes with many connections or sub-
graphs that are densely connected. Second, t-distance-optimality
naturally captures graph locality which might help improving ef-
ficiency of local search algorithms particularly in distributed envi-
ronment where communication delay is the dominating cost. Also,
algorithms for t-distance-optimality may reduce privacy loss as pri-
vate information of an agent can only be obtained by those within
a fixed distance.

3.2 General Lower Bound
We derive a general lower bound on solution quality for t-distance-

optimality, regardless of the graph structure.

PROPOSITION 1. Consider a DCOP with n variables, mini-
mum constraint arity m, where all constraint rewards are non-
negative, and A∗ is the globally optimal solution, then, for any t-
distance optimal assignment Atopt, where t > 0 and m+t−1 ≤ n,
we have R(Atopt) ≥ m+t−1

n
R(A∗).

PROOF. Let Rc(A) denote the reward on constraint c for any as-
signment A. For any set of constraints S, let RS(A) =

∑
c∈S Rc(A).

Let σ(c) be the set of variables in constraint c, and π(W) be the
set of constraints across a subset of variables W ⊆ V (c ∈ π(W)
iff σ(c) ⊆ (W)).

Let A′(v) be an assignment derived from Atopt by changing all
assignments in Ωt(v) to their corresponding values in A∗. Since
Atopt is a t-distance optimal assignment, R(Atopt) ≥ R(A′(v)).
Because all constraint values in the DCOP are non-negative, R(A′(v)) ≥
Rπ(Ωt(v))(A

′(v)). Furthermore A′(v) has the identical assignment

as A∗ over Ωt(v), so

R(Atopt) ≥ Rπ(Ωt(v))(A
′(v)) = Rπ(Ωt(v))(A

∗)

Summing over all t-groups, we have:

nR(Atopt) ≥
n∑

i=1

Rπ(Ωt(vi))(A
∗) (1)

Now we count the contribution of each constraint c to the rhs.
Because c has an arity of at least m, |σ(c)| ≥ m. Pick an arbi-
trary variable v in σ(c), if the t-group Ωt(v) is identical to V , i.e.
comprising all variables in the graph, then R(Atopt) = R(A∗).
Otherwise, there exists a vj ∈ V such that T (v, vj) > t. Write the
first t+1 variables on the shortest path from v to vj as v, v1, . . . , vt.
T (v, vi) = i, which implies that for i > 1, vi /∈ σ(c).

Consider two cases. First, if v1 ∈ σ(c), c appears in π(Ωt(v
′))

for all v′ ∈ σ(c) ∪ {v2, v3, ..., vt}. Certainly c appears π(Ωt(v
′))

for v′ ∈ σ(c) as t ≥ 1. c also appears π(Ωt(v
′)) for v′ ∈

{v2, v3, ..., vt} because for any variable v′′ in σ(c) and any 2 ≤
i ≤ t, T (v′′, vi) ≤ T (v′′, v1)+T (v1, vi) = 1+ i−1 ≤ t. There-
fore in the rhs of inequality 1, c is counted at least |σ(c)|+ t− 1 ≥
m + t− 1 times.

Now consider the other case where v1 /∈ σ(c). c appears in
π(Ωt(v

′)) for all v′ ∈ σ(c)∪{v1, v2, ..., vt−1}. c appears π(Ωt(v
′))

for v′ ∈ {v1, v2, ..., vt−1} because for any v′′ in σ(c) and any
1 ≤ i ≤ t − 1, T (v′′, vi) ≤ T (v′′, v) + T (v, vi) = 1 + i ≤ t.
Therefore, c will be also counted at least |σ(c)|+t−1 ≥ m+t−1
times in this case. Since c is counted at least m+ t− 1 times in the
rhs of inequality 1 in both cases we have,

R(Atopt) ≥
∑

c(m + t− 1)Rc(A
∗)

n
=

(m + t− 1)

n
R(A∗)

To demonstrate the two cases in the proof above, we consider
the example shown in Figure 3, where |c| = 3 and t = 2. In this
example, we show constraint c appears in |c| + t − 1 = 4 distinct
2-distance groups. Figure 3(a) demonstrates the situation where
v1 ∈ σ(c). In this case, constraint c appears in four groups cen-
tered on v, u1, v1, and v2 respectively. Figure 3(b) shows the other
situation where v1 /∈ σ(c). In this case, constraint c appears in four
groups centered on v, u1, u2, and v1 respectively. In both figures,
variables inside the dashed circle represent σ(c) and variables in-
side the dashed box represent those whose t-groups have constraint
c. As we can see in both cases, c appears in at least 4 different
2-distance groups.

PROPOSITION 2. For binary constraint DCOP with n variables,
the lower bound for 1-distance optimality in proposition 1 is tight.

PROOF. Consider a complete bipartite graph with 2h variables
(figure 4 shows an example of h = 3). Let S1 = {v11, v12, . . . , v1n}
and S2 = {v21, v22, . . . , v2n}. For any 1 ≤ i, j ≤ n, there
is a constraint between v1i and v2j . Variables can take a value
of either 0 or 1. All constraints have the same reward matrix as
shown in figure 4. The global optimum is {1, 1, . . . , 1} with qual-
ity h3. Proposition 1 gives the lower bound for 1-distance opti-
mum of 2

2h
h3 = h2. We claim that assignment {0, 0, . . . , 0} is an

1-distance optimum with quality h2. Consider only variable v11,
w.l.o.g. due to symmetry. Ω1(v11) contains all h variables in S2

and none in S1.

i. Suppose the value of v11 remains 0, and 1 ≤ b ≤ n vari-
ables in S2 change to 1, then the total quality will decrease
to h(h− b).

65

vvu1
u1

v1
v1

cc v3
v3v2

v2

σ(c)={v, u1, v1}σ(c)={v, u1, v1}

(a) In the first case, constraint c appears in groups
centered on v, u1, v1, and v2

vvu2
u2

u1
u1

cc v2
v2v1

v1

σ(c)={v, u1, u2}σ(c)={v, u1, u2}

v3
v3

(b) In the second case, constraint c appears in
groups centered on v, u1, u2, and v1

Figure 3: Example showing the two cases

v21v21

v13
v13

v22v22

v11v11

v23v23

v12v12
0 1

0

1

11 00

00 hh

v1i

v2j

Figure 4: Example showing bound tightness for t = 1

ii. Suppose the value of v11 is changed to 1, and 0 ≤ b ≤ n
variables in S2 change to 1, then the total quality will be to
bh + (h− 1)(h− b) = h2 − h + b ≤ h2.

In either case, the solution quality can’t be improved. Therefore
{0, 0, . . . , 0} is 1-distance optimal.

3.3 Graph-Specific Lower Bound
In previous work on k-size-optimality, linear fractional program-

ming (LFP) was used to find tighter bounds for specific graphs [11].
We use a similar method for t-distance optimality. One LFP vari-
able Rc(Atopt) represents the reward on c in the t-distance opti-
mal solution, and a second Rc(A

∗) represents the reward in the
optimal solution. By definition R(Atopt) ≥ R(A′) for all A′,
where the deviation group between Atopt and A′ is comprised in
some t-group. Let Θ be the set of assignments such that A′ ∈
Θ iff D(Atopt, A

′) ⊆ Ωt(v) for some v ∈ V and variables in
D(Atopt, A

′) take the same value as in A∗. The objective is to
minimize R(Atopt)

R(A∗)
such that ∀A′ ∈ Θ, R(Atopt) − R(A′) ≥ 0.

Note that R(Atopt) and R(A∗) can be expressed as
∑

c Rc(Atopt)
and

∑
c Rc(A

∗). R(A′) can also be represented as the sum over
all constraints, R(A′) =

∑
c∈C Rc(A

′). So far we can write down

the LFP:

Min
R(Atopt)

R(A∗)

s.t. R(Atopt) =
∑
c∈C

Rc(Atopt)

s.t. R(A∗) =
∑
c∈C

Rc(A
∗)

s.t. R(A′) =
∑
c∈C

Rc(A
′),∀A′ ∈ Θ

s.t. R(Atopt) ≥ R(A′),∀A′ ∈ Θ

In the LFP above we still need to represent Rc(A
′). Consider

any constraint c, suppose it has two variables vi and vj . Denote by
A(i) the value of vi in assignment A. Then,

i. Rc(A
′) = Rc(Atopt), if A′(i) = Atopt(i) ∧ A′(j) =

Atopt(j).

ii. Rc(A
′) = Rc(A

∗), if A′(i) = A∗(i) ∧A′(j) = A∗(j).

iii. Rc(A
′) = 0, otherwise.

Figure 5 shows the average graph-specific bounds over 30 sam-
ples. (see Section 5 for details on graph generation). In Figure 5(a)
and Figure 5(b), we see that t-distance-optimality provides much
stronger lower bounds on average than comparable k-size-optimality
on both scale free and random graphs. We note t = 2 provides a
substantial improvement over t = 1. Comparing lower bounds on
different types of graphs, we also note t-distance-optimality offers
more benefits on scale free graphs than on random graphs. The
lower bound for t = 1 is generally better than that for k = 5 on
scale free graphs while k = 5 constantly outperforms t = 1 on ran-
dom graphs. The differences shown are statistically significant (for
example, the p-value for a comparison of t = 1 and k = 3 on 25-
node scale free graphs is 4.58×10−24). We also did tests on graphs
with varying density. Figure 5(c) and Figure 5(d) show the results
for t = 1, k = 3, and k = 5 on 10-node and 15-node random
graphs with varying density respectively. We note that k-size opti-
mal bounds tend to degrade more quickly with increasing density,
which t-distance optimality is more stable and eventually improves
for very high densities. Finally, we tested bounds on large graphs.
Figure 5(e) and Figure 5(f) show the bounds for t = 1 and k = 3
on random graphs with varying graph size. We can see both t-
distance-optimality and k-size-optimality bounds degrade quickly
at relatively small graph size. However, after graph size reach-
ing 100, both bounds begin to stabilize and eventually converge to
some fixed value. We can see t = 1 on average guarantees 21.2%
of the global optimum on density 4 graphs with 640 nodes while
k = 3 guarantees 11.9%.

4. ASYNCHRONOUS ALGORITHM
In this section, we introduce our novel asynchronous algorithm

for DCOP based on t-distance-optimality. It is a variant of dis-
tributed local search which improves quality monotonically over
time from a random initial assignment. It is fully distributed and
uses asynchronous methods for both computation and coordination.

We give an overview of the algorithm before discussing key stages
in more detail. First, agents broadcast local information about the
graph structure and use this to determine group members. During
the main phase, all groups compute new optimal assignments in
parallel, assuming nodes outside of the group maintain unchanged.
If an improvement is found, the group leader attempts to imple-
ment the new assignment by sending out requests. This can cause

66

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25

B
ou

nd
 F

ra
ct

io
n

Number of Nodes

Bounds for Scale Free Graphs
T 1
T 2
K 3
K 5

(a) Scale free density 2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25

B
ou

nd
 F

ra
ct

io
n

Number of Nodes

Bounds for Random Graphs
T 1
T 2
K 3
K 5

(b) Random density 2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9

B
ou

nd
 F

ra
ct

io
n

Density

Bounds for Random Graphs
T 1
K 3
K 5

(c) 10-Node varying density

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 2 3 4 5 6 7 8 9

B
ou

nd
 F

ra
ct

io
n

Density

Bounds for Random Graphs
T 1
K 3
K 5

(d) 15-Node varying density

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700

B
ou

nd
 F

ra
ct

io
n

Number of Nodes

Bounds for Random Graphs
T 1 D 2
T 1 D 3
T 1 D 4

(e) Bounds for t = 1

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500 600 700

B
ou

nd
 F

ra
ct

io
n

Number of Nodes

Bounds for Random Graphs
K 3 D 2
K 3 D 3
K 3 D 4

(f) Bounds for k = 3

Figure 5: Graph-specific bounds comparison

conflicts among overlapping groups, which is resolved by an asyn-
chronous locking and commitment protocol in our approach.

4.1 Initialization
An agent begins by picking a random value from its domain as

its initial assignment. It then composes a message containing all
its constraints and broadcasts the message to a distance of t hops.
After that, it broadcasts its initial value to a distance of t + 1 hops
in a separate message. Here we assume each agent has an unique
ID (e.g. a MAC address) which can be included in the message to
identify the sender.

In the initial stage, the center node of each group will receive full
constraint information and values of nodes inside the group. Since
the initial values are broadcast an additional hop, the center node
will also receive the values of all fringe nodes of the group. Fringe
nodes of a group are those outside the group but directly linked
to some node inside the group. Local optimization of a group is
performed under the assumption that all the fringe nodes remain
static.

Every agent in the network will automatically be the leader of
a t-distance group centered on it. However, some groups may be
subsumed by or equivalent to others, leading to redundant compu-
tations. We remove some redundant groups using a simple opti-
mization. Each agent computes a shortest distance matrix within
its local view (t + 1 hops). Its t-group is redundant if

i. there is an agent whose shortest distance to every other agent
is strictly less than t + 1;

ii. there is an agent with a lower id whose shortest distance to
every other agent is less than or equal to t + 1.

4.2 Computation for Local Optimum

In the previous stage, the leader has gathered all the information
required for computing the local optimal solution. During the main
phase of the algorithm new optimal assignments for each group are
computed in parallel. In principle, any complete DCOP solver can
be adapted to this purpose. We implement a centralized approach
motivated by OptAPO [9] for our experiments.

Our implementation uses a variable elimination algorithm com-
parable to a centralized version of DPOP [13] if the average den-
sity of the local perspective is less than n

2
and a branch-and-bound

solver otherwise. Variable elimination methods like DPOP are ex-
ponentially complex with respect to the width of the pseudo tree.
Therefore, the centralized DPOP solver can be very efficient in low
density graphs. However, a branch-and-bound solver has advantage
in dense graphs thanks to the pruning on solution space based on
reward structure. To perform this computation, the leader needs to
know the current assignments of the fringe nodes. Each time a node
commits a change and switches to a new assignment, it broadcasts
the new value to a distance of t + 1 hops to ensure that all lead-
ers have the required information. Once the leader receives new
assignment information, it immediately gives up the ongoing lock
attempt (if there is one), unlocks all group members, and recom-
putes a new optimal assignment.

4.3 Asynchronous Assignment Implementation
When the leader finds the local optimum of the group that can

yield improved solution quality, it will attempt to implement the
new assignment. While implementing changes in a single group
guarantees monotonically increasing quality, multiple overlapping
groups implementing assignments simultaneously might lead to degra-
dations. Conflicts happen when some agent receives exclusive value
changing requests from multiple group leaders. Existing incom-
plete DCOP solvers, including KOPT [8], typically requires syn-
chronization to resolve such conflicts. However, in real problems,
synchronization over the whole network is not trivial to achieve in
the first place. Furthermore, synchronous algorithms can be fragile
in dynamic environments where message loss, node failures, and
other unpredictable events happen frequently. For example, when a
node loses connection to the network, synchronous algorithm com-
pletely stops working due to the failure of synchronization. In our
algorithm, we use an asynchronous protocol, which is generally
more robust to various types of noise in real applications. In asyn-
chronous algorithms, when a single node failure happens, only a
small set of nodes are affected and the remaining part of the net-
work still works as normal.

The protocol is based on a standard lock/commit pattern. The
leader sends lock requests to all group members and fringe nodes,
which accept the request unless they have already locked on a dif-
ferent assignment (multiple locks for the same assignment are ac-
ceptable). If all nodes accept, the leader sends a commit message
and the assignment is implemented. Otherwise, the leader unlocks
all nodes and backs off to prevent deadlock.

It is trivial for the leader to lock the group when all lock requests
are sent to its direct neighbors. However, we need a protocol to for-
ward lock requests in large groups where the leader cannot directly
communicate with all group and fringe nodes. A simple flooding
approach based on broadcasting is inefficient, especially in dense
graphs. Our algorithm fully utilizes the graph information procured
in the initial stage to reduce number of messages. The leader first
performs a breadth-first search and builds a BFS tree rooted on it-
self, in which a tree node represents an agent. A tree node is as-
signed an (ID, Val) pair, indicating agent ID is locked on Val. Each
neighbor of the leader corresponds to a child of the root in the BFS
tree. The leader sends the corresponding subtree to every neighbor

67

as a lock request. An agent that receives a lock message extracts the
lock value from the root, and forwards the subtrees to its children.
Figure 6 is a demonstration for this protocol.

6: Example demon-
strating lock message
forwarding protocol.
Each node represents a
variable vi. The gray
number in the node
indicates the value to
be locked on. Each
arrow associated with a
subtree that represents
a lock message.

v1

0

v1

0

v2

2

v2

2
v3

1

v3

1

v5

0

v5

0
v4

1

v4

1

v2

2

v2

2

v5

0

v5

0
v4

1

v4

1

v4

1

v4

1
v5

0

v5

0

v3

1

v3

1

If a previous lock attempt fails, the leader will wait for a random
interval between 0 and the maximum interval Im before sending
lock requests again. Failure of each lock attempt doubles Im un-
til reaching a threshold (256 time units). To reduce conflicts in the
beginning, every leader waits for a random number of time units be-
tween 0 and 32 before the first lock attempt. When a node commits
to an assignment, it broadcasts the new assignment to a distance
of t + 1 hops and is able to accept new lock requests. Leaders re-
ceiving new assignment information unlock nodes if necessary and
recompute a new optimal assignment. Conflicts have a substan-
tial cost, so we implemented several techniques to improve locking
performance.

Subset Locking (SL): If a new assignment does not change the
assignment for every node, it is not necessary to lock all group
and fringe nodes. Subset locking only requests locks from nodes
changing assignment and their neighbors, rather than the full group,
reducing the chance for conflicts.

Partial Synchronization (PS): A benefit of synchronized con-
flict resolution is that nodes can implement heuristics to commit to
groups with a high gain for changing assignment. We approximate
this in the asynchronous setting by waiting for a fixed time period
to pool lock requests at each node. Once the timer expires, a node
selects the lock message with the largest gain to accept (group gain
is included in the lock message when using PS).

5. EXPERIMENTAL EVALUATION
In addition to the algorithm for t-distance-optimality described

in Section 4, we implement a comparable algorithm for k-size-
optimality using the same asynchronous coordination protocol. We
explain some non-trivial details. First, in the initialization stage,
constraints are broadcast to a distance of b k

2
c instead of t hops.

And after changing value, agents broadcast the new value to a dis-
tance of b k

2
c + 1 instead of t + 1 hops. Second, each agent can

be the leader for multiple k-size groups. Each k-size group selects
the most centralized agent (using ID as secondary comparator) to
be the leader. Third, each agent computes the locally optimal solu-
tion for each k-size group it leads and locks the one that yields the
maximum gain.

We test our algorithms in simulation, using the DAJ toolkit [14]
which provides low-level support for simulating distributed algo-
rithms in Java. This toolkit provides a simple programming inter-
face that allows to develop distributed algorithms based on a mes-
sage passing model. The primary performance metric we use is so-
lution quality per unit of global time. Global time unit is motivated
by the metric of cycles commonly used in evaluating synchronous
DCOP algorithms. We made some small modifications to the DAJ
toolkit so that in a single global time unit, each node can process

all messages in the incoming queue, and send as many messages
as desired to neighbors. Messages are delivered on the subsequent
time steps, e.g. a message sent at time x will be received at time
x + 1.

We generate DCOPs for three main classes of constraint graphs:

i. G(n, M) random graphs [2]. In this model, the graph is gen-
erated by randomly adding M edges. Each is picked out of(

n
2

)
possible choices with equal probability. However, by ex-

cluding disconnected graphs to guarantee connectivity, our
random graphs may be slightly different from the original
model.

ii. Barabasi-Albert (BA) scale-free graphs [1]. This is one sim-
ple algorithm for generating random scale-free graphs using
a linear preferential attachment mechanism. In this model,
graphs begin with a complete graph of m0 nodes, where m0

is a small number but at least 2. New nodes are added to
the network one at a time. Each new node is connected
to m ≤ m0 of the existing nodes with a biased probabil-
ity proportional to the number of links the existing node al-
ready has. The degree distribution resulting from the BA
model is scale-free, in particular, it is a power law of the
form P (k) ∼ k−3.

iii. Non-linear preferential attachment (NLPA) graphs based on
the BA model, but with a stronger bias towards larger num-
bers of nodes with few connections. This model is based
on the BA model, but instead of adding a new node to ex-
isting nodes with probability linear to their degree, we alter
the probability to be non-linear to the degree, in particular,
degree1.7. As a result, heavily linked nodes (“hubs”) tend to
quickly accumulate even more links than those in scale-free
graphs, while nodes with only a few links are less likely to
be chosen as the destination for a new link.

All variables have domain size 10 and constraint rewards are all
randomly drawn from the uniform distribution of integers in the
range [0 . . . 10000].

Our first experiment compares k-size and t-distance optimality
on random, scale free, and NLPA graphs. Each graph has 100 vari-
ables. Both k-size and t-distance algorithms use subset locking
and partial synchronization. PS window size is selected after test-
ing several possible settings. “KOPT” introduced by Katagishi and
Pearce [8] is included as a benchmark. We show solution quality
at each global time, averaged over 50 sample graphs. Each algo-
rithm starts from the same random assignment. Quality is normal-
ized by subtracting the value of the initial random assignment and
dividing by the maximum value found by any algorithm for each
problem instance. We do not include error bars so as not to clutter
the graphs, but the primary comparisons described are all highly
significant based on paired t-tests.

Results of the first experiment are shown in Figures 7(a), 7(b),
and 7(c). Settings with k = 2t + 1 are comparable and equivalent
for some classes of graphs (Section 3.1); we use settings of k =
3 and t = 1 to examine the tradeoff in local optimization group
type. Our algorithms for both t-opt and k-opt clearly outperform
KOPT on both random and scale-free graphs. Our k-size-optimality
algorithm is similar to KOPT on NLPA, but t-distance-optimality
strongly outperforms both other algorithms in this case. By time
100, its improvement in solution quality is double that of the other
algorithms. In scale-free graphs t-distance-optimality is also a clear
winner in both convergence speed and final quality. For random
graphs, k-size-optimality has advantages in convergence speed, but
converges to a lower final quality.

68

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500No
rm

al
ize

d
Q

ua
lity

Global Time

Comparison: k vs t

T 1
K 3

KOPT 3

(a) Random Density 4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500No
rm

al
ize

d
Q

ua
lity

Global Time

Comparison: k vs t

T 1
K 3

KOPT 3

(b) Scale-free Density 4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500No
rm

al
ize

d
Q

ua
lity

Global Time

Comparison: k vs t

T 1
K 3

KOPT 3

(c) NLPA Density 4

 0

 50

 100

 150

 200

 250

 300

 350

 100 200 300 400 500 600 700 800 900 1000Co
nv

er
ge

nc
e

Ti
m

e

Number of Nodes

Scaling to Large Graphs

95% Quality, T 1
100% Quality, T 1
95% Quality, K 3

100% Quality, K 3

(d) Random Density 4

 80

 85

 90

 95

 100

 0 100 200 300 400 500N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Effects of Larger Group

T 0
T 1
T 2
T 3

(e) Random Density 2

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300No
rm

al
ize

d
Q

ua
lity

Global Time

Locking Improvements

PS 0, no SL (original)
PS 2, no SL
PS 4, no SL

PS 0, SL
PS 4, SL

(f) Random Density 4

Figure 7: Results of experiments (1) comparing k-size and t-distance optimality, (2) examining scalability to large graphs, (3) exploring the
effects of increasing t, and (4) showing the benefits of locking improvements.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

N
um

be
r

of
 V

ar
ia

bl
es

 L
oc

ke
d

Gain (In Thousands)

T=1

(a) Random Density 4

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

N
um

be
r

of
 V

ar
ia

bl
es

 L
oc

ke
d

Gain (In Thousands)

K=3

(b) Random Density 4

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 V

ar
ia

bl
es

 L
oc

ke
d

Gain (In Thousands)

T=1

(c) Scale-free Density 4

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 V

ar
ia

bl
es

 L
oc

ke
d

Gain (In Thousands)

K=3

(d) Scale-free Density 4

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

N
um

be
r

of
 V

ar
ia

bl
es

 L
oc

ke
d

Gain (In Thousands)

T=1

(e) NLPA Density 4

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

N
um

be
r

of
 V

ar
ia

bl
es

 L
oc

ke
d

Gain (In Thousands)

K=3

(f) NLPA Density 4

Figure 8: Analysis on Local Group Changes

To further understand the performance of t-opt and k-opt, we
provide analysis on local group changes. A local group change is
a successful assignment implementation in an optimization group.

For every group change, we collect the quality gain and the number
of variables that were locked for implementing the new assignment.
We plot all group changes for each set of graphs in a scatter chart,
where a data point represents a (Gain, #Locked Variables) pair.
The efficiency of an algorithm can be measured by the distribution
of all group changes. Since larger lock sizes indicate higher chance
of conflicts, group changes that have a large gain but small number
of variables locked are most favored. The results on random graphs
are shown in Figure 8(a) and Figure 8(b). We can see, t = 1 often
has a larger gain but needs to lock more variables than k = 3. In
particular, while k = 3 never identifies a gain larger than 70,000
and barely locks more than 20 variables, t = 1 often finds group
changes where the gain is greater than 70,000 and the number of
locked variables is greater than 20. On scale free graphs, as shown
in Figure 8(c) and Figure 8(d), t = 1 often finds larger gains than
k = 3. Particularly, the largest gain of t = 1 is almost quadruple
of that of k = 3. We also note k = 3 often locks a large set of
variables. Nearly half of the group changes require to lock more
than 20 variables. This explains why t = 1 outperforms k = 3 in
both convergence speed and final quality on scale free graphs. Fig-
ure 8(e) and Figure 8(f) show the results on NLPA graphs, where
k = 3 is the most inefficient because it often locks a huge number
of variables but barely identifies large gains.

Figure 7(e) shows the effect of increasing values of t on density 2
random graphs (domain size 5, reward drawn uniformly randomly
from 0 to 625). We see that the different levels of t offer increasing
final quality but also increasing convergence time. We also note
increasing t doesn’t give consistent gain in final quality. While
t = 1 is significantly better than t = 0, the gain of t = 3 over
t = 2 is much smaller. We also tested the ability of our algorithms
to scale to very large graphs. In Figure 7(d), we show the num-
ber of time units required to reach a percentage of the final quality
for both t-distance-optimality and k-size-optimality. We see that
increasing the size of the random graph by tenfold to 1000 nodes

69

barely increases the time necessary for convergence at all, showing
impressive scalability. To show the improvements offered by the
partial synchronization (PS) and subset locking (SL) methods, we
tested the t-distance algorithm for t = 1 with different PS window
sizes and without SL. As can be seen in Figure 7(f), both techniques
improve performance in isolation and in tandem.

Tables 1(a), 1(b), and 1(c) give additional statistics about al-
gorithm performance in the first set of experiments on density 4
graphs. “Msgs” is the average number of messages per agent per
time step. “MsgSize” is the average message size per message.
“Evals” is the average number of constraint evaluations per agent
per time step, which is a rough measure of the computation bur-
den on each node. “Conflicts” is the total number of failed lock
attempts. All of these are accumulated for 500 time units. We
see that our algorithm for t-distance-optimality is generally much
more efficient than KOPT in message size and the number of mes-
sages sent out, but does place a somewhat higher computational
burden on the nodes. t-distance-optimality generally requires more
computation than k-size-optimality because of its larger group size.
We also note that k-size-optimality generally sends fewer but larger
messages, which may offer some additional benefits in real world
implementations.

Table 1: Additional Statistics

(a) Statistics for scale-free density 4 graphs.

Msgs MsgSize Evals Conflicts

T 1 1.27 28.44 187.62 405.64
K 3 0.72 43.99 114.64 411.60

KOPT 3 3.12 2970.83 72.84 0.00

(b) Statistics for random density 4 graphs.

Msgs MsgSize Evals Conflicts

T 1 0.85 26.68 81.81 445.76
K 3 0.47 41.51 45.51 410.50

KOPT 3 3.20 1209.94 57.29 0.00

(c) Statistics for NLPA density 4 graphs.

Msgs MsgSize Evals Conflicts

T 1 2.55 36.52 270.65 300.72
K 3 1.90 46.01 338.76 358.54

KOPT 3 3.12 7093.90 100.42 0.00

6. CONCLUSION
We make three key contributions. First, we introduce the novel

concept of t-distance-optimality, and establish solution quality bounds
for this concept that are often tighter than known bounds for k-
size optimality. Second, we develop asynchronous local search
algorithms for t-distance-optimality that outperform existing syn-
chronous algorithms for k-size-optimality. Finally, in our experi-
mental evaluation we investigate the tradeoff between k and t op-
timality, showing that t-distance-optimality offers considerable ad-
vantages for some types of DCOP (notably scale free graphs), while
k-size-optimality has advantages in others.

7. REFERENCES
[1] A.-L. Barabasi and R. Albert. Emergence of scaling in

random networks. Science, 286(5439):509–512, 1999.
[2] B. Bollobas. Random Graphs. Cambridge University Press,

2nd edition, 2001.

[3] E. Bowring, J. P. Pearce, C. Portway, M. Jain, and M. Tambe.
On k-optimal distributed constraint optimization algorithms:
New bounds and algorithms. In AAMAS-08, 2008.

[4] A. Chechetka and K. Sycara. No-commitment branch and
bound search for distributed constraint optimization. In
AAMAS ’06: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems,
pages 1427–1429, New York, NY, USA, 2006. ACM.

[5] J. S. Cox, E. H. Durfee, and T. Bartold. A distributed
framework for solving the multiagent plan coordination
problem. In AAMAS ’05: Proceedings of the fourth
international joint conference on Autonomous agents and
multiagent systems, pages 821–827, New York, NY, USA,
2005. ACM.

[6] B. Faltings, D. Parkes, A. Petcu, and J. Shneidman.
Optimizing streaming applications with self-interested users
using M-DPOP. In COMSOC-06, 2006.

[7] S. Fitzpatrick and L. Meertens. Distributed coordination
through anarchic optimization. In V. Lesser, C. L. Ortiz, and
M. Tambe, editors, Distributed Sensor Networks: A
Multiagent Perspective, pages 257–295. Kluwer, 2003.

[8] H. Katagishi and J. P. Pearce. KOPT: Distributed DCOP
algorithm for arbitrary k-optima with monotonically
increasing utility. In DCR-07, 2007.

[9] R. Mailler and V. Lesser. Using cooperative mediation to
solve distributed constraint satisfaction problems. In
AAMAS-04, 2004.

[10] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161(1–2):149–180,
2005.

[11] J. P. Pearce and M. Tambe. Quality guarantees on k-optimal
solutions for distributed constraint optimization problems. In
IJCAI-07, 2007.

[12] J. P. Pearce, M. Tambe, and R. T. Maheswaran. Solving
multiagent networks using distributed constraint
optimization. AI Magazine, 29(3):47–66, 2008.

[13] A. Petcu and B. Faltings. DPOP: A scalable method for
multiagent constraint optimization. In IJCAI-05, 2005.

[14] W. Schreiner. A java toolkit for teaching distributed
algorithms. In ITCSE-02, pages 111–115, 2002.

[15] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed
stochastic search and distributed breakout: Properties,
comparison and applications to constraint optimization
problems in sensor networks. Artificial Intelligence,
161(1–2):55–87, 2005.

70

Generalizing DPOP: Action-GDL, a new complete
algorithm for DCOPs

M. Vinyals
IIIA, Artificial Intelligence

Research Institute
Spanish National Research

Council
meritxell@iiia.csic.es

J.A. Rodriguez-Aguilar
IIIA, Artificial Intelligence

Research Institute
Spanish National Research

Council
jar@iiia.csic.es

J. Cerquides ∗
WAI, Dep. Matemàtica

Aplicada i Anàlisi
Universitat de Barcelona

cerquide@maia.ub.es

ABSTRACT
In this paper we propose a novel message-passing algorithm, the
so-called Action-GDL, as an extension to the Generalized Distribu-
tive Law algorithm (GDL) [1] to efficiently solve DCOPs. We show
the generality of Action-GDL by proving that it has DPOP, one of
the low-complexity, state-of-the-art algorithm to solve DCOPs, as a
particular case. Finally, we provide empirical evidences to illustrate
how Action-GDL can outperform DPOP in terms of computation,
communication and parallelism needed to solve the problem.

1. INTRODUCTION
Multi-agent Coordination Problems (MCPs), also called distributed

multi-agent decision making problems, are a class of problems in
MAS focusing on how to coordinate agents’ actions in order to
yield a global desired behaviour for the MAS. Distributed Con-
straint Optimization Problems (DCOPs) are an extension of Con-
straint Optimization Problems (COPs) that can model a large class
of MCPs [9].

State-of-the-art complete algorithms to solve DCOPs adopt two
main approaches: search and dynamic programming. Search algo-
rithms, like ADOPT [7], require linear-size messages, but an expo-
nential number of messages. Dynamic programming algorithms,
represented by the DPOP algorithm and its extensions [10], only
require a linear number of messages, but their complexity lies on
the message size, which may be very large.

In this paper, we formulate a new algorithm, the so-called Action-
GDL, that takes inspiration from the GDL algorithm [1], extending
and applying it to DCOPs. GDL is a general message-passing algo-
rithm that exploits the way a global function factors into a combi-
nation of local functions generalizing a large family of well-known
algorithms (e.g. Viterbi’s, Pearl’s belief propagation, or Shafer-
Shenoy algorithms). Therefore, GDL has a wide range of applica-
bility. In our case, the rationale to apply (and extend) GDL is that
a DCOP requires the maximization of a global function resulting
from the combination of local functions. In order to ensure opti-
mality and convergence GDL must arrange the global function to
optimise into a junction tree structure (JT) [5].

∗Partially funded by TIN2006-15662-C02-01. M.Vinyals is sup-
ported by the Ministry of Education of Spain (FPU grant AP2006-
04636). JAR thanks JC2008-00337.

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman,
Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp.
XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

There are several works that have applied JTs (join trees or tree-
decompositions) to the constraint optimization problem [3, 4, 6].
Indeed the cluster-tree elimination algorithm [6] is an instance of
GDL algorithm applied over a tree decomposition (junction tree).
However, to the best of our knowledge, all these approaches con-
struct a JT using triangulation methods [5], which are not suitable
when applied to problems that are distributed by nature because
they produce JTs disreading the structure of the problem.

Therefore, one of our contributions in this paper is the Action-
GDL algorithm that extends GDL by: (1) supporting the distribu-
tion of the problem using distributed junction tree structure (DJT)
that maps cliques to agents; and (2) modifying the original GDL
algorithm to create two phases which allows to reduce the size of
one half of the messages.

To generate DJTs, we introduce the Distributed Junction Tree
Generator (DJTG) algorithm at the pre-processing phase of Action-
GDL. DJTG is a message-passing algorithm, based on the one for-
mulated in [8], that allows agents to distributedly compile a DJT
keeping any distribution of relations among agents. Therefore,
DJTG creates a DJT that adapts to the underlying distributed na-
ture of the problem. We will show how although finding the best
junction tree has been shown to be NP-hard [5], this algorithm is
general enough to exploit existing distributed heuristics in the liter-
ature [9, 2] to produce a DJTG to fed into Action-GDL.

Thereafter, we show that Action-GDL generalises DPOP, one of
the low complexity, state-of-the-art algorithm to solve DCOPs. To
do so, we: (1) prove that DPOP is a particular case of Action-
GDL; and (2) show how Action-GDL can exploit DJTs as a more
general structure to generate executions that cannot be achieved
by DPOP via pseudotrees. Therefore, Action-GDL can efficiently
solve DCOPs. To the best of our knowledge, we are the first in
comparing and providing a mapping between the space of DJTs
and the space of pseudotree arrangements. Finally we provide em-
pirical evidence to show that the generality of Action-GDL can be
exploited to outperform DPOP in terms of amount of computation,
communication, and parallelism.

This paper is structured as follows. Firstly, we provide a defini-
tion of DCOP (section 2) and the notation we will use through out
this paper (section 3). Section 4 introduces Action-GDL, as well
as its connection with GDL and the DJTG algorithm that allow
agents to compile the DCOP problem into a DJT. Then, in section
5 we show how Action-GDL extends DPOP, one of the state-of-
the-art algorithms to solve DCOPs. Next, section 6 provides some
evidences of how to exploit the generality of Action-GDL by show-
ing how it can outperform DPOP when solving the same DCOPs.
Finally, section 7 draws some conclusions and outlines paths for
future research.

71

2. OVERVIEW OF DCOPS
Distributed Constraint Optimization Problem (DCOP) are an ex-

tension to the Constraint Optimization Problem (COP) that can
model a large class of MCPs [9]. These problems consist of a set
of variables, each one taking on a value out of a finite discrete do-
main. Each constraint in this context has a set of variables as input
specifying a cost, namely a relation. The goal of a COP algorithm
is to assign values to these variables so that the total utility is max-
imized. A DCOP [10, 7] is an extension to a COP where variables
are distributed among agents.

LetX = {x1, . . . , xn} be a set of variables over domainsD1, . . . ,
Dn. Let r : Dr → <+, where Dr is the projection of the joint do-
main space D = D1 × . . . × Dn over variables in the domain of
r, be a utility relation that assigns a utility value to each combina-
tion of values of its domain variables. Formally, a DCOP is a tuple
〈A,X ,D,R, α〉where: A is a set of agents; X is a set of variables;
Dn is the joint domain space for all variables; R = {r1, . . . , rp}
is a set of utility relations; and α : X → A maps each variable to
some agent.

The objective function f is described as an aggregation (typically
addition) over the set of relations. Formally:

f(d) =

pX
i=1

ri(dri) (1)

where d is an element of the joint domain space D and dri is an
element of Dri . Solving a DCOP amounts to choosing values for
the variables in X such that the objective function is maximized
(minimized).

In a DCOP each agent receives knowledge about all relations
that involve its variable(s) in addition to their domains. In general,
DCOP algorithms do not impose any restriction regarding the num-
ber of variables that can be assigned to each agent or the arity of
the relations. However, although all algorithms we refer to in this
paper can deal with n-ary relations, for the sake of simplicity we
mainly restrict them to unary and binary relations. Therefore, we
will refer to unary relations involving variable xi ∈ X as ri, and to
binary relations involving variables xi, xj ∈ X as rij .

A DCOP with binary relations is typically represented with its
primal-constraint graph, whose vertices stand for variables and whose
edges stand for binary relations, as shown by the example depicted
in figure 1 (a). DCOPs can also be represented with its dual-constraint
graph, whose vertices stand for relations and whose edges link re-
lations that share some variable in their domains, as shown by the
example depicted in figure 1 (b).

x1

x2

x3 x4

r
1
2

r
2
3

r34

r 2
4

r
1
4

(a) Primal graph

r14

r12

r23

r34

r24

(b) Dual graph

Figure 1: Different representations for the same DCOP

3. NOTATION

Next we provide the definitions of a collection of functions and
operators that we shall employ throughout the rest of this paper.
Henceforth, given some variable set X ⊆ X , DX will stand for the
joint domain space of variables in X. Furthermore, for exemplary
purposes we assume that each domain Di contains constant values
c1i , . . . , c

ni
i .

DEFINITION 1 (DV). The domain variable function DV re-
turns the domain variables of a given set of relations.
Ex: DV ({r31}) = {x3, x1}, DV ({r31, r34}) = {x1, x3, x4}.

DEFINITION 2 (COMPLEMENTARY VARIABLES). Given a set
of variables X and a relation r, we define the complementary vari-
ables of X by r as the set of variables in r that are not in X .
Formally, X̄r = DV (r) \X.

DEFINITION 3 (UTILITY MESSAGE). A message from agent
ai to agent aj is a utility message over X ⊆ X , if the information
sent is a utility relation over DX . Henceforth, we shall denote that
utility relation as µij .

DEFINITION 4 (ASSIGNMENT). Given a set of agents X ∈
X , an assignment σ over X sets a value to each variable xk ∈
X and sets free the remaining variables. Given Y ⊂ X, we note by
σ[Y] the projection of σ to Y , that is, the assignment that sets the
same value as σ for the variables in Y .
Ex: X = {x1, x2, x3}, σ an assignment over X , σ(x1) = c21, σ(x3) =

c53, x2 is free in σ
Y = {x1} , σ[Y](x1) = c21, x2 and x3 are free in σ[Y]

DEFINITION 5 (VALUE MESSAGE). A message from agent ai
to agent aj is a value message over X ⊆ X if the information
sent is an assignment over X. Henceforth, we shall denote such
assignment by σij .

The joint operator is a combination operator that joins the knowl-
edge represented by two relations into a single one by adding their
values.

DEFINITION 6 (JOINT). Let r, s be two relations andDr⊗s =

×xk∈DV ({r,s}) Dk be their joint domain space. The combination
of r and s (noted r ⊗ s) is a utility relation over Dr⊗s such that
(r ⊗ s)(d) = r(dr) + s(ds) for all d ∈ Dr⊗s, where dr ∈ Dr and
ds ∈ Ds are the projections of d over the domains of relations r
and s respectively.
Ex: (r13 ⊗ r14)(c21, c

5
3, c

1
4) = r13(c21, c

5
3) + r14(c21, c

1
4).

We can readily generalize the joint operator over a finite set of re-
lations:

N
{r1,...,rm}

= r1 ⊗ (r2 ⊗ . . . (rm−1 ⊗ rm) . . .).

The projection operator sums up the utility that a relation contains
over a set of variables. Thus, the projection operator over a relation
r and a set of variables Xassesses the r maximum utility for the
variables in X.

DEFINITION 7 (PROJECTION). The projection operator of re-
lation r over a set of variables X is a summarization operator that
returns a utility relation over DX such that
(
M
X

r)(dX) = max
dX̄r∈DX̄r

r(dX , dX̄r).

Ex: (
M
{x3}

r13)(c23) = max
k∈D1

r13(k, c23).

Notice that we can employ the projection operator by specifying the
variables to eliminate from a relation as follows

M
\X

r =
M
X̄r

r =M
DV (r)\X

r.

72

DEFINITION 8 (SLICE). The slice of a relation r by an as-
signment σ overX is a utility relation overDX̄r such that (5

σ
r)(dX̄r) =

r(dX , dX̄r) where dX ∈ DX contains the values set by σ to the
variables in X.
Ex: X = {x3}, σ(x3) = c23, (5

σ
r13)(c11) = r13(c11, c

2
3).

4. THE ACTION-GDL ALGORITHM
In this section we introduce the Action-GDL, a novel complete

algorithm to efficiently solve DCOP’s, an extension to GDL [1]
to efficiently apply it to MAS decision making. We start by in-
troducing GDL in the following section to subsequently propose
Action-GDL in section 4.2. Since Action-GDL is executed over a
distributed junction tree structure, for completeness, we proposed
it to be combined with what we called the DJTG algorithm, an
algorithm that allow agents to distributedly compile JTs initially
proposed in [8] in the context of sensor networks. DJTG algorithm
(section 4.3) allows agents to distributedly compile the DCOP into
a DJT to which Action-GDL is executed over and drawbacks that
other traditional methods to compile DJTs have been reported to
have in distributed environments.

4.1 The GDL Algorithm
GDL [1] is a general message-passing algorithm that exploits the

way a global function factors into a combination of local functions
to compute the objective function in an efficient manner. GDL is
defined over two binary operations [1] that in our case, since we are
concerned with the problem of maximizing an utility function, cor-
respond to the addition and the maximization (the max-sum GDL).
In order to ensure optimality and convergence, GDL arranges the
objective function to assess in a junction tree structure (JT)[5].

DEFINITION 9. A junction tree (JT) is a tree of cliques that can
be represented as a tuple 〈X , C,S,Ψ〉 where: X = {x1, . . . , xn} is
a set of variables; C = {C1, . . . , Cm} is a set of cliques such that
each clique Ci ⊆ X ; S is a set of separators, where each separator
is an edge between two cliques containing the intersection of the
cliques1; and Ψ = {ψ1, . . . , ψm} is a set of potentials, where po-
tential ψi is a function assigned to clique Ci with domain ∆i ⊆ X .
Furthermore, the following properties must hold:
• Single-connectedness. Separators create exactly one path be-
tween each pair of cliques.
• Covering. Each potential domain is a subset of the clique to
which it is assigned, namely ∆i ⊆ Ci.
• Running intersection. If a variable xi is in two cliques Ci and
Cj , then it must also be in all cliques on the (unique) path between
Ci and Cj .

Likewise variables in DCOP, we assume that the variables in a junc-
tion tree are defined over domains D1, . . . ,Dn. Moreover, DCi
stands for clique Ci domain space, namely the joint domain space
of the variables in clique Ci.

Figure 2 shows a JT where circles stand for cliques, labelled with
the variables each one contains, and edges between cliques stand
for separators. Thus, for example, C1 contains variables x2, x4;
C3 contains variables x2, x3, x4; and their separator is composed
of their intersection x2, x4. Each clique Ci is associated with a
potential ψi, a function whose domain is a subset of Ci.

GDL defines a message-passing phase for cliques to exchange
information about their variables. Once the message-passing phase
is over, each clique can compute its state, namely its variables
states. To illustrate the way the max-sum GDL operates, con-
1Formally, a separator sij between clique Ci and Cj is defined as
sij = Ci ∩ Cj .

C1x2 x4

ψ1(x2)

C2x1 x2 x4

ψ2(x1, x2, x4)

C3x2 x3 x4

ψ3(x2, x3, x4)

x2, x4 x2, x4

Figure 2: JT

C4x4ψ4(x4)

C2x2 x4ψ2(x2, x4)

C1x1 x2 x4

ψ1(x1, x2, x4)

C3x2, x3, x4

ψ3(x2, x3, x4)

x2, x4

x4

x2, x4

Figure 3: DJT

Message/local knowledge (bK)
1. µ21(x2, x4) = max{x1}ψ2(x1, x2, x4)
2. µ31(x2, x4) = max{x3}ψ3(x2, x3, x4)

3. bK1(x2, x4) = ψ1(x2) + µ21(x2, x4) + µ31(x2, x4)
4. µ12(x2, x4) = ψ1(x2) + µ31(x2, x4)
5. µ13(x2, x4) = ψ1(x2) + µ21(x2, x4)

6. bK2(x1, x2, x4) = ψ2(x1, x2, x4) + µ12(x2, x4)

7. bK3(x2, x3, x4) = ψ3(x2, x3, x4) + µ13(x2, x4)

Table 1: Trace of GDL over the JT of Fig. 2

sider the following example. Say that our goal is to distributedly
maximize some objective function f(x1, x2, x3, x4) = ψ1(x2) +

ψ2(x1, x2, x4) + ψ3(x2, x3, x4), whose factors (ψ1, ψ2 and ψ3) are
arranged in the directed JT of figure 2. Since the JT is directed,
messages are sent in two different message-passing phases: (i) one
up the tree in which each clique sends a message to its clique par-
ent when, for the first time, it has received messages from all of its
children; (ii) one down the tree so that each clique sends a message
to its children when it receives a message from its parent.

At round 1, clique C2 = {x1, x2, x4} sends a message µ21 to
clique C1 = {x2, x4} with the values of its local function, ψ2, after
’filtering out’ dependence on all variables but those common to
C2 and C1 (namely variables which are not in their separator). At
round 3, after clique C1 receives the values of its children’s local
functions for its variables x2, x4, it combines those values into bK1.bK1 is a function that stands for C1 knowledge over its variables,
namely x2, x4. At that point, since C1 has received messages from
all its neighbors, bK1 contains all the information related to x2, x4.
At rounds 4 and 5, clique C1 sends messages to its children that
contain the combination (joint operation) of its local function, ψ1,
with other children messages. Thus, C2 receives a message from
C1 that contains the potential ψ1 combined with µ31. Then it can
compute bK2(round 6).

4.2 Extending GDL to solve DCOPs
Recall that our goal is to solve MCPs represented as

DCOPs. Therefore, the capability of computing any objective func-
tion, as provided by GDL, is not enough. We need to go one step
beyond GDL to allow a group of agents make a joint decision (re-
garding their variables’ values) that maximizes any objective func-
tion. For this purpose, Action-GDL extends GDL by: (1) inferring
decision variables; and (2) supporting the distribution of the prob-
lem through the use of a distributed junction tree structure.

Inferring decision variables Consider a DCOP setting. As ex-
plained above in GDL, when a clique has received messages from
all its neighbors, it has all information related to its variables and it
can compute its objective function. In DCOPs, clique variables are
decision variables and computing a clique objective function stands

73

Algorithm 1 Action-GDL(〈A,X , C,S,Ψ, β〉)
Each agent a ∈ A for each one of its cliques Ci
starts with 〈 bP (Ci), cCh(Ci), Ci, ψi, bS(Ci), βi〉 and runs:

1: Phase I: UTILITY Propagation
2: bKi = ψi
3: for all Cj ∈ cCh(Ci) do
4: Wait for utility message µji from Cj ’s agent (that is βi(Cj))
5: bKi = bKi ⊗ µji
6: end for
7: if Ci is not the tree’s root, let Cp = bP (Ci) then
8: Let sip ∈ bS(Ci) be the separator between i and its parent
9: Send µip =

M
sip

bKi to Cp’s agent (that is βi(Cp))

10: end if
11: Phase II: VALUE propagation
12: if Ci is not the tree’s root, let Cp = bP (Ci) then
13: Wait for a value message σpi from Cp’s agent (that is βi(Cp))
14: bKi = 5

σpi

bKi; /*Slice bKi with the value message*/

15: end if
16: d∗ = arg max

d∈D
DV (bKi)

bKi; /*Fix the values for the free variables*/

17: d∗Ci = d
∗ ∪ σpi; /*Put together the assesed values and the value message

received. Assume the root gets an empty value message*/
18: for all Cj ∈ cCh(Ci) do
19: Let σij = d∗Ci [sij]; /*Project into the separator*/
20: Send σij to Cj ’s agent (that is βi(Cj))
21: end for
22: return d∗Ci

;

for assigning values to these decisions. Therefore, when a clique
infers their state, there is no need to propagate more information
related to its variables since we can propagate directly the deci-
sions taken. In other words, there is no need to propagate messages
containing relations down the tree because all a child requires to
make a decision is its father’s decisions (variables’ assignments).
It implies that in a DCOP, when the first message-passing phase
of GDL, up to the tree, is over, the second message-passing phase
of GDL, down the tree, is no longer necessary. Thus, we require
a second message-passing phase for cliques to exchange decisions
down the tree, which is precisely the extension that Action-GDL
introduces. Henceforth, we shall refer to the first message-passing
phase as utility propagation, and to the second one as value prop-
agation. It is relevant to notice that the value propagation phase
ensures that whenever multiple optimal joint decisions are feasible,
cliques converge to the very same joint decision, namely to the very
same solution of a DCOP.

Table 2 displays a trace of Action-GDL over the JT in figure 2.
Notice that by making Ψ = {ψ1 = r2, ψ2 = r12 ⊗ r14 ⊗ r24, ψ3 =

r23 ⊗ r34} the function encoded in the JT (f(x1, x2, x3, x4) = ψ1(x2)+

ψ2(x1, x2, x4) + ψ3(x2, x3, x4)) of is the same as the constraint
graph of figure 1(a), so we are maximizing a DCOP function.

Steps 1-4 are equivalent to steps 1-3 in GDL. However, at step 5
the root clique assesses the optimal value for x2, x4 (x∗2 = c∗2, x

∗
4 =

c∗4) and propagates these values down the tree through value mes-
sages to cliques C2 and C3 (steps 6 and 7). At steps 8-9 and 10-11,
C2 and C3 assess the values of x1 and x3, respectively, using its
parent decision values (c∗2, c

∗
4).

Supporting the distribution of the problem. Another major
difference between Action-GDL and GDL has to do with the way
they solve a problem. GDL runs over a JT as formalised by defini-
tion 9. Hence, all cliques are considered to be located in a single
agent, which is in charge of running GDL. Action-GDL solves a

#. Messages/local knowledge bK #. Messages/local knowledge bK
1. µ21(x2, x4)=max{x1} ψ2(x1, x2, x4) 7. σ13(x2, x4)=(c∗2 , c

∗
4)

2. bK1(x2, x4)=ψ1(x2) + µ21 8. bK2(x1)=ψ2(x1;σ12)

3. µ31(x2, x4)=max{x3} ψ3(x2, x3, x4) 9. c∗1=arg max{x1}
bK2

4. bK1(x2, x4)= bK1(x2, x4) + µ31 10. bK3(x3)=ψ3(σ13; x3)

5. (c∗2 , c
∗
4)=arg max{x2,x4}

bK1 11.c∗3=arg max{x3}
bK3

6. σ12(x2, x4)=(c∗2 , c
∗
4)

Table 2: Trace of Action-GDL over the JT of Fig. 2

DCOP where variables and relations are distributed over agents that
cooperatively solve the problem. Therefore, Action-GDL extends
GDL to deal with cliques that are distributed to different agents
and control that agents have knowledge about the local information
(potential) related to its cliques. This is accomplished by running
Action-GDL over a distributed junction tree (DJT). Formally:

DEFINITION 10. A distributed junction tree (DJT) is a tuple
〈A,X , C,S,Ψ, β〉 where 〈X , C,S,Ψ〉 is a JT; A = {a1, . . . , am} is
a set of agents; and β : C → A maps each clique to one agent.
We define bN(Ci) = {Cj |sij ∈ S} as a function that returns the
cliques connected by a separator to clique Ci, namely its neighbor-
ing cliques. Since a DJT is a tree of cliques it can also be defined
as a directed tree. In a directed DJT we define two additional re-
lationships among cliques: bP (Ci), which returns the parent of Ci;
and cCh(Ci), which returns the children of Ci.

An example of DJT is given in figure 3. Likewise JTs, circles
stand for cliques, and edges for separators, both labelled with their
variables’ indices. This DJT has 4 cliques, one for each agent of the
DCOP of figure 1(a) (clique Ci is assigned to agent ai). The set of
potentials contains the set of relations of the DCOP distributed as
follows: ψ1 = r12 ⊗ r14,ψ3 = r23 ⊗ r34,ψ2 = r24,ψ4 = {},ψ5 = r15.
Notice that this DJT has the property that agents are assigned a
clique whose potential contains relations that this agent knows (in
DCOP relations that contains some agent’s variable). Thus, agent 1
is assigned clique 1 whose potential contains relations that include
variable x1, namely r12, r14. That is not true in the JT of figure 2
since in that case there is not a single agent who knows all relations
assigned to potential ψ2, namely r12, r14, r24.

Algorithm 1 outlines Action-GDL. Given a DJT 〈A,X , C,S,Ψ, β〉 ,
each agent a ∈ A involved in Action-GDL, only needs to know
the subset of the DJT that involves the cliques it has assigned.
Hence, every agent is assumed to start knowing a tuple 〈 bP (Ci),cCh(Ci),ψi, bS(Ci),βi〉 for each one of its cliques Ci, where bS returns
a clique’s separators (bS(Ci) = {sik|sik ∈ S}), and βi returns the
agents assigned to clique Ci’s parent or children.

During the utility propagation phase (lines 1-10), agents exchange
utility messages. The initial knowledge for each clique is its poten-
tial (line 2). For each clique, its agent waits until receiving a utility
message from each of its children cliques (lines 3-4). These mes-
sages contain a utility relation over the variables shared by both
cliques (their separator) and are sent by agents assigned to the chil-
dren cliques. Every time that the agent receives a new utility mes-
sage, it incorporates it (by using the combination operator) to its
local knowledge (line 5). After combining utility messages from
all the children of a clique, if that clique has a parent (line 7), its
agent summarizes that part of its local knowledge (using the pro-
jection operator) that is of interest to the clique’s parent (by means
of a utility relation over its separator) and sends it to the agent as-
sociated to the parent’s clique (line 9).

During the value propagation phase (lines 11-21), agents com-
pute the optimal values for their variables and exchange value mes-
sages, namely decisions. Given a clique, its agent waits until re-
ceiving a value message (containing value assignments) for all vari-
ables in common (in the separator) with its clique parent (line 12-

74

13). At that point, the agent has received all the knowledge, in
form of utility (from children) and value (from the parent) mes-
sages, required for computing the objective function related to its
clique variables. The agent slices its knowledge by incorporating
the already inferred decisions (line 14) and computes the optimal
values for the rest of its clique variables (line 16). Once an agent
knows the variables’ values for one of its cliques, it can propagate
them down the tree (lines 18-21). Notice however that it only prop-
agates variable assignments that are required by its children cliques,
namely assignments for variables in their separator.

Since Action-GDL runs over a DJT, we can readily assess its
computation and communication complexity from cliques’ and sep-
arators’ sizes after [1, 8]. Action-GDL requires a number of mes-
sages linear to the number of edges in the DJT (exchanging one
value message and one utility message per separator). The com-
munication complexity lies in the size of utility messages, which
is exponential to separators’ sizes, because the size of value mes-
sages is linear. Regarding the computation required by each agent
to build messages and assess variables’ values, it also scales with
its cliques’ sizes.

4.3 The DJTG algorithm
As explained above, Action-GDL runs over a DJT (as given by

definition 10). It has been argued [9] that traditional methods to
compile JTs, that is triangulation methods based on the one pro-
posed in [5], are not suitable when applied to problems that are
distributed by nature because they produce JTs disregarding the
structure of the problem. Thus, cliques in such methods are cre-
ated independently of the number of agents and their knowledge
and therefore since the mapping agent-clique is not clear it can ap-
pear a clique that has knowledge about a particular relation/variable
that it’s hosting agent does not know. Therefore, here we propose
to use an alternative algorithm, the so-called Distributed Junction
Tree Generator (DJTG) that distributedly compiles a DJT, by ex-
changing a linear number of messages, that captures the distribu-
tion of relations required by the problem. Such DJT can be readily
fed into, and hence solved by Action-GDL.

The DJTG algorithm receives as input a set of relations dis-
tributed among agents and an spanning tree, ST , defined over them.
Figure 4(a) illustrates an input to DJTG. Observe that relation r12

a1
a2

a2 a3

r14

r12

r23

r34
r42

(a) Spanning tree

a1

a2

a2 a3

1 4

1 2 4

2 3 4

3 4

4 2 3

1 © −−
→

1
4

1
2

3
4

←
−
−− 4 ©

−−→1 2 42©

2 3 4←−−3©

4©
1 2 3 4

←−−
−

−−→3 4
1©

2 © −−
→

2
3

4

1
2

3
4

←
−
−− 3 ©

(b) DJTG execution

11 4
ψ1 =
r14

11 2 4
ψ2 = r12

22 3 4ψ3 = r23

2 ψ4 = r343 4

3ψ5 = r42 2 3 4

1 4

2 4

2 3 4

3 4

(c) Junction tree

Figure 4: DJTG execution

is assigned to agent a1 and it is linked to relations r23 and r14 by
edges in the ST .

DJTG has two phases: 1) a pre-processing phase where agents
create a distributed clique tree that may not satisfy the running in-
tersection property (RIP); followed by 2) a message-passing phase
that calculates the unique set of minimal cliques that satisfy the
RIP.

In the pre-processing phase, each agent a creates a clique Cj for
each one of its relations rj and sets as potential the relation itself,

namely ψj = rj . Cliques are initially set to their potential domain,
namely Ci = ∆i, in order to readily ensure the covering prop-
erty. Moreover, for every two relations ri, rj connected in the ST ,
agents create a separator sij linking their corresponding cliques
Ci and Cj . Figure 4 (b) shows the structure produced by the pre-
processing phase. Boxes stand for cliques containing numbers that
stand for variables’ indices. Cliques are assigned to agents. For in-
stance, clique C1 with variables x1, x4 and clique C2 with x1, x2 are
assigned to a1. The variables correspond to the domains of the
cliques’ potentials, namely the domains of r14 and r12 respectively.
Cliques C1 and C2 are connected as their relations r14 and r12 in the
ST .

The second phase of DJTG is responsible for ensuring the RIP.
In that phase, each agent exchanges for each one of its cliques,
Ci, reachability messages with agents related to Ci’s neighbors that
contain the set of reachable variables from Ci. Figure 4(b) shows
the messages exchanged. Single-directed arrows between boxes
stand for messages exchanged between cliques. Each arrow is la-
belled with some variables’ indices and a circled number standing
for the order of the message in the message-passing execution. The
set of reachable variables from a clique Ci to Cj is calculated as the
union of: (i) Ci’s potential domain; and (ii) the variables reachable
from Ci’s neighbours other than Cj . Thus, agent a1 sends a message
to agent a2 for clique C3 that contains variables (x1, x2, x4), namely
the variables that can be reached from clique C2. These variables
are the result of the union of C2 potential domain, namely (x1, x2),
with the reachable variables from C2, namely (x1, x4). Once an
agent receives, for a given clique, reachability messages from all its
neighbours, it redefines its clique adding variables that are in more
than one reachability message. In figure 4(b) agent a2 receives
two reachability messages for clique C3: one with (x1, x2, x4) from
clique C2 associated to a1, another one with (x2, x3, x4) from clique
C5 associated to a3. Since both messages contain x4, agent a2

knows that its clique C3 must also carry x4 to satisfy the RIP. Af-
ter computing cliques, it is straightforward to assess separators (see
definition 9). Finally, figure 4(c) depicts the DJT as produced by
DJTG from the initial distribution of relations in figure 4(a). Notice
that by creating a clique per relation and by assigning each clique
to the agent associated to that relation, DJTG manages to preserve
the initial distribution of the problem.

This alternative way of building a JT, by directly ensuring the
RIP over a set of relations was initially formulated in [8] in the
context of sensor networks. However, they restricted each agent to
control a single clique whose potential results from the combination
of relations located to the agent. DJTG extends the algorithm in [8]
to: (1) allow each agent to be associated to more than one clique;
and (2) accept as input a spanning tree defined over some set of
relations, without making any assumptions on their composition.

Given a set of n relations, there are nn−2 different spanning trees
that we can define over them, and for each one we can compile the
associated DJT with the DJTG algorithm. It is know from [5] that
finding the optimal JT is NP-hard, so it is reasonably to wonder
what we can do to find good spanning trees to use as input for the
DJTG algorithm. However it turns out that existing heuristics pro-
posed in the literature for DCOP problems and DJT construction
can be expressed, explicitly or implicitly, as a set of relations con-
nected by a spanning tree that we can use as input of the DJTG. On
the one hand, there are heuristics [8] that directly assess an span-
ning tree defined over the dual-constraint graph and we can readily
exploit them. On the other hand, there are heuristics that define
a spanning tree, or a subclass of them like pseudotrees, over the
primal-constraint graph such as those proposed in [9, 2]. These
heuristics associate each relation to the lowest variable of its do-

75

main in the tree structure. We can combine the relations associated
to the very same variable to create a single relation. Since in these
approaches variables are connected by an spanning tree, so are the
combined relations and we can use this spanning tree as input to
the DJTG.

5. GENERALITY OF ACTION-GDL
Action-GDL has a lot of straightforward similarities with DPOP

[10], one of the state-of-the-art algorithms to solve DCOPs. Indeed
DPOP was inspired by the sum-product algorithm, a GDL iterative
version when applied directly to the original constraint graph and
that is only guarantee convergence and optimality in acyclic graphs.
DPOP ensures optimality and convergence in general graphs by ar-
ranging the DCOP into a pseudotree whereas Action-GDL arranges
the problem in a DJTs.

Both algorithms, Action-GDL and DPOP have two similar phases
when agents exchange same type of messages (UTIL and VALUE
phases) and are based on the same operators: the combination and
the projection operators. Despite of all these similarities, there are
a set of important differences among them 2 namely:

(1) DPOP requires the DCOP to be arranged into a pseudotree
structure with a particular distribution of relations (relations
are associated to the lowest variable of its domain in the pseu-
dotree) whereas Action-GDL is executed over a DJT. Figure
5(a) illustrates a pseudotree for the DCOP of figure 1(a). By
definition of pseudotree[10], variables in different branches
can not have direct dependencies among them. Thus, vari-
ables x1 and x3 are independent (there is no relation r13)
and relations r12,r14 are placed on x1 (agent 1).

(2) In DPOP when agents create an utility message they use
the summarize operator by summarizing out its own vari-
able whereas in Action-GDL agents summarize over vari-
ables in the separator. Thus, during DPOP execution agent
1 (assigned to x1) filters out x1 from its local factor r12,r14

sending a message to agent 2 (assigned to x2) that depends
on the remaining variables, namely x2 and x4.

(3) In DPOP variables are inferred always one by one, in their
position in the pseudotree, whereas in Action-GDL multi-
ple variables can be inferred at once in the first agent that
contains all the information related to these variables. Thus,
during DPOP execution over the pseudotree of figure 5(a),
agent 4 (responsible of x4) infers its variable sending its
value down to the tree. Same applies for the rest of variables.

However, if we want to compare DPOP and Action-GDL when ap-
plied to the same DCOP, we have to use equivalent arrangements
for both algorithms. Thus we need to define a mapping between
pseudotrees and DJTs. We will prove that given a pseudotree we
can always define its equivalent DJT such that the execution of
Action-GDL over such DJT is equal to the execution of DPOP over
the pseudotree arrangement.

For example, the equivalent DJT of the pseudotree depicted in
figure 5(a) is the DJT of figure 3. Notice that in that DJT rela-
tions are placed exactly as in the pseudotree arrangement and when
cliques send messages summarizing over the separator, they filter
out a single variable. Thus, DPOP execution over this pseudotree
arrangement and Action-GDL execution over the DJT are equal.

However, it turns out that the other way around, that given a
DJT we can always define an equivalent pseudotree arrangement,
2Here we list a set of similarities and differences respect to DPOP.
We refer the reader to [10][9] for a detailed description of the DPOP
algorithm

x4

x2r24

x1r12

r14 x3 r23

r34

(a) Pseudotree

C4x1, x4

ψ4(x1, x4)

C2x1 x2 x4ψ2(x1, x2, x4)

C1x1

ψ1(x1)

C3x2, x3, x4

ψ3(x2, x3, x4)

x1 x4, x1x2, x4

(b) DJT with non equivalent pseudotree

Figure 5: Example of a pseudotree and DJT with non-
corresponding pseudotree arrangement for the DCOP depicted
in figure 1

is not true. Thus, given an Action-GDL execution over a DJT, the
equivalent pseudotree may not exist. It is because, given a DCOP,
the space of all possible pseudotrees arrangements map with a sub-
space of all possible DJTs. DPOP equations are a particular case
of Action-GDL equations when it is executed over this subclass of
DJTs. We illustrate this with an example. Take the DJT of figure .
By making Ψ = {ψ1 = , ψ2 = r12 ⊗ r24, ψ3 = r23 ⊗ r34, ψ4 = r41}
the function encoded is the same as the constraint graph of figure
1(a). However, this DJT can not have any equivalent pseudotree
because multiple variables are eliminated at once (clique 2 infers
variables x1,x2 and x3) and there are cliques that do not eliminate
any variable when summarizing over the separator, namely C1 and
C4.

In what follows we provide an sketch of the proof of the equiv-
alence between Action-GDL and DPOP (fully detailed in [11]).
Next, in section 6 we will provide empirical evidence of how we
can exploit DJTs, as a more general structure, to improve the prob-
lem solving cost with respect to DPOP.

5.1 Proving equivalence
In order to prove equivalence between Action-DGL and DPOP,

we first define a mapping, which we shall name γ, that builds a
DJT from each pseudotree. Then we prove (lemma 1) that both
the computation performed and the messages exchanged during the
utility propagation phase are the same. After that, we prove (lemma
2) that the messages exchanged during the value propagation phase
are also the same. Finally, we prove that the algorithm DJTG can
compute this mapping distributedly. Because of lack of space, in
the following we just expose the results and sketching proofs. The
interested reader can find far more detailed proofs in [11].

LEMMA 1. Given a DCOP Φ and a pseudotree PT, the compu-
tation performed and the messages exchanged by each agent during
the utility phase ofDPOP (Φ,PT) and Action-GDL(γ(Φ, PT)) are
the same.

PROOF. We prove the lemma by induction on the depth of the
agent in the pseudotree. Both in the base and induction cases, we
can prove that: (i) the set of variables handled by agents in both
algorithms are the same; and (ii) the domain of the utility messages
send by agents in DPOP after eliminating its corresponding vari-
able coincides with separators in Action-GDL. By induction the
utility messages received by each agent in both algorithms are the
same. This fact along with (i) and (ii) forces that the computa-
tion performed and messages exchanged during this phase by each
agent must be the same.

76

LEMMA 2. Given a DCOP Φ and a pseudotree PT the value
assigned by each agent to its variable and the messages exchanged
during the value propagation phase of DPOP (Φ,PT) and Action-
GDL(γ(Φ, PT)) are the same

PROOF. We prove the lemma by induction on the depth of the
pseudotree. The base case is trivial since there is only one variable
in the pseudotree and both algorithms compute the same value for
it. In the induction case we can split our pseudotree into the root
and a set of pseudotrees of smaller depth. Then: (i) it is easy to see
that the root agent acts equivalently in DPOP and in Action-GDL;
and (ii) we can apply the induction hypothesis to the pseudotrees
of smaller depth. Our result comes from (i) and (ii).
Lemmas 1 and 2 prove the main result of this section:

THEOREM 1. Given a DCOP Φ and a pseudotree PT, the exe-
cution of DPOP(Φ, PT) is equivalent to Action-GDL(γ(Φ, PT)).

Theorem 1 shows that Action-GDL can be at least as efficient as
DPOP in any DCOP problem. In the next section we introduce the
DJTG algorithm that distributedly computes mapping γ at a cost
that is small with respect to the cost of solving the problem.

THEOREM 2. Given a DCOP Φ and a pseudotree 〈P, PP 〉, the
DJTG algorithm creates the DJT given by γ(Φ, 〈P, PP 〉)

Therefore, DJTG computes the mapping γ at a cost that is small
with respect to the cost of solving the problem. This two results
prove that Action-GDL can be at least as efficient as DPOP (by
mimicking its behavior).

6. EXPLOITING ACTION-GDL
At this point we have learned that Action-GDL generalises DPOP.

It is now reasonable to wonder about the benefits that such gen-
erality delivers. In what follows we argue that Action-GDL can
yield better algorithmic performance than DPOP. Action-GDL can
achieve such improvement because: (i) DJTs allow to explore prob-
lem arrangements that cannot be represented via pseudotrees; and
(ii) it can assess multiple variables’ values at once. To show the
benefits of Action-GDL with respect to DPOP, we empirically com-
pare the computation and communication costs of both algorithms
when solving the same DCOP. Moreover, we also compare the
maximum degree of parallelism each algorithm can achieve.

x1

x2

x3r123

〈 1 〉

〈1 2〉

(a) DPOP

11
ψ1 = { }

21 2

ψ2 = { }

31 2 3

ψ3 = r123

1

1 2

(b) DJT γ

1
ψ1 = { }

2
ψ2 = { }

31 2 3
ψ3 = r123

(c) Modified DJT

11
ψ1 = { }

21 2

ψ2 = { }

31 2 3

ψ3 = r123

1 1 2

(d) DJT rooted at 2

Figure 6: Example of experimented rearrangements

Our first experiment is aimed at showing the communication
and computation savings achieved by Action-GDL with respect to
DPOP. Such savings are obtained by adequately transforming the
problem arrangement represented by a pseudotree. Consider the
example depicted in figure 6. Figure 6(a) shows a pseudotree for

a DCOP composed of a single ternary relation r123. Observe that
although variables x1, x2 do not have any relation, since DPOP
can only eliminate variables one by one, its execution would prop-
agate utility messages over these variables. Figure 6(b) depicts
the DJT produced by mapping γ when applied to the pseudotree.
Hence, according to theorem 1 the execution of Action-GDL over
this DJT and the execution of DPOP over the pseudotree are equiv-
alent. However, we can further transform the DJT in figure 6(b)
to obtain savings. Notice that to make Action-GDL and DPOP ex-
ecutions equivalent,the definition of mapping γ (from pseudotree
to DJT) forces that each clique in the equivalent DJT contains its
variable although it is not part of its potential domain. If we do not
enforce such constraint, the DJTG algorithm generates the DJT of
figure 6(c), which can be regarded as a rearrangement of the one in
figure 6(b). When running over the DJT in figure 6(c), Action-GDL
does not need to exchange any utility messages, reducing the com-
putation required to solve the problem. Hence there is a rationale
for the rearrangement that we propose. Notice that when running
Action-GDL, a variable’ value is assessed at the clique that con-
centrates all its information. In figure 6(c), the values of x2, x3

are assessed at the clique containing x1, x2, x3. That clique is
in charge of propagating its decisions. Hence, there is no need to
propagate utility messages involving x1 and x2 up the tree.

Next we compare the size of the messages exchanged and the
amount of computation required by Action-GDL and DPOP when
solving the same DCOP as the number of variables grows. Given
a number of variables n ∈ {10, 30, 50, 70, 90}, we generate 2000
DCOPs, each one with 1.5 · n constraints whose arity is randomly
picked from 2 to 4. We create pseudotrees for DPOP using the
DFS-MCN heuristic [9] and DJTs for Action-GDL considering the
rearrangement of the DJT produced by mapping γ as explained
above. Figure 7 (upper) shows the average savings (in percentage)
in communication and computation of Action-GDL with respect to
DPOP3. Observe that a simple rearrangement of the DJT leads to
significant savings in communication and computation costs, which
increase as the number of variables grows.

In our second experiment we show that we can help Action-
GDL to reduce the maximum degree of parallelism with respect
to DPOP. We propose to found such improvement on another re-
arrangement of the DJT produced by mapping γ. This time we
propose to change the root of the DJT. Figure 6(d) illustrates such
rearrangement for the DJT in figure 6(b). Observe that chang-
ing the root of a DJT never changes either the computation or
the communication costs because cliques and separators remain
the same. Notice also that we cannot explore such an arrange-
ment in DPOP because changing the root of a pseudotree can lead
to a non-valid pseudotree. For instance, choosing x2 as a root
in the pseudotree of figure 6(a) makes it an non-valid pseudotree
(because of the dependency between variables x1 and x3). Next
we measure and compare the MPC, formally defined as MPC =

maxPi∈P
P
Cj∈Pi d

|Cj |, where P stands for the set of all paths, a
path Pi contains all cliques from the i-th clique to the root, and d
stands for the variable domain size. To run this experiment we em-
ploy the same pseudotrees generated for our first experiment above
and we set d = 2. We rearrange DJTs for Action-GDL as ex-
plained above to select as clique root the one that reduces the MPC
the most. Figure 7 (lower) shows our empirical results by depict-
ing the average (in percentage) improvement in MPC3 that Action-
GDL achieves. Observe that the gain in parallelism can be very
significant (from 25% to 40% of MCP reduction), and it increases
as the number of variables grows.

3Percentage assessed as (DPOP−ActionGDL)
DPOP

· 100

77

Figure 7: Experimental results

7. CONCLUSIONS AND FUTURE WORK
We made three main contributions in this paper. Firstly, we pre-

sented a new algorithm, the so-called Action-GDL, as an exten-
sion to GDL [1] to efficiently solve DCOPs. Secondly, we intro-
duced the Distributed Junction Tree Generator (DJTG) algorithm,
which allows agents to distributedly compile a distributed junction
tree over which Action-GDL can operate. Finally, we show that
Action-GDL generalizes DPOP. To do so, we prove that: (1) DPOP
is a particular case of Action-GDL; and (2) Action-GDL can exploit
distributed junction trees as a more general structure to generate ex-
ecutions that cannot be achieved by DPOP via pseudotrees. More-
over, we provide empirical evidence to show how we can computa-
tionally exploit the generality of Action-GDL. Thus, we show that
Action-GDL can outperform DPOP in terms of the amount of com-
putation, communication and parallelism of the algorithm solving
cost. Finally, we argue that there are also analitical reasons to pre-
fer Action-GDL. Since it is based on GDL, we can benefit from a
wealth of theoretical results for GDL over junction trees and other
approximate or more general structures such as single-cycle junc-
tion graphs [1].

8. REFERENCES
[1] S. M. Aji and R. J. McEliece. The generalized distributive

law. IEEE Transactions on Information Theory,
46(2):325–343, 2000.

[2] J. Atlas and K. Decker. A complete distributed constraint
optimization method for non-traditional pseudotree
arrangements. In AAMAS, page 111, 2007.

[3] R. Dechter and J. Pearl. Network-based heuristics for
constraint-satisfaction problems. Artif. Intell., 34(1):1–38,
1987.

[4] R. Dechter and J. Pearl. Tree clustering for constraint
networks (research note). Artif. Intell., 38(3):353–366, 1989.

[5] F. V. Jensen and F. Jensen. Optimal junction trees. In UAI,
pages 360–366, 1994.

[6] J. L. K. Kask, Rina Dechter and A. Dechter. Unifying
cluster-tree decompositions for reasoning in graphical
models. Artif. Intell., 2005.

[7] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. Adopt:
asynchronous distributed constraint optimization with
quality guarantees. Artif. Intell., 161(1-2):149–180, 2005.

[8] M. A. Paskin, C. Guestrin, and J. McFadden. A robust
architecture for distributed inference in sensor networks. In
IPSN, pages 55–62, 2005.

[9] A. Petcu. A Class of Algorithms for Distributed Constraint
Optimization. PhD thesis, EPFL, Lausanne, 2007.

[10] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In IJCAI, pages 266–271, 2005.

[11] M. Vinyals, J.A.Rodriguez-Aguilar, and J. Cerquides.
Proving the equivalence of action-gdl and dpop. Technical
report, IIIA-CSIC, 2008. Available at http://www2.iiia.
csic.es/~meritxell/publications/TRR200804.pdf.

78

Distributed Constraint Optimization for Time-Critical
Domains

James Atlas
Computer and Information Sciences

University of Delaware
Newark, DE 19716

atlas@cis.udel.edu

Keith Decker
Computer and Information Sciences

University of Delaware
Newark, DE 19716

decker@cis.udel.edu

ABSTRACT
Distributed Constraint Optimization (DCOP) provides a rich
framework for modeling multi-agent coordination problems. Exist-
ing problem domains for DCOP focus on small (<100 variables),
deterministic domains. In many real-world, time-critical domains,
agents are given limited information about the problem environ-
ment and are expected to coordinate with limited computation and
communication. We present a complete DCOP solution for one
such domain, large-scale team coordination problems that were
used in the DARPA Coordinators program.

This domain requires distributed, scalable algorithms to meet
difficult bounds on computation and communication time. To
achieve this goal, we develop a new distributed neighbor exchange
algorithm for DCOPs that scales to problems involving hundreds
of variables and constraints. This algorithm offers faster conver-
gence to high quality solutions than existing DCOP algorithms. In
addition, our complete solution includes new techniques for dy-
namic distributed constraint optimization and uncertainty in con-
straint processing. We show that our solution is very competitive
with the general approaches used in the DARPA Coordinators pro-
gram.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multiagent Systems

General Terms
Algorithms, Experimentation

Keywords
Distributed Constraint Optimization, Multi-agent Coordination,
Task Scheduling

1. INTRODUCTION
Distributed Constraint Optimization (DCOP) is a general prob-

lem representation for multi-agent systems. Recent advances in
DCOP algorithm development have led to an increasing number
of application domains and focus on DCOP techniques. Recent
applications of DCOP to real-world problems include sensor net-
works[8], traffic flow cooperation [5], and event scheduling [7].
These existing problem domains for DCOP focus on small (<100
variables), deterministic domains. We present a mapping to DCOP
for large-scale team coordination problems that were used in the
DARPA Coordinators program.

While our mapping is generic and can be used with existing
DCOP algorithms, the Coordinators problem domain requires dis-

tributed, scalable algorithms to meet difficult bounds on computa-
tion and communication time. To achieve this goal, we develop a
new DCOP algorithm that processes utility distributions and scales
to problems involving hundreds of variables and constraints. We
show that our algorithm outperforms other DCOP algorithms for
this domain and that our approach is competitive with other gen-
eral approaches used in the DARPA Coordinators program.

Existing DCOP formalizations also require deterministic utility
outcomes for constraint assignments. This representation precludes
reasoning about uncertainties within a DCOP algorithm. We intro-
duce a new DCOP formalization that allows for non-deterministic
constraint functions that evaluate to discrete utility distributions.
These discrete utility distributions take the place of integer values in
DCOP algorithms and allow the processing of non-linear functions
over combined distributions. This extension allows our algorithm
to incorporate a risk avoidance strategy to deal with uncertainties
that are part of the Coordinators problems.

We begin with an introduction of the CTÆMS problem repre-
sentation and the existing DCOP formalism. We then extend the
existing DCOP formalization to include constraint functions with
discrete utility distributions. We detail the mapping between a
CTÆMS problem representation and the extended DCOP formal-
ism. We introduce a new neighborhood exchange algorithm for
DCOP that scales to problems involving hundreds of variables and
constraints. We compare our new algorithm with existing DCOP
algorithms on standard graph coloring problems and in the Coordi-
nators domain. We show that our solution is very competitive with
the general approaches used in the DARPA Coordinators program.

2. C-TÆMS COORDINATION PROBLEM
Multi-agent task planning and scheduling problems require a

rich language for domain representation. The original TÆMS
(Task Analysis, Environment Modeling, and Simulation) language
was developed to provide a domain independent, quantitative rep-
resentation of the complex coordination problem [4]. A C-TÆMS
problem instance contains a set of agents and a hierarchically de-
composed task structure. Nodes in the graph are either complex
tasks (internal nodes) or primitive methods (leaf nodes). Each node
may have temporal constraints on the earliest start time and the
deadline. Nodes may also have non-local effect (NLE) constraints
that represent hard (enables and disables) and soft (facilitates and
hinders) node relationships. Methods have probabilistic outcomes
for duration, quality, and cost. Tasks have a quality accumulation
function (QAF) that describes how quality accrues at the task based
on the quality of its subtasks and methods. Some basic QAFs in-
clude sum, sumand, syncsum, min, max, and exactlyone. In the
sample C-TÆMS problem instance in Figure 1, the node T1 repre-
sents a task with M1 and M2 representing a decomposition of this

79

Figure 1: An example C-TÆMS problem instance.

task into submethods. T1 has constraints for earliest start time of 1
and deadline of 31. The accumulated quality at T1 is a sum of the
qualities of the executed submethods.

2.1 Existing Approaches
Three teams participated in the second phase of the Coordina-

tors project and used very different approaches. Detailed descrip-
tions of the approaches can be found in [6, 13, 11]. The best per-
forming team used a risk avoidance strategy based on predictability
and criticality metrics (PCM). These metrics did not aim to opti-
mize an approximate global utility function, but instead minimized
chances for conflicts while opportunistically inserting changes that
did not negatively impact the current schedule. A second approach
used simple temporal networks to create a flexible time schedule
of methods that changes over time using constraint propagation
(FTS). Agents choose to modify the schedule when speculation in-
dicates local utility gain is greater than neighboring utility loss. The
third approach used distributed MDPs to approximate optimal exe-
cution policies (MDP).

Our approach is most similar to the FTS approach because we
will use DCOP to speculatively optimize over a flexible execution
schedule. However, we design the constraints with discrete value
distributions and reason over them using a risk aversion function.
This function provides a similar role to the metrics used in the PCM
approach as it is not a direct approximation of the global utility
function.

3. EXISTING DCOP FORMALIZATION
DCOP has been formalized in slightly different ways in recent

literature, so we will adopt the definition as presented in [10]. A
Distributed Constraint Optimization Problem with n nodes and m
constraints consists of the tuple < X, D, U > where:

• X = {x1,..,xn} is a set of variables, each one assigned to a
unique agent

• D = {d1,..,dn} is a set of finite domains for each variable

• U = {u1,..,um} is a set of utility functions such that each
function involves a subset of variables in X and defines a
utility for each combination of values among these variables

An optimal solution to a DCOP instance consists of an assignment
of values in D to X such that the sum of utilities in U is maximal.

Problem domains that require minimum cost instead of maximum
utility can map costs into negative utilities. The utility functions
represent soft constraints but can also represent hard constraints by
using arbitrarily large negative values.

4. DCOP WITH UTILITY
DISTRIBUTIONS

We can extend the DCOP problem formalization to include un-
certainty by allowing constraint evaluation functions to return a dis-
tribution instead of a single value. A global optimum is now an
optimal distribution instead of a maximum (or minimum) sum. To
evaluate the optimality of a distribution, evaluation criteria must be
formalized. The optimal evaluation function may not be the same
for all problems for all agents. Thus we must include the evalua-
tion function as part of the extended DCOP problem. We extend
our previous DCOP formalization for this:

• U = {u1,..,um} is a set of utility functions such that each
function involves a subset of variables in X and defines a
utility distribution for each combination of values among
these variables

• u = {(u1
p, u1

v),..,(ut
p, ut

v) } is a distribution of probabilities
and values such that

∑t
r=1 ur

p = 1

• E = {e1,..,en} is a set of evaluation functions for each vari-
able that reduce a utility distribution to a single utility value;
e(u) = v where v is a single utility value

This extension requires extra computation and memory propor-
tional to the maximum allowed size of a distribution. However,
it allows processing of non-linear functions over combinations of
utility distributions. Most local-search DCOP algorithms sum to-
gether constraint valuations and then use a max function to make
decisions about the best local variable assignment choice. Sum
functions are easily extendable to discrete distributions, but to take
the maximum of a distribution an algorithm must apply an evalu-
ation function. In our model evaluation functions in E can be dif-
ferent for each variable, but in practice all variables use the same
evaluation function. The place at which a DCOP algorithm takes
a utility distribution and evaluates it using the function in order to
make a comparison is algorithm specific. The earlier such a mea-
surement is taken, the more information about the distribution is
lost. For instance, we could apply the evaluation function immedi-
ately to all constraint valuations and lose all information about the
distribution.

In practice, most local-search based algorithms provide a point
at which the possible values in Dj for variable Xj are tested to see
which is the best given known information about the current val-
ues of all neighboring variables to Xj . To employ the evaluation
function for Xj in a simple algorithm such as MGM[2], all utility
distributions for utility functions involving variable Xj are summed
together for each possible assignment ak ∈ Dj . We then choose
the maximum utility assignment by applying the evaluation func-
tion to these sums and choosing assignment corresponding to the
maximum value. This example only looks at immediate neighbor
assignments because it is based on MGM, but in general any algo-
rithm that uses sum and max functions to make decisions can be
adapted to use utility distributions by summing utility distributions
and using the evaluation function to perform the max comparison.

Evaluation functions can include calculations for the median and
for risk assessment for both risk seeking and risk averse behavior.
In our work we use a risk aversion function that calculates a new

80

weighting for the sorted values in the discrete distribution using
integration over the function 2 ∗ (1 − x)2. This function empha-
sizes worst case scenario utility for our Coordinators agent, avoid-
ing volatile methods that may perform much worse than expected.
An example of this is shown later in Section 5.2.

5. C-TÆMS MAPPING
We can observe that DCOPs naturally optimize global sums of

utility, so mapping a C-TÆMS scheduling problem to a DCOP ap-
pears easy at first. A naive approach could equate the quality pro-
duced by executing methods with utility and optimize the global
sum given a set of constraints. However, the introduction of task
interaction dependencies (non-local effects, NLE) and non-linear
quality accumulation functions makes the job much more difficult.
In order to correctly map the quality of the schedule to a global util-
ity function we need to incorporate the interaction of QAFs, NLEs,
and non-determinism.

5.1 Existing mapping
A mapping for a subset of C-TÆMS to DCOP is proposed in

[12]. The mapping using our formalization is:

• X = Each method is assigned to a unique variable.

• D = Unique domains for each variable containing all possi-
ble start times for the method assigned to the variable.

• U = Three types of utility functions:

– Mutex constraints on all pairs of methods that share the
same agent

– For an NLE between two nodes, N1 and N2, all meth-
ods in the subtree of N1 have a precedent constraint
with all methods in the subtree of N2

– Unary soft constraints on each method that apply a cost
if the method is not scheduled

While this mapping is a good start, it is severely limited. It allows
only sum, min, and max QAFs, and all QAFs in the same problem
must be of the same type (no mixing sum with max QAFs, or taking
the max over a set of sums). It also only allows enables NLEs and
requires deterministic task outcomes, so it cannot handle NLEs that
are contingent upon the outcome of a method or method’s with non-
deterministic quality or duration.

An extension to this mapping added syncsum QAF mappings
and provided for multiple QAF types in the same structure without
using n-ary constraints[1]. We propose a modification to this ex-
tension that includes a full set of QAFs and NLE functions used in
the DARPA Coordinators project.

5.2 Proposed mapping
Our proposed mapping for C-TÆMS to DCOP can be broken

into two distinct parts: variable and constraint mappings. In the
variable mappings we describe the domain values for the variable.
For the constraints we present the utility function rules for involved
variable values. All constraints are binary constraints in this map-
ping and produce discrete utility distributions as presented in Sec-
tion 4.

5.3 Using Utility Distributions
To illustrate the usefulness of our earlier model of DCOP

with Utility Distributions for this domain, lets look at the simple
CTÆMS structure in 1. In this example, Agent1 does not know
what the quality outcomes of Infiltrate the Base (M1) and Attack

the Base (M2) will be apriori. Agent2 knows the outcomes for
Recover Equip. (M3) and Destroy Equip. (M4), but is dependant
on Agent1’s choice of execution because of the enables relation-
ship. Based on the deadlines involved, the agents can either exe-
cute M1+M3 or M2+M4 (M1+M4 is possible but clearly inferior
to M1+M3). How does Agent1 choose whether to execute M1 or
M2? Assuming uniform probability distributions, let us consider
several evaluation functions:

• Average Value - takes the sum of the product of probability
and utility. For M1+M3 this is (0.5∗5+0.5∗10)+15 = 22.5
and for M2+M4 this is (0.5 ∗ 1 + 0.5 ∗ 30) + 10 = 25.5.
M2+M4 is the optimum choice here.

• Minimum Confidence - calculates a percentage separator over
the set of probabilities. A 50% minimum confidence is
the median value. If we took a 25% minimum confidence
separator over these distributions we would get M1+M3 as
5 + 15 = 20 and M2+M4 as 1 + 10 = 11. Thus M1+M3 is
the optimum choice.

• Quadratic Risk Aversion - also calculates a value that tries
to minimize risk. Calculates a new weighting for the sorted
values (from lowest quality to highest) in the discrete distri-
bution using integration over the function 2 ∗ (1 − x)2. For
M1+M3 it evaluates to (0.875∗5+0.125∗10)+15 = 20.625
and for M2+M4 it is (0.875∗1+0.125∗30)+10 = 14.625.
M1+M3 is also the best choice for this function as well.

We see that the average value function does not take any risk into
account. The second function is mildly risk averse but doesn’t re-
ally take into account the whole distribution. The third function is
strongly risk averse and does evaluate over the whole distribution.
The other thing we see is that the evaluation for risk occurs locally
to the distribution. However, the risk for most problems is a global
risk because many methods have non-deterministic outcomes. If
we had 10 methods with similar distributions to M2, executing all
of them significantly reduces the risk of getting a really low total
quality (< 0.1% chance of getting below 30 quality). We could not
determine this if we pre-evaluated the distribution locally as it ap-
pears to be very risky with a 50% chance of returning only 1 qual-
ity. Since DCOP algorithms try to maximize the global solution,
incorporating risk evaluation requires propagation of utility distri-
butions through the constraint network so that evaluation functions
can operate on combined distributions. We integrate this method
of evaluation into the Distributed Neighbor Exchange Algorithm
presented later in Section 6.

5.4 Variables
Variables are created for each method and task in the C-TÆMS

problem. In addition, a special end-time variable is created for each
task with an outgoing NLE at or above it in the structure.

5.4.1 Methods
Method variables are created with all possible start times as val-

ues and an additional value for not scheduled. Additional values are
created for each permutation of a modifier that affects the method,
including a synchronization point and all incoming NLEs.

5.4.2 Tasks
Task variables can have several different sets of values depend-

ing on the type of QAF assigned to the task. These values describe
how quality will accumulate from subtasks and methods. All task
variables contain values for no execution and execution allowed no

81

quality that force children not to execute or to not accumulate qual-
ity (respectively). Max, min, and exactlyone QAFs contain val-
ues representing the children that will accumulate quality. Sum
QAFs and sumand QAFs have a single sum quality value. Sync
sum QAFs contain values for all possible synchronized start times
for descendant methods. All task domains with a sumand QAF an-
cestor also have a modifier flag to force execution if set to a quality
accumulating value.

5.4.3 NLEs
Non-local effects do not have their own variables. However, if

a non-local effect originates at a task, then a special task end time
variable is created for the task. This task end time variable contains
all possible ending times for descendant methods and a value for
not scheduled.

5.5 Constraints
Constraints are created between each related node in the prob-

lem structure. There are four types of relationships we create con-
straints for: task-subtask, task-method, method-method at the same
agent, and to and from nodes in a NLE. In addition special con-
straints are created for synchronization points. The actual imple-
mentation values for constraints will be problem specific, with the
following defined values: Qmax is an upper bound for the maxi-
mum quality of the entire problem structure and QM1 is the quality
distribution for method M1. All hard constraints are enforced us-
ing −Qmax as the utility for a constraint violation.

5.5.1 Task-Subtask
A task-subtask constraint enforces a correct accumulation of

quality up from the methods through each of the QAFs to the root.
Generally, the constraint enforces that a subtask may only accumu-
late quality if the task allows it. Additionally, this constraint propa-
gates information about the forced execution modifier flags so that
a subtask knows if the task is relying on it to produce some qual-
ity. If a task is assigned to accumulate quality, the implementation
depends on the type of QAF:

• max - only the selected subtask may accumulate quality. All
other subtasks must be set to execution allowed no quality.

• sum - all subtasks may accumulate quality.

• min - only the minimum valued subtask may accumulate
quality. All other subtasks must be set to force execution
with no quality.

• syncsum - all subtasks may accumulate quality.

• exactlyone - only the selected subtask may accumulate qual-
ity. All other subtasks must be set to no execution.

• sumand - all subtasks must be assigned a forced execution
modifier flag.

5.5.2 Task-Method
A task-method constraint accumulates the quality for properly

scheduled methods. Thus for a valid scheduled method, this con-
straint returns a value of QM . The value for QM includes any
modification indicated by incoming NLE flags (for example it will
be twice the original method quality if a facilitation flag is set with a
factor 2). A constraint violation occurs if any method is not sched-
uled and is in the set of methods selected for scheduling by the task
value. Again, the implementation for accumulating quality depends
on the type of QAF:

• max - all scheduled, selected methods return
maxMk∈TM

QMk
|TM | . All others return zero utility.

• sum - all scheduled methods return QM .

• min - all scheduled methods return minMk∈TM

QMk
|TM | . Any

unscheduled method is a constraint violation.

• syncsum - all scheduled methods return QM if start time
equals synchronization point. All others return zero.

• exactlyone - only the selected method returns QM . Any other
scheduled method is a constraint violation.

• sumand - all scheduled methods return QM . Any unsched-
uled method is a constraint violation.

An additional special task-method constraint is created from a
syncsum task to all descendant methods. This is the only task-
method constraint between nodes that are not directly connected in
the problem structure. If the method has its synchronization mod-
ifier enabled but its start time does not equal the synchronization
point, −QM is returned for the utility.

5.5.3 Method-Method
A method-method constraint ensures that an agent is not sched-

uled to execute two methods at the same time. A mutex constraint
is created between all pairs of methods at an agent. We prune
all mutex constraints that have no possible overlap. For assign-
ments that would cause overlap, the utility returned is equal to
maxk∈CM −QMk where CM is the set of methods involved in
the constraint.

5.5.4 Non-Local Effects
A non-local effect (NLE) constraint may occur between tasks,

methods, or both. In keeping with the CTÆMS specification, we
decompose non-local effect constraints into only task-method and
method-method relationships. A task-task constraint between T1

and T2 by definition behaves the same way as if the constraint ex-
isted from T1 to all descendant methods of T2. For task-method
NLEs we use the special end time variable to calculate the time at
which the NLE is active. For method-method NLEs we use the start
time plus the duration (which is a distribution) to determine when
the NLE is active. For each NLE type we return a value based on
whether the NLE is active:

• Enables - if enable is not active at method start time, return
−Qmax if method has a sumand ancestor and −QM other-
wise.

• Disables - if disable is active at method start time, return
−Qmax if method has a sumand ancestor and −QM oth-
erwise.

• Facilitate - if facilitate is not active and method modifier flag
is set, return QM − facilitated(QM).

• Hinders - if hinders is active and method modifier flag is not
set, return hindered(QM)−QM .

The CTÆMS specification also allows for proportionally active
NLEs depending on how much quality has accumulated at a task
that is an NLE source. We do not specifically map the proportional
effect, but have constructed soft constraints in such a way that they
encourage facilitation or discourage hinderence effects.

82

6. DISTRIBUTED NEIGHBOR
EXCHANGE ALGORITHM

We now introduce a new algorithm to solve large-scale dis-
tributed constraint optimization problems, the Distributed Neigh-
bor Exchange Algorithm (DNEA). We developed this algorithm
after finding that existing DCOP algorithms that can actually run
on these problem sizes took too many message passing cycles to
converge to solutions in our domain. DNEA is a local neighbor-
hood search algorithm that exchanges potential gains for multiple
assignments to all neighbors in each cycle. DNEA can also be ex-
tended for our model of DCOP with Utility Distributions using the
techniques presented earlier, and this has been done for our solution
to the DARPA Coordinators scenarios in 7.

6.1 Algorithm Phases
Our algorithm is similar in phases to other local value exchange

based algorithms, including MGM, SCA, DBA, and max-sum[2,
3]. These algorithms exchange current variable assignments with
neighbors, compute a maximization function based on neighboring
assignments, and then choose to update the local variable assign-
ment. There are two phases to our algorithm, value exchange and
neighborhood utility exchange. An example of a simple execution
path is shown in Figure 2.

Figure 2: DNEA in action. Given constraint valuations shown
at top and a random starting assignment of A=x, B=y, and C=z,
DNEA finds the optimal assignment in one round of exchanges.
Note how the utility exchange message from B to A in step 2
contains aggregated utility from C.

6.1.1 Value Exchange
For each variable X with domain DX in the DCOP instance, an

associated agent chooses a value to assign the variable from a set of
neighborhood utility valuations. At the beginning these valuations
are zero, so the agent randomly assigns a value to X . On sub-
sequent iterations, the agent will have received a utility exchange
message for each variable that is a neighbor in the constraint graph.
Each utility exchange message includes a utility value for each pos-
sible assignment in DX for X . Each of these values represents the
best local utility the neighboring variable can achieve for each pos-
sible value of X . The agent then sums all the neighbor valuations
together and adds any local valuation X has for each assignment.
The agent then chooses with probability p to change the value of X
to the maximum assignment in this sum.

6.1.2 Utility Exchange
When the agent for variable X receives all new values for neigh-

boring variables of X , it calculates a set of utility exchanges. First,
the agent calculates the local utility at X for each possible assign-
ment in DX to X given the current neighboring variable assign-
ments. Then, for each neighbor Y , the agent calculates its optimal
assignment to X for each value in DY given the current neigh-
boring variable assignments for all other neighbors than Y . This
maximum local utility at X for each value in DY is sent to the
agent for variable Y . After the agent has calculated and sent all
of these utility exchange messages, it waits for updated value ex-
change messages from its neighbors.

6.2 Analysis
The Distributed Neighborhood Exchange Algorithm is fairly

simple to implement and has a similar flow of execution to other
local value exchange algorithms, but calculates a merge of utility
valuations for all neighbors in a single cycle; this drastically de-
creases the number of message passing cycles required for conver-
gence. We define NX as the neighbors of X to be all variables with
whom X has a constraint. Maximum computation per variable per
phase for DNEA is then O(|NX | · |DX |) for value exchange and
O(

∑
Y ∈NX

|DY | · |DX |) for utility exchange. Maximum mes-
sage size for value messages is O(1) and for utility messages is
O(|DX |). The number of messages per phase is the same as other
algorithms as each variable sends one message to each of its neigh-
bors for each phase.

The tradeoff then is that DNEA does more calculation during
utility exchange phase than DSA and SCA2, but less than SCA3
as long as the number of neighbors for a variable is less than the
number of possible values in that variable’s domain, |NX | < |DX |.
From [14] and [2] the calculation per phase for DSA is O(|NX | ·
|DX |), for SCA2 is O(|NX | · |DX |+ |DX | · |DY |), and for SCA3
is O(|NX | · |DX | + |DX | · |DY | · |DZ |). Per message size for
DNEA is larger than DSA which is O(1), similar to DSA2 which
is also O(|DX |), but smaller than SCA3 which is O(|NX |+ |UX |)
where |UX | is the size of all of the constraints at X sent to the
group offerer.

6.3 Comparison with other DCOP algorithms
We tested DNEA against four local search algorithms, DSA and

DBA from [14], and SCA2 and SCA3 from [2]. We made one
optimization for these algorithms that significantly improved their
performance: all variables were allowed to change (or offer a group
change) values if the gain was greater than or equal to zero (instead
of only greater than). We chose these local search algorithms be-
cause they can also scale to C-TÆMS problems containing 1000+
variables.

83

-30

-25

-20

-15

-10

-5

 0

 0 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

U
til

ity

Cycles

DNEA
DSA

SCA2
SCA3

DBA

Figure 3: Graph Coloring Problems: 40 variables (200 cycles)

6.3.1 Comparison for Graph Coloring Problems
We performed comparisons for standard graph coloring prob-

lems that can be found in the DCOP repository at USC [9]. There
are 25 problems that contain 40 variables each, with 120 con-
straints, and 3 possible colors for each variable, with constraint vi-
olations for connected variables of the same color worth -1 utility.
Each problem was run 100 times for each algorithm with different
random number seeds and results are shown as the average global
utility at each message passing cycle in Figure 3.

We observe that DNEA reaches a high utility by cycle 20 and
the highest utility by cycle 40. This was the goal in the creation
of DNEA, to be able to achieve high utility with very few message
passing cycles while keeping polynomial time calculation for each
cycle. We do not show it here, but eventually SCA2 and SCA3
catch up; however, it takes well over 500 cycles to do so. Addi-
tionally, we show that our earlier theoretical comparison of mes-
sage size and calculation matches our empirical tests; averages are
shown in Table 1.

In Table 1 we show two measures taken during each message
passing cycle: non-concurrent constraint checks (NCCC) and non-
concurrent message transfer size (NCSize). For these metrics we
measure the largest number of constraint checks performed and
the largest message processed by any agent during each message
passing cycle. We then sum over all of the cycles to produce a
view of the total non-concurrent constraint checks (NCCC) and to-
tal non-concurrent message transfer size (NCSize). We also show
total constraint checks (TCC), total number of messages (TMsgs),
and total message size (TSize) although these metrics are a simple
sum and do not take into account the parallelism involved. SCA2
and SCA3 exhibit lower total constraint checks because roughly
1/2 and 1/3 of all nodes are actively processing each cycle respec-
tively because of how the algorithms create groups of 2 and 3 nodes
respectively. However, this also means that inactive nodes are idle
and must wait for other nodes to complete processing, so the non-
concurrent (sequential) processing is not lower because of this.

6.3.2 Comparison for Static C-TÆMS
In addition to the graph coloring problems, we apply our C-

TÆMS mapping in a static scenario (the agents are searching for
the schedule with best expected utility but no methods are executed
and scenario time stays at 0). This scenario was run in two parts,
one randomly generating an initial schedule for the agents, and
one using an initial schedule generated by an offline determinis-

Algorithm NCCC NCSize TMsgs TCC TSize
DNEA 19062 6000 54422 249367 1413775
DSA 9439 3600 48177 194388 867186
SCA2 14532 8409 29200 152182 538559
SCA3 22555 77795 26026 82329 780317
DBA 4445 4800 54009 58857 1133794

Table 1: Graph Coloring Problems: 40 variables (200 cycles)

-100000

-80000

-60000

-40000

-20000

 0

 0 10
 20

 30
 40

 50
 60

 70
 80

 90
 100
U

til
ity

Cycles

DNEA
DSA

SCA2
SCA3

Figure 4: OptOP5PMix: ∼100 variables, random initial sched-
ule

-15000

-10000

-5000

 0

 5000

 0 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

U
til

ity

Cycles

DNEA
DSA

SCA2
SCA3

Figure 5: OptOP5PMix: ∼100 variables, given initial schedule

tic solver. Each scenario was run 10 times using different random
seeds. Detailed description of the scenarios (“OptOP5PMix” and
“OptBigReMix”) are provided in Section 8. Results are shown in
Figures 4, 5, 6, and 7.

It is clear that for randomly generated schedules, DNEA con-
verges quickly to the schedule with the best estimated utility. We
see this again at cycle 20 in both Figures 4 and 6. This result led
us to use DNEA as the base algorithm in our Coordinators simu-
lation, as dynamic outcomes during execution may require quick
re-scheduling and possible generation of a vastly different sched-
ule. However, for established schedules DSA and SCA2 are able
to improve them slightly more than DNEA. In all cases SCA3 re-
quires too many cycles to converge to high quality solutions in this

84

-1e+007

-8e+006

-6e+006

-4e+006

-2e+006

 0

 0 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

U
til

ity

Cycles

DNEA
DSA

SCA2
SCA3

Figure 6: OptBigReMix: ∼1000 variables, random initial
schedule

-500000

-400000

-300000

-200000

-100000

 0

 0 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

U
til

ity

Cycles

DNEA
DSA

SCA2
SCA3

Figure 7: OptBigReMix: ∼1000 variables, given initial sched-
ule

domain. We are working on a multi-phase algorithm that can begin
with DNEA techniques and then continue using SCA2 or SCA3.

7. APPLICATION
We have presented a challenging multi-agent coordination prob-

lem, a proposal to use DCOP mappings to solve this problem,
and an algorithm that will solve the resulting DCOP instance. We
now highlight the actual test simulator and some additional support
components that we needed to integrate for a full DCOP solution.

7.1 Timed Simulation
The actual Coordinators project uses a simulation framework

based on simulated time ticks. A master simulation agent tracks
a schedule of agent requests for method executions. The simula-
tion agent sends a pulse message to each agent for each simulated
time tick. Actual simulation runs set the simulated time per tick to
one second of real time, with the first methods to execute typically
available beginning at tick 30. Agent communication is bounded
by a message passing infrastructure that allows only around 20-50
messages to be sent from any agent per second. These compu-
tational and communication bounds place tight restrictions on the
agent reasoning capabilities.

7.2 Support Components

1. Local Scheduling Agent - A small piece of code that in-
spected current DCOP variable assignments and determined
when it should request methods to execute. It uses a horizon
policy that freezes variable assignments for methods that will
be executed in the near future.

2. Dynamic Distributed Control (DDC) - A meta-level con-
troller of the DCOP process. Following a similar approach
to the one presented in [15], we create a breadth-first over-
lay tree on top of the constraint network to propagate global
utility. This provides a way to safely randomly restart the un-
derlying DCOP search process to find a better solution over
time.

 0

 0.2

 0.4

 0.6

 0.8

 1

Naive
DNEA

M
DP

FTS
PCM

%
 o

f o
pt

im
al

Approach

0.538

0.910 0.893 0.904 0.920

Figure 8: OptOP5PMix: Solution Quality as % of optimal

 0

 0.2

 0.4

 0.6

 0.8

 1

Naive
DNEA

M
DP

FTS
PCM

%
 o

f o
pt

im
al

Approach

0.287

0.964

0.829

0.965 0.974

Figure 9: OptBigReMix: Solution Quality as % of optimal

8. RESULTS
We ran tests using the Coordinators simulation for a set of

medium sized problems and a set of large sized problems. Both sets
were generated in such a way that an offline MDP solver could con-
struct an optimal policy. The medium sized set contains 50 prob-
lems with an average of 26 agents, 104 tasks/methods, 16 NLEs,

85

and 112 ticks of execution (problem set “OptOP5PMix”). The large
sized set contains 8 problems with an average of 15 agents, 1018
tasks/methods, 137 NLEs, and 1680 ticks of execution (problem
set “OptBigReMix”). Results are shown in Figure 8 and Figure 9
as the percentage of optimal quality (as determined by an offline
MDP solver) achieved by each approach.

For comparison, we show a baseline strategy that used no coor-
dination and simply executed the initial schedule given in the prob-
lem, and opportunistically inserted unscheduled methods when
they would not conflict with future scheduled methods (labeled
Naive). We also show results for the three teams that took part
in the Coordinators second phase testing (labeled using abbrevia-
tions from Section 2.1). Our DCOP approach is shown using the
Distributed Neighbor Exchange Algorithm (DNEA).

9. ANALYSIS
We see clearly that our DCOP approach can achieve much higher

performance than the baseline. Our mapping from C-TÆMS to
DCOP has succeeded in representing the underlying problem. We
also see that DNEA adequately handles large scale DCOP instances
with 1000+ variables and meets the tight computation and commu-
nication bounds required for the Coordinators simulation. Using a
matched pair t-test, and a Wilcoxon signed-rank test for the “Op-
tOP5PMix” set, we find that our solution is statistically the same
as the FTS, PCM, and MDP approaches. On the larger “OptBi-
gReMix” set we find that our solution is statistically the same as the
FTS and PCM approaches, and is significantly better than the MDP
approach (p < 0.00001 for matched pair t-test and p < 0.001 for
Wilcoxon signed-rank test).

10. CONCLUSION
We have presented a DCOP based solution to a very complex,

real-world problem domain. To achieve the fully integrated so-
lution, we developed a new problem representation mapping, in-
troduced extensions to the DCOP formalization for problems with
uncertainties, and introduced a new scalable DCOP algorithm that
achieved a high level of performance for this domain, comparable
to the two best performing Coordinators teams. These results show
that DCOP techniques can be used to solve large-scale, real-world
problems, and that continued work in this direction is very promis-
ing. Our immediate future work will be to extend our solution to
handle dynamic changes to the CTÆMS task structure.

11. REFERENCES
[1] J. Atlas and K. Decker. Task scheduling using constraint

optimization with uncertainty. In AAMAS ’07 - Workshop on
Coordinating Agents’ Plans and Schedules, CAPS, pages
25–28, 2007.

[2] E. Bowring, J. P. Pearce, C. Portway, M. Jain, and M. Tambe.
On k-optimal distributed constraint optimization algorithms:
new bounds and algorithms. In AAMAS ’08, pages 607–614,
Richland, SC, 2008. International Foundation for
Autonomous Agents and Multiagent Systems.

[3] A. Farinelli, A. Rogers, A. Petcu, and N. Jennings.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. In AAMAS-08, 2008.

[4] B. Horling et. al. The TAEMS White Paper, January 1999.
[5] R. Junges and A. L. C. Bazzan. Evaluating the performance

of dcop algorithms in a real world, dynamic problem. In
AAMAS ’08, pages 599–606, Richland, SC, 2008.
International Foundation for Autonomous Agents and
Multiagent Systems.

[6] R. T. Maheswaran et. al. Predictability & criticality metrics
for coordination in complex environments. In AAMAS ’08,
pages 647–654, Richland, SC, 2008. International
Foundation for Autonomous Agents and Multiagent Systems.

[7] R. T. Maheswaran et. al. Taking dcop to the real world:
Efficient complete solutions for distributed multi-event
scheduling. In AAMAS ’04: Proceedings of the Third
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 310–317, Washington, DC, USA,
2004. IEEE Computer Society.

[8] P. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guarantees. In AIJ, pages 149–180, 2005.

[9] J. P. Pearce. USC dcop repository, 2005.
[10] A. Petcu and B. Faltings. Dpop: A scalable method for

multiagent constraint optimization. In IJCAI 05, pages
266–271, Edinburgh, Scotland, Aug 2005.

[11] S. F. Smith, A. Gallagher, and T. Zimmerman. Distributed
management of flexible times schedules. In AAMAS ’07,
pages 1–8, New York, NY, USA, 2007. ACM.

[12] E. Sultanik, P. J. Modi, and W. Regli. On modeling
multiagent task scheduling as a distributed constraint
optimization problem. In IJCAI, 2007.

[13] S. Witwicki and E. Durfee. Commitment-driven distributed
joint policy search. In AAMAS ’07, pages 1–8, New York,
NY, USA, 2007. ACM.

[14] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis
and application of distributed constraint satisfaction and
optimization algorithms in sensor networks. In AAMAS 03,
pages 185–192, New York, NY, USA, 2003. ACM Press.

[15] R. Zivan. Anytime local search for distributed constraint
optimization. In AAMAS 2008 - DCR Workshop (Distributed
Constraint Reasoning), 2008.

86

Towards Efficient Coordination in Open MAS using
Graphical Utility Models

Nicolas Stefanovitch Amal El-Fallah
Seghrouchni

Université Pierre et Marie
Curie - Paris 6

UMR 7606, LIP6
4 Place Jussieu, Paris,

F-75005 France

Frédéric Peschanski

ABSTRACT
This paper presents a prospective work on the problem of
efficient agent coordination in open and decentralised multi-
agent systems (MAS). We use a graphical utility model, the
General Additive Independence networks (GAI-net), as the
basic tool for coordination inside MAS. We extend this for-
malism and propose two algorithms in order to take into
account inherent MAS operational characteristics. The first
algorithm is able to deal efficiently with a restricted notion
of openness. It provides an optimal solution but requires a
central coordinator. The second algorithm we propose takes
moreover into account the decentralised nature of MAS. It
is an approximate algorithm with performance guarantee.

Keywords
graphical models, junction tree, social welfare, multi-agent
systems, openness, decentralisation

1. INTRODUCTION
Multiagent systems are a versatile tool, mainly a way of

conceiving the organization of complex systems as multiple
self-behaving local entities (agents). The purpose of such a
system is to solve a given problem. The originality of the
MAS approach is to distribute the data, the computing fa-
cilities and the system’s goals within the agents. Each agent
has a set of goals he is due to accomplish by taking his own
decision. However because agents are part of the same sys-
tem, they are tied together through a common environment.
The effects of each agents’ decisions might then affect the
outcome of other agents’ decisions. Agents, either cooper-
ative or selfish, therefore have to coordinate their decisions
in order to maximise their own satisfaction. Such a satisfac-
tion can be described using utility functions. A common way
of describing the optimality of a joint action is to measure
its social welfare, which is the sum of the utility of all the
agents. Therefore coordination between benevolent agents
should aim at maximising this function. However the direct
maximisation of this function implies a costly computation
exponential in the size of all the decision variables present in

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the MAS. In addition such an approach fails to exploit the
local independencies existing between agent’s utility func-
tion. Graphical utility models, such as the GAI-networks [1]
framework propose an efficient solution to this kind of max-
imisation problems. In this paper we are interested in op-
erational issues when using such a framework on top of a
MAS. As a matter of fact, the decentralised and open na-
ture of MAS needs to be taken specifically into account so
as to design efficient coordination protocols for real-world
MAS.

Graphical models were first introduced with Bayesian net-
works so as to make efficient computations over probabil-
ity distributions. More precisely graphical models are used
to store multi-attribute functions into a compact form ex-
ponentially smaller than their flat representations. Such a
compact representation is possible only if a multi-attribute
function is decomposable following a certain independence
relation. A graphical structure represents the interaction be-
tween the parameters of the function. A set of sub-functions
is attached to the nodes of this graph. Inference is performed
using a message passing scheme, known as belief propaga-
tion. This algorithm is exact only for acyclic graphs. A
secondary graphical structure, the junction graph, must be
build in order to perform exact computation when the graph
is cyclic. This graph is tree structured and it is obtained by
applying the variable elimination algorithm over the primary
graphical structure. Graphical structure are generalised by
the factor graphs and the sum-product algorithm [5].

The link between MAS and graphical models is particu-
larly attractive as graphical models capture the local struc-
ture of a MAS and proposes moreover an inherently dis-
tributed inference algorithm to solve inference tasks. Sev-
eral works have already explored this link, and can be de-
composed roughly into three categories: Distributed Con-
straint Optimisation Problem (DCOP) [12] for collabora-
tive agents, graphical games for competitive agents, and
distributed probabilistic inference. The domain of applica-
tion is wide as it concerns almost any aspect of multi-agent
interaction, and ranges in wireless sensor network (WSN),
multiagent scheduling or teamwork planning for naming few
of them.

Graphical games [6], explores a non-cooperative agent set-
ting and is concerned with the computation of Nash equi-
libria, graphical models are used purely for their compu-
tational advantages. They are solved through the use of
a constraint satisfaction solver, using variable elimination
or backtracking techniques. While we are concerned with

87

a distinct problem, the mechanisms are nevertheless simi-
lar. Notably [4] sketches an approach to compute approxi-
mated Nash equilibria over a junction tree with a principle
similar to the one we use in the approximated algorithm
we present in this paper. Multi-agent Influence Diagrams
(MAID) [3], are graphically standard influence diagram rep-
resentations where decisions and reward nodes correspond to
distinct agents. The problem there is finding Nash equilibria
over expected utility of the agents using backward induction,
and is therefore merely related to our work. Variable elimi-
nation have been used in [2] to solve approximated factored
MDP for MAS planning, however the approach is totally
centralised. Finally, in [7] the authors consider the prob-
lem of robust probabilistic inference in open WSN, similar
to our concerns. Their anytime approach is very interest-
ing, however the inference mechanism is specific to Bayesian
networks, while we are interested in utility functions.

The DCOP domain is highly linked to our work as GAI-
networks maximisation is in fact a constraint optimisation
problem. The work more closely matching ours is the DPOP
protocol [9]; which implicitly builds a junction graph when
building a search tree over the interaction graph. However,
being able to separate the selection of an order on the vari-
ables and the selection of a root, which is not possible in
DPOP, is an important concern in our work so as to bound
the total running time. In [11] the authors consider openness
only in the cardinality of the variables. In [10] the authors
propose ODPOP an extension of DPOP dealing with the
general case of openness: both in value and in structure of
the graphical model. Our work focuses on re-using previ-
ously made computations so as to improve the reactivity.
In the case of a single modification the ODPOP framework,
while being also able to re-use past computations fails to do
it optimally as we explain how. In the case of a multiple
modifications, the ODPOP framework proposes to create
as much centralized instances of the inference algorithm as
there is variables in the system. This approach is burden-
some as the transmitted messages are of exponential size,
and moreover it is totally centralised. Our approximate ap-
proach on the contrary makes parsimonious use of resources
and takes into account the decentralisation of the MAS.

This paper is organised as follows: in section 2 we present
an intuitive connection between GAI-nets and MAS coor-
dination, and pose the problem settings. In section 3 we
present a first direct extension of the GAI-net framework
allowing exact and efficient inference in open MAS, under
a restricted notion of openness. In section 4 we present an
approximated algorithm with performance guarantee, which
addresses the issue of decentralisation, allowing faster coor-
dination for certain classes of MAS, and finally in section 5
we conclude.

2. DISTRIBUTED GAI-NET INFERENCE

2.1 GAI-net
GAI functions can be efficiently computed using a graphi-

cal model called a GAI-network [1]. This model proceeds by
building a junction graph from the dependencies expressed
in a set of sub-utility functions. The requests are processed
along this graph, using an instantiation of the sum-product
algorithm for utility functions. While a junction graph has
a forest structure, we will consider for simplicity purpose
that the junction graphs we deal with are tree-structured.
In this work we are only interested in the maximisation re-

1

2

3

4

56

7

ABH

ABCI

ACJD

ADKE

AEFLFGM

GN

Figure 1: Dependencies between MAS’s agents

quest, which computes a maximal value for the set of utility
functions U from which a GAI-net G has been built.

The multi-agent systems we consider are constituted of a
set A of agents, each of them possessing an utility function
ua ∈ U describing his preferences. The domain of an utility
function u is dom(u), which is a subset of the set X of all the
decisions variables of the system. Each agent has the goal of
maximising his own utility. However as agents share a com-
mon environment, their decisions are tied. Such an interac-
tion is represented between two agents by a non null inter-
section of the domains of their utility functions. Therefore
the agents, need to coordinate so as to ensure a good perfor-
mance. We consider in this work benevolent agent cooperat-
ing so as to maximise the welfare utility w(x) =

P

a∈A ua(x)
of the system. In a mathematical setting, such a problem
is precisely the one that is efficiently addressed by GAI-
networks. As the GAI-net inference algorithm is inherently
distributed, the setting where one agent represents a clique
of the junction graph is already naturally addressed by this
algorithm.

However even assuming the unlikely hypotheses of one
agent per clique, this framework fails to be plainly satis-
factory from a MAS perspective. The reason is that MAS
are more than just distributed systems, MAS are open and
decentralised distributed systems. These two characteris-
tics raise serious operational issues that are not taken into
account within the mathematical formulations.

2.2 GAI-net inference over a MAS
Before focussing our attention on those issues, we will

first describe how the standard GAI-net inference algorithm
performs on a MAS. We consider a MAS A composed of
seven agents whose respective preferences ranges over: ABH,
ABCI, ACJD, ADKE, AEFL, FGM, GN. This example will
be used throughout the paper, it is depicted in Figure 1,
where vertices represent agents and edges link any two agents
sharing at least a common variable.

So as to give an intuitive MAS feeling of the procedure, we
will first start by considering how the agents would interact
without a GAI-net. As the goal is to maximise the welfare
utility, the agents could collect in one of them all the utility
functions of the system. Such an approach is both unde-
sirable from a MAS and from a computational perspective.
Firstly because this approach is totally centralised, a failure

88

in the collecting agent cripples the whole system. Secondly,
from a computational perspective, the centralising agent not
yet knowing about GAI-nets would merely construct and
perform an exhaustive search exponential in |X |. This ap-
proach fails to exploit the existing additive independences
between the agents’ utilities. Now let us consider a second
better coordination scheme: each agent propagates his util-
ity tables only to agents that share decision variables with
them. Upon receiving a message an agent creates a new mes-
sage containing all the information that he has received but
not yet transmitted, be it his own utility table or another
messages. While each agent shares their information with
random neighbors, let us consider the case that an agent
aX happens to possesses a set T of utility tables containing
all the utility tables of A depending on a variable X ∈ X .
This agent is then already able to realise a maximisation of
U over X: for every value of X he selects a corresponding
maximal value of T over the domain D = dom(T)−X. As
aX does not know the optimal values of D he cannot already
give to X its optimal value. Such an operation is the collect
procedure in the GAI-net framework, and it results in the
creation of a new utility table over D. Such an utility table
summarises the utility information of various agents into a
new utility table that can also be propagated, such tables
are referred to messages or separators. The agent aX has
played the role of a clique of label dom(T), and by creating
a new message of domain D has implicitly binded together
all the variables of D, so therefore every agent receiving this
table would have D as a subdomain.

This process of eliminating one after another each vari-
able is known as variable elimination. While this approach
proceeds in a clear multi-agent way, its efficiency is still de-
batable nevertheless. As a matter of fact the computational
complexity of this second approach is exponential in the size
of the label of the biggest clique, which without care could
be as big as |X |. The size of the cliques dynamically created
by the elimination procedure depends on the elimination or-
der of the variables. Finding an optimal elimination order,
in the sense of the minimal cardinality of the biggest clique,
is a NP-Complete problem. However the polynomial heuris-
tic of selecting the variable in the order of their increasing
cardinality builds near optimal cliques. In GAI-net this is
done through the Markov graph of U , the Markov graph of
our example MAS is given in Figure 2. This graph is dy-
namically updated: each time a variable X is eliminated,
the set D of its neighbors is updated. When the elimination
is completed, each clique is linked to the clique created dur-
ing the elimination of the least recent variable in its label
- corresponding to the creation of a message. By doing so,
the structure we obtain is an elimination tree. It does not
take into account that multiple variables may be eliminated
at the same time. However, merging the subsuming cliques
into subsumed cliques ensures that no unnecessary message
will be computed. The resulting structure is the junction
tree of a near-optimal GAI-net of U .

Let us get back to our MAS. While we started with the
utility stored in the agents, we dynamically created cliques
containing utility tables not necessarily originating from an
utility of U , but from messages created by the agents. We
have proceeded in such a way so as to give an intuitive con-
nection between GAI-nets and MAS: from a multi-agent per-
spective a GAI-net is a dynamically generated near-optimal
coordination protocol for the maximisation of the social wel-
fare of the system. In practice no actual computation is

A

H B

I

C J

D

K

E

L

F

M

G

N

Figure 2: Markov graph of MAS’s variables

ABH

ABCI ACJD

ADKE AEFL

FGM

GN

1

2 3

4 5

6

7
AB

AC

AD

AE

F
G

u1

u2 u3

u4
u5

u6

u7

Figure 3: Junction tree of the MAS

made during the building of this structure. Computations
are made after the following initialisation phase. Each ta-
ble u ∈ U is allocated to one of the clique c of G such that
dom(u) ⊆ dom(c). A clique is a role that can be played
by any agent. From a DAI perspective, this is just a paral-
lelization problem, but from a multi-agent perspective there
is no special-purpose computational agent, and a reasonable
compromise between the agent’s privacy and necessary infor-
mation propagation is to attribute the role of a clique to one
of the agents whose utility table or messages is associated
with. It is heuristically desirable so as to minimise band-
width usage and completion time that this agent be the one
with the biggest clique cardinality. The last point so as to
have a fully-functioning GAI-net working on top of a MAS,
is to give an arbitrary direction to the separators of the junc-
tion tree. By choosing a root clique the structure becomes
ordered, and knowing the utility attribution to cliques, and
the clique attribution to agents, a near-optimal structure
of interaction between the agents is automatically derived.
We present the resulting junction tree for our MAS exam-
ple in Figure 3, and the derived interaction structure when
choosing arbitrarily the clique ABCI as the root in Figure 4.

The GAI-net maximisation algorithm proceeds in the fol-
lowing way: the root calls the collect procedure over each of
his neighbors. Those neighbors, prior to maximising their lo-
cal utilities and set of received messages, recursively call the
collect procedure over their neighbors except the node that
called the procedure over them. Once the root node received

89

1

2

3

4

56

7

ABH

ABCI

ACJD

ADKE

AEFLFGM

GN

ΦAB

ΦG

ΦF

ΦAE

ΦAD

ΦAC

Figure 4: Message exchange inside the MAS during

inference

all its messages, it optimises its local values, and starts a pro-
cedure called distribute: each node upon receiving a partial
assignment of optimal values of X completes this assign-
ment with their optimal local values and transmits it recur-
sively to their neighbors. Optimising the partial assignment
computed at the root level is globally optimal because the
message received by the root contains a summary of all the
information in the system. Optimising partial assignment
at the node levels of non clique node is globally optimal be-
cause the way the junction tree is constructed enforces the
running intersection property. This property states that if
a variable appears in two cliques, it also appears in all the
cliques on the path joining them. A variable assignment can
therefore be chosen only once, which prohibits inconsistent
assignments. We refer to [1] for the formal description of
the model and algorithms.

2.3 MAS specificities
The GAI-net inference mechanism we have just presented

is very interesting for representing MAS coordination as it
captures the locality of interactions and is naturally dis-
tributed. However it fails being fully satisfactory for MAS
in two regards: openness an decentralisation. We introduce
in this subsection these two issues.

2.3.1 Decentralisation
Decentralisation can be understood under two accepta-

tions. In distributed systems, this means that there is no
single point of failure. Such a point of failure can be a cen-
tralising agent with global information about the system, or
an agent playing an unique role in the system. In this setting
replication of critical roles is a way to ensure the robustness
of the system. While this is also a matter, decentralisation
in MAS encompasses a distinct notion which deals with their
inner structure. Decentralization in MAS means that every
agent has local knowledge and is involved only in local inter-
actions, therefore even a robust centralising agent is not an
acceptable solution. We are in this work mainly interested
with the MAS aspect of decentralization. Making robust the
unique clique roles by replicating them, while necessary, do
not fall into the scope of this paper. In the remainder of this
paper we will be concerned only with the properties of the

inference procedure. Let us just say that the junction tree
can be constructed in such a decentralised way. Moreover,
the knowledge of MAS’s Markov graph can be constructed
in an incremental and local way, with one agent responsible
for each variable.

2.3.2 Openness
Openness signifies that the system is dynamic and inher-

ently uncertain. The system can therefore change unexpect-
edly. From an agent perspective this means that agents can
enter or leave the system at any moment. Such dynamic
changes have an impact over the task performed by the
agents in the system. As agents carry with them their pref-
erence utility, this means that the mathematical form of the
welfare function is constantly changing. As a consequence,
previous agreements may fail to be optimal, and moreover
the coordination structure represented by the GAI-net of the
system may become clearly non-optimal. Those two issues
tied to openness are of critical importance, and are totally
overlooked in the standard GAI-net framework. We will in
the remainder of this paper present two solutions address-
ing the first of the two issues: ie. dealing with changing
clique values. We thus make the restrictive assumptions that
agents entering and leaving the MAS do not change MAS’s
Markov graph, ensuring the structure of the junction tree
remains unaltered. We make this assumption because even
slight changes in Markov graph or the elimination order may
lead to almost unrelated junction tree. Such a general prob-
lem is beyond the scope of this paper. Dealing with open-
ness in the value of the sub-functions already poses problems
which are, to the best of our knowledge, unaddressed. This
paper is a first and necessary step towards the general case
of openness.

3. EXACT METHOD
We present here an extension of the standard GAI-net in-

ference algorithm which is able to deal with simple changes
in the set U . One way to address the problem is to restart
the inference from the beginning. However such an approach
is not wise as only a slight change has happened: we would
rather try to exploit as much as possible the already per-
formed computations. Let us see how this is possible in an
introductory example.

Consider the interaction structure that we have described
in the last section which is depicted in Figure 4. Let us sup-
pose that agent 6 revises his preferences or that a new agent
whose utility’s domain is a subset of FGM enters the sys-
tem and that his utility is attributed to clique FGM. Such
a modification has no impact on the message computed by
agent 7. However, agent 6 must recompute its message to
clique AEFL on agent 5. Once agent 5 receives this new mes-
sage, he therefore also has to recompute his own message.
This chain of recomputations propagates through the junc-
tion tree until the root is reached, as the root is the only
clique which does not compute messages. The root then
computes its optimal local values and starts a distribution
phase which has to reach every clique. Fig. 5 presents how
the communication structure is affected, recomputed cliques
and messages are underlined.

The computational complexity of this procedure is expo-
nential in the size of the biggest clique on the path p between
the altered clique and the root. From a computational com-
plexity point of view it is therefore interesting to minimise
the length of p so as to minimise the chances of encountering

90

1

2

3

4

56

7

ABH

ABCI

ACJD

ADKE

AEFLFGM

	GN

ΦAB

ΦG

ΦF

ΦAE

ΦAD

ΦAC

Figure 5: Message exchange inside the MAS when

modification occurs

the clique with maximal size of G. From an agent perspec-
tive, computational complexity is not as important as the
waiting time before a new decision can be made. This time
is proportional to |p|.

As any clique may be chosen to start the inference, the
worst case is therefore a path of length of the diameter δG

of G. If we consider that a modification can affect all the
cliques with equal probability, then the average time is pro-
portional to δG/2. Changing the root position has therefore
not impact on this mean time, but has however an effect on
the maximal time. By placing the root node in the middle
of the longest path of G we can ensure that the maximal
waiting time would be always inferior or equal to δG/2. The
selection of the root is an irrelevant topic in the standard
GAI-net framework that has an impact in a MAS setting.
As a GAI-net is tree-structured, such selection can be per-
formed in O(n) [8]. Inference algorithm corresponds with
few modifications to algorithms 3 and 4 given in the next
section.

We have shown how it is possible to minimise the num-
ber of computations in order for the agents to re-coordinate
efficiently when a modification occurs in a clique. Moreover
multiple such modifications can occur concurrently in vari-
ous cliques. However this solution still fails to be satisfactory
as the clique that has the root role centralise the inference
procedure. While the clique role may be made redundant or
transferable to another agent in case of failure, there is still
the concern that wherever a modification occurs in the MAS,
a collect phase has to be propagated throughout all the net-
work. We would rather like to define a procedure which is
able to take into account the local properties present in the
MAS, and turn back to computations on the global function
only when necessary.

By examining what happened in the above example, we
can see that the root node acted as barrier blocking the
modifications appearing in one part of the junction tree to
expand further. An intuitive idea would therefore be to mul-
tiply the number of root nodes on the junction tree. This
would first reduce the length of p, and moreover more closely
match the locality of MAS’s structure. We present in the
next section how we concretise this idea. The solution we
propose is an approximate algorithm with performance guar-

antee.

4. APPROXIMATE METHOD

4.1 General description
Before describing our method, let us start by describing

what would be a first bad naive approach. Let us consider
a GAI-net with n roots. A simple way of dealing with it is
having root nodes ignore each other. Such an approach is
equivalent to building n distinct GAI-net on top of the same
agents, which is computationally burdensome as the number
of tables and computations would be multiplied by n. While
being clearly inefficient, another more serious problem lies
within: if multiple modifications occur concurrently, each
root node would optimise locally its variables before the
other modifications reach him and propagates assignment
values potentially incoherent with the ones propagated by
the other nodes. The resulting performance would be sub-
optimal and unbounded.

Our approach consists in segmenting G in various partially
independent subgraphs. This is done by selecting a certain
number of nodes R of G that will play the role of local-roots.
This set of root nodes is selected so as to ensure the property
that every non root node has a maximal distance of K to at
least one node in R. The set of root nodes performs a local
collect over the nodes they are connected with. Once this
collect is performed, a new GAI-net GR is constructed from
the information collected by the local roots. By optimising
GR the roots coordinate on a common assignment x∗

R over
the set XR = ∪u:cl(u)∈Rdom(u) their variables. Once this
agreement has been made, the roots propagate the informa-
tion about this partial instantiation over the subgraphs they
are connected with. This coordination phase is necessary so
as to ensure that the propagated assignments are coherent,
as each subgraph may be connected to multiple roots. The
instantiation x∗

R in G induces a new GAI-net G′ constituted
of a set SG′ of unconnected induced subgraphs. Each of
those subgraphs can therefore be optimised independently
and locally.

4.2 Algorithm

4.2.1 Initialisation
The construction of the junction tree G is the same as the

one presented in section 2. The only difference here lies in
the selection of the set of roots R. We have to build R in a
way ensuring that any other node of G is distant of at most
K to at least one root. So as to ensure this property, we
propose the following heuristic, formalised in alg. 1 and alg.
2. This procedure is a simple search algorithm that starting
from an arbitrary clique ri labels any clique at a distance of
K +1 from ri as a root node and any clique at a distance of
K as a cut node. Cut nodes artificially seperate the junction
tree into sub trees: all the nodes comprised between a root
r an its cut nodes (included) are attributed to r, and there-
fore would respond to collect request only originating from
r. This is of importance so as not to count several times
the information of the non-root nodes at the level of GR.
The results would be sub-optimal for the welfare function
and without performance guarantee. We take the opposite
stand: instead of counting more information in the function
w′ optimised by GR, we count less information in such a way
that w′ is as close as possible to w by inferior values. This
labelling procedure is heuristical, as the number of roots and

91

cuts is clearly not minimal with respect to the desired prop-
erty, ie. that each node of the graph is distant from at least
K from a node in R. In fact the labelling procedure labels
nodes distant from K +1 and not 2K +1 in order to ensure
that this property will be satisfied. This problem is highly
related to problem of the p-medians, which is NP-complete
for the general case and which can be solved in 0(p · n2) for
trees [13]. The p-median is the problem of finding a set of
fixed size such that the distance from every other node to
this set is minimised. In our setting the size of R is not fixed,
but the maximal distance is. Therefore the minimal size of
R such that the distance constraint is verified can be done
by launching the p-medians algorithm with incremental val-
ues of p. However finding efficiently such a set, is beyond
the scope of this paper which aims at presenting the basic
principles behind the multi-root approach.

Algorithm 1 labelRoot(node n, node caller)

1: n.isRoot ← True
2: n.caller ← caller
3: n.nextRoots ← {}
4: n.elimVars ← dom(n)
5: for all c : c ∈ ΓG(n), c 6= caller do

6: labelCountdown(c,n,n,K+1)
7: end for

Algorithm 2 labelCountdown(node n, node caller, node
localRoot, int value)

1: if value = 0 then

2: labelRoot(n,caller)
3: else if value = 1 then

4: n.isCut ← True
5: n.cutVars ← dom(n)
6: for all c : c ∈ ΓG(n), c 6= caller do

7: n.cutVars← n.cutVars - (dom(c) - dom(localRoot))
8: end for

9: else

10: n.elimVars ← dom(n) - dom(n.caller)
11: for all c : c ∈ ΓG(n), c 6= caller do

12: labelCountdown(c,n,localRoot,value-1)
13: end for

14: end if

We continue presenting the idea of our algorithm on our
previous MAS example. First let us consider that the GAI-
net have been built and that the labelling procedure starts
for K=2 with clique ABCI as ri. In this way ADKE will be
selected as a cut-node, and AEFL as an another root. The
initialisation algorithm then stops and the edges are oriented
towards their respective roots. The result is shown in Fig-
ure 6. Messages and cliques are written with variables in
parenthesis. This indicates what actual utility tables would
be computed if we wanted the multi-root approach to give
exact optimal results. As it appears on the figure, this ap-
proach augments some cliques and messages’ sizes, and even
increase the size of two maximal cliques. This is a normal
behaviour as proceeding in such a way is the same as using
a non-optimal elimination order: the running intersection
property is conserved but at the possible expend of an ex-
ponential increase in the size of the cliques. We take the
other alternative: we keep the cliques at their optimal size,
but the variables belonging to the intersection of a cut-node

1

2

3

4

56

7

ABH

ABCI(E)

ACJD(E)

ADKE

AEFLFGM

GN

ΦAB

ΦAC(E)

ΦAD(E)

ΦG
ΦF

ΦA(E)

Figure 6: Derived MAS interaction in a multi-root

setting

and its root neighbors are removed from the domain of the
cut node. Cliques and messages’ sizes therefore remains un-
changed. However the way variables are removed from the
domain of cut node must be done in a principled way.

4.2.2 Approximation
Taking the max over the eliminated variables is not sat-

isfactory as the assignment of variables agreed by the roots
may imply selecting a value in a cut node inferior to what
was expected, resulting in a lower performance. This is pre-
cisely the reason why after the optimisation of GR we op-
timise conditionally on x∗

R the whole subgraphs of SG′ and
not only the cut nodes of G. In order to bound the per-
formance of the algorithm we will therefore take the min of
the eliminated variable, the value computed by GR is thus
a lower bound of w.

The approximation is done at the level of the cut nodes of
C. A cut node c is adjacent to exactly one another non root
node n which is connected to the root rc on which depends
c. The cut node c is also adjacent to zero or multiple roots
Rc ⊂ R. The node c will have to modify its utility table u
into a new table u′ in such a way that all the variables it
shares with root nodes are not present in u′. However, when
rc and c share common variables, these can be left in the
domain of u′ even if they appear in the domain of a root in
Rc. The reason is that by removing variables from dom(u′)
we want to prevent conflicting variable assignments to occur,
but when such variables are present in rc their values will
be negotiated during the coordination phase in GR. The
variables to be removed from c’s domain are then given by:
dom(c) ∩ (dom(RC)− dom(rc)). On the MAS example this
signifies that while AEFL∩ ADKE = AE, only the variable
E must be removed from the cut node ADKE.

4.2.3 Inference
The coordination at the level of GR is made using the

exact algorithm presented in section 3. After that coordi-
nation, all the cliques of G instantiate their utility tables
according to the values of x∗

R, resulting in a partition of
G in the set SG′ of induced subgraphs. The resulting in-
duced cliques are then used to build one new GAI-net per
subgraph which can be solved independently of the others.

92

Algorithm 3 alterClique(node n, set of tables Uin, set of
tables Uout)

1: n.localU ← n.localU - Uout ∪ Uout

2: if n.isCut then

3: n.localU ← minn.cutV ars n.localU
4: end if

5: n.mess ← maxn.elimV ars n.localU + n.collectedU
6: n.locOpt ← argmaxn.elimV ars n.localU + n.collectedU
7: inverseCollect(n,n.caller,n.mess)

Algorithm 4 inverseCollect(node n, node caller, table u)

1: n.localU ← removeBySender(n.localU,u.sender) ∪ u
2: n.mess ← maxn.elimV ars n.localU + n.collectedU
3: n.locOpt ← argmaxn.elimV ars n.localU + n.collectedU
4: if n.isRoot then

5: {begin new coordination phase with the other roots}
6: else

7: inverseCollect(n,n.caller,n.mess)
8: end if

This instantiation results in a decrease of the size of some
cliques of SG′ . Let us consider a clique c which depends on
n variables, p of which are present in XR. So as to compute
u′

c a computation exponential in (n− p) must be performed
and a table of the same size must be stored. Here a trade-off
complexity for memory can be implemented: caching a num-
ber exponential in p of tables of size exponential in (n− p)
resulting in a total memory consumption per clique of two
times the original one. Such a choice depends on the fre-
quency of the changes compared to the time to recompute
all the sub-tables. G′ is then optimised, and the union of
x∗

R and x∗
R̄ gives the optimal value xMR of the approximate

method.
In our example, the set R is constituted of ABCI and

AEFL. As these cliques share a common variable, they are
connected in GR, therefore constituting a tree. So as to
coordinate one root of R, ABCI, is chosen as the root of GR;
AEFL therefore sends its message to ABCI. The message
exchanged during the roots’ coordination is depicted with a
dashed arrow in Figure 6.

4.3 Bounds

4.3.1 Performance
Mathematically our approach is equivalent to computing

first the optimal solution x∗
G′ of G′, then considering the

instantiation x∗
R, restriction of x∗

G′ over XR, to optimise G
conditionally on this instantiation:

xMR = {argmaxxR̄∈X−XR
G(xR̄/x∗

R)} ∪ x∗
R

A lower bound of w(xMR) is w′(x∗
R). Let cl(u) be the func-

tion that returns the clique to which an agent’s preference u
has been attributed. We have w′(x) =

P

u:u∈U,cl(u)/∈C u(x)+
P

u:u∈U,cl(u)∈C minxc=u.cutV arsu(x/xc)

An easily computable lower bound of w′(x∗
R), noting M

the maximal utility in a clique and x∗ the optimal solu-
tion of G, is w(x∗)− |C|M . We can thus give the following
performance guarantee to the solution computed by the ap-
proximate algorithm:

w(xMR) ≥ w(x∗)− |C|M

The quality of such an approximation depends on M and
on |C|. M is a factor we can not control, even by assuming
that the maximal utility of an agent is bounded, because the
total number of agent is not bounded. The factor |C| can be
controlled indirectly by the parameter K. Finding the set C
of minimum cardinality is therefore heuristically desirable,
but without assumptions about agent’s utility location this
can not by itself ensure that |u : u ∈ U, cl(u) ∈ C| will be
minimised. The size of this set can however be reduced if
after the labelling procedure the attribution of U to cliques
avoids the ones in C.

This bound is tighter than the one achieved with the naive
approach of cutting the dependencies of the cut-nodes from
all the utilities owning those dependencies and then retri-
angulating the graph, which behaves very poorly. We here
only cut a minimal number of dependencies so as to preserve
the running intersection property on G′.

4.3.2 Complexity
While the theoretical complexity of the inference remains

unchanged, the total running time is changed with respect
to the exact method presented above. The total number of
recomputed cliques on the path between a modification and
a root is bounded by K. Roots coordination implies an ad-
ditional path of size inferior or equal to δGR

/2, where δGR

is the diameter of GR. This diameter is upper bounded by
δG/K. Once the roots have coordinated, the length of the
path to the root of the GAI-net of the induced subgraphs is
inferior or equal to K. Therefore an upper bound of the total
running time of our algorithm is 2K + δG/(2K)+1, where 1
stands for the computation of the induced sub-cliques. This
total running time is what would occur on a parallel imple-
mentation with as much processors as cliques. While this
is not the case in our settings, this is however not such a
problem as it also concerns the exact method, which has a
total running time proportional to δG/2. However, while the
total running time is shortened for carefully chosen values
of K, the approximate algorithm performs more computa-
tions. More precisely any induced subgraph of SG′ which is
connected in G to a root that has changed in value must per-
form recomputations. This implies for any such subgraph s
a minimum of K + 1 computations exponential in the size
of the biggest clique in s. In the worst case, when every
clique of G depends on a common variable, every clique of
every subgraph must make at least one computation expo-
nential in the size of their domains. The exact method pre-
sented above, performs a maximum of δG/2 such computa-
tions whatever the affected clique is.

4.4 Discussion
The total running time of the approximate inference algo-

rithm is guaranteed to be shorter than the one of the exact
approach when 2K + δG/(2K) + 1 < δG/2, which can be
rewritten as (4K2 + 2K)/(K − 1) < δG. Given δG the value
of K minimising the total running time of the approximate
algorithm is obtained by solving the hyperbolic equation
2x + δG/(2x) + 1 = 0 which in the case of δG = 100 im-
plies K = 5. For this value, the approximate algorithm runs
at least 10 times faster than the exact approach. Such a be-
haviour may be desirable in situations where quick response
is needed.

However the total running time is not the sole parame-
ter to be considered, and the performance is also a matter.
The lower bound we have given for the performance of the

93

approximate algorithm is w(x∗)−|C|M , where x∗ is the op-
timal solution, |C| the number of performed cuts, and M the
maximum value inside a clique. While without additional re-
strictive assumptions we cannot quantify M , |C| is indirectly
affected by K. A worst case scenario for the performance is a
complete tree. Let us consider a d-ary tree of diameter δ, the

number of cuts performed is then equals to
P⌊δ/(2K)⌋

k=0 dk·K ,

which is equal to (d⌊K·δ/(2K)⌋+1 − 1)/(dK − 1) and behaves

like dK·δ/(2K). This signifies that |C| augments exponen-
tially with K. However because of the discretised parameter,
|C| is non-monotonically increasing with K.

The real nature of this approach is nevertheless not cap-
tured by the above formulas. The approximate method was
developed in order to capture the locality of the interactions
inside a MAS. And in fact the performance of this approach
is directly tied to the nature of the MAS. With this ap-
proach a MAS where all agents share a common variable
would each time perform a complete calculation over the
cliques of the coordination. Therefore in such a case the ap-
proximate approach is not attractive compared to the exact
one. However in a MAS were agents share only a few vari-
ables the graph GR would likely be a stable. In this best
case scenario, all computations are limited to the subgraphs
connected to the local root to which the altered clique was
attributed. Moreover such computations are done in a time
proportional to 2K only, the performance bound remains
however unchanged. The kind of MAS this approach aims
at are therefore MAS whose interaction graph presents few
centralised patterns.

Preliminary tests made over cliques’ approximations in-
dicate good overall behaviour, with approximate optimum
very near the real optimum. However such good results are
imputable to the structure of cliques’ utility table. Those
were filled according to a random uniform distribution. The
bigger is a variable’s cardinality size, the greater is the chance
of finding a near-optimal value in any sub-clique of the clique.
However worst case scenarios, with the approximated clique
being forced to choose a local minima are still possible in
this setting. This is why we introduced a secondary coordi-
nation phase in the approximate approach in order to lower
the impact of such scenarios. It nevertheless remains that
the applicability of this approach also depends on the very
nature of agents’ preferences.

The idea of using the multi-root approach recursively dur-
ing the coordination of the roots naturally comes to mind.
Using such an approach the total running time would be
proportional to (2K + 1) · (1 + ⌊log(δG)/log(K)⌋) which be-
haves like K · log(δG)/log(K), where ⌊log(δG)/log(K)⌋ is
the maximum number of recursive calls and (2K + 1) is the
proportional time of each call. Such a running time is very
interesting for a MAS procedure as it is scalable. It corre-
sponds to a hierarchical decomposition of the global coor-
dination problem in its decentralised components. However
while it is interesting to take into account the natural de-
centralisation of a problem, a worst case behaviour happens
when the problem is naturally centralised. In fact in such
a setting all the cliques would all the same have to recom-
pute their value. Adding superior levels of coordination has
the consequence of slowing the computation, which is not as
much a problem as it also exponentially decrease the quality
approximations made at the upper levels, while the resulting
performance over w can not be easily bounded.

5. CONCLUSION
We have presented in this paper the problem of efficient

open MAS coordination using GAI-networks, and proposed
two algorithms taking into account MAS decentralisation
and a restricted notion of openness. This work constitutes a
first step towards the study of the general case of openness,
where not only the values of the cliques do change but also
the structure of the junction tree. However, prior to such
an extension good heuristics for selecting K and R so as to
both minimise the total running time of the approximate al-
gorithm and the number of cuts done over agents preferences
have to be investigated, for it is the main concern regarding
the performance bound. As the algorithm used for infer-
ence over GAI-networks is an instance of the sum-product
algorithm, it would be therefore interesting to study how
the approaches proposed in this paper could be extended to
other kind of cooperative inference tasks instances of the fac-
tor graphs and the sum-product algorithm. Finally, concrete
experimentation over real multi-agent systems is mandatory
in order to evaluate the performance of those approaches.

6. REFERENCES
[1] P. Perny C. Gonzales. Gai networks for decision

making under certainty. IJCAI 05 – Workshop on
Advances in Preference Handling, 2005.

[2] R. Parr C. Guestrin, D. Koller. Multiagent planning
with factored mdps. Advances in Neural Information
Processing Systems, 2002.

[3] B. Milch D. Koller. Multi-agent influence diagrams for
representing and solving games. Games and Economic
Behavior, 2003.

[4] D. Koller D. Vickrey. Multi-agent algorithms for
solving graphical games. Proceedings of the National
Conference on Artificial Intelligence, 2002.

[5] H.A. Loeliger F.R. Kschischang, B.J. Frey. Factor
graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 2001.

[6] S. Singh M. Kearns, M. Littman. Graphical models for
game theory. Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 2001.

[7] C.E. Guestrin M.A. Paskin. Robust probabilistic
inference in distributed systems. Proceedings of the
Conference on Uncertainty in Artificial Intelligence,
2004.

[8] S.L. Hakimi O. Kariv. An algorithmic approach to
network location problems. i: The p-centers. SIAM
Journal on Applied Mathematics, 1979.

[9] A. Petcu. A class of algorithms for distributed
constraint optimization. 2007.

[10] A. Petcu and B. Faltings. S-dpop: Superstabilizing,
fault-containing multiagent combinatorial
optimization. AAAI, 05.

[11] A. Petcu and B. Faltings. O-dpop: An algorithm for
open/distributed constraint optimization. AAAI, 2006.

[12] M. Yokoo P.J. Modi, W.S. Shen M. Tambe. Adopt:
asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 2006.

[13] A. Tamir. An o(pn2) algorithm for the p-median and
related problems on tree graphs. Operations Research
Letters, 1996.

94

	coverpage.pdf
	foreword
	table_of_contents
	ai_draft
	proceedings-sandrof
	optmas09_submission_2
	optmas09_submission_3
	optmas09_submission_4
	optmas09_submission_5
	optmas09_submission_6
	optmas09_submission_7
	optmas09_submission_9
	optmas09_submission_11
	optmas09_submission_12
	optmas09_submission_13
	optmas09_submission_14
	optmas09_submission_17

