

Pre-proceedings of the International Workshop on

COORDINATION, ORGANIZATION, INSTITUTIONS AND
NORMS in AGENT SYSTEMS

COIN@AAMAS2009

Held as a satellite event of the
Eighth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009)

Budapest, Hungary, 12 May 2009

Preface

Multi-agent systems (MAS) are complex artifacts in which a multitude of au-
tonomous software agents interact, pursuing individual and/or collective goals.
Such a view usually assumes some form of organization, a set of norms or conven-
tions that articulate or restrain interactions in order to enable agents to achieve
their goals. The engineering of effective coordination or regulatory mechanisms
is a key problem for the design of MAS.

This workshop aims at bringing together the topics of Coordination, Orga-
nization, Institutions and Norms (COIN). A significant number of influential
papers on these topics have been appearing in the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS) and other conferences
and workshops on software agents and multi-agent systems. The series of COIN
workshops is aimed at consolidating and expanding these topics by providing
focused events in which researchers from different communities participate.

MAS such as formal organizations, electronic institutions and (software)
agent societies, often have to adapt in order to reflect, among others, environ-
mental, economic and social changes in them. As the operation of such systems
must not stop, adaptation cannot be achieved by restarting the system. Instead,
this adaptation should be attained by adapting system components and the way
they interact at run-time.

In order to explore the issue of adaptation in MAS, the COIN workshop
series merged with the International Workshop on Organised Adaptation in
Multi-Agent Systems (http://oamas08.iit.demokritos.gr/). Consequently,
papers that explore the dynamic aspects of norms, organizations and institutions
are now particularly welcome in COIN.

12 papers were accepted for presentation in COIN@AAMAS2009 as a result
of a rigorous selection process on 19 submissions. These papers, along with the
papers accepted for presentation at the other two editions of COIN 2009, will
be published in a Springer LNAI volume, on the proviso that they go through
a second round of review.

We would like to thank the members of the COIN steering committee for
their guidance, the members of the programme committee for their reviews and
all authors for submitting their work to COIN@AAMAS2009. We are confident
that very interesting and fruitful discussions will take place during the workshop.

Budapest, May 2009 Alexander Artikis
Wamberto Vasconcelos

i

http://oamas08.iit.demokritos.gr/

Workshop Organisers
Alexander Artikis NCSR “Demokritos”, Greece

Wamberto Vasconcelos University of Aberdeen, UK

Steering Committee
Guido Boella Università degli Studi di Torino, Italy

Olivier Boissier Ecole Nationale Superieure des Mines de Saint-
Etienne, France

Virginia Dignum Utrecht University, The Netherlands
Nicoletta Fornara University of Lugano, Italy

Christian Lemaitre Universidad Autonoma Metrolitana, Mexico
Eric Matson Wright State University, USA

Pablo Noriega IIIA, Spain
Sascha Ossowski Universidad Rey Juan Carlos, Spain

Julian Padget University of Bath, UK
Jeremy Pitt Imperial College London, UK

Jaime Sichman University of Sao Paulo, Brazil
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vazquez Salceda Universitat Politecnica de Catalunya, Spain

George Vouros University of the Aegean, Greece

Programme Committee
Alexander Artikis NCSR “Demokritos”, Greece

Guido Boella Università degli Studi di Torino, Italy
Olivier Boissier Ecole Nationale Superieure des Mines de Saint-

Etienne, France
Stephen Cranefield University of Otago, New Zealand

Cristiano Castelfranchi ISTC, Rome, Italy
Virginia Dignum University of Utrecht, The Netherlands

Marc Esteva IIIA, Spain
Nicoletta Fornara University of Lugano, Switzerland
Jomi Fred Hubner University of Blumenau, Brazil

Lloyd Kamara Imperial College London, UK
Victor Lesser University of Massachusetts Amherst, USA

Christian Lemaitre Universidad Autonoma Metropolitana, Mexico
Eric Matson Wright State University, USA

John-Jules Meyer University of Utrecht, The Netherlands
Daniel Moldt University of Hamburg, Germany
Pablo Noriega IIIA, Spain
Tim Norman University of Aberdeen, UK

Eugenio Oliveira Universidade do Porto, Portugal
Sascha Ossowski Universidad Rey Juan Carlos, Spain

Julian Padget University of Bath, UK
Alessandro Ricci Universita di Bologna, Italy

Antonio Carlos da Rocha Costa UCPEL, Brazil
Juan Antonio Rodriguez-Aguilar IIIA, Spain

Jaime Sichman University of Sao Paulo, Brazil
Carles Sierra IIIA, Spain

ii

Programme Committee
(continued)

Kostas Stathis University of London, UK
Catherine Tessier ONERA, France

Wamberto Vasconcelos University of Aberdeen, UK
Leon Van Der Torre University of Luxembourg, Luxembourg

Harko Verhagen Stockholm University, Sweden
George Vouros University of the Aegean, Greece

Additional Reviewers
Rosine Kitio Ecole Nationale Superieure des Mines de Saint-

Etienne, France
Jan Ortmann University of Hamburg, Germany

Luciano Coutinho University of Sao Paulo, Brazil
Matthias Wester-Ebbinghaus University of Hamburg, Germany

Sindhu Joseph IIIA, Spain
Henrique Lopes Cardoso Universidade do Porto, Portugal

iii

Contents

A Norm-based Organization Management System
Natalia Criado, Vicente Julián, Vicent Botti and Estefania Argente 1

Building Multi-Agent Systems for Workflow Enactment and
Exception Handling
Joey Sik-Chun Lam, Frank Guerin, Wamberto Vasconcelos and Tim-
othy Norman 17

A Reputation Model for Organisational Supply Chain Formation
Roberto Centeno, Viviane Torres da Silva and Ramón Hermoso 33

Implementing Collective Obligations in Human-Agent Teams us-
ing KAoS Policies
Jurriaan van Diggelen, Jeffrey Bradshaw, Matthew Johnson, Andrzej
Uszok and Paul Feltovich 49

Monitoring social expectations in Second Life
Stephen Cranefield and Guannan Li 65

Directed Deadline Obligations in Agent-based Business Con-
tracts
Henrique Lopes Cardoso and Eugénio Oliveira 77

An Approach for Virtual Organizations’ Dissolution
Nicolas Hormazábal, Henrique Lopes Cardoso, Josep Lluis De la Rosa
and Eugénio Oliveira 93

A Normative Multiagent Approach to Requirements Engineer-
ing
Guido Boella, Leon van der Torre and Serena Villata 109

Towards a logical model of social agreement for agent societies
Emiliano Lorini and Mario Verdicchio 125

Policy-driven Planning in Coalitions - a Case Study
Martin Kollingbaum, Joseph Giampapa, Katia Sycara and Timothy
Norman 141

Internal agent architecture for norm identification
Bastin Savarimuthu, Stephen Cranefield, Maryam Purvis and Martin
Purvis 156

Playing with agent coordination patterns in MAGE
Visara Urovi and Kostas Stathis 173

iv

A Norm-based Organization Management
System

N. Criado, V. Julián, V. Botti, E. Argente ?

Grupo de Tecnoloǵıa Informática - Inteligencia Artificial
Departamento de sistemas informáticos y computación

Camino de Vera S/N 46022 Valencia (Spain)
{ncriado,vingalda,vbotti,eargente}@dsic.upv.es

Abstract. Virtual organizations are conceived as an effective mecha-
nism for ensuring coordination and global goal fulfilment of an open
system, in which heterogeneous entities (agents or services) interact and
might also present self-interested behaviours. Organizations describe the
system functionality, structure and dynamics. However, available tools
rarely give support for these organizational abstractions. The THOMAS
multi-agent architecture allows the development of open multi-agent ap-
plications. It provides a useful framework for the development of virtual
organizations, on the basis of a service-based approach. In this paper, the
Organization Management System component of the THOMAS architec-
ture is presented. The Organization Management System is in charge of
the organization life-cycle process, including the normative management.
It provides a set of structural, informative and dynamic services, which
allow describing both specification and administration features of the
structural elements of the organization and their dynamics. Moreover,
it makes use of a normative language for controlling the service request,
provision and register. In this paper, the Organization Management Sys-
tem and its implementation are detailed.

Key words: Multi-Agent Systems, Normative Language, Virtual Orga-
nizations, Web Services.

1 Introduction

A promising current approach in the MAS area is the development of open
systems, in which heterogeneous entities can freely join and leave the system,
participating inside under regulated restrictions. Organizations are conceived as
an effective mechanism for coordinating the behaviour of heterogeneous agents,
imposing not only structural restrictions on their relationships, but also nor-
mative restrictions on their behaviour [1, 2]. Thus, organizations describe the

? This work is supported by TIN2005-03395 and TIN2006-14630-C03-01 projects of the
Spanish government, GVPRE/2008/070 project, FEDER funds and CONSOLIDER-
INGENIO 2010 under grant CSD2007-00022, FPU grant AP-2007-01256 awarded to
N.Criado.

1

system functionality (i.e. roles, tasks, services), the norms that control agent
behaviours, the formation of groups of agents, the global goals pursued by these
groups and the relationships between entities and their environment. Organiza-
tion dynamics need to be managed in order to clearly define the organization
life-cycle, which includes its creation, performance and restructuring.

Moreover, the ”computing as interaction” paradigm [3] defines computation
as an inherent social activity that takes place by means of communication be-
tween computing entities. More specifically, large distributed systems are con-
ceived in terms of service provider or consumer entities [4]. Therefore, the rele-
vant technological approaches of this paradigm are service oriented architectures
and multi-agent systems. Services provide a standard infrastructure for the inter-
action of heterogeneous software entities. On the other hand, multi-agent systems
offer a more general and complex notion of service oriented architectures (SOA);
agents, due to their intelligent and social capabilities, allow the redefinition of
traditional services adding new features such as dynamic composition, negotia-
tion about quality of service, etc. In the last years, several works have focused on
the problem of integrating these two approaches, in order to model autonomous
and heterogeneous computational entities in dynamic and open environments.
Their main effort is directed at masking services for redirection, integration or
administration purposes [5].

Taking into account this integrating view, THOMAS has been defined as an
open architecture for large-scale open multi-agent systems, based on a service-
oriented approach [6]. This architecture provides agents with a set of services
for offering and discovering entities’ functionality and for managing the orga-
nization life-cycle. With this purpose of achieving a better integration among
MAS and Web Services, agents provide, require and publish their functionalities
employing Web Services standards (such as OWL-S), and they can also make
use of traditional Web Services.

One of the main components of the THOMAS architecture is the Organiza-
tion Management System (OMS), which is responsible for the management of the
organizations and their constituent entities. In order to allow this management,
the OMS must provide a set of structural, informative and dynamic services
for describing both specification and administration features of the structural
elements of the organization and their dynamics.

With the aim of allowing the organization management, the OMS requires a
normative language for controlling how services can be employed, i.e., when and
how agents can request, provide or publish not only their services, but also these
ones provided by the open architecture. In this sense, a normative language that
imposes a deontic control over agents for requesting, providing or publishing
services has been defined. The OMS is also in charge of controlling all norms
applying to the organization life-cycle services.

Following, a description of the proposed Organization Management System
component, in charge of the organization management by means of organiza-
tional services is detailed. Its norm management process, both with a description
of its norm representation language is detailed in section 3. The implementation

2

of this Organization Management System component is explained in section 4.
Finally, discussion and conclusions are detailed in sections 5 and 6, respectively.

2 Organization Management System

As previously mentioned, the THOMAS architecture has the aim of integrating
both multi-agent systems and service-oriented computing technologies as the
foundation of virtual organizations.

This open architecture for large-scale open multi-agent systems is composed
by a range of services included on different modules or components1. In this
sense, agents have access to the architecture infrastructure through the following
components:

– Service Facilitator (SF). This component provides a mechanism and sup-
port by which organizations and agents can offer and discover services.

– Platform Kernel (PK). It maintains the basic management services for an
agent platform. It integrates the FIPA AMS and the FIPA communication
network layer.

– Organization Management System (OMS). This component is mainly
responsible of the management of the organizations and their entities. Thus,
it gives support to the organization life-cycle management.

The present paper is focused on this last component. It is in charge of con-
trolling the organizational life-cycle process. In THOMAS, organizations are
structured by means of Organizational Units (OU) [7] which represent a set of
agents that carry out some specific and differentiated activities or tasks, follow-
ing a predefined pattern of cooperation and communication. An OU is formed
by different entities along its life-cycle which can be either single agents or other
OUs. They represent a virtual meeting point because agents can dynamically
enter and leave organizational units, by means of adopting (or leaving) roles in-
side. An OU has also an internal topology (i.e. hierarchical, team, plain), which
imposes restrictions on agent relationships (for example, supervision, monitoring
or information relationships). A more detailed explanation of the OU concept
and a description of different topologies can be found in [7].

The OMS is in charge of controlling how the Organizational Units are created,
which entities are participating inside them, how these entities are related and
which roles they are playing through time. For this reason, the OMS offers agents
a set of services for organization life-cycle management, classified in:

– Structural services, which enable agents to request the OMS to modify the
structural and normative organization specification. They comprise services
for adding/deleting norms (RegisterNorm, DeregisterNorm), adding/deleting
roles (RegisterRole, DeregisterRole) and creating new organizational units or
deleting them (RegisterUnit, DeregisterUnit). Publishing these services en-
ables agents to modify the organization structure through its life-time.

1 http://www.fipa.org/docs/THOMASarchitecture.pdf.

3

– Informative services, that provide information of the current state of the
organization, detailing which are the roles defined in a OU (InformUni-
tRoles), the roles played by an agent (InformAgentRoles), the specific mem-
bers of an OU (InformMembers), its member quantity (InformQuantity), its
internal structure (InformUnit), and the services and norms related with a
specific role (InformRoleProfiles, InformRoleNorms).

– Dynamic services, which allow defining how agents can adopt roles inside
OUs (AcquireRole, LeaveRole) or how agents can be forced to leave a specific
role (Expulse), normally due to sanctions. Publishing these services enables
external agents to participate inside the system.

This set of services for organization life-cycle management allows defining
specification and administration features of the structural components of the
organization (roles, units and norms) and their dynamics (entry/exit of entities).
However, a specific control on who can make use of these services and in which
conditions is needed. This type of control is defined by means of norms.

3 Norm Management

Normative systems have been defined as a mechanism for enabling cooperation
inside Open MAS. In this sense, norms are persuasive methods for obtaining the
desired behaviour from agents. In addition, norms can be viewed as a coordi-
nation skill for organizing MAS, since they specify the desired behaviour of the
society members [8]. Regarding this second conception of norms, our proposal
consists on employing norms for regulating agent organizations. More specifi-
cally, this work has the purpose of applying the normative theory for defining
the way in which agents may modify the structure of their organization (norms,
organizational units and roles) and its execution components, in order to adapt
it dynamically to environmental changes.

Recently, works on norms have focused on overcoming the gap between the-
oretical works on normative systems and practical MAS. They give a compu-
tational interpretation of norms that allows norm execution. However, none of
them raises the normative management problem or gives an infrastructure that
enables including the normative theory inside the implementation of real MAS
applications. With this aim, we have developed both a normative language for
controlling agent organizational dynamics and a normative management engine,
which are explained in the following sections.

3.1 Norm Representation Language

Before addressing the norm controlling problem, the definition of a formal lan-
guage for the representation of the normative concepts is needed. Our norma-
tive language is mainly based on previous works for implementing norms inside
Electronic Institutions (EI) [9, 10]. These works define a normative language for
controlling the communicative acts (illocutions) of agents inside an EI. In ad-
dition, they propose an extension of this language for allowing the definition of

4

norms concerning non-dialogical actions. Our language takes these approaches as
a starting point and increases them in order to give support to functional and or-
ganizational management. More concretely, our normative language makes pos-
sible the definition of constraints on agent behaviours in terms of actions related
to service controlling and organizational processes. The main contributions of
the proposed language are: (i) it allows the definition of consequences of norms
by means of sanctions and rewards; (ii) it gives support to organizational con-
cepts such as roles or organizational units and; (iii) the definition of agents’
functionality by means of the OWL-S standard increases norm expressiveness,
as will be argued lately.

Following, some issues about the developed normative language are com-
mented. For a more detailed description of this language see [11].

The proposed language is a coordination mechanism that attempts to: (i)
promote behaviours satisfactory to the organization, i.e. actions that contribute
to the achievement of global goals; and (ii) avoid harmful actions, i.e. actions that
prompt the system to be unsatisfactory or unstable. Norm semantics is based
on deontic logic since it defines obligations, permissions and prohibitions. Our
approach conceives norms as expectations that may not be fulfilled. Thus, norms
are not impositions (i.e. they are not automatically enforced on agents by their
designer), but they are methods for persuading agents to behave correctly by
means of the application of sanctions and rewards. For example, an agent would
be expelled from the organization as sanction if it violates norms systematically.
An analysis on the effectiveness of both sanctions and rewards as mechanisms for
enforcing norms is over the scope of this article. However, this work assumes that
agents are aware of norms, punishments and rewards. In this sense, a normative
reasoning process for norm-aware agents has been proposed in [12].

Norms define agent rights and duties in terms of actions that agents are
allowed or not to perform. Actions have been divided in two categories: actions
related to the organizational aspects of MAS; and actions concerning service
accessing. Hence, two main types of norms have been defined:

– Organizational Norms: related to services offered by the OMS to members
of the organization. They establish organizational dynamics, e.g. role man-
agement (role cardinalities, incompatibility between roles) and the protocol
by which agents are enabled to acquire roles.

– Functional Norms: related to services offered by the members of the or-
ganization or the SF. They define role functionality in terms of services
that can be requested/provided, service requesting order, service conditions,
protocols that should be followed, etc. They establish service management
according to previous service results, environmental states, etc.

Table 1 details the reduced BNF syntax of this language. A norm is defined
by means of a deontic operator (<deontic concept>), an addressed entity and
an action, that concerns organizational (<organizational action>) or functional
(<functional action>) management. The <temporal situation> field establishes
a temporal condition for the activation of the norm. It can be expressed as a

5

deadline, an action or a service result. A norm may also contain a state con-
dition for its activation (<if condition>). It is a boolean condition that can be
expressed over some variables, identifiers, failed or satisfactory states of norms
or final result of services.

<norm>::=<deontic> <entity>
<action> [<temporal>]
[IF <if condition>] | norm id

<ext norm>::=<norm> [SANCTION(<norm>)]
[REWARD(<norm>)]

<deontic>::=OBLIGED | FORBIDDEN |
PERMITTED

<entity>::=<agent>: <role> [− <unit>] |
<role> [− <unit>] | <entity id>

<agent>::=?variable | agent id
<role>::=?variable | role id
<unit>::=?variable | unit id

<entity id>::=agent id | role id | unit id

<action>::=<functional action> |
<organizational action>

<temporal>::=BEFORE <sit> | AFTER <sit> |
BETWEEN(<sit> , <sit>)

φ : FORBIDDEN α≡ [α]V
φ : OBLIGGED α≡ [¬α]V
φ : PEMITTED α≡ [α]¬V

φ : φ′SANCTION α≡φ′ ∧ [V]DO(α)
φ : φ′REWARD α≡φ′ ∧ [¬V]DO(α)

φ : φ′BEFORE α≡φ′ ∨DONE(α)
φ : φ′AFTER α≡ [α]φ′

φ : φ′BETWEEN(α1, α2)≡ [α1]φ′∨
DONE(α2)

φ : φ′IFβ≡β → φ′

Table 1. On the left side, BNF syntax of norms is detailed. On the right side, its semantics expressed
by means of dynamic logic is given. α is an action description. β is an state description. V , DO(α)
and DONE(α) are the well-known predicates for representing violation states, an action α that will
be done next and an action α that has been performed. Finally, φ represents a norm.

As an example, norm 1 authorizes an agent to request acquisition of the
Subordinated role. The addressed agent is free to perform this action. Usually,
obligations and prohibitions have sanctions and rewards as persuasive meth-
ods. Sanctions and rewards are represented through norms addressed to entities
that will act as norm defenders or promoters. The definition of sanctions and
rewards recursively as norms can create an infinite chain of norms. Thus, not
only addressed agents might be controlled by norms, but also their controllers
(defenders or promoters). Following M. Luck et al. proposal [13], our normative
model does not impose any restriction on this fact, so it is the norm designer
who is in charge of specifying when to stop this recursive process, i.e. when a
controller is trustworthy enough. For example, norm 2 obliges a Supervisor agent
to request AddUnit service; if the Supervisor agent does not respect the norm,
then it will be expelled from the organization by the OMS as sanction. Norm
2 contains a state condition and a temporal condition also. In this case, these
conditions indicate that the agent is obliged to request AddUnit service before
10 seconds if it is the only Supervisor inside the organization.

agent :?role PERMITTEDREQUEST AcquireRole

MESSAGE(CONTENT (RoleID “Subordinated
′′

))
(1)

6

?agent : Supervisor OBLIGEDREQUEST AddUnit

IF InformQuantity(“Supervisor
′′

) = 1

BEFORE(10
′′

)

SANCTION omsOBLIGEDPROV IDE Expulse

MESSAGE(CONTENT (?agent, “Supervisor
′′

))

(2)

Organizational norms are related to actions that allow agents to request or-
ganizational services (<org service>) for adopting roles, registering new norms,
etc. These services are provided by the OMS. The BNF syntax of organizational
actions is detailed in Table 2.

<organizational action>::=REQUEST <org service> MESSAGE(<msg cont>)

<org service>::=<structural service> | <dynamic service> | <informative service>

<structural service>::=RegisterNorm | RegisterRole | DeregisterNorm |
DeregisterRole | DeregisterUnit | RegisterUnit

<informative service>::=InformUnitRoles | InformAgentRoles | InformUnit | InformMembers |
InformRoleProfiles | InformRoleNorms | InformQuantity

<dynamic service>::=AcquireRole | LeaveRole | Expulse
Table 2. BNF syntax of organizational actions

Functional norms are defined in terms of actions related to the publication
(REGISTER), provision (SERVE) or usage (REQUEST) of services. The BNF
syntax of this type of actions is detailed in Table 3. Norm 3 contains an example
of a functional norm. It obliges a service Provider agent to register its own
SearchService service.

<functional action>::=<serv publication> | <serv provision> | <serv usage>

<serv publication>::=REGISTER service name PROFILE <profile desc> [PROCESS<process desc>]

<service provision>::=SERVE service name PROCESS <process desc> [MESSAGE(<msg cont>)]

<service usage>::=REQUEST service name MESSAGE(<msg cont>)
Table 3. BNF syntax of functional actions

?agent : Provider OBLIGED

REGISTERSearchService

PROFILE

INPUT (ServiceDescription : String)

OUTPUT (ServiceID : Identifier)

(3)

As previously mentioned, the specification of functionalities by means of
OWL-s standard allows defining functionality more expressively: representing
service preconditions and effects; global functionalities are described as complex
services that are composed of atomic services, so a complex service specification
describes how agent behaviours are orchestrated; and functionality is detailed in
two ways: services that entities perform and services that entities need. Thus,
Service Oriented Computing (SOC) concepts such as ontologies, process models,
choreography, facilitators, service level agreements and quality of service mea-
sures can be applied to MAS. Our proposal of normative language offers support
for specifying knowledge about a service following OWL-s ontology. The profile

7

(<profile desc>) for advertising and discovering services contains input and out-
put parameters of the service and its preconditions and postconditions. The pro-
cess model (<process desc>) gives a detailed description of a service’s operation.
It details the sequence of actions carried out by the service. These actions are
linked through each other by means of different control constructs: CONNECTS
indicates a sequential ordering between two actions; JOIN indicates a concur-
rence between actions and a final synchronization of them; IF-THEN-ELSE and
WHILE-DO define the classical control structures. Finally, the grounding pro-
vides details on how to interoperate with a service, via messages <msg cont>).
Table 4 contains syntax of service processes, profiles and requesting messages.

<profile desc>::=[INPUT(<param list>)] [OUTPUT (<param list>)]
[PRE(<cond exp>)][POST(<cond exp>)] | profile id

<process desc>::=process id | ?variable | <action> CONNECTS <process desc> |
<action> JOIN <process desc> |
IF <cond exp> THEN(<process desc>) [ELSE (<process desc>)] |
WHILE <cond exp> DO(<process desc>)

<msg cont>::=[SENDER(<entity>)] [RECEIVER (<entity>)]
[PERFORMATIVE (performative id)] CONTENT (<args>)

<action>::=task id(<param list>) | <service usage>

<param list>::=variable : type [,<param list>]
Table 4. BNF syntax of service profile and process

In this section, a general language for controlling agent service access has
been briefly described. For further details and examples see [11].

3.2 Norm Management Process

Once the general characteristics of our proposed normative language for con-
trolling agent service access have been described, some aspects related to the
management of organizational norms are commented in this section. As previ-
ously mentioned, our formalism allows representing constraints over organiza-
tional dynamics. Thus, the controlled norms define access to the organizational
services provided by our architecture.

Recently, the line of research on norm implementation is based on the Elec-
tronic Institution (EI) proposal [9, 10]. The EIs provide a framework for het-
erogeneous agent cooperation. However, they are not an open environment in
its broadest sense, because agents interact inside the institution through the in-
frastructure provided by the EI. Therefore, the behaviour of external agents is
completely controlled by the institution, which allows or not agents to pronounce
certain illocutions. Thus, norms are pre-imposed on agents. The institutional me-
diation prevents agent behaviour from deviating from desired behaviour. More-
over, the fact that all communications are made through the institution allows
an easy implementation and enforcement of norms. In this sense, the existence
of a middleware for mediating the agent communication avoids the need to take
into consideration the limitations that exist in open environments. Such limita-
tions are related to the detection of fact occurrence and the extra capabilities
needed in order to impose norms upon other agents.

8

Our proposed virtual organization architecture is completely different since it
does not have any mediator layer. On the contrary, agents are allowed to interact
freely. In this sense, our architecture is more related to the notion of Partially
Controlled MAS [14], in which agents may deviate from ideal behaviour. As a
consequence, there has to be a control mechanism for motivating agents to obey
the norms. However, our architecture offers a set of services for the management
of the organizations life-cycle. In this sense, the OMS is not a centralized entity
that controls all the interactions performed by agents. On the contrary, it is
a controllable entity (which is directly controlled by the system designer [14])
which offers a set of organizational services in order to give support to agent
cooperation. One of these coordination mechanisms is the definition of norms
that regulate agent behaviour. The OMS does not control the agent communi-
cations, it is only in charge of enforcing the norms that regulate access to OMS
services. The verifiability issue of a norm is a crucial aspect in the normative
management process since there is not any mediator middleware that controls
all the communications.

Norm Verifiability Works on norm implementation conceive norms as a mech-
anism for enabling coordination and cooperation inside open MAS. Nevertheless,
none of them faces with one of the main problems inside open systems, which is
the existence of limitations. The term limitation refers to the fact that an entity
needs extra information and capabilities in order to act as a norm supervisor
or controller. Therefore, an analysis of normative verifiability is needed, before
dealing with norm implementation.

The OMS can control norms which are related to the provision of organi-
zational services. Therefore, the set of OMS verifiable norms is a subset of the
organizational norms. Verifiable norms are regulative norms that define ideal
behaviour by means of obligations, prohibitions and permissions. More specifi-
cally, permissive and prohibition norms concerning the access to OMS services
are controllable, since the OMS checks whether the client agent is allowed to
perform such request before providing it. On the other hand, obligation norms
can not be imposed by the OMS as it has not capabilities to force agents to
carry out an action. However, the OMS can detect the violation of an obligation
norm related to an OMS service and perform the associated sanction. On the
contrary, if the norm has been fulfilled then the OMS will carry out the actions
specified by the reward. Logically, obligation norms should be active for a certain
period of time, i.e. normative activation and deactivation events must be defined
in order to allow the OMS to determine the norm fulfilment.

Table 5 contains BNF syntax for the definition of verifiable conditions. They
are related to informative services provided by the OMS (<variant>) such as
role cardinalities, information about roles played by agents, etc.

Regarding detectable events, their syntax is detailed in Table 6. Basically,
they are the request (<ServiceRequest>) and provision (<ServiceProvision>)
of services offered by the OMS. Both verifiable condition and detectable events
syntax are a refinement of the general condition syntax proposed in [11].

9

Finally, sanctions and rewards can be defined by means of norms that oblige
the OMS to request or provide a specific service, as shown in norm 2.

In this section, issues concerning the formal language for representing norms
and syntax of verifiable organizational norms have been detailed. Not only an
abstract component in charge of the management of organizations has been
proposed, but also an implementation of the OMS component has been made.
Next, this implementation is described.

<if condition>::=NOT(<cond exp>) | < cond exp >

<cond exp>::=<condition> | NOT <condition> | (<condition> AND <cond exp>) |
(<condition> OR <cond exp>)

<condition>::=<variant> <operator> <variant>

<operator>::=> | < | >=| <= | =

<variant>::=<informative service>(<args>) | value

Table 5. Verifiable conditions syntax

<sit>::=<event> (<event> AND <sit>) | (<event> OR <sit>)

<event>::=<ServiceRequest> | <ServiceProvision> | deadline

<ServiceRequest>::=[<entity>] REQUEST <organizational action>

<ServiceProvision>::=(<ServiceRequest>) = <ServiceResult>

<ServiceResult>::=Not-Allowed | Error | Provided
Table 6. Verificable events syntax

4 Organization Management System Implementation

As previously argued, the OMS is a controllable entity which offers a set of
organizational services. In this proposal, these services have been developed as
an agent implemented as a rule-based system programmed in Jess 2. This system
maintains a fact base representing the organizational state, and also it is in
charge of controlling verifiable norms. The implementation has been included in a
prototype of the THOMAS architecture3. Following, the specific implementation
of both service and norm management provided by the OMS is detailed.

4.1 Service Management Implementation

The implementation of services should consider the maintenance of the organi-
zational state as well as the existence of norms that regulate access to organi-
zational services. When a new service request is sent to the OMS, it registers
this fact in the organizational rule-based system and carries out the service pro-
vision. As previously stated, the set of services provided by the OMS are those
ones related to the organizations life-cycle management, i.e. the management
of their structural components (unit, roles and norms) and the organizational
dynamics.

Figure 1 contains a portion of the source code of the function that performs
the service request management process:
2 http://herzberg.ca.sandia.gov/
3 http://www.dsic.upv.es/users/ia/sma/tools/Thomas/

10

– (i) Firstly, the normative context must be analyzed in order to determine
whether the client agent is allowed to request this service according to the
organizational state.

– (ii) If so, then the OMS provides the requested service.

Mainly, the service provision process consists of updating facts and rules
belonging to the rule system. Following, as an example, the source code of the
service that allows registering a new norm is shown in Figure 2. The process of
registering of a new norm involves:

(deffunction serviceRequest (?agentid ?serviceid $?info)
i) check normative context
(if (not(isAllowed ?agentid ?serviceid ?info))
then
(assert(servicerequest(agentid ?agentid)(serviceid ?serviceid)(info ?info)
(state not-allowed)))

(return "not-allowed"))
ii) service execution
(if (not(apply ?serviceid ?agentid ?info))
then
(assert(servicerequest(agentid ?agentid)(serviceid ?serviceid)(info ?info)(state error)))
(return "error"))

(assert(servicerequest(agentid ?agentid)(serviceid ?serviceid)(info ?info)(state provided)))
(return "provided"))

Fig. 1. Service Request Management Function

– (i) Verification of input data, i.e. checking the adequacy of norm syntax as
well as the uniqueness of the provided norm identifier.

– (ii) Norm verifiability detection, i.e. determine if the norm control should
be carried out by the OMS. Verifiability checking is done by means of an
interpreter, which has been automatically built from the BNF syntax of our
organizational normative language employing the JavaCC4 tool.

– (iii) Inconsistency checking. Taking [15, 16] as a starting point, an inconsis-
tent situation is that one in which an action is forbidden and permitted or
forbidden and obliged simultaneously. The off-line detection of all norm in-
consistencies is not possible, since the norm activation conditions are based
on the detection of events and facts that may occur during execution. For the
moment, the inconsistency detection mechanism is restricted to the determi-
nation of static inconsistencies, which are situations in which the same action
is defined unconditionally as permitted and forbidden to the same entity. As
future work, we will employ results of theoretical works on norm change5

as well as conflict resolution techniques for solving dynamic inconsistencies
among norms.

– (iv) The fact corresponding to the new norm is registered in the rule system.

Due to lack of space, only the organizational service for registering a new
norm has been explained in detail. However, all services needed for the manage-
ment of units, roles, norms and organizational dynamics, have been implemented
in a similar way.
4 https://javacc.dev.java.net/
5 http://icr.uni.lu/normchange07/

11

4.2 Norm Management Implementation

The OMS is responsible for the provision of organizational services and the
performance of the norm management process. Norm implementation covers the
detection of norm activation and deactivation as well as the determination of
the allowed actions according to the defined normative context.

(deffunction addnorm (?agentid ?normid ?norminfo)
(if (> 0 (count-query-results getnorm ?normid)) then(return FALSE))
i) check norm syntax
(bind ?interpreter (new NormativeLanguageParser.NormativeInterpreter))
(bind ?content (call ?interpreter checkNorm ?norminfo))
(assert(norm (normid ?normid)(norminfo ?norminfo)))
(if (eq ?content "") then(return FALSE))
ii) checks norm verificable
(bind ?interpreter (new omsNormativeLanguageParser.NormativeInterpreter))
(bind ?content (call ?interpreter checkNorm ?norminfo))
(if (eq ?content "") then(return TRUE))
iii)check inconsistencies
(if (eq (checkConsistency ?content) FALSE) then (return FALSE))
iv)assert new organizational norm
(assert-string (str-cat (organizationalnorm (normid " ?normid ") "?content")"))
(return TRUE))

Fig. 2. AddNorm Function

Regarding detection of norm activation and deactivation, this functionality
has been implemented through a set of rules that detect the occurrence of the
activation and deactivation events. This implementation of norms by means of
rules is based on a previous work aimed at implementing norms for Electronic
Institutions [9]. Next, some details about the implementation of each type of
norm are commented:

– Service access norms. As previously mentioned, these norms allow the defi-
nition of prohibitions and permissions concerning the use of organizational
services. More formally, the semantics of permissions and prohibition norms,
expressed as Event-Condition-Action rules (ECA-rules), is:

on eventstart if ifcondition do ⊕permitted(a)

on a if permitted(a) do ⊕provided(a)

on eventend do 	permitted(a)

if not(ifcondition) do 	permitted(a)

(4)

on eventstart if ifcondition do ⊕forbidden(a)

on a if forbidden(a) do ⊕notAllowed(a)

on eventend do 	forbidden(a)

if not(ifcondition) do 	forbidden(a)

(5)

The first four ECA-rules describe semantics of a permission (4), whereas
the last four ones represent a prohibition norm semantics (5). According to
this, a general service access norm is controlled by means of the definition of
four new rules in the expert system. The first rule detects norm activation
and asserts the permission (⊕permitted(a)) or prohibition (⊕forbidden(a)).
If the action (a) occurs and it is allowed, then the service is provided

12

(⊕provided(a)). On the contrary, if a is forbidden, then notAllowed fact is
asserted. The last two rules retract the norm from the expert system when
the norm is deactivated, i.e when the condition (ifcondition) is not true or the
completion event is detected (eventend). Fig. 3 contains source code of the
function that registers a new service access norm. The first rule (i) detects
norm activation whereas the last two ones (ii and iii) deactivates the norm
if the end event is detected or the activation condition is not true.

(defrule newNorm
?f<-(norm (normid ?normid) (deonticConcept ?deon)...)
(test(or (eq ?deon forbidden)(eq ?deon permitted)))
=>
i) Activation Norm
(bind ?rule (str-cat "(defrule activateNorm"?normid"
"?condition" "?after"
=>

(assert(activenorm(normid "?normid")...)
(build ?rule)
ii) Deactivacion Norm
(bind ?rule (str-cat "(defrule deactivateNormIF"?normid"
?f<-(activenorm(normid "?normid")...)
(not "?condition")
=>

(retract ?f))"))
(if (not(eq ?condition ""))then(build ?rule))
iii) Event Deactivacion Norm
(bind ?rule(str-cat "(defrule deactivateNormBEFORE"?normid"
?f<-(activenorm(normid "?normid")...)
"?before"
=>

(retract ?f))"))
(if (not(eq ?before ""))then(build ?rule)))

Fig. 3. New Norm Rule

– Obligation norms. They cannot be directly implemented by the OMS, since
it is not able to force another agent to carry out a specific action. However,
it might persuade agents to behave correctly by performing sanctions and
rewards. Following, a formal description of obligation semantics is shown:

on eventstart if ifcondition do ⊕expected(a)

on a if expected(a) do 	expected(a) • reward
on eventend if expected(a) do 	expected(a) • sanction

(6)

Thus, the implementation of obligation norms consists on controlling the
activation of the obligation. Then the OMS waits for the fulfilment of the
expected action (a), i.e the OMS asserts a new expectation (⊕expected(a)).
If the action is performed before the deadline (eventend) then the reward is
carried out. Otherwise the OMS will perform the sanction.

The determination of the allowed actions is made by means of the analysis
of the normative context. This checking is performed by the OMS each time it
receives a new service request. Then the OMS checks whether it exists a norm
addressed to the client agent that forbids such service request. Thus, an action
is considered as allowed when there is not any norm that forbids it explicitly.
Norms can be addressed to any agent that plays a specific role or they can affect

13

a specific agent also. Consequently, a criterion for norm precedence is needed.
In this case, a rule known as lex specialis has been employed [17]. Therefore, the
normative analysis begins with checking agent addressed norms. If there is not
any norm, norms related to the roles played by the agent are considered.

This section has illustrated some details of the implementation of the organi-
zational management system entity. Following, conclusions and a discussion on
related works are presented.

5 Discussion

Organizations represent an effective mechanism for activity coordination, not
only for humans but also for agents. They have recently been used in agent
theory to model coordination in open systems and ensure social order in MAS
applications [18].

Virtual Organizations include the integration of organizational and individ-
ual perspectives, and the dynamic adaptation of models to organizational and
environmental changes [1]. The necessity of managing the organizational life-
cycle has been taken into account in several approaches such as the S-Moise+
middleware [19] (based on Moise+ [20] organizational model), the Brain system
[21] and the ORA4MAS proposal [22]. In our architecture the OMS entity acts in
a similar way, receiving the organizational service requests and providing them,
accordingly to the established organizational norms. However, all this function-
ality has been designed following a Service Oriented approach. Thus, services for
controlling organizations life-cycle have been described employing Web Service
standards as OWL-S. In addition, these services are registered and published
by the architecture in order to allow agents to discover them and to know how
to make use of them. Our architecture is aimed at supporting the development
of open virtual organizations. Thus, a normative mechanism for controlling how
agents make use of the provided services is supplied.

Regarding works on norms, they have traditionally a theoretical point of
view. Recently, norms have received a more practical conception in order to
allow the regulation of open distributed systems. More specifically, traditional
approaches based on deontic logics have evolved to a more operational conception
of norms that allows their employment inside the design and execution of real
MAS applications as a coordination mechanism. These approaches must allow
reasoning about the global system performance as well as the agent individual
reasoning. The normative learning term has been defined as the process by which
agents take into consideration norms inside their decision making [23]. Works
concerning the normative reasoning are related to the norm emergence [24, 25]
and the norm acceptance [26, 27]. Taking these later works as a starting point,
the OMS component described in this paper is aware of the existence of norms
that regulate access to its services. Moreover, it is able to internalize norms as
beliefs, in order to take its decisions according to its expected behaviour.

On the other hand, proposals for norm implementation are based on the e-
institution metaphor [9, 10]. They assume the existence of an “special” entity,

14

which is the institution itself, that acts as a middleware for agent communi-
cations. Therefore, the institutional entity has an unlimited knowledge about
occurrence of facts as well as extra capabilities for enforcing norms. Because of
this, these works do not provide an effective mechanism for normative reason-
ing. In fact, they provide an implementation of norm theory for allowing the
institution to maintain the coherency of the normative state.

In order to allow the definition of MAS as Open Systems, in its broadest
sense, a new normative implementation that gives support to agent normative
reasoning is needed. The normative reasoning term is defined as the process
by which an agent decides to accept a norm and incorporates it to its decision
making behaviour [23]. With this aim, we have proposed a general normative lan-
guage for expressing norms and a normative implementation that allows agents
to take into consideration the existence of norms.

This proposal of normative language is a more general and expressive for-
malism mainly focused on controlling service registering and usage, making it
possible a better integration of both MAS and Web Service Technologies. The
main and new aspects of the proposed language are: (i) it allows the defini-
tion of norms that cover organizational dynamics; and (ii) norms define agent
functionality in terms of services requested and provided by each role. Both
organizational performance and functionality of the system are established by
means of norms defined in terms of service requesting, provision or registering.

6 Conclusions

This work belongs to a higher project whose goal is to develop models, frame-
works, methods and algorithms for constructing large-scale open distributed
computer systems. Our aim is to employ this architecture for building demon-
strators on e-procurement, e-healthcare and water conflict resolution. Thus, the
Organizational Management System implementation has been included in a pro-
totype of the THOMAS architecture. This component is mainly responsible for
the management of organizations and their entities. The OMS allows the creation
and management of both norms and organizations. Therefore, our normative
implementation has been employed for controlling access to the organizational
services. In this sense, norms can be conceived as a method for regulating the
dynamical organizational adaptation to the environmental changes.

References

1. V. Dignum, F. Dignum. A landscape of agent systems for the real world. Tech. report
44-cs-2006-061, Inst. Information and Computing Sciences, Utrecht University, 2006.

2. O. Boissier, B. Gâteau. Normative multi-agent organizations: Modeling, support
and control. In Normative Multi-agent Systems, Dagstuhl Seminar, 2007.

3. M. Luck, P. McBurney, O. Shehory, S. Willmott. Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005.

4. M. Luck, P. McBurney. Computing as interaction: Agent and agreement technolo-
gies. In IEEE SMC Conference on Distributed Human-Machine Systems: 1–6, 2008.

15

5. D. Greenwood, M. Calisti. Engineering web service - agent integration. In IEEE
Int. Conf. on Systems, Man and Cybernetics, 2: 1918– 1925, 2004.

6. C. Carrascosa, A. Giret, V. Julian, M. Rebollo, E. Argente, V. Botti. Service Ori-
ented MAS: An open architecture. In AAMAS, In Press, 2009.

7. E. Argente, J. Palanca, G. Aranda, V. Julian, V. Botti, A. Garćıa, A. Espinosa.
Supporting agent organizations. In CEEMAS’07, 4696: 236–245, 2007.

8. G. Boella, L. van der Torre, H. Verhagen. Introduction to the special issue on
normative multiagent systems. Auton. Agents Multi-Agent Syst., 17:1–10, 2008.

9. A. Garćıa-Camino, P. Noriega, J.A. Rodŕıguez-Aguilar. Implementing norms in
electronic institutions. In EUMAS: 482–483, 2005.

10. V. Torres. Implementing norms that govern non-dialogical actions. In COIN III,
LNCS:4870. Springer, 2008.

11. E. Argente, N. Criado, V. Julian, V. Botti. Designing Norms in Virtual Organiza-
tions. In CCIA, 184:pages 16–23. IOS Press, 2008.

12. N. Criado, V. Julian, E. Argente. Towards the Implementation of a Normative
Reasoning Process. In PAAMS, In Press, 2009.

13. F. López, M. Luck. Modelling norms for autonomous agents. In ENC: 238–245.
IEEE Computer Society, 2003.

14. R. I. Brafman, M. Tennenholtz. On Partially Controlled Multi-Agent Systems.
Journal of Artificial Intelligence Research, 4:477–507, 1996.

15. M. J. Kollingbaum, W. W. Vasconcelos, A. Garćıa-Camino, T. J. Norman. Conflict
resolution in norm-regulated environments via unification and constraints. In DALT,
LNCS 4897:158–174. Springer, 2007.

16. W. Vasconcelos, M. J. Kollingbaum, T. J. Norman. Resolving conflict and incon-
sistency in norm-regulated virtual organizations. In AAMAS: 632–639, 2007.

17. G. Boella, L. van der Torre. Permissions and obligations in hierarchical normative
systems. In ICAIL, 2003.

18. V. Dignum, J. Meyer, H. Weigand, F. Dignum. An organization-oriented model
for agent societies. In RASTA: 31–50, 2002.

19. J. Hubner, J. Sichman, O. Boissier. S-moise+: A middleware for developing organ-
ised multi-agent systems. In EUMAS: 64–78, 2006.

20. J. Hubner, J. Sichman, O. Boissier. MOISE+: towards a structural, functional,
and deontic model for MAS organization. In AAMAS: 501–502, 2002.

21. G. Cabri, L. Leonardi, F. Zambonelli. BRAIN: A Framework for Flexible Role-
Based Interactions in Multiagent Systems. In CoopIS/DOA/ODBASE:145-161,
2003

22. R. Kitio, O. Boissier, J.F. Hbner, A. Ricci. Organisational Artifacts and Agents
for Open Multi-Agent Organisations: ”Giving the Power Back to the Agents”. In
COIN: 171-186, 2007

23. H.J.E. Verhagen. Norm Autonomous Agents. PhD thesis, The Royal Institute of
Technology and Stockholm University, 2000.

24. A. Walker, M. Wooldridge. Understanding the emergence of conventions in multi-
agent systems. In ICMAS: 384–390, June 1995.

25. B.T.R. Savarimuthu, S. Cranefield, M. Purvis, M. Purvis. Role model based mech-
anism for norm emergence in artificial agent societies. In COIN: 1–12, 2007.

26. C. Castelfranchi, F. Dignum, C. M. Jonker, J. Treur. Deliberative normative
agents: Principles and architecture. In ATAL, 1757: 364–378, 1999.

27. F. Dignum, D. Morley, L. Sonenberg, L. Cavedon. Towards socially sophisticated
BDI agents. In ICMAS: 111–118. IEEE Computer Society, 2000.

16

Building Multi-Agent Systems for Workflow
Enactment and Exception Handling?

Joey Lam, Frank Guerin, Wamberto Vasconcelos, and Timothy J. Norman
{j.lam, f.guerin, w.w.vasconcelos, t.j.norman}@abdn.ac.uk

Department of Computing Science
University of Aberdeen, Aberdeen, U.K. AB24 3UE

Abstract. Workflows represent the coordination requirements of vari-
ous distributed operations in an organisation; workflows neatly capture
business processes, and are particularly suitable for cross-organisational
enterprises. Typical workflow management systems are centralised and
rigid; they cannot cope with the unexpected flexibly. Multi-agent systems
offer the possibility of enacting workflows in a distributed manner, via
software agents which are intelligent and autonomous, and respect the
constraints in a norm-governed organisation. Agents should bring flexi-
bility and robustness to the workflow enactment process. In this paper,
we describe a method for building a norm-governed multi-agent system
which can enact a set of workflows and cope with exceptions. We do this
by providing agents with knowledge of the organisation, the domain,
and the tasks and capabilities of agents. This knowledge is represented
with Semantic Web languages, and agents can reason with it to handle
exceptions autonomously.

1 Introduction

The Workflow Management Coalition defines a workflow as “the automation of
a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set
of procedural rules” [21]. Workflows can be formalised and expressed in a ma-
chine readable format, and this makes it possible for them to be employed in
service-oriented computing scenarios. In such scenarios we may be dealing with
open heterogeneous computing systems, where errors and exceptions are likely
to occur. We would like the computing systems to cope with these exceptions.
Ideally we would like to be able to deal with the unexpected; while we could
write specific exception handling routines to deal with some common exceptions
which we expect to arise, it will be difficult to anticipate all possible exceptions.
Hence we need intelligence to deal with the unexpected. Typical workflow man-
agement systems (e.g., [12, 13]) are centralised and rigid; they cannot cope with
the unexpected flexibly. Moreover, they have not been designed for dynamic en-
vironments requiring adaptive responses. To overcome this we argue that it is
necessary to use agents to control the enactment of a workflow in a distributed
manner; agents can be endowed with sufficient intelligence to allow them to

? This work is funded by the European Community (FP7 project ALIVE IST-215890).

17

manage exceptions autonomously. This should bring flexibility and robustness
to the process of enacting workflows.

We are interested in building multi-agent systems (MASs) which simulate the
operations in large organisations, and so must adhere to constraints defined by
the organisation1. In this paper we explore the issue of building agent systems
which can enact workflows in a distributed fashion, and which can cope with
exceptions as they arise. We propose a method for building such agent systems,
given the appropriate knowledge as an input. The knowledge input to the system
is divided into three main components, as illustrated in Figure 1. Firstly there

Fig. 1: Overview of the Proposed Approach

is the organisational knowledge, consisting of such things as roles, norms, role
classification, and resources available. Secondly there are the workflows, describ-
ing the tasks to be executed, and appropriate flow of control, and also including
variable definitions which are used to control flow. Thirdly there is the domain
ontology, describing concepts of the world including tasks and resources. Some
tasks are atomic and can be directly executed by agents, but some tasks require
a workflow to be executed. In this case the name of the task matches the name of
a workflow. As indicated by the dashed line there are links between the workflow
tasks and the organisation and imported domain ontology. Tasks and resources
are not described in the organisation directly; the domain ontology is imported
to the organisation ontology. This knowledge allows us to firstly allocate tasks in
an agent system where workflow tasks are distributed among the agents in a way
which is consistent with the organisational constraints. Secondly, it allows the
agents to enact the workflows, updating the organisation as appropriate. Thirdly
it allows agents to cope with exceptions as they arise, because the agents can
query the ontology to find alternative agents or tasks when problems arise.

In our system the workflow specifications and the ontologies are available
to be queried by any of the agents in the system, and the ontologies can also
be updated as events add or modify instances in the ontology. This requires
a centralised service which maintains the knowledge, and updates it, when in-
structed to by an agent. This centralised approach is somewhat undesirable in a
distributed agent system (lack of robustness, and scalability), however additional
robustness could be introduced by having multiple copies of the knowledge, and
some synchronisation processes to maintain consistency. Both of these possibil-
ities entail challenges which go beyond the scope of the current paper; we will
merely assume the knowledge is available.
1 Our focus for the moment is simulation, but eventually we envisage that our agents

will support real human users in executing tasks as part of human-agent teams.

18

This paper is structured as follows. In Section 2 we briefly introduce Seman-
tic Web languages. In Section 3 we describe norm-governed organisations repre-
sented in Semantic Web languages. We describe the representation of workflows
and explain allocation of tasks in Sections 4 and 5 respectively. The details of
agents enacting workflows and dealing with exceptions are given in Sections 6
and 7 respectively. Section 8 looks at related work and Section 9 concludes and
proposes future work.

2 Semantic Web Languages

The OWL-DL [6] ontology language is a variant of the SHOIN (D) Description
Logic [7], which provides constructs for full negation, disjunction, a restricted
form of existential quantification, cardinality restrictions, and reasoning with
concrete datatypes. We make use of the open world assumption, which requires
that something is false if and only if it can be proved to contradict other informa-
tion in the ontology. Since we assume a MAS as an open system, its knowledge
of the world is incomplete, and the knowledge is extendable. If a formula cannot
be proved true or false, we draw no conclusion2.

Formally, an ontology O consists of a set of terminology axioms T (TBox),
role axioms (RBox) and assertional axiomsA (ABox), that is,O = 〈T ,R,A〉. An
axiom in T is either of the form C v D or C .= D, where C and D are arbitrary
concepts (aka. classes in OWL); the RBox contains assertions about roles (such
as functional, transitive roles) and role hierarchies; an axiom in A is either of the
form C(a) (where C is a concept and a is an individual name; a belongs to C),
or of the form R(a, b) (where a, b are individual names (aka. instances in OWL)
and R is a role name (aka. a datatype or object property in OWL); b is a filler
of the property R for a). The meaning of concepts, roles and individuals is given
by an interpretation. An interpretation I = (∆I , ·I) consists of a non-empty set
of individuals (the domain of the interpretation) and an interpretation function
(·I), which maps each atomic concept CN ∈ C (C is a set of concept names) to
a set CNI ⊆ ∆I and each atomic role R ∈ R (R is a set of role names) to a
binary relation RI ⊆ ∆I ×∆I . The interpretation function can be extended to
give semantics to concept descriptions. An interpretation I is said to be a model
of a concept C, or I models C, if the interpretation of C in I is not empty. A
concept A is unsatisfiable w.r.t. a terminology T if, and only if, AI = ∅ for all
models of I of T . An ontology O is inconsistent if it has no models.

OWL DL benefits from many years of DL research, leading to well defined
semantics, well-studied reasoning algorithms, highly optimised systems, and well
understood formal properties (such as complexity and decidability) [3].

The Semantic Web Rule Language (SWRL)3 extends the set of OWL axioms
to include Horn-Clause-like rules that can be expressed in terms of OWL classes
and that can reason about OWL instances. SWRL provides deductive reasoning
capabilities that can infer new knowledge from an existing OWL knowledge base.
However, OWL DL extended with SWRL is no longer decidable. To make the

2
We can reason in an inconsistent ontology by tolerating a limited number of contradictions. A

formula is undefined (or undetermined) if it entails neither true nor false; a formula is overdefined

(or over-determined) if it entails both true and false.
3

http://www.w3.org/Submission/SWRL/

19

extension decidable, Motik et al. [15] propose DL-safe rules where the applica-
bility of a rule is restricted to individuals explicitly named in a knowledge base.
For example: parent(x,y) ∧ brother(y,z) ∧O(x) ∧O(y) ∧O(z) → uncle(x,z)
where O(x) must hold for each explicitly named individual x in the ontology.
Hence, DL-safe rules are SWRL rules that are restricted to known individuals.

The language SPARQL-DL [18] supports mixed TBox/RBox/ABox queries
for OWL-DL ontologies. Throughout the paper we will use qnames to shorten
URIs with rdf, rdfs, and owl prefixes to refer to standard RDF (Resource De-
scription Framework), RDF-S and OWL namespaces, respectively. We also use
the prefix dom and org to refer to the namespace of the Domain and Organisation
ontologies. Our agents will be able to query the ontology to access the knowledge.
For example, agents can search for all roles working in the finance department
which are obliged to perform task “WriteReport” by using this query4:
Type(:x, ?role), PropertyValue(:x, org:worksIn, :y), Type(:y, org:FinanceDept),

PropertyValue(:x, org:isObliged, :z), Type(:z, dom:WriteReport)

3 Norm-Governed Organisations

In this section, we describe how to represent roles, role classification, and norms
using OWL and SWRL. Our specification in this section is adequate to allow
agents to query an organisation at a certain point in time and ask questions
such as “is agent x prohibited from doing task t”, or “is agent y empowered to
do task b”. However, we do not provide a specification for how the organisation
is changed as a result of agents performing speech acts, or as a result of other
events. We assume that the system provides other specifications for this purpose,
and we focus only on the specifications necessary for workflow enactments.

We represent the agent organisation using Semantic Web languages. The
agent literature has many examples of different approaches to the specification
of norm-governed organisations, using languages such as the event calculus or
C+, for example [2]. Semantic Web languages are not as expressive as these,
but they have the advantage of having very efficient DL reasoners, and being
standardised. To specify the organisational knowledge relevant to our workflows
we can get by without the expressiveness of more sophisticated languages; for
example we only need to do static queries on current knowledge, and we do not
require the ability to reason over different time intervals.

3.1 Roles and their Constraints

The ontology we propose in this paper models the concepts of a role, its role clas-
sification(s), restrictions on roles (such as mutually exclusive roles, cardinality,
prerequisite roles) [16], and other aspects of the organisation. Roles are mod-
elled in a classification to reflect the subsumption of role descriptions. Sub-roles
inherit the properties from the super-roles; the properties of a sub-role override
those of its super-roles if the sub-role has more restrictive properties (the sub-
role cannot be less restrictive or the ontology would be inconsistent). Cardinality
restrictions can be used for example to restrict the number of agents a task can
be assigned to. Disjointness axioms can represent separation of duty restrictions.

4
Type(?a,?C) gives the most specific classes an instance belongs to.

20

We now give an example specification to illustrate these ideas. In Figure 2,
a role classification is shown. Sub-roles inherit the properties from super-roles.
For example, Staff are obliged to work from 9am to 5pm during weekdays; its
sub-roles inherit this obligation. The properties of a sub-role override those of
its super-role. Manager is permitted to employ staff; its sub-roles inherits this
property. However, this property of the AccountingManager is more restrictive;
it is only permitted to employ AccountingStaff (see axioms 4 and 5 below). For
the cardinality restrictions, we can model that only one agent can fill the role of
the general manager (see axioms 11 and 12 below); a member of staff works in
exactly one department (see axiom 6 below). An example of mutually exclusive
roles is that a department manager cannot be a general manager simultaneously
(see axiom 8 below). An example of separation of duty is that a staff submitting a
project proposal is prohibited from approving the proposal (see axiom 9 below).
Prerequisite roles means that a person can be assigned to role r1 only if the
person already is assigned to role r2 (see axiom 10).
(1) Programmer t Manager t Secretary v Staff

(2) DeptManager t GeneralManager v Manager

(3) AccountingManager t ITManager v DeptManager

(4) Manager v ∃ isPermitted.(∃ employs.Staff) u ∀ isPermitted.(∃ employs.Staff)

(5) AccountingManagerv ∃ isPermitted.(∃ employs.AccountingStaff) u ∀ isPermitted.(∃ employs.AccountingStaff)

(6) Staff v =1 worksIn

(7) range(worksIn) = Department

(8) DeptManager v ¬ GeneralManager

(9) Staff(x) ∧ ProjectProposal(p) ∧ ApproveProjectProposal(act) ∧ submits(x,p) ∧ approves(act,p) ∧O(x)

∧O(p) ∧O(act) → isProhibited(x,act)

(10) AccountingManager v ∃ prerequisites.Accountant

(11) GeneralManager v =1 takenBy

(12) range(takenBy) = Agent

(13) canDelegate v hasPower

(14) Staffv ∃ isObliged.(∃ works.(Weekdays u OfficeHour)) u ∀ isObliged.(∃ works.(Weekdays u OfficeHour))

Staff

Manager

DeptManager

ITManagerAccountingManager

Programmer

AnalystProgrammer

SeniorProgrammer

GeneralManager

Secretary

FinanceSecretary

Fig. 2: Roles and a Role Classification

3.2 Normative Notions

We firstly describe norms concerning agents performing some task Task. We
model permission5, obligation, prohibition and power as isPermitted, isObliged,

5
Explicitly defined permission means strong permission in our system. Undefined permission ax-

ioms represent weak permission.

21

isProhibited and hasPower OWL object properties to relate roles in the organisa-
tion and tasks. Their domain and range is Role and Task respectively. Permissions
allow the agent to achieve a state of affairs or perform an action (see for exam-
ple axioms 4 and 5 above). Permission and prohibition are distinct from power
because a member may be empowered to do something even though he is prohib-
ited from doing it. Prohibitions forbid the agent from achieving a state of affairs
or performing an action (see for example axiom 9 above). An obligation indicates
that some act has to be done (see for example axiom 14 above). It is common
to specify a time-limit or a condition for obligations. The axiom 14 above states
a conditional obligation, such that staff have to work during office hours and
weekday. Due to limited space, we will not describe time-limit constraints in the
paper. We now model the relations between the basic notions; the relations can
be equivalence, compatibility or incompatibility (or conflict) [20]. The following
rules list some of these relations.
(1) If an act is permitted and prohibited then there is a conflict.

isPermitted(x,act) ∧ isProhibited(x,act) ∧O(x) ∧O(act) → owl:Nothing(x)

(2) If an act is obligatory, then it is permitted.

isObliged(x,act) ∧O(x) ∧O(act) → isPermitted(x,act)

(3) If an act is obligatory and prohibited then there is a conflict.

isObliged(x,act) ∧ isProhibited(x,act) ∧O(x) ∧O(act) → owl:Nothing(x)

(4) If a prohibited act is performed then there is a violation.

performed(x,act) ∧ isProhibited(x,act) ∧O(x) ∧O(act) → violated(x,act)

Compared to standard deontic logic, here these deontic notions are being
given quite a different interpretation by the Semantic Web languages. For exam-
ple in deontic logic we could say that “obliged” is equivalent to “not permitted
not to”, however in Semantic Web languages we cannot express this. SWRL
does not allow us to negate the atoms within the scope of isPermitted(. . .). Nev-
ertheless, the Semantic Web version of these norms seems to be adequate for
representing simple agent scenarios, as illustrated in our examples below. One
thorny issue is contraposition; a DL axiom such as A v B entails ¬B v ¬A.
This entailment is not desirable in exceptional situations where there is a spe-
cial condition such that some type of A is not a B. The only way we can deal
with this is to explicitly state all exceptions in the axioms, for example Bird u ¬
Penguin u ¬ Ostrich v CanFly.

In this paper we distinguish between institutional tasks (such as authorising
a purchase), and physical tasks (such as printing a document). An institutional
task can only be performed by an agent which has power to do that task. For
example we say that action ‘manager x employs staff y’ is valid if x is empowered
to employ a staff at that time, therefore y is now a member of staff. Otherwise,
it is an invalid action due to its lacking of institutional power. The following
axioms mean that a manager has the power to employ staff; when the manager
performs EmployStaff, the person will become a staff:

EmployStaff
.
= ∃ employ.Staff u ∀ employ.Staff

Manager v ∃ hasPower.EmployStaff

Manager(m) ∧ Person(p) ∧ EmployStaff(act) ∧ hasPower(m,act) ∧ employ(act,p) ∧ performed(m,act) ∧O(m)

∧O(p) ∧O(act) → Staff(p)

22

4 Workflows

We now introduce a representation for workflows. A common way to repre-
sent a workflow is using Petri Nets [19] or BPEL (Business Process Execution
Language) [1]. In this paper we represent a workflow as a digraph, which is a
simplified and minimalistic way to capture the basic concepts of workflows.

Definition 1. A workflow is a tuple 〈N,S,E, s0,Sf 〉, where

1. N is the name of the workflow,
2. S is a finite set of states of the form 〈id , T 〉, where id is the number identi-

fying this state, and T is the task;
3. E is a set of edges linking states. Edges take the form 〈id1, l, v, id2〉, where

id1 is the state this edge leaves from, id2 is the state this edge arrives at, v
is the variable associated with the edge, and l is a label indicating the type of
edge. There are four types of edge, l ∈ {AND,OR, JOIN-AND, JOIN-OR}
where AND-edges and OR-edges describe exclusive-or branches, and JOIN-
AND-edges and JOIN-OR-edges describe joins. For any pair of states with
multiple edges linking them, the edges must be of the same type;

4. s0 is the initial state of the workflow, and Sf ⊆ S is the set of final states.

We consider a travel request workflow example in a company. Figure 3 graph-
ically depicts the example. Figure 4 shows the representation of the workflow.
The figure annotates edges with the name of the variable associated with the
edge. We refer to input and output variables of the workflow; for example the
state 〈2,checkRequestForm〉 has input variable “TravelRequestForm” and output
variable “CorrectTravelRequestForm”. In this example, we assume the workflow
is triggered by an agent who issues a travel request. Firstly a travel request
form is issued; the request form should be checked to have correct information.
The checked form is then passed to be approved. The output of “approveTrav-
elRequest” is either “ApprovedForm” or “RejectedForm”. If the output variable
is “ApprovedForm”, the order for the travelling can be placed; otherwise, the
request is rejected.

1. travelRequest 2. checkRequestForm 3. approveTravelRequest

5. rejectRequest 4. placeOrder

ApprovedFormRejectedForm

TravelRequestForm CorrectForm

IncorrectForm

Fig. 3: Travel Request Workflow Example

W = 〈travelRequest WF, S, E, 1, {4, 5}〉
S = {〈1,travelRequest〉, 〈2,checkRequestForm〉, 〈3,approveTravelRequest〉, 〈4,placeOrder〉, 〈5,rejectRequest〉}
E = {〈1,AND,TravelRequestForm , 2〉, 〈2,OR,CorrectTravelRequesForm, 3〉,

〈2,OR,IncorrectTravelRequesForm, 5〉 〈3,OR,ApprovedForm, 4〉, 〈3,OR,RejectedForm, 5〉}
Fig. 4: Travel Request Workflow as a Digraph

23

5 Allocating Tasks to Agents

In this section we describe how we allocate tasks to software agents which,
together, will enact a set of workflows. Agents are parameterised by the roles
they take up – these roles dictate the tasks agents become responsible for.

The input to the ontological creation of agents is a set of workflows W and an
ontology O, and the output is an updated ontology with a set of software agents
introduced as subclasses of the Agent concept, with roles and tasks associated
with them. In Figure 5 we show how we create agents in our ontology. The

algorithm agent creation(W = {W1, . . . , Wn}, O)
T =

⋃n
i=1 Si, 〈Ni, Si, Ei, s0i

, Sfi
〉 ∈ W

for each role Ri in O do
for each 〈id, T 〉 ∈ T do
if Ri v ∃ isObliged.T then
T := T \ {〈id, T 〉}; Ti := Ti ∪ {T}

else if Ri v ∃ hasPower.T u ∃ isPermitted.T then
T := T \ {〈id, T 〉}; Ti := Ti ∪ {T}

else if Ri v ∃ isPermitted.T then
T := T \ {〈id, T 〉}; Ti := Ti ∪ {T}

if T 6= ∅ then fail // org. cannot enact a workflow
else
for each role Ri in O with Ti = {T i

0 , . . . , T i
m} do

O := O ∪ {Agi v Agent}
O := O ∪ {Agi

.
= ∃ hasRole.(Ri) u ∃ isCapable.(T i

0 t · · · t T i
m)}

return O;

Fig. 5: Creation of Agents in O

algorithm collects in T all tasks of the workflows and distributes them among
the roles of the organisation. The distribution gives priority to i) obligations,
then ii) institutionalised power and permissions, and finally iii) permissions,
captured in the algorithm by the order of the nested if constructs. All tasks
should be distributed among roles, otherwise the algorithm fails, that is, the
organisation represented in the ontology cannot enact one of the workflows. If
all tasks have been assigned to roles, then for each role Ri we create in O a
subclass Agi of Agent, with tasks Ti = {T i

0, . . . , T
i
m} associated to the agent via

isCapable.
For each Agi in O we start up an independent computational process – a

software agent – which will support the enactment of workflows. Each software
agent, upon its bootstrapping, will use the definition of the subclass as the
parameterisation of its mechanisms: the role and tasks associated to the agent
will guide its behaviour, explained in Section 6. For simplicity, in our algorithm
above, we assume that each agent will enact exactly one role; however this could
easily be changed if required.

6 Enactment of Workflows

After allocation, the next step is that agents take up roles in the organisation and
enact workflows. Agents plan their actions in real-time. The workflow provides
an outline plan, but many of the details need to be decided by agents. During
the enactment, an ontology is used by the agents to check what actions they
can perform. There is a relationship between the tasks and variables in the
workflows, and the concepts and instances in the ontology. Each time the agents
perform workflow tasks or assign values to variables, they update the instances in

24

the ontology. Some agent actions will involve the consumption of organisational
resources, in which case the agent will update the instances in the ontology. Thus
the ontology maintains a record of the current status of the workflow enactment,
as well as relevant aspects of the organisation. In this paper we avoid details of
how the implementation could work, but the update of the ontology can be done
by the agents whenever they are about to do a task; the agent sends an update
instruction to the service which maintains the ontology.

We will detail the relationship between the ontology and the workflow enact-
ment; this is easiest to illustrate by referring to an example. We continue with
the travel request example from Section 4, and we add to it an ontology (see
the axioms below) which describes roles, norms, and descriptions of tasks. The
following axioms state the norms governing agents and the tasks to be executed.

(1) Secretary v ∃ isObliged.checkRequestForm
(2) Manager v ∃ hasPower.approveRequest
(3) DeptManager v ∃ hasPower.approveTravelRequest
(4) Manager(m) ∧ TravelRequestForm(f) ∧ approveTravelRequest(act) ∧ requestedFrom(f,m) ∧

approves(act,f) ∧O(m) ∧O(m) ∧O(f) → isProhibited(m,act)
(5) checkRequestForm

.
= ∃ checks.(TravelRequestForm u ∃ isCorrect.xsd:boolean)

(6) Staff(s) ∧ requestedFrom(f,s) ∧ hasName(s,n) ∧ filledName(f,n) ∧ hasStaffID(s,id) ∧
filledStaffID(f,id) ∧O(s) ∧O(f) ∧O(n) ∧O(id) ∧ · · · → isCorrect(f, {“true”ˆˆ〈 xsd:boolean〉})

(7) CorrectTravelRequestForm
.
= TravelRequestFrom u ∃ isCorrect.{“true”ˆˆ〈 xsd:boolean〉}

(8) InCorrectTravelRequestForm
.
= TravelRequestFrom u ∃ isCorrect.{“false”ˆˆ〈 xsd:boolean〉}

(9) checkRequestForm v ∃ hasInput.TravelRequestForm u
∃hasOutput.(CorrectTravelRequestForm t InCorrectTravelRequestForm)

(10) functional(isCorrect)
(11) ApprovedForm

.
= TravelRequestForm u ∃ isApproved.{“true”ˆˆ〈 xsd:boolean〉}

Each state in a workflow is mapped to a task in the domain ontology by
matching the same name (i.e. each task is a concept in the ontology). For ex-
ample, state 2 in the workflow (Figure 4) is mapped to checkRequestForm in
the domain ontology. When a task in a workflow is about to be executed by an
agent, an instance of the corresponding task in the ontology is created by the
agent (in real-time).

Similarly, each input (or output) variable from a workflow task maps to
a concept in the ontology. For example, the variable “ApprovedForm” in the
workflow (Figure 4) is mapped to the concept ApprovedForm (see axiom 11 above)
in the domain ontology. Every time an agent assigns a value to an input (or
output) from a workflow task, then a new instance is also created in the ontology,
corresponding to the value of the variable.

The creation of instances in the ontology allows an agent to check if its next
action complies with the constraints of the organisation. The agent who is about
to execute a workflow task first tentatively creates an instance in the ontology,
and then calls the DL reasoner to check the ontology’s consistency and also to
check if violations have been introduced. If the ontology is inconsistent, then the
agent knows that the task it was about to execute is an error; on the other hand,
if the ontology entails violated(x,task) for some agent “x”, then the agent knows
that the task it was about to execute would cause it to violate norms. Thus the
agent should not carry out the task, and should revert to the ontology before the
instance was added. This type of check can pick up on such things as an agent
performing a prohibited action (see axiom 4 in subsection 3.2) or axiom (4)
above which forbids a manager from approving his own travel request. Of course
an autonomous agent may choose to execute the task regardless, in which case

25

the instance is added, and the ontology may now have recorded violations (in
the case of broken prohibitions) or may be inconsistent (in the case of an agent
updating wrong information). In the second case, the inconsistent ontology can
still be used thereafter for agents to check proposed actions. Ontology reasoners
can reason with inconsistent ontologies by selecting consistent subsets [8]. In our
case, the reasoner can identify the set of “Minimal Unsatisfied Preserving Sub-
Ontologies” (MUPSs) in an inconsistent ontology [17]; each MUPS is a minimal
set of problematic axioms. Thus, given an inconsistent ontology, an agent can
add an instance and check if the number of MUPSs has increased; if so, then this
instance has caused further inconsistencies, otherwise the instance (and hence
the proposed workflow task) is acceptable.

We now describe how the agent’s behaviour is related to the ontology and
the workflow using the “travel request” workflow in Figure 4. Let us look at
the second state of the workflow in Figure 4, i.e., the “checkRequestForm” task.
When control passes to this state there already exists an instance of a TravelRe-
questForm in the ontology, say this is TF124. Now the above axioms (1) states
that the Secretary is obliged to perform the “checkRequestForm” workflow task.
The secretary is going to perform this action, so the secretary agent creates an
instance of checkRequestForm, say this is CRF54. Axiom (5) states that checkRe-
questForm is defined as having at least one checks relationship, and therefore the
secretary agent must also add an ABox axiom for the relationship checks(CRF54,
TF124); the agent can also deduce that the form TF124 should be correct or in-
correct (i.e. boolean). Now due to axiom (6), assuming the form has been filled
correctly, then its isCorrect property should have a true value; this corresponds
to ABox axiom isCorrect(TF124, {“true”ˆˆ〈 xsd:boolean〉}), which can now be in-
ferred from the ontology. Now from axiom (7) it can be inferred that the travel
request form TF124 is an instance of the concept CorrectTravelRequestForm. Fi-
nally axiom (9) tells us that this instance TF124 is the value to be assigned to
the output variable “CorrectTravelRequesForm” of this workflow task. However,
the secretary might erroneously decide to assign the output TF124 as the out-
put value “CorrectTravelRequesForm” or “IncorrectTravelRequesForm” in the
workflow. As mentioned above, whenever an agent assigns a value to a workflow
input (or output) variable, the agent must add an instance of the corresponding
concept to the ontology. Thus the secretary’s choice is between adding the ABox
axiom CorrectTravelRequestForm(TF124) or InCorrectTravelRequestForm(TF124).
Of course if the latter choice is made, then the ontology becomes inconsistent,
because the form passed all the tests of axiom (6), hence CorrectTravelRequest-
Form(TF124) can already be inferred. Thus the secretary knows that declaring
the form incorrect breaks the organisation’s constraints. Likewise, if the form
was incorrectly filled, the secretary would break the organisation’s constraints
by declaring it to be correct. Axiom (10) states that the isCorrect property can
only have one value (i.e. the form’s correctness cannot be both true and false).

7 Dealing with Exceptions

During the enactment of workflows, exceptions may occur easily, for example
due to unavailable resources, or agent failures. One way to deal with exceptions
is to classify exceptions into classes and pre-define rules or policies to handle
each case; specialised agents then perform defined remedial actions [9]. How-

26

ever, exceptions are difficult to predict during design, especially in open and
dynamic environments. It is preferable to program agents with intelligence and
adaptivity so they can accommodate unexpected changes in their environment.
To satisfy this requirement we have associated the workflow tasks with semantic
information in the OWL ontology, and we have also represented the background
knowledge for the organisation. This allows agents to reason about the descrip-
tion of tasks and agents in the organisation and find alternative ways to deal
with workflow tasks when exceptions arise.

Exceptions often involve the inability to execute some particular task in
the workflow. This can be repaired by breaking off from the execution of the
workflow at that point, and executing some sequence of actions which can act as
a substitute for the problematic task. The appropriate sequence of actions may
itself involve another workflow which is nested inside the original workflow. A
simple example of this could be when a member of an organisation is absent and
unable to execute a task in a workflow; then another member of the organisation
may repair this problem by invoking a delegation workflow to delegate the absent
member’s duties to another suitable member of staff.

We provide exception handlers for the following two types of exception: (1) an
agent exception, where an agent may have crashed, or is not performing for some
reason; and (2) a task exception, where a task is unachievable.

The “Agent Exception handler” in Figure 6 handles Exceptions regarding
unavailable agents. The input to this routine consists of the problematic workflow
state and the agent who is handling the exception (AgH); this is the agent who
completed the preceding workflow state, and was unable to pass control to the
next agent. This routine first tries to find an alternative agent which has the
appropriate capability (and institutional power if necessary), and to delegate
the task to that agent. If no suitable agent can be found, then a substitute task
is sought; the subroutine “Find Alternative Task” (Figure 8) tries to find a task
with the same inputs and outputs. If no suitable task can be found, then the
Agent Exception handler tries to procure additional staff, and this is done via a
nested workflow for staff procurement. The agent uses its own internal procedure
“callWorkflow” to initiate a workflow to procure a new member of staff who can
do task Tp; this procedure returns true if the workflow successfully procures new
staff. We do not detail the procurement workflow, but it will make a selection
between either hiring contract staff or recruiting new staff, depending on the
organisational rules governing that class of staff.

The “Task Exception handler” in Figure 6 deals with unachievable tasks. Its
inputs are the problematic workflow state and the agent who is handling the
exception (AgH); in this case this is the agent who attempted to execute the
problematic task, and was unable to. The routine begins by checking if the task
has failed due to the unavailability of a required resource. If so, an alternative
resource is sought. This is done by finding siblings of the original resource in the
ontology. This could for example replace a black and white laser printer with a
colour laser printer for a simple print job; the colour printer is less desirable as
it is more costly, but it can do the job. If no suitable substitute resource can be
found, then a substitute task is sought; the subroutine “Find Alternative Task”
(Figure 8) tries to find a task with the same inputs and outputs. If no suitable
task can be found, then the Task Exception handler tries to procure the resource,

27

and this invokes a nested workflow for resource procurement. This workflow is
shown in Figure 9, it will make a selection between either hiring the equipment
or purchasing it, depending on the organisational rules governing that type of
equipment (we do not give the details of these rules).

algorithm Agent Exception handler(〈id, Tp〉, AgH)
// Try to find an alternative agent who has the capability to do Tp

if Find Alternative Agent(〈id, Tp〉, AgH ,O) return true;
// Try to find an alternative task (or workflow) with the same input/output as Tp

else if Find Alternative Task(〈id, Tp〉, AgH ,O) return true;
else if callWorkflow(procureStaff WF,Tp) return true; // initiate the staff procurement workflow
else return false;

algorithm Task Exception handler(〈id, Tp〉, AgH)
// if something is missing try alternative resources
if there exists some resource R such that

Tp v ∃uses.R and ! available (R)
then for each Ri, where sibling(R, Ri)

let r be an instance of R
let ri be an instance of Ri

let t be an instance of Tp

O′ := {uses(t, ri)} ∪ O \ {uses(t, r)}
if consistent(O′) then O := O′; return true;

end for
// Try to find an alternative task (or workflow) with the same input/output as Tp

if Find Alternative Task(〈id, Tp〉, AgH ,O) then return true;
// If resources are missing
if there exists some resource R such that Tp v ∃ uses.R and ! available (R)

then if callWorkflow(procureResource WF,R) return true
// initiate the resource procurement workflow

return false;

Fig. 6: Dealing with Exceptions

algorithm Find Alternative Agent(〈id, Tp〉, AgH ,O)
AgH = 〈RH , TH〉
// if Tp is a type of institutional task, then it needs institutional power
if Tp v Institutional Task ∈ O
// then find agents having the capability and power to do Tp

then Agent list := RunQuery(“Type(:y, ?agent), PropertyValue(:x, org:isPermitted, :z),
PropertyValue(:x, org:hasPower, :z), PropertyValue(:y, org:isCapable, :z),
PropertyValue(:y, org:hasRole, :x), Type(:z,dom:Tp)”)

// else find agents having the capability to do Tp

else Agent list := RunQuery(“Type(:y, ?agent), PropertyValue(:y, org:isCapable, :z), Type(:z,dom:Tp)”)
for each Agi in Agent list do

// if AgH has power to delegate to Agi, then AgH gives him the order to do it
if ∃Role ∈ RH such that canDelegate(Role, Agi)

then SpeechAct(AgH , Agi,order, Tp) return true;
else // AgH requests Agi to take the obligation

if callWorkflow(request WF, AgH , Agi, Tp) then return true;
end for
return false;

Fig. 7: Finding Alternative Agents

We now describe dealing with exceptions with examples. We consider the
workflow example shown in Figure 9 which deals with printing a finance report.
When a finance report is written, its format is then checked. Next, the report is
to be approved, and printed locally, finally the report is posted. Below we list
some of the ontology axioms which are relevant to this workflow.

28

algorithm Find Alternative Task(〈id, Tp〉, AgH ,O)
AgH = 〈RH , TH〉
// find any task T with same input/output
Task list := RunQuery(“Type(:t, ?task),Type(:z, dom:Tp), PropertyValue(:z, dom:hasInput, :xi),

PropertyValue(:z, dom:hasOutput, :xo), PropertyValue(:t, dom:hasInput, :xi),
PropertyValue(:t, dom:hasOutput, :xo)”)

for each T ∈ Task list // check the consistency for each alternative task
let t be an instance of Tp

O′ := {T (t)} ∪ O \ {Tp(t)}
if consistent(O′) then O := O′

if T is a workflow, then AgH initiates T
else if T is a task // then check if the AgH can do T

if Tp v Institutional Task ∈ O // then find agents having the capability and power to do Tp

if ∃Role ∈ RH such that isCapable(AgH , T)∧ hasPower(Role, T)∧ isPermitted(Role, T)
then AgH := 〈RH , TH ∪ {T}〉; return true;

else if ∃Role ∈ RH such that isCapable(AgH , T)
then AgH := 〈RH , TH ∪ {T}〉; return true;

// otherwise call routine for finding alternative agent
if Find Alternative Agent(〈id, T 〉, AgH ,O) then return true;

end for
return false;

Fig. 8: Finding Alternative Task

1. writeFinanceReport

4. printReportLocally

5. postFinaceReport3. approveFinanceReport

2. checkReportFormat

1. prcoureRequest 2. approveRequest
3. purchaseResource

1. hireResRequest 2. approveRequest 3. hireResource

prepareFinaceReport_WF

procureResource_WF

hireResource_WF

4. rejectPurchaseReq

ApprovedPurchase

RejectedRequest

Report PrintedReport
ApprovedReport

CheckedReport

5. hireResourceApprovedHire

Fig. 9: Finance Report and Purchase Workflows

(1) ApproveReport v Institutional Task
(2) Manager v ∃ hasPower.ApproveReport u ∀ hasPower.ApproveReport u ∃ isCapbale.ApproveReport u

∃ isPermitted.ApproveReport
(3) ITManager v ∃ hasPower.ApproveITReport u ∀ hasPower.ApproveITReport
(4) FinanceManager v ∃ hasPower.ApproveFinanceReport u ∀ hasPower.ApproveFinanceReport
(5) FinanceManager t ITManager t GeneralManager v Manager
(6) ApproveFinanceReport t ApproveITReport v ApproveReport
(7) ApproveFinanceReport v ¬ ApproveITReport
(8) Secretary v ∃ isObliged.checkReportFormat

The FinanceManager has the power to do ApproveFinanceReport. If the Fi-
nanceManager is not available, then control returns to state 2 of the workflow,
where the secretary must handle the exception using the routine in Figure 6.
This leads to the routine “Find Alternative Agent” (in Figure 7) being run. Af-
ter running the query within “Find Alternative Agent”, the agent whose role
is GeneralManager is returned as an appropriate candidate to carry out the ap-
proval task. This is because GeneralManager inherits power from its superclass
Manager, while ITManager is restricted to approve IT reports only. The final
stage of the exception handling is for the secretary to initiate a “request” work-
flow, to request that the general manager take on the obligation to approve the
finance report. If this is successful, then the workflow can resume with the new
substitute agent.

The next step is to print the report. To show an example of an unachievable
task, let us assume no printer or toner is available; therefore printReportLocally
cannot be implemented. As the secretary is responsible for this unachievable task,
the secretary must execute of the routine “Task Exception handler” (in Figure

29

6), which reveals that a resource is missing, and no suitable alternative resource
exists in the organisation. The routine then searches for alternative tasks and
finds that the task printReportCommercially is a sibling task of printReportLocally,
has the same input ApprovedReport and output PrintedReport. However, if the
report is sensitive, it is not allowed to print it commercially (see axiom 6 below).
Assume that printRpt322 is the instance of printReportLocally, which is to be
replaced by printReportCommercially; according to “Find Alternative Task” (in
Figure 8) we move the instance printRpt322 from printReportLocally to printRe-
portCommercially. If the report is sensitive, i.e., printRpt322 is also an instance of
SensitiveReport, then from axiom 6 below we could infer that the agent perform-
ing the commercial print act is violating norms. Hence, printReportCommercially
should not be executed. If the agent chooses not to violate the norms, then
“Find Alternative Task” fails and control returns to “Task Exception handler”
(in Figure 6). Having failed to find an alternative resource or task, this routine
now tries to procure the resource required for the task. This means that the
secretary must initiate the “procureResource WF” workflow (in Figure 9), and
if successful, the printing resource is available, and the workflow can progress.

(1) printReportLocally
.
= ∃ print.(Report u ∃ printedBy.(Printer u ∃ hasToner.(Toner u

∃ hasAmt.GreaterThanZero)))
(2) Printer t Toner v Resource
(3) procureRequest

.
= ∃ requests.(Resource u ∃ hasAmt.LessThanOne u = 1 hasPrice)

(4) printReport v ∃ hasInput.ApprovedReport u ∃ hasOutput.PrintedReport
(5) printReportLocally t printReportCommercially v printReport
(6) Staff(s) ∧ SensitiveReport(r) ∧ printReportCommercially(act) ∧ print(act,r) ∧ performed(s,act) ∧O(s)

∧O(r) ∧O(act) → violated(s,act)
(7) Secretary v ∃ isObliged.printReportLocally

8 Related Work

Various works use agents to enact workflows. Buhler and Vidal [4] proposed to
integrate agent services into BPEL4WS-defined workflows. The strategy is to
use the Web Service Agent Gateway to slide agents between a workflow engine
and the Web services it calls. Thus the workflow execution is managed centrally
rather than by the agents. On the other hand Guo et al. [5] describe the de-
velopment of a distributed multi-agent workflow enactment mechanism from a
BPEL4WS specification. They proposed a syntax-based mapping between some
of main BPEL4WS constructs to the Lightweight Coordination Calculus (LCC).
This work however does not address organisational or normative aspects of an
agent system; we believe that these high level aspects are important for agent
systems that are to model real processes in human organisations. Furthermore
we have shown how the use of ontologies to describe aspects of the organisa-
tion and domain can be valuable in exception handling, as agents are part of an
organisation and will be unable to deal with exceptions entirely on their own.

Klein and Dellarocas [9] explicitly deal with the issue of exceptions; they
propose the use of specialised agents that handle exceptions. The exception han-
dling service is a centralised approach, in which a coordination doctor diagnoses
agents’ illnesses and prescribes specific treatment procedures. Klein and Dellaro-
cas [10] identified an exception taxonomy which is a hierarchy of exception types,
and then described which handlers should be used for what exceptions. Klein et
al. [11] describe a domain-independent but protocol-specific exception handling
services approach to increasing robustness in open agent systems. They focus on

30

“agent death” in the Contract Net protocol. We would argue that our approach
is more generic in that it is neither domain-specific, nor protocol-specific. When
seeking alternative ways to achieve workflow tasks, our agents can use the same
handling routine regardless of the workflow in progress. A further distinction be-
tween our work and the above related works use some device which is added into
the system to deal with exceptions, for example: specialised agents, an excep-
tion repository, or a directory to keep track of agents. In contrast, our approach
aims to endow the agents of the system themselves with the ability to deal with
exceptions by querying ontologies to find alternative ways.

Perhaps the closest approach to our work in the literature is from Mallya and
Singh [14]. Building on the commitment approach, they have proposed novel
methods to deal with exceptions in a protocol. They distinguish between ex-
pected and unexpected exceptions. Unexpected exceptions are closest to the
types of exceptions we tackle here. Mallya and Singh’s solution makes use of
a library of sets of runs (sequences of states of an interaction) which could be
spliced into the workflow at the point where the exception happens. This is sim-
ilar to the way our exception handling can sometimes include a nested workflow
in place of a failed task, to repair the workflow. However, they do not describe
how these sets of runs can be created, but it is likely that one would need access
to observed sequences from previous enactments of similar workflows. The aim
of the commitment approach is in line with our work, as it endows the agents
with some understanding of the meaning of the workflow they are executing, by
giving them knowledge of the commitments at each stage. This would make it
possible for agents to find intelligent solutions when exceptions arise. Similarly,
in our approach, agents are endowed with semantic knowledge (represented in
an ontology) about the capabilities and norms of the other roles so that they
can find suitable candidates to execute tasks in the case of exceptions.

9 Conclusions & Future Work

In this paper we have described a method by which an agent system could be
constructed to enact a set of given workflows, while respecting the constraints of
a given organisation. We have shown how Semantic Web languages can be used
to describe the organisational knowledge, as well as domain knowledge which can
be used by the agents if exceptions arise during the enactment of a workflow;
the agents can then use this knowledge to make intelligent decisions about how
to find alternative ways to complete the workflow.

Some issues which have not been addressed include the updating of the or-
ganisational knowledge by agent activities outwith the workflows, for example
speech acts that may change norms in the system. Also, we have not included
any mechanism to detect when an obligation is violated. This could be addressed
by associating time limits with obligations and including timer events which are
triggered when obligations time out, and then checking if they have been fulfilled;
this remains for future work.

Our aim has been to allow agents to deal with unexpected exceptions, rather
than coding specific exception handlers for a predefined set of expected excep-
tions. Nevertheless we have had to define exception handling routines for some
predefined situations, such as agent exceptions, or task exceptions. However, our

31

predefined situations cover a broad class of exceptions, and there can be many
possible solutions if the ontological knowledge is suitably rich.

References
1. IBM, BEA Systems, Microsoft, SAP AG and Siebel Systems, business Process

Execution Language for Web Services version 1.1. Technical report, July 2003.
2. A. Artikis. Executable Specification of Open Norm-Governed Computational Sys-

tems. PhD thesis, Imperial College London, 2003.
3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. Patel-Schneider. The

Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

4. P. Buhler and J. M. Vidal. Integrating agent services into BPEL4WS defined
workflows. In Proceedings of the Fourth International Workshop on Web-Oriented
Software Technologies, 2004.

5. L. Guo, D. Robertson, and Y.-H. Chen-Burger. Using multi-agent platform for
pure decentralised business workflows. Web Int. and Agent Systems, 6(3), 2008.

6. I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description
logic satisfiability. In Proc. of the 2nd International Semantic Web Conference
(ISWC 2003), number 2870, pages 17–29. Springer, 2003.

7. I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proc.
of the 19th Int. Joint Conf. on Artificial Intelligence, pages 448–453, 2005.

8. Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontolo-
gies. In Kaelbling and Saffiotti, editors, IJCAI’05, 2005.

9. M. Klein and C. Dellarocas. Exception handling in agent systems. In AGENTS
’99: 3rd Annual Conference on Autonomous Agents, pages 62–68, 1999.

10. M. Klein and C. Dellarocas. Towards a systematic repository of knowledge about
managing multi-agent system exceptions. Technical Report ASES Working Report
ASES-WP-2000-01, Massachusetts Institute of Technology, 2000.

11. M. Klein, J. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent
exception handling services to enable robust open multi-agent systems: The case
of agent death. Auton. Agents and Multi-Agent Systems, 7(1-2):179–189, 2003.

12. A. Lanzén and T. Oinn. The taverna interaction service: enabling manual interac-
tion in workflows. Bioinformatics, 24(8):1118–1120, 2008.

13. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the Kepler system:
Research articles. Concurr. Comput. : Pract. Exper., 18(10):1039–1065, 2006.

14. A. U. Mallya and M. P. Singh. Modeling exceptions via commitment protocols.
In AAMAS ’05: Proceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, pages 122–129. ACM, 2005.

15. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules.
In Proc. of the 3rd Int. Semantic Web Conf., pages 549–563. Springer, 2004.

16. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. Computer, 29(2):38–47, 1996.

17. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. In Proceedings of the 8th International Joint
Conference on Artificial Intelligence (IJCAI’03), pages 355–362, 2003.

18. E. Sirin and B. Parsia. SPARQL-DL: SPARQL query for OWL-DL. In 3rd OWL
Experiences and Directions Workshop (OWLED-2007), 2007.

19. W. van der Aalst. The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

20. G. H. von. Wright. Deontic logic. Mind, New Series, 60(237):1–15, January 1951.
21. WfMC. Workflow management coalition terminology and glosary. Technical Re-

port WFMC-TC-1011, Workflow Management Coalition, 1999.

32

A Reputation Model for Organisational Supply
Chain Formation ?

Roberto Centeno1, Viviane Torres da Silva2, Ramón Hermoso1

{roberto.centeno, ramon.hermoso}@urjc.es, and
viviane.silva@ic.uff.br

1 Centre for Intelligent Information Technologies (CETINIA)
University Rey Juan Carlos Madrid (URJC) - Spain
2 Universidade Federal Fluminense (UFF) - Brazil

Abstract. The use of organisational concepts and the design of reputa-
tion mechanisms have been proved as successful methods to build multi-
agent systems where agents’ decision-making processes to select partners
are crucial for the system functioning. In supply chain domains this latter
issue becomes crucial in the phase of formation since entities participat-
ing need to establish business relationships as soon as possible in order
to maximise their profits. In this work we propose: i) a novel formalisa-
tion of supply chains using organisational concepts and, ii) a reputation
model based on those organisational concepts and on personal norms
with which agents define their preferences about potential interactions.
To conclude, we present a case study pointing out the stronger points of
our work.

1 Introduction

A supply chain combines multiple enterprises to collaboratively provide cus-
tomers with products or services [1]. A supply chain life-cycle comprises two
main processes: the supply chain formation and the supply chain management.
This paper focuses on the supply chain formation that concerns the selection of
the participants to the supply chain and the agreement about the terms of the
exchange [2]. In particular, the main goal of the paper is to contribute to the
selection of the enterprises that will participate in the supply chain in order to
establish stronger relationships.

Due to the need to quickly respond to changes in market requirements and
to rapidly create or reconfigure supply chains, we present an approach that
contributes to dynamic supply chain formation. A supply chain is viewed as
an organisation composed of different enterprises, each represented by an agent
playing roles in the organisation.

? The present work has been partially funded by the Spanish Ministry of Education
and Science under project TIN2006-14630-C03-02 (FPI grants program) and by the
Spanish project “Agreement Technologies” (CONSOLIDER CSD2007-0022, INGE-
NIO 2010)

33

Agents and organisations to represent enterprises and supply chains, respec-
tively, have been used because, in recent years, multi-agent systems (MAS) have
been recognised as a promising technology for the automation of supply chains
[1]. In addition, organisational approaches are more and more used since they
allow facing complex problems using simple abstractions [3]. Those abstractions
can be concepts that structure relationships among organisation members, such
as roles that agents can play, and also constraints, such as norms that attempt
to regulate agents’ behaviour.

The ability to select suitable partners is one of the keys to build successful
supply chains [4], so this issue should be adequately supported by our model. As
has been demonstrated by several studies [5–7], trust and reputation contribute
significantly to the formation of suitable partnerships and of stable supply chains.
Therefore, we propose the use of a reputation mechanism based on norms to give
support to the dynamic supply chain formation. The reputations of the agents
are evaluated according to the (organisational and personal) norms that they
violate and fulfil. Norms define the actions agents are prohibited, permitted or
obligated [8] to perform and the sanctions/reward to be applied in the case of
violations/fulfilment [9]. The organisational norms are the ones defined by sup-
ply chains (or organisations) while the personal norms are defined by the agents
themselves. Note that the reputation mechanism should be used together with
other mechanisms to investigate the most appropriate enterprises to participate
in the supply chain being formed by analysing, not only the enterprises reputa-
tions, but also the products or resources provided, their cost, etc.

The remainder of the paper is organised as follows. Section 2 formalises our
organisation model and Section 3 our reputation model. In Section 4 we present
an overview of supply chain formation and Section 5 uses the formalisation pre-
sented in Section 2 to formalise supply chains. Section 6 illustrates our approach
by using a supply chain case-study. Finally, Section 7 states some related work
and Section 8 concludes and introduces some future work.

2 Organisational Model

In this section we present the formalisation of our organisational model. This
model relies on three basic entities, namely: roles, organisational norms and
agents endowed with personal norms. We define them in the next sections.

2.1 Organisation definition

Following the framework proposed in [10], our work focuses on a particular type
of organised multiagent system - from now on organisation - which is endowed
with two different organisational mechanisms: organisational norms and roles.
An organisational mechanism is a mechanism which tries to influence the agents’
behaviour; usually towards more effectiveness with regard to some objective.
Taking into account these elements, we formally define an organisation as follows:

34

Definition 1 An organisation O is a tuple 〈Ag,A,X , φ, x0, ϕ, {ON om,Rom}〉
where:

– Ag is a set of agents participating in the organisation, |Ag| denotes the
number of agents;

– A is a possibly infinite action space that includes all possible actions that
can be performed in the system. A includes an action askip; the action of
doing nothing3;

– X is the environmental state space;
– φ : X×A|Ag|×X → [0..1] is the transition probability distribution, describing

how the system evolves as a result of agents’ actions;
– x0 ∈ X stands for the initial state of the system;
– ϕ : Ag × X × A → {0, 1} is the agents’ capability function describing the

actions agents are able to perform in a given state of the environment.
ϕ(ag, x, a) = 1 means that agent ag is able to perform action a in the state
x (0 otherwise);

– ON om is an organisational mechanism based on organisational norms that
regulates agents’ behaviour. It will be formalised in section 2.5 definition 6;

– Rom stands for an organisational mechanism based on roles that defines
the positions agents may enact in the organisation. It will be formalised in
section 2.3 definition 4.

The proposed model adopts the view in which an agent’s environment is
everything that surrounds it, i.e., any existing entity including other agents. Ac-
cordingly, when agents perform actions that are executed in the environment,
these actions may influence other agents. The model assumes that the organi-
sation evolves at discrete time steps. In each time step, all agents participating
in the organisation perform an action and the new state of the system is pro-
duced, with a given probability, through the joint actions of all agents. We also
assume that agents can select a ”skip” action (askip), which allows for modelling
asynchronous behaviours. The agents’ capability function defines what actions
the agents are able to perform in a given state. It defines the environmental
limitations imposed by the environment (e.g. if there does not exist a hotel in
the environment, agents cannot book a room). These environmental limitations
could be considered as hard constraints, in the sense that cannot be avoided, i.e.
an agent either has the capability to perform an action or not.

2.2 Agents

Agents are considered independent, autonomous software components that are
able to perceive observations about their environment and, based on these obser-
vations, take actions. This could be a general definition about agents. However
in our work we add the concept of personal norms. They are individual norms
which agents have and apply to situations in which they are involved. Therefore,
we formally define an agent as follows:
3 This action allows for modelling asynchronous behaviours.

35

Definition 2 An agent Ag is a tuple 〈S,O, g, t, per, δ, s0,PN im〉 where:

– S is the (possible) infinite set of internal states of the agent;
– O is the set of possible observations an agent is able to perceive from the

system;
– g : O × S → S is the agent’s state transition function;
– t : S → A is the agent’s decision function describing the next action it will

choose given an internal state;
– per : X → O is a perception function assigning an observation to an envi-

ronmental state;
– δ : A → {0, 1} stands for the agent’s capability function which assigns 1 to

an action when the agent has the capability to perform it, or 0 in other case;
– s0 is the agent’s initial internal state;
– PN im stands for a mechanism based on personal norms that internally reg-

ulates the agent’s behaviour. It will be formalised in section 2.6 definition
8.

At each time step, agents perceive an observation from the current environ-
mental state. Agents transit from that observation to a new internal state, and
then they will select their next action by using their own decision function tak-
ing into account their new internal state. Furthermore, agents regulate their own
behaviour according to their personal norms (they are described in Section 2.6).

2.3 Roles as Organisational Mechanisms

In order to better describe how roles act as an organisational mechanism we
need first to formally define a role:

Definition 3 Let RI be a set of role identifiers. A role is a pair 〈rid, ω〉 where

– rid ∈ RI is the role name;
– ω : A → {0, 1} is a function that represents if the role is suitable to perform

an action. The assignment of 0 means the action cannot be performed with
the current role.

This definition embraces some different aspects about the role semantics: i)
holds the sense of being used as a first-order block to build MAS. It does not
lose any semantics regarding this issue; ii) represents a group of functionalities,
since every role will be qualified for the set of possible actions in the system. If
the value associated with an action is 0, it means the role cannot be used for
doing the specified action; iii) the role entails an expected behaviour that the
agent enacting it has to fulfil.

As we have pointed out in Def.1 we propose to endow organisations with
roles which are defined as an organisational mechanism [10]. Thus, we formally
define roles as organisational mechanisms as follows:

Definition 4 A role-based organisational mechanism Rom is a tuple 〈R, can,
isP laying〉 where:

36

– R stands for a set of roles;
– can defines if an agent is able to perform an action and it is defined as

follows:

can : Ag×R →
{

1 if δagi
(aj) = 1 ∧ ∃r ∈ R | ω(aj) = 1 ∧ ϕ(agi, xk, aj) = 1

0 otherwise

where
• agi ∈ Ag represents an agent and aj ∈ A is an action;
• δagi

(aj) stands for the agent’s agi capability function performing the
action aj (see Def. 2);

• ϕ(agi, xk, aj) represents the environmental capability for the agent agi

to perform action aj given an environmental state xk;
• ω(aj) defines if the role r ∈ R is suitable to perform the action aj (see

Def. 3);
– isP laying : Ag × R → {0, 1} is a function that returns 1 if an agent can

play a role and is currently playing it and 0 in any other case. This function
is necessary in order to determine which roles agents play at any time.

2.4 Agents, Roles and Action Dynamics

As stated previously, during the lifetime of the organisation, agents must select
and perform an action at each time step4 while playing a role. We define this
fact as a situation, so then agents will be involved in several situations during a
finite time period. Formally, we define a situation as follows:

Definition 5 A situation Sit is a tuple 〈Ag,R,A, T 〉 where:

– Ag is the agent involved in the situation;
– R is the role which is being played by the agent Ag in that situation;
– A stands for the action which is being performed by the agent Ag playing

the role R;
– T is the time period in which the situation happened.

Different types of situations can be defined following the definition above.
Situations in which there are no roles or actions or even an agent are valid; for
instance, a situation in which an agent is performing an action, regardless of
the role it is playing at the current time; or an agent playing a role without
performing any action; or a situation can even describe the fact that all agents
are playing a particular role and are performing a particular action during a
time period. Therefore, the components agent, role or action could be empty in
a situation as well. In this work, situations are a key concept to deal with norms.

4 Including the action of doing nothing (askip)

37

2.5 Organisational Norms as Organisational Mechanisms

Organisational norms regulate agents’ behaviour by defining the actions agents
are prohibited, permitted or obligated [8] to perform, and the sanctions/rewards
to be applied in the case of violations/fulfilments [9]. Hence, organisational norms
can be classified as organisational mechanisms, particularly as incentive mecha-
nisms [10], since they can introduce rewards and/or penalties trying to influence
agents’ behaviour. In this sense, we define organisational norms as an organisa-
tional mechanism as follows:

Definition 6 An organisational mechanism based on organisational norms ON om

is a tuple 〈ON ,monitor, act〉 where:

– ON stands for a set of organisational norms defined in the organisation;
– monitor : X × ON → {0, 1} represents a function which is able to monitor

the state of an organisation, determining when an organisational norm has
been violated (assigning 1) or fulfilled (assigning 0);

– act : X → A is a function that applies the consequences of the violation
or fulfilment of a norm - perceived by the monitor function, so imposing a
punishment and/or a reward or nothing (askip).

On the other hand, we define organisational norms as norms which regulate
situations, that is, they regulate when a situation is prohibited, permitted or
obligated to perform. Formally we define organisational norms as follows:

Definition 7 An organisational norm ON i(Org,Sit) regulates a situation in
an organisation where:

– Org stands for an organisation and Sit is a situation.

Organisational norms entail constraints in the system. They can be seen as
a second regulation layer imposed by the organisation. Even if an agent can
perform an action, it does not mean that the agent should do it. Of course
the agent can do the action, but organisational norms should also influence the
agent somehow if the selected action is violating one of them. Thus, the agents
are firstly constrained by its capability to do actions from a physical perspective
(what can I do?) and, secondly, by the organisational norms in the organisation
(what should I do?).

2.6 Personal Norms as Individual Mechanisms

These norms regulate the situation in which an agent is involved from an individ-
ual point of view. The difference to organisational norms is that the former have
a private scope, since organisational norms must be known by all participants
in the organisation, whilst personal norms could only be known by the owner.
Another important difference between personal and organisational norms is how
their violation/fulfilment are handled. In the case of organisational norms the
violation/fulfilment of them may be checked by a third independent party (an

38

authority) not involved in the situation in which the violation/fulfilment occurs.
Meanwhile, the only entity able to apply a penalty or a reward when a per-
sonal norm is violated/fulfiled is the agent that is the owner of the norm. Hence,
following Def. 6, the functions monitor and act should be defined in the agent
owner of the personal norm; that is, this agent will be in charge of monitor-
ing and acting when a personal norm is violated or fulfilled. Formally, personal
norms are defined as follows:

Definition 8 A personal norm-based individual mechanism PN im is a tuple
〈PN ,monitor, act〉 where:

– PN stands for a set of personal norms defined by an agent;
– monitor : S×PN → {0, 1} represents a function which is able to monitor the

agent’s internal state, determining when a personal norm has been violated
(assigning 1) or fulfilled (assigning 0);

– act : S → A is a function that selects an action in order to impose a reward
and/or a punishment, when the monitor function determines if a personal
norm has been violated/fulfilled in an agent’s internal state.

Therefore, we formally define personal norms as follows:

Definition 9 A personal norm PN (Ag,Sit) is defined by an agent and regu-
lates a situation in which the agent is involved:

– Ag stands for the agent, which is the owner of the personal norm;
– Sit is the situation regulated by the personal norm.

These norms represent the preferences of an agent relative to a situation.
Thus, a personal norm describes what should happen in the situation that is
regulated by the norm, from the point of view of the agent that defines the
norm. Since personal norms are relative to agent’s preferences they are related
to the agent’s utility function as well. Then we could say that personal norms
somehow tune an agent’s utility assessment. Organisational and personal norms
are related; on the one hand, they may regulate the same situation and; on
the other hand, they are defined using the same ontology, shared by all agents
participating in the organisation.

3 Reputation Model

In this section we propose a reputation mechanism based on organisations, using
the concepts put forward before. Reputation mechanisms are well-known tech-
niques to keep agents from unexpected behaviour (i.e. norm violations) since
they provide agents with relevant information about the trustworthiness of oth-
ers. Most of the reputation systems use quantitative values (opinions) to indicate
the reputation of agents [11]. However, such information is not sufficient to un-
derstand the behaviour of the agents since such values are subjective, i.e. the

39

same norm violation or fulfilment can be differently evaluated by two differ-
ent agents. The subjective opinion of each agent about the same third party
behaviour could entail the problem of interpreting the meaning of the agent rep-
utation. In order to tackle this issue, we propose a reputation model that not
only takes into account a numerical value as the opinion an agent provides about
a third party behaviour, but also the set of norms that the latter has violated
or fulfilled and the facts associated with them as a justification of the former’s
evaluation. This could be viewed as a single-step argumentation about how an
agent evaluates the opinion about others.

Thus, agents may perform a reputation request to other agents at any time.
A reputation request is related to a situation, i.e., an agent may request the
reputation of another agent playing a role and performing a particular action
along a time period. Hence, we formalise a reputation request as follows:

Definition 10 A reputation request Rreq
Ag1→Ag2

is a request performed by an
agent Ag1 to another agent Ag2 about the reputation of agent Ag in a particular
situation, Rreq

Ag1→Ag2
(〈Sit〉) where:

– Ag1 is the agent which is requesting the reputation request;
– Ag2 stands for the agent which receives the reputation request;
– Sit represents the situation.

When an agent receives a reputation request it may reply with the reputation
value it has assigned to the agent participating in that situation. So far, this is
the common way to use a reputation mechanisms. However, we propose reply
with a subjective value which indicates the reputation of a third party, as well
as the organisational norms which were violated by the agent, the facts which
produced the violation of those norms and how many times the agent violated
them. Hence, we define a reply to a reputation request as follows:

Definition 11 A reply to a reputation request Rreply
Ag2→Ag1

is a tuple 〈Sit, RepV al,
ON , F , r〉 which represents the message sent by agent Ag2 to agent Ag1 as a
reply to a reputation request, where:

– Sit stands for the situation related to the reputation request;
– RepV al ∈ [0..1] is the reputation value that agent Ag2 sent to agent Ag1

about the agent which is involved in the situation;
– ON is the set of organisational norms which were violated by the agent

involved in the situation;
– F stands for the set of facts that constitute proof/evidences of violations of

organisational norms;
– r represents the number of times that the agent involved in the situation

violated the organisational norms.

At this point, agents could evaluate a third party only with the reputation
gathered by all the reputation requests asked to different agents. In addition,
our model proposes the possibility of asking about the personal norms that

40

the requested agent has in relation to the same situation. Allowing agents to
ask about personal norms that other agents have is important to find affinity
with other participants or even to build different profiles which allow agents
”better” partner selections. Hence, an agent may ask for personal norms about
a particular situation to another agent. It is formalised as follows:

Definition 12 A personal norms request PN req
Ag1→Ag2

is a request performed by
an agent Ag1 to another agent Ag2 about the personal norms that agent Ag2 has
related to a particular situation, PN req

Ag1→Ag2
(〈Sit〉) where:

– Ag1 is the agent which is requesting the personal norms request;
– Ag2 stands for the agent which receives the personal norms request - the

owner of the personal norm;
– Sit is the situation.

Agents, as autonomous entities, may or may not reply with their personal
norms. If they decide to reply to a personal norms request, they will send a set
of personal norms they have related to the situation asked. They can send all
the personal norms related to the situation or only a subset of them, this is a
decision they have to make. Thus, we can formalise a reply to a personal norms
request as follows:

Definition 13 A reply to a personal norms request PN reply
Ag2→Ag1

is a tuple 〈Sit,
PN , F , r〉 sent by the agent Ag2 to agent Ag1 informing about its personal
norms related to a situation where:

– Sit is the situation referenced by the personal norms request;
– PN stands for a set of personal norms;
– F stands for the set of facts which violated the personal norms;
– r represents the number of repetitions that the agents involved in the situa-

tion violated the personal norms.

4 Supply Chains Overview

A supply chain is the link among a company, its suppliers and its customers [5].
Most of the companies involved in a supply chain are both customers (that select
supplies to buy goods) and suppliers (that sell their finished goods to customers)
[12]. The two main processes of a supply chain are: supply chain formation and
supply chain management. On one hand, supply chain formation is the problem
of deciding who will supply what, who will do what and who will buy what. On
the other hand, supply chain management concerns the coordination among the
different operations across the supply chain [13].

In this paper we focus on a bottom-up scenario of the supply chain formation.
In the bottom-up scenario, there is not a principal enterprise in charge of the
formation (as is the case of the top-down scenario) but every supply chain partner
is able to contribute to the formation of the supply chain by using its knowledge

41

about the partners [14]. In this scenario, the selection of participants is made on
the fly and not defined a priori.

With the aim to contribute to the formation of stable supply chains and to
the establishment of strong relationships, the use of trust and reputation have
been encouraged [5–7]. Reputation reflects an aggregation value incorporating
multiple factor: quality of the product, quality of the service provided, reliability
of financial transaction, etc. [15].

5 Supply Chains as Organisations

As we pointed out in sections 1 we claim that supply chains can be modelled as
organisational multiagent systems, where agents represents stake-holders in the
supply chain and organisational abstractions, such as roles or norms may signifi-
cantly help agents to easily form a stable supply chain in terms of reliability and
profitability. On the other hand, market rules will be represented by organisa-
tional norms, those norms shared and accepted for any actor - any agent - in the
supply chain, whilst roles represent different functionalities and capacities that
different agents have in order to perform different actions. Using both concepts
(norms and roles), an organisational flavour endows supply chains with a larger
capacity for their participants to reason about others and then better decide
what to do next.

In this section we formally define a supply chain using the concepts and
properties presented in section 2. We consider the following as the common
model that any type of supply chain should fulfil.

Definition 14 A supply chain SC is a tuple 〈Ag,A,X , φ, x0, ϕ, {ON om,Rom})
where:

– In the literature we can find different minimum sets of roles involved in a
supply chain flow. We adhere to the definition of roles participating in any
supply chain presented in [13]:

RI = {Provider,Manufacturer, Purchaser, Carrier, Customer}5.

– Similarly to roles, we can also distinguish a common set of possible actions
A available in any supply chain. We propose the following:

A = {Sell, Buy, Transform, Store, Transport}
Other actions could be considered, such as: PlaceOrder, AcceptOrder or Man-
ufacture Good. Nevertheless, the first two actions could be deemed as part
of the process of selling and buying, so they are decompositions of the ac-
tions contained in the former set, while the third one is an specialisation of
Transform action.

5 For the sake of simplicity this represents only the set of role names described in
Section 2.3

42

– In our definition of organisation, an organisational mechanism, based on
organisational norms, is composed of a set of organisational norms. We claim
that some of these norms are not case dependent, i.e., particular to an specific
supply chain, but they are common for any type of supply chain - they all
are applicable for the same domain. Thus we could consider the set ON =
ON d ∪ ON c as a union of the norms present in an organisational domain,
such as, in this case, supply chain domain (ON d), and those norms that
are case-dependent (ON c), such as specific cases of supply chains (i.e. car
manufacturing supply chains).
An example of norms in ON d are:
• ON 1: A Provider cannot deliver an order after the delivery deadline.
• ON 2: A Provider cannot deliver less quantity of a good than the one that

was ordered.
• ON 3: A Customer cannot pay less to a Provider than the price fixed in

the order.
Examples of case-dependent norms - those in the set ON c- are given in
section 6.

6 Case Study: A Computer Assembly Supply Chain

In this work we have focused on a particular type of supply chain, which rep-
resents the computer industry, as illustrated in figure XXX. It is usually called
computer assembly supply chain [16] – from now on CASC. Following the ap-
proach presented in section 5, we formalise this kind of supply chain as a par-
ticular organisation of multiagent system, as follows:

Fig. 1. An example of computer assembly supply chain

43

Definition 15 A CASC is an organisation defined by the tuple 〈Ag, A , X , φ,
x0, ϕ, {ON om, Rom}〉, where:

– the set of roles in Rom is the following:

RI = { supplier, computer-manufacturer, logistic-service-provider,
deployment-partner, customer }

Agents playing the role supplier are able to supply the products needed to
assembly a computer while computer-manufacturers are able to perform the
assembly of the computers. The logistic-service-providers transport the prod-
uct from different centres and the deployment-partners are able to prepare
the orders made by the customers. Customers can be corporate customers,
market stores, small customers, etc. By computer we mean consumer PCs,
professional PCs, servers and notebooks.

– the set of actions is composed of:

A = {Supply-Components, Assembly-Computer, Transport-Products,
Prepare-Order, Buy-Computer }6

– the set of organisational norms in ON om is composed of the norms shared
by all agents, representing the rules of the CASC. Examples of those norms
are:

• ON 1: ”the number of controller cards may not exceed the number of
extension slots of the system board”

• ON 2: ”the processor type must be compatible with the system board”
• ON 3: ”if the computer has not got a DVI port and the monitor is DVI,

then the computer will be supplied with a DVI to VGA adaptor”

In order to illustrate how the reputation model proposed in section 3 works in
an example of a CASC, consider the CASC exemplified in the table below. Let us
put ourselves in the place of the agent Ag1 that is playing the role deployment-
partner (d-p). In order to form the supply chain Ag1 has to select at least one
computer-manufacturer (c-m) to be able to perform the action prepare-order7.
Imagine that the agent has not interacted with any computer-manufacturers in
the system yet. Therefore, the agent decides to use the reputation mechanism to
select one of them. Below there is one possible sequence of interactions between
Ag1 and Ag2:

6 The action supply-components includes external units (printers, monitors, ..), ac-
cessories (keyboard, mouse, ..), software, etc. The action assembly-computer can be
divided in assembly-system-board and assembly-system-unit. The action transport-
products means transporting any kind of products.

7 This action includes placing an order with a computer-manufacturer. The computer
being ordered will be then transported by a logistic-service-provider

44

Org. CASC-1
Organisational Norms
ON 1, ON 2 and ON 3

Participants
Agents Role Personal Norms
Ag1 deployment-partner (d-p) PN 1−1: ”the number of empty exten-

sion slots must not be greater than one”
PN 1−2: ”if the computer has not got a
PS2 port and the mouse is USB, it will
have an adaptor USB to PS2 and PS2
to USB”

Ag2 deployment-partner (d-p) PN 2−1: ”the number of empty exten-
sion slots must be zero”

Aga computer-manufacturer (c-m) PN a−1: ...
Agb computer-manufacturer (c-m) PN b−1: ...

1. Rreq
Ag1→Ag2

(〈Aga,c-m,prepare-order,[0− now]〉) : agent Ag1 performs a repu-
tation request to agent Ag2 asking about the situation in which the agent
Aga has been involved playing the role c-m (computer-manufacturer) and
performing the action prepare-order along the time period [0− now].

2. Rreply
Ag2→Ag1

= (〈Aga,c-m,prepare-order,[0 − now]〉, 0.2,ON 2,F1, 2) : agent
Ag2 replies to agent Ag1 informing that the agent Aga, in the situation
explained before, has a reputation of 0.2 from his point of view. It also in-
forms that such reputation is due to two violations of the organisational
norm ON 2 by the fact F1. Agent Ag1 knows that this fact describes that
agent Aga prepared a computer with the wrong processor.

3. Due to the low reputation value, agent Ag1 decides to ask Ag2 the reputation
of agent Agb, another computer-manufacturer.

4. Rreq
Ag1→Ag2

(〈Agb,c-m,prepare-order,[0 − now]〉) : the agent Ag1 performs a
new reputation request to agent Ag2 looking for the reputation of agent
Agb.

5. Rreply
Ag2→Ag1

= (〈Agb,c-m,prepare-order,[0−now]〉, 0.3, , , 0) : agentAg2 replies
to agent Ag1 about the reputation of the agent Agb in the specified situation.
Although, the agent has not violated any organisational norm, the reputation
of agent Agb is low, 0.3.

6. Agent Ag1 knows that such a low reputation must be due to the violation
of at least one personal norm defined by agent Ag2. Thus, Ag1 decides to
perform a personal norms request to agent Ag2 in order to try to understand
the reasons for such a low reputation.

7. PN req
Ag1→Ag2

(〈Agb,c-m,prepare-order,[0−now]〉) : agent Ag1 sends a personal
norms request to agent Ag2 asking about its personal norms which regulate
the situation in which the agent Agb has been involved playing the role
computer-manufacturer and performing the action prepare-order.

8. Once agent Ag2 receives the request, it may decide whether it answers or
not. Suppose that the agent decides to answer with a reply to a personal
norms request.

45

9. Rreply
Ag2→Ag1

= (〈Agb,c-m,prepare-order,[0−now]〉,PN 2−1,F2−1, 3) : the agent
Ag2 sends the reply to agent Ag1 informing about the personal norms which
regulate the situation requested (PN 2−1) and the number of times they have
been violated (3 times) by agent Agb.

10. When agentAg1 receives the reply it realises that: i) the low reputation is due
to a violation of a personal norm (PN 2−1); ii) PN 2−1 is a more restricted
norm than (PN 1−1), its own personal norm; and iii) there exists some kind
of affinity between them - this situation is important for them, because of
it is regulated by a personal norm; thus, agent Ag2 might be a potential
”good” reputation source for agent Ag1 for future partner selections.

7 Related Work

Although there are several studies [5–7] that demonstrate that trust and repu-
tation contribute significantly to the formation of stable supply chains, there are
several authors that have not considered trust/reputation while proposing their
supply chain formation models, mechanism and protocols, such as [17, 18, 2].

In [12] the authors investigate the impact of reputation on supply chains.
They demonstrate that a weighting of the agent’s decision to choose a supplier in
favour of the reputation component at the expense of the price component leads
to the formation of stable supply chains that increase the tendency of monopoly
formation. An important drawback of their analysis is that they focus on the
individual dimension of reputation occurring in direct interactions between two
agents. They have not considered that individuals can offer different opinions
about the reputation of others.

A prototype for an agent-based electronic marketplace using reputations was
proposed in [19]. In this prototype agents are able to evaluate the behaviour
of others, store the reputations and distribute them to others. The two main
disadvantages of this approach are: i) it is not clear how the agents evaluate
the reputations of others, i.e., it is not clear what influences the reputation
of an agent; and ii) the information that is distributed among agents is only
a reputation value, no other information is communicated about agents’ past
behaviour.

The paper presented in [20] proposes a decentralised negotiation protocol
based on trust for a supply chain environment. One important advantage of
such an approach is the use of incentive-compatible mechanisms to avoid ex-
ploitation by competitors, i.e., it is able to deal, for instance, with the unwilling-
ness of actors to reveal sensitive but (in terms of system optimisation) valuable
information. The main drawback of this approach is that the trust accounting
mechanism used in this model does not employ a composed reputation index
using, for example, indirect reputation like most MAS reputation applications
do. The authors claim that this is not necessary due to the equilibrium property
of the system introduced by the negotiation process. On the other hand, the use
of indirect trust would help identify regularly cheating agents earlier at the risk
of further increasing information flow and negotiation effort.

46

8 Conclusions

In this paper we propose i) an organisational model based on roles and (or-
ganisational and personal) norms to define supply chains; and ii) a reputation
mechanism to help on the supply chain formation. We advocate the use of repu-
tations to support the selection the supply chain participants. In order to do so,
supply chains are viewed as organisations and the enterprises as agents playing
roles in the organisations. We assume that the enterprises are able to evaluate
the behaviour of others by considering the organisational and personal norms
that they fulfil and violate, to store such evaluation as reputations and to pro-
vide the reputations when requested. Thus, while forming a new supply chain,
we stimulate the use of the available reputations to help on the selection of the
new partners. It is important to state that there are some works [5–7] that affirm
that trust and reputation contribute significantly to the formation of suitable
partners and of stable supply chains.

We are in the process of implementing a simulator to validate our approach.
By using the simulator we will be able to evaluate the real benefits that come
from the availability of an enterprise’s reputations during supply chain forma-
tion. As future work we also intend to apply our approach in other supply chain
domains to demonstrate that our approach is domain-independent. In addition,
we plan to extend the reputation mechanism to reflect a hybrid model. The
approach presented in this paper uses a decentralised model. There is not any
centralised entity able to store and provide reputations; instead it is the agents
themselves that evaluate the behaviour of others, store and provide the reputa-
tions. As stated in [11], a hybrid reputation model seems to be the best-suited
approach.

References

1. Tian, J., Tianfield, H.: Multi-agent based dynamic supply chain formation in
semimonopolized circumstance. In: Advanced Intelligent Computing Theories and
Applications. With Aspects of Theoretical and Methodological Issues. Volume 4601
of LNCS. Springer-Verlag (2007) 179–189

2. Walsh, W., Wellman, M.: Decentralized supply chain formation: A market protocol
and competitive equilibrium analysis. Journal of Artificial Intelligence Research
19 (2003) 513–567

3. Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engi-
neering of agent systems. In Klusch, M., Bergamaschi, S., Edwards, P., Petta, P.,
eds.: Intelligent Information Agents: An AgentLink Perspective. Volume 2586 of
LNAI. Springer-Verlag (2003) 179–202

4. Wang, M., Wang, H., Vogel, D., Kumar, K., Chiu, D.K.: Agent-based negotiation
and decision making for dynamic supply chain formation. Engineering Applications
of Artificial Intelligence In Press, Corrected Proof (2008) –

5. Dan, W., Ying, F., Feng, W.: Study on trust among supply chain companies.
In: International Conference on Management Science and Engineering (ICMSE).
(2006) 2266–2271

47

6. Franke, J., Stockheim, T.: An analysis of the impact of reputation on supply webs.
In: Proceedings of the 11th European Conference on Information Systems (ECIS).
(2003)

7. Spekman, R., Kamauff, J., Myhr, N.: An empirical investigation into supply chain
management: A perspective on partnerships. International Journal of Physical
Distribution and Logistics Management 28(8) (1998) 630–650

8. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multia-
gent systems. LNAI 3187 (2004) 313–327

9. y López, F.L.: Social power and norms: Impact on agent behavior. PhD thesis,
Univ. of Southampton, Faculty of Engineering and Applied Science, Department
of Electronics and Computer Science (2003)

10. Centeno, R., Billhardt, H., Hermoso, R., Ossowski, S.: Organising mas: A formal
model based on organisational mechanisms. In: 24th Annual ACM Symposium on
Applied Computing (SAC2009), Hawaii, USA, March 8-12. (2009) to appear

11. Silva, V., Hermoso, R., Centeno, R.: A hybrid reputation model based on the use
of organization. In Hubner, J., Matson, E., Boissier, O., Dignum, V., eds.: Coordi-
nation, Organizations, Institutions, and Norms in Agent Systems IV. Volume 5428
of LNAI. Springer-Verlag (2009)

12. Franke, J., Stockheim, T., Knig, W.: The impact of reputation on supply chains: An
analysis of permanent and discounted reputation. Journal of Information Systems
and e-Business Management (2004)

13. Giovannucci, A.: Computationally manageable combinatorial auctions for sup-
ply chain automation. PhD thesis, Universitat Autonoma de Barcelona, Artificial
Intelligence Research Institute (IIIA) Spain (2008)

14. Yang, Z., Zhang, D., Xu, J.: The simulation of service supply chain formation based
on mobile agent’s searching. In: IEEE International Conference on E-Commerce
Technology for Dynamic E-Business. (2004) 175–178

15. Marsh, S., La, F.: Trust and reliance in multi-agent systems: a preliminary report.
In: Proceedings of the 4th European Workshop on Modeling Autonomous Agents
in a Multi-Agent World. (1992)

16. Stadtler, H., Kilger, C., eds.: Supply Chain Management and Advanced Planning.
Springer-Verlag (2000)

17. Norman, T., Preece, A., Chalmers, S., Jennings, N., Luck, M., Dang, V., Nguyen,
T., Deora, V., Shao, J., et al., W.G.: Agent-based formation of virtual organisa-
tions. Knowledge-Based Systems 17(2-4) (2004) 103–111

18. Gaonkar, R., Viswanadham, N.: Strategic sourcing and collaborative planning in
internet-enabled supply chain networks producing multigeneration products. IEEE
Transactions on Automation Science and Engineering 2(1) (2005) 54–66

19. Padovan, B., Sackmann, S., Eymann, T., Pippow, I.: A prototype for an agent-
based secure electronic marketplace including reputation tracking mechanisms. In-
ternational Journal of Electronic Commerce 6(4) (2002) 93–113

20. Stockheim, T., Wendt, O., Schwind, M.: A trust-based negotiation mechanism for
decentralized economic scheduling. In: Proceedings of the 38th Hawaii Interna-
tional Conference on System Sciences. (2005)

48

Implementing Collective Obligations in
Human-Agent Teams using

KAoS Policies

Jurriaan van Diggelen
1
, Jeffrey M. Bradshaw

2
, Matthew Johnson

2
,

Andrzej Uszok
2
, Paul Feltovich

2

1Institute of Information and Computing Sciences

Utrecht University, the Netherlands
2Florida Institute for Human and Machine Cognition (IHMC),

40 S. Alcaniz, Pensacola, FL 32502, USA

jurriaan@cs.uu.nl; {jbradshaw,mjohnson,auszok,pfeltovich}@ihmc.us

Abstract. Obligations can apply to individuals, either severally or collectively.

When applied severally, each individual or member of a team is independently

responsible to fulfill the obligation. When applied collectively, it is the group as

a whole that becomes responsible, with individual members sharing the

obligation. In this paper, we present several variations of teamwork models

involving the performance of collective obligations. Some of these rely heavily

on a leader to ensure effective teamwork, whereas others leave much room for

member autonomy. We strongly focus on the implementation of such models.

We demonstrate how KAoS policies can be used to establish desired forms of

cooperation through regulation of agent behavior. Some of these policies

concern invariant aspects of teamwork, such as how to behave when a leader is

present, how to ensure that actions are properly coordinated, and how to

delegate actions. Other policies can be enabled or disabled to regulate the

degree of autonomy of the team members. We have implemented a prototype of

a Mars-mission scenario that demonstrates varying results when applied across

these different teamwork models.

Keywords: Human-agent teams, Policies, Collective Obligations

1. Introduction

Autonomy is perhaps the most fundamental property of an agent. Generally speaking,

we might say that the more control an agent has over its own actions and internal

state, the greater its autonomy. By this definition, collaboration almost always entails

a reduction in autonomy. In collaboration, we are willing to give up some degree of

autonomy in the service of achieving joint objectives [15].

Obligations can be either voluntarily adopted or imposed. Researchers who study

norms generally focus on the ways in which agents learn, recognize, and adopt such

obligations through their own deliberation, including the consideration of incentives

and sanctions [5]. Our research interest has been to understand similar issues with

49

respect to policies, constraints that are imposed and enforced prescriptively on agents

[2]. Constraining an agent’s collaborative activities in this way is often accomplished

by virtue of the organizations to which it belongs [7][13]. The purpose of this paper is

to report on the latest developments within the KAoS policy and services framework,

in particular w.r.t. teamwork and collective obligations.

A KAoS policy is defined as “an enforceable, well-specified constraint on the

performance of a machine-executable action by a subject in a given situation” [2].

There are two main types of polices; authorizations and obligations. Authorization

policies specify which actions are permitted (positive authorizations) or forbidden

(negative authorizations) in a given situation. Obligation policies specify which

actions are required (positive obligations) or waived (negative obligations) in a given

situation. KAoS uses OWL (Web Ontology Language:

http://www.w3.org/2004/OWL) to represent policies.

KAoS policies have already been successfully applied to important aspects of joint

activity in the context of human-robot teamwork [11]. In this paper, we extend this

research by adding the notion of a collective obligation [4]. The difference between

an individual obligation (IO) and a collective obligation (CO) is that in IO’s each

individual or member of a team is independently responsible to fulfill the obligation.

On the other hand, in CO’s, it is the group as a whole that becomes responsible, with

individual members sharing the obligation. CO’s are especially useful in governing

complex abstract behavior—in our case, for example, the obligation that agents have

to ensure safety. The difficulty of writing individual obligations for ensure-safety is

that it is probably not an action that can be directly executed by any one agent. Most

likely, a plan must be created to decompose ensure-safety into more concrete actions.

It is also difficult to decide, beforehand, who is the best candidate to carry out the

plan, as a different plan might be adopted in different circumstances. Moreover,

agents may have different capabilities, enabling them to contribute individually or

jointly in particular roles. For such reasons, constraints requiring the performance of

abstract team actions like ensure-safety are usually better implemented as collective,

as opposed to individual, obligations.

Because a CO often does not direct activity at the level of the single agent’s

behavior, we must find a way to translate the CO to the individual level. Our research

aim in this paper can thus be described: to develop general policies to fulfill collective

obligations, and to map these obligations to individuals based on the current context.

Inspired by previous theoretical groundwork on these issues [4][12], we follow a

very practical approach. First, we demonstrate how to represent and reason about

collective obligations in OWL. Second, we describe three sets of KAoS policies that

we defined to govern agent behavior in the execution of collective obligations. Third,

we provide a configuration policy set that is used to adjust specific aspects of the

teamwork model for use in a given situation. Finally, we present a prototype we have

implemented to demonstrate the use of these policies in the context of a Mars mission

scenario [16].

We claim several benefits for developers of agent teams. The first concerns

reusability. Because the policies describe near-universal teamwork aspects, they are

domain independent and can apply to many kinds of applications, thus saving

development time. The second benefit concerns sharedness. Because teamwork

requires maintaining common ground among the participants [15], agents benefit

50

when the code that generates team behavior can be shared by all agents. By

introducing a shared collection of teamwork policies for the whole system, in

conjunction with KAoS monitoring and enforcement capabilities, newly added agents

fit easily into the team, no matter who developed them or which language they are

programmed in. The policies accommodate even the most primitive agents by

eliminating the requirement that each agent be capable of sophisticated deliberation in

order to collaborate. Next, there is the benefit of separation of concerns. By using

KAoS policies, the code that implements teamwork is cleanly segregated from the rest

of the agent code. This avoids the typical clutter experienced when teamwork code is

scattered in arbitrary locations among all agents. Finally, KAoS policies are very

straightforward to read and understand, making them more suitable to implement this

kind of behavior than generic rule languages or more low-level programming

languages.

In addition to the benefits for agent developers, we also believe that this approach

is more conducive to scientific progress towards the much more ambitious goal of

human and machine joint activity [18][8]. Although the policies described in this

paper are relatively simple and elementary, they are fundamental in human teamwork.

Hence, when agents adopt important aspects of human teamwork, people may find

them more predictable and understandable.

The remainder of the paper is outlined as follows. Section 2 explains the basic

teamwork model. Section 3 provides an overview of the KAoS policy services

framework. In Sections 4, 5 and 6, we describe how we used KAoS to implement the

teamwork model: ontological aspects in Section 4; policies in Section 5; an

implemented prototype with agents in a Mars-mission scenario in Section 6. Related

work is discussed in Section 7, followed by conclusions in Section 8.

2. Team Design
Teamwork is a topic of great complexity and breadth. Here, our focus is only on

one aspect of teamwork, i.e., collective obligations. Collective obligations require

teams to perform some action whenever some event or state triggers the obligation.

Performing such actions typically involves planning, delegation and coordination. The

aim of team design is to ensure that this process is adequately supported. Three

primary aspects of team design are pertinent to the issues discussed in this paper:

leadership assumption, task allocation, and plan coordination. Each of these aspects

can vary, resulting in different team behavior. Figure 1 depicts these aspects in three

dimensions, where each combination of aspects represents a different kind of team.

Along the x-axis, two possibilities for leadership assumption are shown. We can

appoint someone as a leader beforehand (i.e. pre-established leadership), or we can

defer the choice and allow leaders to volunteer on demand (i.e. ad hoc leadership

assumption). Whereas "pre-established" and "ad hoc" qualify as two extremes on the

leadership assumption dimension, there are, of course, intermediate options possible

that we do not consider here. One example is that of a predefined line of succession

which is used to determine leadership if all higher-ranking leaders are unavailable.

51

ad hoc
pre-established

decentralized

centralized

individual

group

leadership
assumption

task
allocation

plan
coordination

Figure 1 Three dimensions in team design

The task allocation dimension is shown along the y-axis. Individual task allocation

means that requests are directed at individual agents. In group task allocation, the

request is directed to the group as a whole, without specifying which individual must

perform the task.

Plan coordination is depicted on the z-axis, with the two alternatives being

centralized and decentralized. Figure 2 depicts the communication pattern for these

two ways of coordinating plans. The left side of the figure depicts centralized

coordination, i.e. the requester agent (the grey agent) is responsible for making sure

that the actions are executed in the right order. The right side of the figure shows

decentralized coordination, i.e. the agents executing the plan take care of the

coordination themselves. In the latter case, the requester delegates plan coordination.

It may do so by sending a request for action a, together with information about who

will perform the subsequent action b. In the figure, this is written as “creq a,b.”

re
q

a

re
q
 b

do
ne d

o
n
e

req
c

done
cr

eq
a,

b

c
re

q
b

,c

creq
c

done

done done

Centralized Decentralized

1

2

3

4

5

6

1
2 3

4 5

6

Figure 2 Centralized and decentralized coordination patterns

With centralized coordination, the requested agents may not be aware that their

actions are part of a larger plan. With decentralized coordination, the requested agents

require more knowledge about the action’s context, i.e. they must know which agent

is responsible for performing the next action in the plan.

2.1 Considerations for team design
The three dimensions outlined above can be regarded as different aspects of the

dichotomy between central authority and member autonomy [3]. Pre-established

leadership means that one central authority remains in charge of the team, whereas ad

hoc leadership allows for more member autonomy because each team member may

become a leader under certain circumstances. Centralized plan coordination allocates

52

the task of coordinating plans to one central authority, whereas decentralized plan

coordination allows each agent to make its contribution to coordination, i.e. reflecting

more member autonomy. Individual task allocation implies that one central authority

decides who performs the tasks; whereas group task allocation yields more member

autonomy as the team members decide this among themselves.

In Figure 1, the team with most central authority is represented as the black cube.

For the other teams, we can say that the further away the cube is from the black cube,

the more member autonomy exists in the team. The white cube represents the team

with most member autonomy. Which of these eight team configurations is the best

one depends on the circumstances and cannot be decided in general. Below, we

outline some general considerations when choosing between central authority and

member autonomy; the discussion is not intended to be exhaustive. An advantage of

using a central authority might be that it allows the team designer to select the best

agent for the most important tasks. In this way, the team can be better adapted to the

different qualities of agents. Another advantage of a central authority approach might

be accountability: that is, that it would be easier to identify the responsible agent

when things go wrong.

A disadvantage of a central authority might be that it would be less robust in

certain circumstances, e.g., when the leader becomes unavailable, the entire team

becomes dysfunctional. Another disadvantage of central authority might arise when

not every team member has the same access to the situation. For example, it may be

better to have a crisis operation led by someone on site than by a predefined leader

who is far away. As a last disadvantage, we mention the potentially increased

response time of strongly hierarchical teams. For example, when an incident happens,

this must communicated all the way up to a leader, after which the leader makes a

decision and communicates it all the way down to those carrying out the work. A

faster response may be obtained by allowing the observer of the incident to take

immediate action.

Before we explain how these teamwork models can be implemented, we will first

give some background on the KAoS policy framework.

3. KAOS POLICY FRAMEWORK
KAoS [2] provides a general framework for regulation of a variety of systems,

including agent-based and robotic systems [2], web services, grid services, and

traditional distributed systems. It also provides the basic services for distributed

computing, including message transport and directory services, as well as more

advanced features like domain and policy services.

Two important requirements for the KAoS architecture are modularity and

extensibility. These requirements are supported through a framework with well-

defined interfaces that can be extended, if necessary, with the components required to

support application-specific policies. The basic elements of the KAoS architecture are

shown in Figure 3; its three layers of functionality correspond to three different policy

representations.

53

Figure 3 Notional KAoS Policy Services Architecture

• Human Interface layer: This layer uses a hypertext-like graphical interface for policy

specification in the form of very natural English sentences, composed from pop-up

menus. The vocabulary is automatically provided from the relevant ontologies, consisting

of highly reusable core concepts augmented by application-specific ones.

• Policy Management layer: Within this layer, OWL is used to encode and manage policy-

related information. The Distributed Directory Service (DDS) encapsulates a set of OWL

reasoning mechanisms.

• Policy Monitoring and Enforcement layer: KAoS automatically “compiles” OWL

policies to an efficient format that can be used for monitoring and enforcement. This

representation provides the grounding for abstract ontology terms, connecting them to the

instances in the runtime environment and to other policy-related information.

Maintaining consistency among these layers is handled automatically by KAoS.

3.1 System development in KAoS
Multi-agent system development in KAoS takes place at different locations, in

different languages, using different tools, as summarized in the following table.

 Figure 4 KAoS system development components

OWL ontologies provide the vocabulary used in specifying policies. They define

all actions, action properties, and actor types and can be developed directly in OWL

 Language Development Tool

Agents or other

Applications
E.g., Java E.g., Eclipse

Policies KAoS Policies (OWL) KPAT

Ontologies OWL E.g., Protégé, COE

54

or using an ontology editor, such as Protégé (http://protege.stanford.edu/) or COE

(Cmap Ontology Editor).

Policies are also represented in OWL. They can be created using the KAoS Policy

Administration Tool (KPAT). KPAT hides the complexity of OWL from the human

users and allows the user to create, modify and manage policies in a very natural

hypertext interface. Policies can be ranked in terms of their priorities. In case two

conflicting policies are applicable at the same moment, the policy with the highest

priority takes precedence.

The policies are used to govern the actions of agents (or other applications) within

the system being developed. We use Java and Eclipse (http://www.eclipse.org/) to

implement the agents for our prototype, although any other combination of a

programming language and IDE could be used. KAoS includes a number of features

that can be exploited in the development of agent-based systems.

As an example of system development in KAoS, suppose that we have a set of

robots and we want to obligate them to beep before they move, in order to alert any

nearby people of the pending movement. First, we would specify the terms Robot,

Beep and Move in an ontology. Then, we would create a policy using KPAT, which

would look like the following:

Once the policy has been created, it is sent by KPAT to the Directory Service for

analysis and deconflication, before it is ”compiled” and distributed to the guards for

run-time enforcement. Since the policy applies only to robots, it is automatically

distributed only to the guards responsible for governing robots. Local enforcement

mechanisms on each platform intercept movements as appropriate and check with the

guard resident on that platform for policy constraints. With the new policy in place,

an obligation to beep would be applied prior to each movement.

An important part of building systems in this way is deciding where to implement

a given behavior. In general, there are three possible places; in the agent, in the

policies, or in the ontology (cf. Figure 4). Each has advantages and disadvantages in

different situations. Without policy, we would be forced to represent everything in the

agent itself, so, for our beep example, the beep action might simply be coded in Java

within the move method. This is not very flexible and is hidden from those unfamiliar

with the code. In situations where the source code is unavailable, it simply cannot be

implemented at all. A second option is to implement the behavior by adapting the

ontology, i.e. by defining a move as a beep that is followed by a physical move, and

having the agents query the ontology for the definition of the action. This would

amount to redefining the commonly accepted meaning of move into something else

entirely – not be a good idea either. The third option is to add the policy of Figure 5.

This seems to us the cleanest method. The policy is defined external to the robot’s

program and thus is viewable and editable by anyone using the system. To give an

example that pushes some knowledge back into the robots, suppose that we modify

our policy to state “robots must warn before they move.” The main idea is still

1 Robot is obligated to start performing Beep

2 which has any attributes

3 before Robot starts performing Move

4 which has any attributes

Figure 5 KAoS policy example

55

modeled in policy, though less specific. The ontology could be used to model the

knowledge that beeping and flashing lights are both appropriate methods to warn.

Finally, the robot could chose the appropriate warning method based on its own

capabilities and preferences.

In the following three sections we will explain how the teamwork model described

in Section 3 can be implemented by developing ontologies, policies, and agents.

4. ONTOLOGY
Extending KAoS so it can handle collective obligations posed some additional

requirements to the core ontology. The first issue concerned the representation of

teams. The property teamMemberOf was used to assert that an agent (represented by

an individual in class agent) is a member of some team (represented by an individual

in class team). To represent the collective obligation of a team, the property

HasCollectiveObligation was used to refer to the instance representation1 of the

action that constitutes the CO.

The second issue concerned the representation of plans. Because a plan typically

consists of multiple actions, we can represent that an action contains subactions by

using the properties subAction1 and subAction2. The property subActionRelation

specifies whether the two subactions are composed in parallel or sequence. In this

way, composite actions can be represented as an AND-OR graph, or planning tree

[17].

The last ontological issue concerned the relationship between the plan and the

action the plan seeks to achieve. Because different circumstances require different

plans, we specify this as a context-dependent relation, using a rule of the form “X

counts-as Y in context C.” These so-called counts-as rules can be used in an ontology

to translate between actions of different levels of abstraction [11]. For example, the

sequence of actions bring-to-habitat and nurse (the plan) counts as ensure-safety

(what the plan is designed to achieve) in the context of spacesuit-failure-of-Benny-at-

11:00am (the context). An action and its associated context are related by the property

hasContext. To represent the fact that an action has been performed, the property

hasStatus is set to performed. Because we represent counts-as rules as subclass

relations (e.g. “X subClassOf Y” represents the fact that X counts as Y), the OWL

reasoner automatically derives that if X hasStatus performed, then also Y

hasStatus performed.

The issues discussed above are important when monitoring policy compliance. An

agent complies with an obligation to do action X, if X has the status performed before

the deadline set by the obligation. This definition has two important consequences.

First, the agent to which the obligation applies is not required to perform the action

itself, but may also delegate the action to another agent. Second, the agent can choose

to perform a plan which counts as action X (in the current context), because

performance of the plan entails performance of X. Both of these two issues play a

fundamental role in our approach to teamwork and are therefore implemented at the

ontology level.

1 Because OWL-DL does not allow the use of classes as property values, we created a prototypical instance

for every action class (e.g. ensureSafety). This prototypical instance represents the same (e.g.

ensureSafetyPrototypicalInstance). In this way, we can refer to actions both at the class

level, and at the instance level.

56

5. POLICIES FOR AGENT TEAMS
The general pattern of the teamwork described in this paper consists of three steps.

First, the collective obligation is triggered. Second, a plan is created. Third, this plan

is carried out. The policies described in this section serve to support this process by

governing issues such as: how is the CO-trigger communicated to the agent creating

the plan? Who creates the plan? Who carries out the plan? How is the plan

coordinated to ensure the right order of actions?

5.1 Leader Policy Set
If there is a team leader, it has a special responsibility and must be treated by the

other agents in a distinct way. The purpose of the Leader Policy Set is to lay down

these responsibilities, managing both task allocation and plan coordination.

Definition 1 Leader Policy Set
1. The leader of a team should adopt the collective obligations of its team as its

own individual obligations

2. Team members should notify their leader when the collective obligation of their

team is triggered

3. The leader of a team may request members of its team to perform actions

4. The leader of a team may create plans

The first policy captures the intuition that leaders must take responsibility for their

team. Definition 1.1 states more precisely what this means for collective obligations.

The policy as implemented in KAoS is shown in Figure 6. The trigger of the policy is

implemented at line 5,6,7 and 8 using a role-value map [1] which compares the

values of two properties of the Action which the agent has just finished performing.

It states that the property prototypicalInstance must have a value in common with

the concatenation of the properties performedBy, teamMemberOf and

HasCollectiveObligationTrigger. As an example of an action that would trigger

the obligation, consider agent Herman performing the action

observeSpaceSuitFailure (i.e. observeSpaceSuitFailure performedBy Herman)

and that Herman is teamMemberOf MecaTeam and that MecaTeam HasCol-

lectiveObligationTrigger observeSpaceSuitFailurePrototypicalInstance.

The obligation is described in lines 1, 2, 3 and 4 of Figure 6. Lines 2-3 is a role-value

map which describes that the actor must do the action which is given by the property

triggerOfCollectiveObligation of the action that triggered the obligation. In our

example, observeSpaceSuitFailure is triggerOfCollectiveObligation of

1 Leader is obligated to start performing Action which has attributes:

2 all prototypicalInstance values equal the Trigger action's

3 triggerOfCollectiveObligation of the prototypicalInstance values

4 the performedBy value equals the Trigger action's performedBy values

5 after Leader finishes performing Action which has attributes:

6 any prototypicalInstance values are in the set of this action's

7 HasCollectiveObligationTrigger of the teamMemberOf of the

8 performedBy values

Figure 6 KAoS hypertext statement representing the policy of Definition 1.1

57

ensureSafety. Hence, the actor is obliged to perform ensureSafety. Line 4

describes that the agent that must fulfill the obligation is the same agent that has

triggered the obligation.

The second policy of Definition 1 ensures that, in case nobody else in the team

triggers the collective obligation (for example by observing a spacesuit failure), this

agent will notify the leader about the event. This captures the intuition that team

members must help their leader. This policy is implemented in a similar fashion to

policy 1.1 (Figure 6).

The third policy in the leader policy set states that leaders do not have to do the

work all by themselves, but they are authorized to request actions from their team

members.

The fourth policy states that the leader is authorized to create a plan. Plan creation

is done by adding a counts-as rule to the ontology (see Section 4). The effect of this is

that all agents may perform a different action than the action they were initially

obliged to do. Therefore, the right to create new plans is not self-evident. It is,

however, a right that belongs to a leader.

5.2 Coordination Policy Set
The coordination policy set describes how actions in a plan should be coordinated.

We consider two coordination patterns (as depicted in Figure 2), which are both

governed by this policy set.

Definition 2 Coordination Policy Set

1. An agent should notify the requester after it has performed a requested action

2. If the agent knows who will perform the subsequent action, it should notify that

agent after it finishes performing its own action

3. If the agent knows who will conduct the subsequent action, it is not required to

notify the requester after it finishes performing its action

The first policy ensures that, in case of centralized coordination, the requester

knows when the subsequent action may begin. This is due to the “done” messages 2, 4

and 6 on the left side of Figure 2. In case of decentralized coordination, the requester

is notified after the plan is finished, i.e. by “done” message 6 on the right side of the

figure.

The second policy of Definition 2 concerns the case of decentralized coordination.

When an agent has received a request for a coordinated action, it knows who will

perform the subsequent action, and must notify that agent after it has finished its

action.

The third policy is enforced with high priority, and can be regarded as an

exception to the first policy of Definition 2. This policy prevents requested agents

from notifying their requester when the plan is only partially completed. As can be

seen on the right hand side of Figure 2, the two agents that are requested to perform

action a and action b of the plan do not send a “done” message to their requester. The

rationale behind this is that, in the decentralized case, partially-finished notifications

are not needed for plan coordination, which is the purpose of this policy set. There

may be other reasons why this may be desirable, e.g., to monitor plan progress to

respond to unexpected events in a timely way [8]. This can always be implemented in

58

an additional higher priority policy set, which is specially designed for that purpose.

However, issues such as dealing with plan failure or replanning are issues of future

research.

5.3 Leader Absence Policy Set
What if the agents find themselves in a leaderless team? This may happen either

because nobody has been appointed as a leader or else the leader is (temporarily)

unavailable. In this case, the other agents in the team must take care of the collective

obligation themselves. This issue is handled by ensuring that one agent assumes the

leader role, and thereby becomes subject to the leadership policies of Definition 1.

Definition 3 Leader Absence Policy Set

1. When no leader is present, the CO is triggered, and the agent knows it can fulfill

the CO, it should assume the leader role

2. When no leader is present, the CO is triggered, but the agent cannot fulfill the

CO, it should notify the whole team of the CO trigger

3. An agent should not notify its team about a CO trigger, when it has been notified

itself by another team member about that CO trigger

The first policy ensures that a capable leader will volunteer in case the collective

obligation is triggered in a leaderless team. An agent may assume leadership by

registering with the KAoS directory-service, which only accepts such a registration

when there are no other leaders already currently available. In this way, we prevent

multiple agents from taking leadership at the same time, on a first come, first served

basis.

The second policy is a variation on the policy of Definition 1.2, adapted to the

leaderless scenario. For example, when an agent observes a safety critical event (the

CO is triggered), but the agent is not capable of ensuring safety, the agent should

notify all of its team members about it, so someone else in the team can fulfill the CO.

The third policy is an exception to the second rule, and prevents agents from

repeatedly notifying one another about the same collective obligation trigger.

5.4 Configuration Policy Set

The policies discussed so far are the same for all eight different kinds of teams

depicted in Figure 1. In this section, we will discuss the configuration policy set

which states which of the eight team strategies the agents must follow.

Definition 4 Configuration Policy Set

1. Do not request distributed coordinated actions

2. Do not request actions to a team

In contrast to the policy sets we discussed earlier, these policies are optional, and

can be switched on and off depending on the way the team designer wishes to

configure the team. If the first policy is switched on, the team will apply centralized

plan coordination. If it is switched off, the team will apply decentralized plan

coordination.

59

If the second policy is switched on, the team will apply individual task allocation.

If it is switched off, the team applies group task allocation. Group task allocation can

be implemented using collective obligations that are dealt with using the policies

described in the previous sections. For example, to request action a to a group, the

action a is added as a collective obligation to that group. The leader absence policy

set (Definition 3) ensures that a leader which is capable of performing action a stands

up, after which the leader policy set (Definition 1) ensures that this agent performs

action a.

To implement pre-established leadership assumption, a leader must be appointed

beforehand, using KPAT. To implement ad hoc leadership assumption, no leader

should be defined beforehand, such that the policy in Definition 3.1 ensures that a

leader will volunteer at runtime if needed.

6. MECA SCENARIO
We tested the policies using a Mars mission scenario developed in the Mission

Execution Crew Assistant (MECA) project [16]. This long-term project aims at

enhancing the cognitive capacities of human-machine teams during planetary

exploration missions by means of an electronic partner. The e-partner helps the crew

to assess a situation and determine a suitable course of actions when problems arise.

A large part of the project is devoted to developing a requirements baseline, taking

into account human factors knowledge, operational demands, and envisioned

technology. Developing new prototypes using emerging technologies, such as this

one, is a continuous activity in the project.

One of the major themes is dealing with the long communication delays between

Earth and Mars. This has led researchers to consider new forms of mission control

that are less centralized on Earth, allowing greater autonomy to the astronauts on

Mars [10]. We believe that our work on policies and team strategies is a useful

contribution to this problem.

One of the use-cases that has driven the development of MECA’s requirements

baseline concerns an astronaut suffering from hypothermia. The initial situation is

depicted in Figure 7.

Herman is in the Habitat; Anne, Albert and two rovers are in team A; Benny and

Brenda are in team B. Benny and Brenda are on a rock-collecting procedure.

Suddenly, Benny’s space suit fails. Brenda and the MECA system diagnose the

problem together and predict hypothermia. Immediate action is required. A rover

from team B comes to pick Benny up and brings him to the habitat. Someone with

surgery skills and someone with nursing skills await him there and take care of

Benny, after which he safely recovers.

One of the requirements of MECA is that safety of the crew must be ensured at all

times. We implemented this requirement using a collective obligation of the MECA

team to EnsureSafety. The trigger of this collective obligation is Observe-

SafetyCriticalEvent. Within the scenario, both of these actions are added in a specific

MECA-action ontology which extends the KAoS core action ontology. The ontology

also specifies several subconcepts of ObserveSafetyCriticalEvent, such as Observe-

SpaceSuitFails. This causes ObserveSpaceSuitFails to trigger the collective

obligation.

60

Figure 7 MECA prototype

The seven agents in the example (five astronauts and two rovers) are implemented

in Java. Because most of the agent behavior in this demonstration is implemented by

the policies, the Java implementation could remain very simple. We used Java to

implement how the actions, such as BringToHabitat, are performed. For the purposes

of this demonstration, a simple screen animation was sufficient. We also implemented

in Java how the agents remain policy-compliant. This means that they consult the

KAoS guard to check which obligations and authorization policies apply. They fulfill

an obligation by simply executing the code that implements the action concerned. It

fulfills a negative authorization by refraining from executing the corresponding piece

of code.

The most important aspect of this demonstration is the unfolding of the scenario

after the action ObserveSpaceSuitFails is performed. This is driven exclusively by

KAoS policies. By applying the different team configurations described in Section 0,

we obtain different event traces which demonstrate the functioning of the team. The

event trace for the most centrally organized team (represented by the black cube in

Figure 1) is shown below.

Brenda performs ObserveSpaceSuitFails
Brenda is obliged to perform SendNotificationOfTrigger
Brenda to Herman: SendNotificationOfTrigger
Herman is obliged to perform EnsureSafety
Herman is authorized to perform CreatePlan
Herman performs CreatePlan
Herman is not authorized to perform RequestCoordinatedAction
Herman is authorized to perform RequestAction
Herman to Rover1: request BringToHabitat
Rover1 performs BringToHabitat
Rover1 is obliged to perform SendNotificationOfRequestedActionFinished
Rover1 to Herman: SendNotificationOfRequestedActionFinished
Herman to Albert: request PerformSurgery
Albert performs PerformSurgery
Albert is obliged to perform SendNotificationOfRequestedActionFinished
Albert to Herman: SendNotificationOfRequestedActionFinished
Herman to Anne: request Nurse

61

Anne performs Nurse
Anne is obliged to perform SendNotificationOfRequestedActionFinished
Anne to Herman: SendNotificationOfRequestedActionFinished

Figure 8 Event trace of MECA team with maximal central authority

The events printed in bold are actions; the underlined events are communication

actions; the italicized events represent policies that were triggered. Typical to this

event trace is that Brenda immediately knows that she must contact Herman after she

observed the spacesuit failure. This is due to the pre-established leadership of

Herman. Furthermore, Herman delegates the parts of the plan to individual agents (i.e.

individual task allocation), and he waits until the requested agent is finished before he

requests the next action in the plan (i.e. centralized plan coordination).

The event trace for the team with most member autonomy (represented by the

white cube in Figure 1) is shown in Figure 9.

Brenda performs ObserveSpaceSuitFails
Brenda is obliged to perform SendNotificationOfTrigger
Brenda to Rover1: SendNotificationOfTrigger
Brenda to Anne: SendNotificationOfTrigger
Brenda to Albert: SendNotificationOfTrigger
Brenda to Rover2: SendNotificationOfTrigger
Brenda to Herman: SendNotificationOfTrigger
Brenda to Benny: SendNotificationOfTrigger
Anne is obliged to perform AssumeLeaderRole
Anne is obliged to perform EnsureSafety
Anne is authorized to perform CreatePlan
Anne performs CreatePlan
Anne is authorized to perform RequestCoordinatedAction
Anne is authorized to perform TeamRequestAction
Anne to MecaTeam: request BringToHabitat
Anne to MecaTeam: request PerformSurgery after BringToHabitat
Anne to MecaTeam: request Nurse after PerformSurgery
Rover1 is obliged to perform AssumeLeaderRole
Rover1 performs BringToHabitat
Rover1 is obliged to perform SendNotificationOfTrigger
Rover1 to MecaTeam: SendNotificationOfTrigger
Albert is obliged to perform AssumeLeaderRole
Albert performs PerformSurgery
Albert is obliged to perform SendNotificationOfTrigger
Albert to MecaTeam: SendNotificationOfTrigger
Herman is obliged to perform AssumeLeaderRole
Herman performs Nurse

Figure 9 Event trace of MECA team with maximal member autonomy

Typical to this event trace is that Brenda notifies the whole team about the CO

trigger, after which Anne becomes a leader (i.e. ad hoc leadership assumption).

Furthermore, Anne delegates her actions to the MECA team (i.e., group task

allocation). Also, she delegates all actions at once and instructs the agents how to

coordinate the actions (i.e., decentralized plan coordination).

7. RELATED WORK
A similar approach to teamwork, based on electronic institutions, is reported in [9].

This framework captures coordination aspects by dynamically composing existing

teamwork components, s.a. communication protocols and operational descriptions, to

meet the current problem requirements. Our approach is more centered around the

62

idea of constraining autonomy, i.e. by using computational policies as basic teamwork

components.

The pioneering research of Cohen and Levesque [4] introduced the notion of a

joint persistent goal as the ultimate driving force behind teamwork. In our framework,

a collective obligation serves a similar purpose. A difference is that Cohen and

Levesque based their approach on mentalistic notions, such as goals, beliefs and

intentions, whereas our approach is based on institutional notions, such as obligations

and authorizations. This allows the approach to be used by both simple and

sophisticated agents, of heterogeneous varieties.

A similar difference can be observed when comparing our implementation with

other teamwork model implementations, such as STEAM [1]. STEAM is based on

Soar, a general cognitive architecture for intelligent systems, whereas our approach is

based on KAoS, which is a policy framework. A correspondence between our

implementation and STEAM is that both approaches heavily rely on plans in the

teamwork process. A crucial requirement for effective teamwork is maintaining a

sufficient level of common ground [15]. By adopting the KAoS framework, some

important aspects of common ground were naturally ensured. The common ontology,

which is maintained by the directory service and distributed to the guards, ensures

that every agent shares understanding of the domain terms. Also the collective

obligations of the team, which are represented in the ontology, are mutually known.

8. CONCLUSION
In this paper, we have proposed a policy-based approach for human-agent teams.

We have implemented a variety of teamwork models in KAoS. These models have

demonstrated their value in a simulation of a Mars-mission scenario, where a delicate

decision must be made between central authority and member autonomy.

We believe that our approach to teamwork has considerable benefits in terms of

reusability, clarity, and generality. Although the types of teamwork we support are

still elementary, we believe that more complex teamwork can be implemented by

utilizing additional policies on top of the policies we have proposed here.

In the future, we plan to extend the teamwork model to deal with unexpected

events. This requires a leader to monitor his or her plan, and to perform replanning if

the plan does not go as expected. Also, the team members can be of help here by

notifying their leaders when their requested actions fail (cf. [8]). Such policies can be

implemented in KAoS, in a similar fashion as we have described in this paper.

REFERENCES
[1] Baader, F., Calvanese D., McGuinness, D. L., Nardi D., and Patel-Schneider, P.

F. Eds. (2003). The Description Logic Handbook: Theory, Implementation, and

Applications. Cambridge University Press.

[2] Bradshaw, J. M., et al. (2003). Representation and reasoning for DAML-based

policy and domain services in KAoS and Nomads. Proceedings of the

Autonomous Agents and Multi-Agent Systems Conference (AAMAS), ACM.

[3] R.M. Burton, G. DeSanctis, B. Obel (2006), Organizational Design, Cambridge

University Press.

[4] Cohen, P.R. and H.J. Levesque. (1991). Teamwork. Menlo Park,CA: SRI

International.

63

[5] Davidsson, P. (2000): Emergent Societies of Information Agents. Klusch, M,

Kerschberg, L. (Eds.): Cooperative Information Agents IV, LNAI 1860, Springer,

2000, pp. 143–153.

[6] Dignum, F. and Royakkers, L. (1998). Collective Obligation and Commitment, In

Proceedings of 5th Int. conference on Law in the Information Society, Florence

[7] Dignum, V. (2003). A Model for Organizational Interaction. SIKS Dissertation

Series.

[8] Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M., & Bunch, L (2008).

Progress appraisal as a challenging element of coordination in human and

machine joint activity. In Engineering Societies in the Agents' World VIII.

Lecture Notes in Computer Science Series. Heidelberg Germany: Springer.

[9] Gómez, Mario; Plaza, Enric (2008). Dynamic Composition of Electronic

Institutions for Teamwork.Coordination, Organizations, Institutions, and Norms

in Agent Systems III. (COIN)., LNAI, Vol. 4870, pp. 155-170. Springer Verlag.

[10] Grant, T., Soler, A. O., Bos, A., Brauer, U., Neerincx, M., and Wolff, M. 2006.

Space Autonomy as Migration of Functionality: The Mars Case. In Proceedings

of the 2nd IEEE international Conference on Space Mission Challenges For

information Technology (SMC-IT). IEEE, 195-201.

[11] Grossi, D. (2007). Designing Invisible Handcuffs. Formal Investigations in

Institutions and Organizations for Multi-agent Systems. SIKS Dissertation Series

2007-16, Utrecht University.

[12] Grossi, D., Dignum, F., Royakkers L., Meyer, J-J. Ch., (2004). Collective

Obligations and Agents: Who Gets the Blame? Proc. of DEON'04, 7th Int.

Workshop on Deontic Logic in Computer Science. Springer. LNCS 3065

[13] Hübner, J. F., Sichman, J. S., and Boissier, O., (2002). A Model for the

Structural, Functional, and Deontic Specification of Organizations in Multiagent

Systems. In Proc. of the 16th Brazilian Symposium on AI, LNCS, vol. 2507.

Springer-Verlag, London, 118-128.

[14] Johnson, M. J., Intlekofer, K., Jr., Jung, H., Bradshaw, J. M., Allen, J. Suri, N. &

Carvalho, M., (2008). Coordinated operations in mixed teams of humans and

robots. In Proceedings of the 2008 IEEE International Conference on Distributed

Human-Machine Systems (DHMS 2008)., pp. 63-68.

[15] Klein, G. Woods, D., Bradshaw, J.M. Hoffman, R.R. , Feltovich, P.J. (2004). Ten

Challenges for Making Automation a Team Player. In Joint Human-Agent

Activity," IEEE Intelligent Systems, vol. 19, no. 6

[16] Neerincx, M.A. Bos, A., Olmedo-Soler, A. Brauer, U. Breebaart, L., Smets, N.,

Lindenberg, J., Grant, T., Wolff, M. (2008). The Mission Execution Crew

Assistant: Improving Human-Machine Team Resilience for Long Duration

Missions. Proc. of the 59th International Astronautical Congress (IAC2008)

[17] Steffik, M. (1995). Introduction to Knowledge Systems, Morgan Kaufmann

Publishers.

[18] Sycara, K., and Lewis, M. 2004. Integrating intelligent agents into human teams.

In Team Cognition: Understanding the Factors that Drive Process and

Performance,, 203-232. Washington, DC: American Psychological Association.

[19] Tambe, M. (1997). Towards Flexible Teamwork, Journal of Artificial

Intelligence Research, pp. 83-124

64

Monitoring Social Expectations in Second Life

Stephen Cranefield and Guannan Li

Department of Information Science
University of Otago

PO Box 56, Dunedin 9054, New Zealand
scranefield@infoscience.otago.ac.nz

Abstract. Online virtual worlds such as Second Life provide a rich medium for
unstructured human interaction in a shared simulated 3D environment. However,
many human interactions take place in a structured social context where partic-
ipants play particular roles and are subject to expectations governing their be-
haviour, and current virtual worlds do not provide any support for this type of
interaction. There is therefore an opportunity to adapt the tools developed in the
MAS community for structured social interactions between software agents (in-
spired by human society) and adapt these for use with the computer-mediated
human communication provided by virtual worlds.
This paper describes the application of one such tool for use with Second Life.
A model checker for online monitoring of social expectations defined in tem-
poral logic has been integrated with Second Life, allowing users to be notified
when their expectations of others have been fulfilled or violated. Avatar actions
in the virtual world are detected by a script, encoded as propositions and sent to
the model checker, along with the social expectation rules to be monitored. No-
tifications of expectation fulfilment and violation are returned to the script to be
displayed to the user. This utility of this tool is reliant on the ability of the Lin-
den scripting language (LSL) to detect events of significance in the application
domain, and a discussion is presented on how a range of monitored structured
social scenarios could be realised despite the limitations of LSL.

1 Introduction

Much of the research in multi-agent systems addresses techniques for modelling, con-
structing and controlling open systems of autonomous agents. These agents are taken
to be self-interested or representing self-interested people or organisations, and thus
no assumptions can be made about their conformance to the design goals, social con-
ventions or regulations governing the societies in which they participate. Inspired by
human society, MAS researchers have adopted, formalised and created computational
infrastructure allowing concepts from human society such as trust, reputation, expecta-
tion, commitment and narrative to be explicitly modelled and manipulated in order to
increase agents’ awareness of the social context of their interactions. This awareness
helps agents to carry out their interactions efficiently and helps preserve order in the
society, e.g. the existence of reputation, recommendation and/or sanction mechanisms
discourages anti-social behaviour.

65

As the new ‘Web 2.0’ style Web sites and applications proliferate, people’s use of
the Web is moving from passive information consumption to active information sharing
and interaction within virtual communities; in other words, for millions of users, the
Web is now a place for social interaction. However, while Web 2.0 applications pro-
vide the middleware to enable interaction, they generally provide no support for users
to maintain an awareness of the social context of their interactions (other than basic
presence information indicating which users in a ‘buddy list’ online). There is therefore
an opportunity for the software techniques developed in MAS research for maintaining
social awareness to be applied in the context of electronically mediated human interac-
tion, as well as in their original context of software agent interaction.

This paper reports on an investigation into the use of one such social awareness tool
in conjunction with the Second Life online virtual world. Second Life is a ‘Web 3D’ ap-
plication providing a simulated three dimensional environment in which users can move
around and interact with other users and simulated objects [1]. Users are represented in
the virtual world by animated avatars that they control via the Second Life Viewer client
software. Human interaction in virtual worlds is essentially unconstrained—the users
can do whatever they like, subject to the artificial physics of the simulated world and
a few constraints that the worlds support, such as the ability of land owners to control
who can access their land. However, many human interactions take place in a structured
social context where participants play particular roles and there are constraints imposed
by the social or organisational context, e.g. participants in a meeting should not leave
without formally excusing themselves, and students in an in-world lecture should re-
main quiet until the end of the lecture. Researchers in the field of multi-agent systems
have proposed (based on human society) that the violation of social norms such as these
can be discouraged by publishing explicit formal definitions of the norms, building tools
that track (relevant) events and detect any violations, and punishing offenders by lower-
ing their reputations or sanctioning them in some other way [2]. Integrating this type of
tool with virtual worlds could enhance the support provided by those worlds for social
activities that are subject to norms.

In this research we have investigated the use of a tool for online monitoring of
‘social expectations’ [3] in conjunction with Second Life. The mechanism involves a
script running in Second Life that is configured to detect and record particular events
of interest for a given scenario, and to model these as a sequence of state descriptions
that are sent to an external monitor along with a property to be monitored. The monitor
sends notifications back to the script when the property is satisfied so that the user can
be informed. This technique is not intended to provide a global surveillance mechanism
for Second Life, but rather, to allow specific users and communities to model and track
the social expectations that apply in particular types of structured interaction ocurring
within a limited area.

The rest of this paper is structured as follows. Section 2 describes how we have used
the Linden Scripting Language to detect avatars in Second Life and create a sequence of
propositional state models to send to the monitor. The architecture for communication
between this script and the monitor is presented in Section 3. Section 4 discusses the
concept of conditional social expectations used in this work, and the model checking
tool that is used as the expectation monitor. Section 5 presents some simple scenarios

66

Fig. 1. The Second Life Viewer

of activities in Second Life being monitored, and Section 6 discusses some issues aris-
ing from limitations of the Linden Scripting Language and the temporal logic used to
express rules. Some related work is described in Section 7, and Section 8 concludes the
paper.

2 Detecting events in Second Life

As shown in Figure 1, the Second Life Viewer provides, by default, a graphical view
of the user’s avatar and other objects and avatars within the view. The user can control
the ‘camera’ to obtain other views. Avatars can be controlled to perform a range of
basic animations such as standing, walking and flying, or predefined “gestures” that are
combinations of animation, text chat and sounds. Communication with other avatars
(and hence their users) is via text chat, private instant messages, or audio streaming.
The user experience is therefore a rich multimedia one in which human perception and
intelligence is needed to interpret the full stream of incoming data. However, the Linden
Scripting Language (LSL [4]) can be used to attach scripts to objects (e.g. to animate
doors), and there are a number of sensor functions available to detect objects and events
in the environment. These scripts are run within the Second Life servers, but have some
limited ability to communicate with the outside world.

LSL is based on a state-event model, and a script consists of defined states and
handlers for events that it is programmed to handle. Certain events in the environment
automatically trigger events on a script attached to an object. These include collisions
with other objects and with the ‘land’, ‘touches’ (when a user clicks on the object), and
money (in Linden dollars) being given to the object. Some other types of event must
be explicitly subscribed to by calling functions such as llSensor and llSensor-
Repeat for scanning for avatars and objects within a given arc and range (up to 96
metres), llListen for detecting chat messages from objects or avatars within hearing
range, and llSetTimerEvent for setting a timer. These functions take parameters

67

that provide some selectivity over what is sensed, e.g. a particular avatar name or object
type can be specified in llListen, and llListen can be set to listen on a particular
channel, for a message from a particular avatar, and even for a particular message.

In this paper we focus on the detection of other avatars via the function llSen-
sorRepeat, which repeatedly polls for nearby avatars (we choose not to scan for
objects also) at an interval specified in a parameter. A series of sensor events are
then generated, which indicate the number of avatars detected in each sensing oper-
ation. A loop is used to get the unique key that identifies each of these avatars (via
function llDetectedKey) and the avatar’s name (via llDetectedName). The key
can then be used to obtain each avatar’s current basic animation (via llGetAnima-
tion). Our script can be configured with a filter list specifying which avatar/animation
observations should be either recorded or ignored, where the specified avatar and ani-
mation can refer to a particular value, or “any”. Detected avatar animations are filtered
through this list sequentially, resulting in a set of (avatar name, animation) pairs
that comprise a model of the current state of the avatars within the sensor range. An-
other configuration list specifies the optional assignment of avatars to named groups
or roles such as “Friend” or “ClubOfficial”. There is currently no connection with the
official Second Life concept of a user group (although official group membership can
be detected). Group names can also be included in the filter list, with an intended ex-
istential meaning, i.e. a pair (group name, animation) represents an observation that
some member of the group is performing the specified animation. The configuration
lists provide scenario-specific relevance criteria on the observed events, and are read
from a ‘notecard’ (a type of avatar inventory item that is commonly used to store tex-
tual configuration data for scripts), along with the property to be monitored.

When the script starts up, it sends the property to be monitored to the monitor. It
then sends a series of state descriptions to the monitor as sensor events occur. However,
we choose not to send a state description if there is no change since the previous state,
so states represent periods of unchanging behaviour rather than regularly spaced points
in time. State descriptions are sets of proposition symbols of the form avatar animation
or group animation.

This process can easily be extended to handle other types of Second Life events that
have an obvious translation to propositional (rather than predicate) logic, such as de-
tecting that an avatar has sent a chat message (if it is not required to model the contents
of the message). Section 6 discusses this further.

3 Communication between Second Life and the monitor

Second Life provides three mechanisms for communication with entities outside their
own server or the Second Life Viewer: scripts can send email messages, initiate HTTP
requests, or listen for incoming XML-RPC connections (which must include a parame-
ter giving the key for a channel previously created by the script). To push property and
state information to the monitor we use HTTP. However, instead of directly embedding
the monitor in an HTTP server, to avoid local firewall restrictions we have chosen to
use Twitter [5] as a message channel. An XML-RPC channel key, the property to be
monitored and a series of state descriptions are sent to a predefined Twitter account as

68

direct messages using the HTTP API1. The Twitter API requires authentication, which
can be achieved from LSL only by including the username and password in the URL in
the form http://username:password@.

The monitor is wrapped by a Java client that polls Twitter (using the Twitter4J
library [7]) to retrieve direct messages for the predetermined account. These are ignored
until a pair of messages containing an XML-RPC channel key and a property to be
monitored (prefixed with “C:” and “P:” respectively) are received, which indicates that
a new monitoring session has begun. The monitoring session then consists of a series of
messages beginning with “S:”, each containing a list of propositions describing a new
state. The monitor does not currently work in an incremental ‘online’ mode—it must
be given a complete history of states and restarted each time a new state is received 2;
therefore, the Java wrapper must record the history of states. It also generates a unique
name for each state (which the monitor requires).

Each time a state is received, the monitor (which is implemented in C) is invoked
using the Java Native Interface (JNI). The rule and state history are written to files and
the names passed as command-line arguments. An additional argument indicates the
desired name of the output file. The output is parsed and, if the property is determined
to be true in any state, that information is sent directly back to the Second Life script
via XML-RPC.

Figure 2 gives an overview of the communication architecture.

Fig. 2. The communications architecture

1 Twitter messages are restricted to 140 characters and calls to the Twitter API are subject to a
limit of 70 requests per hour, which is sufficient for testing our mechanism. For production use
an alternative HTTP-accessible messaging service could be used, such as the Amazon Simple
Queue Service [6].

2 Work is in progress to add an online mode to the monitor.

69

4 Monitoring social expectations

4.1 Modelling social expectations

MAS researchers working on normative systems and electronic institutions [2] have
proposed various languages for modelling the rules governing agent interaction in open
societies, including abductive logic programming rules [8], enhanced finite state ma-
chine style models, [9], deontic logic [10], and institutional action description languages
based using formalisms such as the event calculus [11].

The monitor used in this work is designed to track rules of social expectation. These
are temporal logic rules that are triggered by conditions on the past and present, result-
ing in expectations on present and future events. The language does not include deontic
concepts such as obligation and permission, but it allows the expression of social rules
that impose complex temporal constraints on future behaviour, in contrast to the sim-
ple deadlines supported by most normative languages. It can also be used to express
rules of social interaction that are less authoritative than centrally established norms,
e.g. conditional rules of expectation that an agent has established as its personal norms,
or rules expressing learned regularities in the patterns of other agents’ behaviour. The
key distinction between these cases is the process that creates the rules, and how agents
react to detected fulfilments and violations.

Expectations become active when their condition evaluates to true in the current
state. These expectations are then considered to be fulfilled or violated if they evalu-
ate to true in a state without considering any future states that might be available in
the model3. If an active expectation is not fulfilled or violated in a given state, then it
remains active in the following state, but in a “progressed” form. Formula progression
involves partially evaluating the formula in terms of the current state and re-expressing
it from the viewpoint of the next state [12]. A detailed explanation is beyond the scope
of this paper, but a simple example is that an expectationφ (meaning that φ must be
true in the state that follows) progresses to the expectation φ in the next state.

4.2 The social expectation monitor

The monitoring tool we have used is an extension [3] of a model checker for hybrid tem-
poral logics [13]. Model checking is the computational process of evaluating whether a
formal model of a process, usually modelled as a Kripke structure (a form of nondeter-
ministic finite state machine), satisfies a given property, usually expressed in temporal
logic. For monitoring social expectations in an open system, we cannot assume that we
can obtain the specifications or code of all participating agents to form our model. In-
stead our model is the sequence of system states recorded by a particular observer, in
other words, we are addressing the problem of model checking a path [14]. The task of
the model checker is therefore not to check that the overall system necessarily satisfies

3 This restriction is necessary, for example, when examing an audit trail to find violations of
triggered rules in any state. The standard temporal logic semantics would conclude that an
expectation “eventually p” is fulfilled in a state s even if p doesn’t become true until some
later state s′.

70

a given property, but just that the observed behaviour of the system has, to date, satis-
fied it. The properties we use are assertions that a social expectation exists or has been
fulfilled or violated, based on a conditional rule of expectation, expressed in temporal
logic.

The basic logic used includes these types of expression, in addition to the standard
Boolean constants and connectives (true, false, ∧, ∨ and ¬):

– Proposition symbols. In our application these represent observations made in Sec-
ond Life, e.g. avatar name sitting.

– φ: formula φ is true when evaluated in the next state
– φ: φ is true in the current or some future state
– φ: φ is true in all states from now onwards
– φUψ: ψ is true at the current or some future state, and φ is true for all states from

now until just before that state

 and can be expressed in terms of U and are abbreviations of longer expres-
sions.

The logic also has some features of Hybrid Logic [15], but these are not used in this
work except for the use of a nominal (a proposition that is true in a unique state) in the
output from the model checker to ‘name’ the state in which a fulfilled or violated rule
of expectation became active.

Finally, the logic includes the following operators related to conditional rules of
expectation, and these are the types of expression sent from the Second Life script to
the model checker:

– ExistsExp(Condition,Expectation)
– ExistsFulf(Condition,Expectation)
– ExistsViol(Condition,Expectation)

whereCondition andExpectation can be any formula that does not include ExistsExp,
ExistsFulf and ExistsViol.

The first of these operators evaluates to true if there is an expectation existing in the
current state that results from the rule specified in the arguments being triggered in the
present or past. The other two operators evaluate to true if there is currently a fulfilled
or violated expectation (respectively) resulting from the rule.

Formal semantics for this logic can be found elsewhere [3].
The input syntax to the model checker is slightly more verbose than that shown

above. In particular, temporal operators must indicate the name of the ”next state modal-
ity” as it appears in the input Kripke structure. In the examples in this paper, this will
always be written as “<next>”. Writing “<next>” on its own refers to the operator
.

5 Two Simple scenarios

A simple rule of expectation that might apply in a Second Life scenario is that no one
should ever fly. This might apply in a region used by members of a group that enacts
historical behaviour. To monitor this expectation we can use the following property:

71

ExistsViol<next>(true, !any flying)

This is an unconditional rule (it is triggered in every state) stating the expectation that
there will not be any member of the group “Any” (comprising all avatars) flying.

If this is the only animation state to be tracked, the script’s filter list will state that the
animation “Flying” for group “Any” should be recorded, but otherwise all animations
for all avatars and other groups should be discarded. On startup, the script sends the
property to be monitored to the monitor, via Twitter, and then as avatars move around
in Second Life and their animations are detected, it sends state messages that will either
contain no propositions (if no one is flying) or will state that someone is flying:

S: any flying

These states are accumulated, and each time a new state is received, the monitor is
called and provided with the property to be monitored and the model (state history), e.g.
s1 : {}, s2 : {}, s3 : {any flying} (the model is actually represented in XML—an
example appears below).

For this model, the monitor detects that the property is satisfied (i.e. the rule is
violated) in state s3 and a notification is sent back to the script. How this is handled
is up to the script designer, but one option is for the script to be running in a “head-
up-display” object, allowing the user to be informed in a way that other avatars cannot
observe.

We now consider a slightly more complex example where there are two groups (or
roles) specified in the script’s group configuration list: leader (a singleton group)
and follower. We want to monitor for violations of the rule that once the leader is
standing, then from the next state a follower must not be sitting until the leader is sitting
again. This is expressed using the following property:

ExistsViol<next>(
leader_standing,
<next>(U<next>(!follower_sitting,

leader_sitting))
)

The filter list can be configured so that only the propositions occurring in this rule
are regarded as relevant for describing the state.

Suppose the scenario begins with the leader sitting and then standing, followed by
the follower sitting, and finally the leader sitting again. This causes the following four
states to be generated:

� � � �leader sitting leader standing follower sitting leader sitting

s1 s2 s3 s4

This is represented in the following XML format to be input to the model checker:

72

<hl-kripke-struct name="M">
<world label="s1"/>
<world label="s2"/>
<world label="s3"/>
<world label="s4"/>
<modality label="next">
<acc-pair to-world-label="s2"

from-world-label="s1"/>
<acc-pair to-world-label="s3"

from-world-label="s2"/>
<acc-pair to-world-label="s4"

from-world-label="s3"/>
</modality>
<prop-sym label="leader_standing"

truth-assignments="s2"/>
<prop-sym label="leader_sitting"

truth-assignments="s1 s4"/>
<prop-sym label="follower_sitting"

truth-assignments="s3"/>
<nominal label="s1" truth-assignment="s1"/>
<nominal label="s2" truth-assignment="s2"/>
<nominal label="s3" truth-assignment="s3"/>
<nominal label="s4" truth-assignment="s4"/>

</hl-kripke-struct>

The output of the model checker is:

s3: (s2, U<next>(!(follower_sitting),
leader_sitting))

This means that a violation occurred in state s3 from the rule being triggered in state
s2. The violated expectation (after progression to state s3) is:

U<next>(!(follower_sitting), leader_sitting)

This information is sent to the script.

6 Discussion

As mentioned in Section 2, our detection script currently only detects the animations
of avatars within sensor range. This limits the scenarios that can be modelled to those
based on (simulated) physical action. However, it is straightforward to add the ability
to detect other LSL events, provided that they can be translated to a propositional rep-
resentation. Thus we could detect that an avatar has sent a chat message, but we can’t
provide a propositional encoding that can express all possible chat message contents.
However, the addition of new types of configuration list would allow additional flexi-
bility. For example, regular expressions or other types of pattern could be defined along

73

with a string that can be appended to an avatar or group name to generate a proposition
meaning that that avatar (or a member of that group) sent a chat message matching the
pattern.

A significant limitation of the Linden Scripting Language is that the events that
a script can detect are focused on the scripted object’s own interactions with the
environment—there is no facility for observing interactions between other agents, ex-
cept for what can be deduced from their animations and chat. For many scenarios, it
would be desirable to detect these interactions, for example, passing a certain object or
sending money from one avatar to another might be a significant event in a society. One
way around this problem would be to add additional scripted objects to the environment
and set up the social conventions that these objects must be used for certain purposes.
For example, an object in the middle of a conference table might need to be touched
in order to request the right to speak next. These objects would generate appropriate
propositions and send them to the main script via a private link.

The logic used currently is based on a discrete model of time, which can cause
problems in some scenarios. For example, in the leader/follower scenario, it would be
reasonable to allow the follower some (short) amount of time to stand after the leader
stands. However, if a follower stands and another does not stand within the granularity
of the same sensor event, then that second follower will be deemed in violation. It would
be useful to be able to model some aspects of real time. This could be done by moving
to a real-time temporal logic (which would involve some theoretical work on extending
the model checker), or by some pragmatic means such as allowing the configuration
parameters to define a frequency for regular “tick” timer events.

7 Related work

There seems to be little prior work that has explored the use of social awareness tech-
nology from multi-agent systems or other fields to support human interaction on the
Internet in general, and in virtual worlds in particular.

A few avatar rating and reputation systems have been developed [16] to replace Sec-
ond Life’s own ratings system, which was disestablished in 2007. These provide various
mechanisms to allow users to share their personal opinions of avatars with others.

Closer to our own work, Bogdanovych et al. [17, 18] have linked the AMELI elec-
tronic institution middleware [19] with Second Life. However, their aim is not to pro-
vide support for human interactions within Second Life, but rather to provide a rich
interface for users to participate in an e-institution mediated by AMELI (in which the
other participants may be software agents). This is done by generating a 3D environ-
ment from the institution’s specification, e.g. scenes in the e-institution become rooms
and transitions between scenes become doors. As a user controls their avatar to per-
form actions in Second Life, this causes an associated agent linked to AMELI to send
messages to other agents, as defined by an action/message mapping table. Moving the
avatar between rooms causes the agent to make a transition between scenes, but doors
in Second Life will only open when the agent is allowed to make the corresponding
scene transition according the rules of the institution.

74

This approach could be used to design and instrument environments that support
structured human-to-human interaction in Second Life, but the e-institution model of
communication is highly stylised and likely to seem unnatural for human users. In our
work we are aiming to provide generic social awareness tools for virtual world users
while placing as few restrictions as possible on the forms of interaction that are compat-
ible with those tools. However, as discussed in Section 6, the limitation of the sensing
functions provided by virtual world scripting languages may mean that some types of
scenario cannot be implemented without providing specific scripted coordination ob-
jects that users are required to use, or the use of chat messages containing precise pre-
specified words or phrases.

Scripted objects acting as ‘proximity sensors’ have been developed as a tool for
recording land use metrics in Second Life, such as the number and identities of avatars
visiting a region over a period of time [20]. There are at least two companies selling
proximity sensors in Second Life. Through the use of multiple sensors, large multi-
region ‘estates’ can be monitored, which suggests that there are no inherent limitations
in the use of LSL sensors that would prevent our approach from scaling.

8 Conclusion

This paper has reported on a prototype application of a model checking tool for social
expectation monitoring applied to monitoring social interactions in Second Life. The
techniques used for monitoring events in Second Life and allowing communication be-
tween a Second Life script and the monitor have been described, and these have been
successfully tested on some simple scenarios. A discussion was presented on some of
the limitations imposed by the LSL language and the logic used in the model checker,
along with some suggestions for resolving these issues. Further work is needed to ex-
plore more complex scenarios and to test the scalability of the approach.

References

1. Linden Lab: Second Life home page. http://secondlife.com/ (2008)
2. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems. In

Boella, G., van der Torre, L., Verhagen, H., eds.: Normative Multi-agent Systems. Number
07122 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

3. Cranefield, S., Winikoff, M.: Verifying social expectations by model checking truncated
paths. In: Coordination, Organizations, Institutions, and Norms in Agent Systems IV. Lec-
ture Notes in Computer Science, 5428. Springer (2009) 204–219

4. Linden Lab: LSL portal. http://wiki.secondlife.com/wiki/LSL_Portal
(2008)

5. Twitter: Twitter home page. http://twitter.com/ (2008)
6. Amazon Web Services: Amazon simple queue service. http://aws.amazon.com/

sqs/ (2008)
7. Yamamoto, Y.: Twitter4j. http://yusuke.homeip.net/twitter4j/en/ (2008)
8. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance veri-

fication of agent interaction: a logic-based software tool. In Trappl, R., ed.: Cybernetics and
Systems 2004. Volume II. Austrian Society for Cybernetics Studies (2004) 570–575

75

9. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor. In:
Proceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent
Systems, ACM (2002) 1045–1052

10. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multiagent sys-
tems. In: Proceedings of the Second German Conference on Multiagent System Technologies
(MATES). Lecture Notes in Computer Science, 3187. Springer (2004) 313–327

11. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for tracking
the normative state of contracts. International Journal of Cooperative Information Systems
14(2 & 3) (2005) 99–129

12. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for
planning. Artificial Intelligence 116(1-2) (2000) 123–191

13. Dragone, L.: Hybrid logics model checker. http://luigidragone.com/hlmc/ (2005)
14. Markey, N., Schnoebelen, P.: Model checking a path. In: CONCUR 2003 – Concurrency

Theory. Lecture Notes in Computer Science, 2761. Springer (2003) 251–265
15. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)
16. Second Life: Removal of ratings in beta. http://blog.secondlife.com/2007/

04/12/removal-of-ratings-in-beta/ (2007)
17. Bogdanovych, A., Berger, H., Sierra, C., Simoff, S.J.: Humans and agents in 3D electronic in-

stitutions. In: Proceedings of the 4rd International Joint Conference on Autonomous Agents
and Multiagent Systems, ACM (2005) 1093–1094

18. Bogdanovych, A., Esteva, M., Simoff, S.J., Sierra, C., Berger, H.: A methodology for 3d elec-
tronic institutions. In: Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, IFAAMAS (2007) 358–360

19. Esteva, M., Rosell, B., Rodrguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-based mid-
dleware for electronic institutions. In: Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems. Volume 1. IEEE Computer Society (2004)
236–243

20. Kezema, K.: Further analysis of parcel data collection. Blog post. http://jeffkurka.
blogspot.com/2009/03/further-analysis-of-parcel-data.html
(2009)

76

Directed Deadline Obligations in Agent-based
Business Contracts

Henrique Lopes Cardoso and Eugénio Oliveira

LIACC, DEI / Faculdade de Engenharia, Universidade do Porto
R. Dr. Roberto Frias, 4200-465 Porto, Portugal

{hlc,eco}@fe.up.pt

Abstract. There are B2B relationships that presume cooperation in
contract enactment. This issue should be taken into account when model-
ing, for computational handling, contractual commitments through obli-
gations. Deadline obligations have been modeled by considering that
reaching the deadline without compliance brings up a violation. When
modeling commitments in business contracts, directed obligations have
been studied for identifying two agents: the obligation’s bearer and the
counterparty, who may claim for legal action in case of non-compliance.
We argue in favor of a directed deadline obligation approach, taking in-
spiration on international legislation over trade procedures. Our proposal
to model contractual obligations is based on authorizations granted in
specific states of an obligation lifecycle model, which we formalize using
temporal logic and implement in a rule-based system. The performance
of a contractual relationship is supported by a model of flexible dead-
lines, which allow for further cooperation between autonomous agents.
As a result, the decision-making space of agents concerning contractual
obligations is enlarged and becomes richer. We discuss the issues that
agents should take into account in this extended setting.

1 Introduction

In cooperative B2B Virtual Organizations, agents (representing different en-
terprises) share their own competences and skills in a regulated way, through
commitments expressed as norms in contracts. The importance of successfully
proceeding with business demands for flexibility of operations: agents should try
to facilitate the compliance of their partners. This common goal of conduct-
ing a multiparty business is based on the fact that group success also benefits
each agent’s private goals. These goals are not limited to the ongoing business
relationship, but also concern future opportunities that may arise.

While addressing this problem with norms and multi-agent systems, we find
that many approaches to normative multi-agent systems are abstracted away
from their potential application domain. As such, deontic operators are often
taken to have a universal semantics. For instance, deadline obligations are vio-
lated if the obliged action or state is not obtained until the deadline is reached.

77

We argue that in some domains – such as in business contracts – such an
approach is not desirable. For instance, the United Nations Convention on Con-
tracts for the International Sale of Goods (CISG) [1] establishes what parties
may do in case of deadline violations. In some cases they are allowed to fulfill
their obligations after the deadline (Article 48), or even to extend the deadlines
with the allowance of their counterparties. Furthermore, a party may extend his
counterparty’s deadlines (Articles 47 and 63), which denotes a flexible and even
cooperative facet of trade contracts.

In this paper we propose a different approach (in comparison with [2][3][4][5])
to the use of obligations in MAS in the domain of business contracts. Following
a cooperative business performance posture, we argue that obligations should be
directed, and that deadlines should be flexible. We start by reviewing, in section
2, the most typical variations regarding the formalization of obligations, after
which we propose an approach based on directed obligations with deadlines.
The flexibility required when handling temporal restrictions of obligations is
addressed in section 3. The proposed approach is based on authorizations, and we
present a lifecycle for directed obligations with temporal restrictions. In section 4
we investigate the decision-making process of agents concerning authorizations.
Implementation of the proposed model in a rule-based system is discussed in
section 5. Section 6 discusses related work and section 7 concludes.

2 Contractual Obligations

The use of norms in MAS makes use of the well-known deontic operators of obli-
gation, permission and prohibition [6]. In theoretical deontic logic approaches,
these operators are sometimes used to represent abstract general principles (e.g.
it is forbidden to kill). In more applied research, deontic operators are ascribed
either to roles or to particular agents in a system; e.g. Ob(f) indicates that agent
b is obliged to bring about fact f (a state of affairs or an action) – in this case
agent b is said to be the bearer of the obligation.

Also, deontic operators are often made conditional and time constrained.
Considering obligations, the conditional aspect has taken two different perspec-
tives: conditional obligations of the form Ob(f/s), meaning that agent b is obliged
to bring about f when situation s arises; and conditional norms of the form
s → Ob(f), meaning that if s then b is obliged to bring about f . As for the
temporal aspect of deontic operators, deadlines (either time references or more
generally defined as states of affairs) are typically employed for stipulating the
validity of the operator: Ob(f, d) is a deadline obligation indicating that agent b
is obliged to bring about f before d.

We will base the following discussion on the obligation deontic operator, as it
is the most important operator to represent trade relationships in B2B contracts.
The meaning of deontic operators has been studied, mainly regarding the use of

78

deadlines (e.g. [2]). Regarding deadline obligations, the usual approach to their
semantics is to consider the following entailments1:

– Ob(f , d) ∧ (f B d) |= Fulfb(f , d) — If the fact to bring about occurs before
the deadline, the agent has fulfilled his obligation.

– Ob(f , d) ∧ (d B f) |= Violb(f , d) — If the deadline occurs before the fact to
bring about, the agent has violated his obligation.

The introduction of Fulf and Viol enables reasoning about the respective
situations. The implementation of this semantics using forward-chaining rules
has been studied in [3]. Although intuitive, this semantics is quite rigid in that
violations are all defined in a universal way (discounting the fact that different
norms can respond to violations in different ways).

The analysis of contracts brings into discussion the notion of directed obliga-
tions [8]. Obligations are seen as directed from a bearer (responsible for fulfilling
the obligation) to a counterparty. Some authors [4] define the very notion of con-
tractual obligation as an obligation with an “obligor” (bearer) and an “obligee”
(counterparty). The relationship between these two roles in a directed obligation
has been studied, giving rise to two different theories. The benefit theory pro-
motes the fact that the counterparty of an obligation is intended to benefit from
its fulfillment (see [8] for a benefit theory perspective of directed obligations). A
more relevant approach in which contracts are concerned – the claimant theory
– takes the stance that obligations are interpreted as claims from counterparties
to bearers (see [5] for a claimant theory support).

In general, claimant approaches are based on the following definition for
directed obligation (adapted from [5]): Ob,c(f) =def Ob(f) ∧ (¬f ⇒ Pc(lab)). A
directed obligation from agent b towards agent c to bring about f means that b
is obliged to bring about f and if b does not bring about f then c is permitted
to initiate legal action against b. The concept of legal action is rather vague.
A similar approach is taken in [9], where agent c is said to be authorized to
repair the situation in case b does not fulfill his obligation. Repair actions in-
clude demanding further actions from b; e.g., c may demand compensation for
damages. It is interesting to note that such definitions are careful enough to
base the claims of the counterparty on the non-fulfillment of the obligation, not
on its violation. In fact, these definitions do not include deadlines, which are
the basis for violation detection. Another significant issue is the discretionary
nature of the counterparty’s reaction (he is permitted or authorized), instead of
an automatic response based on the non-fulfillment of the bearer2.

1 In the following formulae we will follow linear temporal logic (LTL) [7], with a
discrete time model. Let x = (s0, s1, s2, ...) be a timeline, defined as a sequence
of states si. The syntax x |= p reads that p is true in timeline x. We write xk

to denote state sk of x, and xk |= p to mean that p is true at state xk. We
use a weak version of the before LTL operator B, where q is not mandatory:
x |= (p B q) iff ∃j (x j |= p ∧ ∀k<j (x k |= ¬q)).

2 As in automatic violation detection approaches based on deadlines, complemented
with the definition of violation reaction norms.

79

We propose the use of directed deadline obligations as the basis for defining
contractual obligations: Ob,c(f, d). In section 3 we describe a model for flexible
obligation violation, based on the principle that the deadline is meant to indi-
cate when the counterparty is authorized to react to the non-fulfillment of an
obligation directed to him. A possible reaction is to declare the obligation as
violated, but there are other means to settle the matter, to the benefit of both
involved parties. An extension of directed (contractual) obligations with tempo-
ral restrictions is also introduced in [4], but that approach is based on a rigid
model of violations, in that they are automatically obtained at the deadline.

2.1 Directed Deadline Obligations

Our proposal combines directed [5][8] and deadline [2] obligations. Although this
has been done in the past (e.g. [4]), in our approach deadlines have a distinct
role in the definition of obligations. In section 3 we detail such a role.

Directed deadline obligations take the form Ob,c(f, d), meaning that agent b
is obliged towards agent c to bring about f before d. We do not make obligations
conditional (as in [4]), because we assume they are obtained from conditional
norms: rules prescribing obligations when certain situations arise.

We consider that if fact f is not yet the case when deadline d arises, the
obligation is not yet violated, but is in a state where the counterparty is autho-
rized to take some action. We emphasize the case for a deadline violation (as
opposed to obligation violation). This comprises a flexible approach to handling
non-ideal situations: each deadline violation is different, as each may have a dif-
ferent impact on the ongoing business, and each occurs between a specific pair
of agents with a unique trust relationship.

Some evidence from the CISG convention [1] led us to this approach:

Article 48: (1) [...] the seller may, even after the date for delivery, remedy

at his own expense any failure to perform his obligations, if he can do so

without unreasonable delay [...]; (2) If the seller requests the buyer to make

known whether he will accept performance and the buyer does not comply with

the request within a reasonable time, the seller may perform within the time

indicated in his request. [...]

This means that even though a deadline has been violated, the bearer may
still be entitled to fulfill the same obligation. This kind of delay is also called
a grace period : a period beyond a due date during which an obligation may be
met without penalty or cancellation.

Figure 1 illustrates the intuitive semantics of a directed deadline obligation.
The shaded area represents the period of time within which the achievement
of f will certainly bring a fulfillment of the obligation. The region to the right
of d indicates that counterparty c is entitled to react if f is not accomplished;
however, as long as no reaction is taken, b can still fulfill his obligation.

Therefore, a deadline violation brings a counterparty authorization. Autho-
rizations are taken into account in the normative system by having rules and

80

Fig. 1. Directed obligation with deadline.

norms that are based on the materialization of such authorizations. The available
options are discussed in section 3.

2.2 Livelines and Deadlines

The deadline approach is often taken to be appropriate for specifying temporal
restrictions on obligations. However, in certain cases a time window should be
provided. In international trade transactions, for instance, storage costs may be
relevant. Also, perishable goods should be delivered only when they are needed,
not before. This is why in CISG [1] we have:

Article 52: (1) If the seller delivers the goods before the date fixed, the buyer

may take delivery or refuse to take delivery.

Therefore, anticipated fulfillments are not always welcome. We find it neces-
sary to include a variation of directed deadline obligations, to which we add a
liveline: a time reference after which the obligation should be fulfilled. In this
case we have Ob,c(f, l, d): agent b is obliged towards agent c to bring about f be-
tween l (a liveline) and d (a deadline). Figure 2 illustrates the intuitive semantics
of this kind of obligation. The shaded area represents the period of time within
which the achievement of f will certainly bring a fulfillment of the obligation. If
f is accomplished before l, however, it may be the case that c is not willing to
accept such a fulfillment, or at least that he may not be happy about it – the
region to the left of l entitles c to react if f is accomplished. The region to the
right of d is as with (simple) directed deadline obligations.

Fig. 2. Directed obligation with liveline and deadline.

We escape from an approach with a fixed time reference for obligation fulfill-
ment (an obligation for bringing about f at time t), which would be suggested

81

by the term “date fixed” in CISG’s Article 52 transcription above. We find it
more convenient to define a fixed date as an interval, say, from the beginning till
the end of a specific date3.

3 Managing Liveline and Deadline Violations

After we have advocated, in the preceding section, a counterparty authorization
approach to deadline violations, in this section we address the issue of what
kind of actions the counterparty may take in such situations, and what are their
effects on the obligation whose deadline has been violated. The same accounts
to directed obligations with both livelines and deadlines.

The successful enactment of a contract is dependent on the need to make
contractual provisions performable in a flexible way. The importance of having
flexible trade procedures is apparent, once again, in the CISG convention [1]:

Article 47: (1) The buyer may fix an additional period of time of reasonable

length for performance by the seller of his obligations.

Article 63: (1) The seller may fix an additional period of time of reasonable

length for performance by the buyer of his obligations.

These articles emphasize, once more, the need for flexible deadlines. Note that
the counterparty’s benevolence on conceding an extended deadline to the bearer
does not prescribe a new obligation; instead, the same obligation may be fulfilled
within a larger time window. Furthermore, it is also in the counterparty’s best
interest that this option is available, given the importance of reaching success in
the performance of the contract.

In some other cases, a party may decide that the non-fulfillment of an obli-
gation should be handled in a more strict way. The CISG convention specifies
conditions for cancelling a contract in case of breach:

Article 49: (1) The buyer may declare the contract avoided: (a) if the failure

by the seller to perform any of his obligations [...] amounts to a fundamental

breach of contract; [...]; (2) However, in cases where the seller has delivered

the goods, the buyer loses the right to declare the contract avoided unless he

does so: (a) in respect of late delivery, within a reasonable time after he has

become aware that delivery has been made; [...]

Article 64: (1) The seller may declare the contract avoided: (a) if the failure

by the buyer to perform any of his obligations [...] amounts to a fundamental

breach of contract; [...]; (2) However, in cases where the buyer has paid the

price, the seller loses the right to declare the contract avoided unless he does

so: (a) in respect of late performance by the buyer, before the seller has become

aware that performance has been rendered; [...]

3 This is actually a matter of time granularity.

82

These articles allow contract termination in both non-performance and late
performance cases. However, the second case is limited to the awareness of the
offended party.

From these excerpts we can distinguish two types of reactions to non-fulfillments:
a smoother one (from articles 47, 48 and 63), in which parties are willing to re-
cover from an initial failure to conform to an obligation; and a stricter one
(articles 49 and 64), where the failure is not self-containable anymore. Based on
these options, we propose a model for a directed deadline obligation lifecycle.

3.1 Authorizations on Violations

Following the discussion above, we identify the possible states for an obligation,
together with the elements we shall use to signal some of those states (when
obtained, these elements are supposed to persist over time):

– inactive: the obligation is not yet in effect, but will eventually be prescribed
by a norm;

– active: the obligation was prescribed by a norm – Ob,c(f, d) or Ob,c(f, l, d)
– pending : the obligation may be fulfilled from now on;
– liveline violation: the fact being obliged has been brought ahead of time –

LViolb,c(f , l , d)
– deadline violation: the fact being obliged should have been brought already

– DViolb,c(f , d) or DViolb,c(f , l , d)
– fulfilled : the obligation was fulfilled – Fulfb,c(f , d) or Fulfb,c(f , l , d)
– violated : the obligation was violated and cannot be fulfilled anymore – Violb,c(f , d)

or Violb,c(f , l , d)

Starting with the simpler case of directed deadline obligations, we identify
the (absolute) fulfillment case:

– Ob,c(f , d) ∧ (f B d) |= Fulfb,c(f , d)

Then we state the consequence of reaching a deadline with no achievement
of the obligated fact:

– Ob,c(f , d) ∧ (d B f) |= DViolb,c(f , d)

Note that, differently from the usual approach, we set the obligation to have
a violated deadline – DViolb,c(f , d) – but not to be violated in itself.

The counterparty’s reaction to a deadline violation will only change the obli-
gation’s state if the option is to deem the obligation as violated, by denouncing
this situation. For this we introduce the element Denc,b(f , d), which is a de-
nounce from agent c towards agent b regarding the failure of the latter to comply
with his obligation to bring about f before d. Since we consider the achievement
of facts to be common knowledge, a party may only denounce the non-fulfillment
of an obligation while that obligation is not fulfilled yet4:
4 This is a simplification of what articles 49 and 64 of CISG suggest.

83

– DViolb,c(f , d) ∧ (f B Denc,b(f , d)) |= Fulfb,c(f , d)
– DViolb,c(f , d) ∧ (Denc,b(f , d) B f) |= Violb,c(f , d)

Figure 3 illustrates, by means of a state transition diagram, the lifecycle of di-
rected deadline obligations. We take obligations as being prescribed from condi-
tional norms; the confirmation of the norm’s condition will change the prescribed
obligation’s state from inactive to active. The obligation is also automatically
pending, since it may be legitimately fulfilled right away.

Fig. 3. Lifecycle of a directed deadline obligation.

Fig. 4. Lifecycle of a directed obligation with liveline and deadline.

Figure 4 contains the state transition diagram for directed obligations with
livelines and deadlines. In this case, the obligation will only be pending when
l arises, since only then it may be fulfilled in a way that is compliant with the
terms of the contract. We define the following relations:

– Ob,c(f , l , d) ∧ (f B l) |= LViolb,c(f , l , d)
– LViolb,c(f , l , d) ∧ (l B Denc,b(f , l , d)) |= Fulfb,c(f , l , d)
– LViolb,c(f , l , d) ∧ (Denc,b(f , l , d) B l) |= Violb,c(f , l , d)
– Ob,c(f , l , d) ∧ (l B f) ∧ (f B d) |= Fulfb,c(f , l , d)
– Ob,c(f , l , d) ∧ (d B f) |= DViolb,c(f , l , d)
– DViolb,c(f , l , d) ∧ (f B Denc,b(f , l , d)) |= Fulfb,c(f , l , d)
– DViolb,c(f , l , d) ∧ (Denc,b(f , l , d) B f) |= Violb,c(f , l , d)

We have now two kinds of temporal violations: liveline violations of the form
LViolb,c(f , l , d) and deadline violations of the form DViolb,c(f , l , d). In both
cases a denounce may establish the obligation as violated, if issued before l or
f , respectively.

84

3.2 Smoother Authorizations on Violations

The diagrams in figures 3 and 4 only include events that produce a change in
an obligation’s state. The denouncement of the non-fulfillment of an obligation,
making it violated and consequently not fulfillable any longer, denotes a situation
in which a bearer’s attempt to fulfill the obligation will no longer be significant to
the counterparty, and thus a consummated violation should be handled according
to applicable norms. These may bring sanctions, further obligations or ultimately
a contract cancellation, as in articles 49 and 64 of CISG.

In order to accommodate less strict situations (see articles 47, 48 and 63
of CISG), we consider that in liveline and deadline violation states, while the
obligation can still be fulfilled, the counterparty may react to the non-ideal
situation. These possibilities are not illustrated in figures 3 and 4, since they do
not bring state changes. For instance, in international trade transactions storage
costs may be relevant. The counterparty may therefore be authorized to demand
for payment of storage costs from an early compliant bearer. Another example
for the deadline violation case:

Article 78: If a party fails to pay the price or any other sum that is in arrears,

the other party is entitled to interest on it [...]

While obligation state transitions are processed with appropriate rules (in-
cluding rules that take denounces into account), authorizations expressing the
counterparty’s right to demand for compensation are handled by the system
through appropriate norms, which may be defined in a contract basis.

4 Decision-making on Directed Deadline Obligations

The authorization approach described above enriches the decision-making space
of agents concerning norms. Since commitments can be violated, agents (as hu-
man delegates) may decide whether to fulfill them or not. Furthermore, because
the violation state is determined by the counterparty’s choice to denounce this
situation, both parties associated with a directed obligation are in a position to
decide over it after the deadline.

In order to model the decision making process, we need to assess each agent’s
valuations on the obligation states and facts they are able to bring about. We will
write va(f) and va(S) to denote the valuation agent a makes of fact f or state
S, respectively (similarly to the valuation model used in [10]). When valuating
an obligation’s state (namely a fulfillment or a violation), agents should take
into account two different sorts of effects. First, since an obligation is taken to
be a part of a wider contract that should benefit all participants, the obligation
cannot be taken in isolation, as its fulfillment or violation may trigger further
commitments. Second, an agent’s reputation is affected by whether or not he
stands for his commitments. In the following we assume that an agent is capable
of anticipating and evaluating the consequences of his actions within a contract.

For an obligation Ob,c(f, d) we have the following valuation constraints for b:

85

vb(Ob,c(f, d)) < 0 : an obligation is a burden to its bearer
vb(f) < vb(Ob,c(f, d)) : there is a heavier cost associated with bringing about f
vb(Fulfb,c(f , d)) > 0 : b gains from fulfilling his obligation
vb(Violb,c(f , d)) < 0 : b loses from violating his obligation

The notions of gain and loss for the bearer extend to outside this obligation.
For instance, fulfilling an obligation may bring an entitlement (a new obligation
where the bearer becomes the counterparty). Violating an obligation will poten-
tially bring penalties to the bearer, hence the negative valuation. In both cases,
the reputation of agent b is affected (positively or negatively). Unlike in [10], we
do not impose that vb(Violb,c(f , d)) < vb(f) + vb(Fulfb,c(f , d)). An agent may
be able to exploit a contract flaw by considering that in a specific situation he
is better off violating his obligation than fulfilling it. Of course that even if the
above condition holds, agent b may still choose to violate his obligations, be-
cause of other conflicting goals: he may lose with respect to the outcome of this
contract, but may possibly win across contracts.

As for the counterparty c, we have:

vc(Ob,c(f, d)) > 0 : an obligation is an asset for the counterparty
vc(f) > vc(Ob,c(f, d)) : c benefits from f
vc(Fulfb,c(f , d)) ≤ 0 : c may acquire obligations after fulfillment
vc(Violb,c(f , d)) ≥ 0 : c may obtain compensations after violation

Note that both fulfillments and violations may bring no value if they have
no further consequences in the contract.

In a rough attempt to model the decision making process of a counterparty
of an obligation whose deadline was violated, we could state that he should
denounce (and thus obtain the obligation’s violation) if5

vc(f) + vc(Fulfb,c(f , d)) < vc(Violb,c(f , d)).

We consider that valuations may possibly vary with time. Were that not the
case, the above condition would only need to be checked right after d, at which
point the counterparty would either denounce or decide to wait indefinitely for
the bearer to fulfill his obligation. For instance, we believe that it makes sense
to think of vc(f) as possibly decreasing with time (like a resource that should
be available but is not yet). Even when the above condition does not hold, the
counterparty may still prefer to tolerate the less preferred situation of failure for
matters of conflicting goals (just as with the bearer).

Until now we have discussed the possibility of agents (both bearers and coun-
terparties) deciding on breach over compliance (either by assessing intra-contract
consequences or by inter-contract conflicts). But in scenarios enriched with social
features agents can exploit, it may be the case that agents decide to behave coop-
eratively even when they have to bear a contained disadvantage. In such settings,
more than being altruistic, agents may try to enhance their trust awareness in
the community, from which they will benefit in future interactions or contracts.
5 We assume there is no cost associated with the denouncing action.

86

5 Implementation and Practical Issues

The logical relationships expressed above provide us a formalism to define di-
rected deadline obligations. However, in order to monitor contracts at run-time,
we need to ground this semantics into a reasoning engine capable of respond-
ing to events in a timely fashion. That is, elements describing obligation states
should allow us to reason about those states as soon as they occur.

A natural choice we have made before [3] is the use of a rule-based infer-
ence engine, with which the following (forward-chaining) rules can be defined to
implement the semantics of directed obligations with livelines and deadlines6:

– Ob,c(f , l , d) ∧ f ∧ ¬l → LViolb,c(f , l , d)
– LViolb,c(f , l , d) ∧ l ∧ ¬Denc,b(f , l , d)→ Fulfb,c(f , l , d)
– LViolb,c(f , l , d) ∧Denc,b(f , l , d) ∧ ¬l → Violb,c(f , l , d)
– Ob,c(f , l , d) ∧ l ∧ ¬LViolb,c(f , l , d) ∧ f ∧ ¬d → Fulfb,c(f , l , d)
– Ob,c(f , l , d) ∧ d ∧ ¬f → DViolb,c(f , l , d)
– DViolb,c(f , l , d) ∧ f ∧ ¬Denc,b(f , l , d)→ Fulfb,c(f , l , d)
– DViolb,c(f , l , d) ∧Denc,b(f , l , d) ∧ ¬f → Violb,c(f , l , d)

With this approach, we assume an immediate assertion of facts and deadlines
when they come into being. Furthermore, rules are expected to be evaluated in
every working memory update (e.g. right after a fact is asserted), in order to
produce the indicated conclusions, which are added to the normative state in a
cumulative fashion. To detect the moment at which the before relation holds, we
translated terms of the form (e1 B e2) into a conjunction e1 ∧ ¬e2. The fourth
rule demanded for a more careful construction, since we had two consecutive
before relations – we needed to ensure that there was no liveline violation when
having both l and f .

5.1 Reasoning with Time

In business contracts it is common to have deadlines that are dependent on the
fulfillment date of other obligations. Therefore, instead of having fixed (absolute)
dates, these may at times be relative, calculated according to other events. CISG
[1] expresses this by saying that dates can be determinable from the contract:

Article 33: The seller must deliver the goods: (a) if a date is fixed by or deter-

minable from the contract, on that date; (b) if a period of time is fixed by or

determinable from the contract, at any time within that period [...]

Article 59: The buyer must pay the price on the date fixed by or determinable

from the contract [...]

6 The simpler case of directed deadline obligations is a simplification over these rules.

87

It is therefore useful to timestamp each event: facts, fulfillments and viola-
tions. For that purpose, Fulfb,c(f , l , d)t will be used to indicate that b has fulfilled
at time point t its obligation towards c to obtain f between l and d; similarly
for Violb,c(f , l , d)t . Since a fact itself has now a timestamp attribute, for ease
of reading we will write fact f achieved at time point t as Fact(f)t . A denounce
will also be written Denc,b(f , l , d)t .

Norms will be based on these elements and on their time references in order
to prescribe other obligations with relative deadlines. For instance,

Fulfb,c(Deliver(x , q), ,)t → Oc,b(Pay(price), t , t + 10)

means that once agent b has fulfilled his obligation to deliver q units of x to
agent c, the latter is obliged to pay the former within a period of 10 time units.

5.2 Re-implementing Rules

We also need to update our rules in order to stamp each generated event. In
fact, having timestamps also allows us to implement such rules in a way that
has a closer reading to the LTL before operator:

– Ob,c(f , l , d) ∧ Fact(f)t ∧ t < l → LViolb,c(f , l , d)
– LViolb,c(f , l , d) ∧ l ∧ ¬(Denc,b(f , l , d)u ∧ u < l)→ Fulfb,c(f , l , d)l

– LViolb,c(f , l , d) ∧Denc,b(f , l , d)u ∧ u < l → Violb,c(f , l , d)u

– Ob,c(f , l , d) ∧ Fact(f)t ∧ l < t ∧ t < d → Fulfb,c(f , l , d)t

– Ob,c(f , l , d) ∧ d ∧ ¬(Fact(f)t ∧ t < d)→ DViolb,c(f , l , d)
– DViolb,c(f , l , d) ∧ Fact(f)t ∧ ¬(Denc,b(f , l , d)u ∧ u < t)→ Fulfb,c(f , l , d)t

– DViolb,c(f , l , d) ∧Denc,b(f , l , d)u ∧ ¬(Fact(f)t ∧ t < u)→ Violb,c(f , l , d)u

This kind of approach has the benefit of relaxing the rule evaluation policy:
rules do not have to be evaluated after each working memory update, since we
are checking the timestamps of each event (see also [3]).

5.3 Example Contract

Considering a two-party business scenario, a contract should be beneficial for
both involved parties. Therefore, both are obliged to bring about certain facts
(e.g. payments or deliveries) in specific situations, and those facts should benefit
the obligations’ counterparties. The contract will typically specify remedies for
breach situations (such as those pointed out at CISG). For the sake of illustra-
tion, we present a possible buyer-supplier contract: agent S commits to supply
agent B, whenever he orders, good X for 7.5 per unit. The norms below define
this particular contractual relationship. Agent S is supposed to deliver the or-
dered goods between 3 to 5 days after the order (norm n1), and agent B shall
pay within 30 days (norm n2). Furthermore, if agent B does not pay in due time,
he will incur in a penalty consisting of an obligation to pay an extra 10% on the
order total (norm n3). Finally, if agent S violates his obligation to deliver, the
contract will be canceled (norm n4).

88

(n1) Fact(Order(X , q))w → OS ,B (Deliver(X , q),w + 3 ,w + 5)
(n2) FulfS ,B (Deliver(X , q), l , d)w → OB,S (Pay(q ∗ 7 .5),w ,w + 30)
(n3) DViolB,S (Pay(p), l , d)→ OB,S (Pay(p ∗ 0 .10), d , d + 30)
(n4) ViolS ,B (Deliver(X , q), l , d)w → Cancel contract

Note that the interest applied on payments is automatic once a deadline
violation is detected (norm n3). On the other hand, a contract cancellation (norm
n4) requires that agent B denounces the inability of agent S to fulfill the delivery.
It is therefore up to agentB whether to wait further and accept a delayed delivery
or not. If the agreed upon contract conditions are important enough, allowing a
counterparty deviation (and hence taking a cooperative attitude regarding the
compliance of the contract) may be a good decision.

Different kinds of situations may be easily modeled using this kind of norms.
Moreover, using flexible deadlines also ensures a degree of freedom for agents
to make decisions in the execution phase of contracts, which is important for
dealing with business uncertainty.

6 Related Work

Most implementations of norms in multi-agent systems ignore the need for having
directed obligations from bearers to counterparties. The most likely reason for
this is that in those approaches obligations are seen as (implicitly) directed from
an agent to the normative system itself. It is up to the system (e.g. an electronic
organization [11] or an electronic institution [12]) to detect violations and to
enforce the norms which are designed into the environment (in some cases they
are even regimented in such a way that violation is not possible). On the contrary,
our flexible approach towards an Electronic Institution allows agents to define
the norms that will regulate their mutual commitments.

Other authors have proposed different lifecycles for commitments and deon-
tic operators. Directed social commitments are modeled in [13], in the context of
dialogical frameworks. Violated commitments resort to their cancellation, which
may bring sanctions. An interesting issue that is explicit in the model is the
possibility for the bearer to cancel his commitment, allowing the counterparty
to apply sanctions; also, updating is allowed through cancellation of the com-
mitment and creation of a new one. A more compact model is presented in [14],
also considering the possibility to update commitments. However, fulfillment and
violation are not dealt with explicitly in this model; instead, a commitment is
discharged when fulfilled, or else may be canceled.

Taking a cooperative approach to contract fulfillment, in [15] an obligation
lifecycle model includes states that are used in a contract fulfillment protocol.
Agents communicate about their intentions to comply with obligations, and
in this sense an obligation can be refused or accepted. After being accepted,
the obligation may be canceled or complied with. These states are obtained
according to the performance of a contractual relationship. Our model should
also require that agents communicate their intentions regarding an obligation

89

with a violated deadline. In fact, CISG’s Article 48 seems to go in this direction,
in order to protect the bearer’s efforts toward a late fulfillment of the obligation.

The need to identify two opposite roles in deontic operators is not exclusive
of obligations. In [5] the concept of directed permission is described on the basis
of interference and counter-performance. If a party is permitted by another to
bring about some fact, the latter is not allowed to interfere with the attempt
of the former to achieve that fact. The authors also sustain a relation between
directed obligations and directed permissions: Ob,c(f) → Pb,c(f), that is, if an
agent b has an obligation towards an agent c, then b is permitted (by c) to bring
about the obliged fact and c is not permitted to interfere. This is very important
in international trade transactions, especially when storage costs can be high.
Some evidence from CISG [1] brings us once more the same insight:

Article 53: The buyer must pay the price for the goods and take delivery of

them [...]

Article 60: The buyer’s obligation to take delivery consists: (a) in doing all the

acts which could reasonably be expected of him in order to enable the seller to

make delivery; and (b) in taking over the goods.

In this case the permission is described in terms of an obligation of the
counterparty (the buyer).

Our model of directed obligations with livelines and deadlines has some con-
nections with research on real-time systems, where a time-value function valuates
a task execution outcome depending on the time when it is obtained. Soft real-
time systems use soft deadlines: obtaining the result after the deadline has a
lower utility. In contrast, for hard real-time systems the deadline is crisp: after
it, the result has no utility at all, and missing the deadline can have serious
consequences. Our approach seems to be soft with a hard-deadline discretion-
ally declared by the counterparty of the task to achieve. Deadline goals are also
analyzed in [16] in the context of goal-directed and decision-theoretic planning.
Goals are given a temporal extent and can be partially satisfied according to
this temporal component. The authors propose a horizon time point somewhere
after the deadline, after which there will be no benefit in achieving the goal. In
our case the horizon is not static, but can be defined by the counterparty.

A model for commitment valuations, on which we have based our decision-
making prospect, has been proposed in [10]. However, while their work is centered
on checking correctness of contracts, we focus on valuations in the course of a
contract execution. We do not assume that a contract is correct from a fairness
point of view. This difference in concerns has brought divergent considerations
when valuating fulfillment and violation states.

Other authors have studied agent decision-making regarding norm compli-
ance. For instance, violation games, put in perspective of a game-theoretic ap-
proach to normative multi-agent systems in [17], model the interactions between
an agent and the normative system that is responsible to detect violations and
sanction them accordingly. That line of research analyses how an agent can vi-
olate obligations without being sanctioned. In our case, while we assume that

90

temporal violations are always detected, we explore decision-making from the
point of view of both the bearer and the counterparty of a directed obligation.

7 Conclusions

In cooperative B2B Virtual Organizations, contracts specify, through obligations,
the interdependencies between different partners, and provide legal options to
which parties can resort in case of conflict. However, when this joint activity
aims at pursuing a common goal, the successful performance of business benefits
all involved parties. Therefore, when developing automated monitoring tools,
one should take into account that agents may be cooperative enough to allow
counterparties’ deviations.

Taking this into account, in this paper we have presented a novel model for
contractual obligations – directed deadline obligations. Following a claimant the-
ory approach, the directed aspect concerns the need to identify the agent who
will be authorized to react in case of non-fulfillment. We started from previ-
ous theoretical approaches to model such authorizations, and developed a more
concrete formalization by linking authorizations with a flexible model of dead-
lines. Obligation violations are now dependent on the counterparty motivation
to claim them. We have also considered in our model smoother authorizations.

Our approach is based on real-world evidence from business contracts (namely
the United Nations Convention on Contracts for the International Sale of Goods),
which denotes a flexible and even cooperative facet of trade contracts. This facet
extends to the concept of B2B Virtual Organizations, wherein different parties
come together to share a business goal that is achievable through the cooperative
fulfillment of a common contract.

We addressed the important issue of agent decision-making, which is enriched
by our model of authorizations. Both parties involved in a directed deadline obli-
gation may have a say regarding its violation. When considering obligations as
interlinked through norms in a contract, agents should evaluate the consequences
of fulfillment and violation states as prescribed in the contract. Furthermore,
in “socially rich” environments, agents should explore the value of future re-
lationships by enhancing their perceived trustworthiness and predisposition to
facilitate compliance, something that is made possible by our directed deadline
obligations approach.

Acknowledgments. The first author is supported by FCT (Fundação para a
Ciência e a Tecnologia) under grant SFRH/BD/29773/2006.

References

1. UNCITRAL: United nations convention on contracts for the international sale of
goods (cisg) (1980)

91

2. Broersen, J., Dignum, F., Dignum, V., Meyer, J.J.C.: Designing a deontic logic of
deadlines. In Lomuscio, A., Nute, D., eds.: 7th International Workshop on Deontic
Logic in Computer Science. Volume 3065 of LNCS., Madeira, Portugal, Springer
Verlag, Heidelberg (2004) 43–56

3. Lopes Cardoso, H., Oliveira, E.: A context-based institutional normative environ-
ment. In Hübner, J.F., Boissier, O., eds.: AAMAS’08 Workshop on Coordination,
Organization, Institutions and Norms in agent systems (COIN), Estoril, Portugal
(2008) 119–133

4. Ryu, Y.U.: Relativized deontic modalities for contractual obligations in formal
business communication. In: 30th Hawaii International Conference on System
Sciences (HICSS). Volume 4., Hawaii, USA (1997) 485–493

5. Tan, Y.H., Thoen, W.: Modeling directed obligations and permissions in trade con-
tracts. In: Proceedings of the Thirty-First Annual Hawaii International Conference
on System Sciences, Volume 5, IEEE Computer Society (1998)

6. von Wright, G.: Deontic logic. Mind 60 (1951) 1–15
7. Emerson, E.A.: Temporal and modal logic. In Leeuwen, J.v., ed.: Handbook of

Theoretical Computer Science. Volume B: Formal Models and Sematics. North-
Holland Pub. Co./MIT Press (1990) 995–1072

8. Herrestad, H., Krogh, C.: Obligations directed from bearers to counterparties. In:
Proceedings of the 5th international conference on Artificial intelligence and law,
College Park, Maryland, United States, ACM (1995) 210–218

9. Dignum, F.: Autonomous agents with norms. Artificial Intelligence and Law 7(1)
(1999) 69–79

10. Desai, N., Narendra, N.C., Singh, M.P.: Checking correctness of business contracts
via commitments. In: Proc. 7th Intl. Joint Conf. on Autonomous Agents and
Multiagent Systems, Estoril, Portugal, IFAAMAS (2008) 787–794

11. Vázquez-Salceda, J., Dignum, F.: Modelling electronic organizations. In Marik,
V., Muller, J., Pechoucek, M., eds.: Multi-Agent Systems and Applications III: 3rd
Int. Central and Eastern European Conf. on Multi-Agent Systems (CEEMAS’03).
Volume 2691 of LNAI., Prague, Czech Republic, Springer Verlag (2003) 584–593

12. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the
formal specifications of electronic institutions. In Dignum, F., Sierra, C., eds.:
Agent-mediated Electronic commerce: The European AgentLink Perspective. Vol-
ume 1991 of LNAI. Springer (2001) 126–147

13. Pasquier, P., Flores, R.A., Chaib-Draa, B.: Modelling flexible social commitments
and their enforcement. In Gleizes, M.P., Omicini, A., Zambonelli, F., eds.: Engi-
neering Societies in the Agents World V. Volume 3451 of LNAI. Springer Verlag
(2005) 139–151

14. Wan, F., Singh, M.P.: Formalizing and achieving multiparty agreements via com-
mitments. In: Proceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, The Netherlands, ACM (2005) 770–777

15. Sallé, M.: Electronic contract framework for contractual agents. In Cohen, R.,
Spencer, B., eds.: Advances in AI: 15th Conf. of the Canadian Soc. for Computa-
tional Studies of Intelligence. Springer (2002) 349–353

16. Haddawy, P., Hanks, S.: Utility models for goal-directed, decision-theoretic plan-
ners. Computational Intelligence 14(3) (1998) 392–429

17. Boella, G., van der Torre, L.: A game-theoretic approach to normative multi-agent
systems. In Boella, G., van der Torre, L., Verhagen, H., eds.: Normative Multi-agent
Systems (NorMAS07). Volume 07122 of Dagstuhl Seminar Proceedings. (2007)

92

An Approach for Virtual Organizations’
Dissolution

Nicolás Hormazábal1, Henrique Lopes Cardoso2, Josep Lluis de la Rosa1, and
Eugénio Oliveira2

1 Universitat de Girona, Agents Research Lab,
Av. Lluis Santaló S/N, Campus Montilivi, Edifici PIV, 17071 Girona, Spain

nicolash@eia.udg.edu, peplluis@eia.udg.edu,
2 Universidade do Porto, LIACC, DEI / Faculdade de Engenharia,

R. Dr. Roberto Frias, 4200-465 Porto, Portugal
hlc@fe.up.pt, eco@fe.up.pt

Abstract. Current research on Virtual Organizations focuses mainly on
their formation and operation phases, devoting only short references to
the dissolution phase. These references typically suggest that dissolution
should be obtained when the organization has fulfilled all its objectives
or when it is no longer needed. This last definition is quite vague and
hard to tackle with, as the need for an organization is not always easy
to measure.
We believe that, besides fulfillment of objectives, more causes should be
considered for the dissolution of a Virtual Organization; not always is
an organization capable of achieving its goals, neither continuing oper-
ating. Organizations can change during their operation as well as the
environment they operate in, and these changes may affect on their per-
formance to the point that they should not continue operating, and the
causes that should lead to the dissolution could affect also to future orga-
nizations’ formation. Considering Virtual Organizations correspondence
to real society organizations, some features from real-world commercial
law related to dissolution can be applied to their virtual counterpart too.
In this paper we introduce the different causes that should be considered
for Virtual Organization dissolution, and a case study focused on one of
these causes is presented as a way to emphasize the significance of the
dissolution process.

1 Introduction

Generally speaking, Virtual Organizations (VO) are composed of a number of
autonomous agents with their own capabilities (on problem-solving, task execu-
tion and performance) and resources. Being autonomous, agents usually pursue
individual goals, but in some cases these goals can be achieved with better per-
formance or higher benefits inside a cooperation environment with other agents,
where the resulting organization can even offer new services through the com-
bination of complementary competences. For example, in an economic environ-
ment, agents may represent different units or enterprises that come together

93

2 Nicolás Hormazábal et al.

in response to new market opportunities requiring a combination of resources
that no partner alone can fulfill [1]. These cooperative organizations have been
researched mainly from the point of view of their formation and operation. How-
ever, their lifecycle has been outlined as having an additional phase, therefore
comprising formation, operation and dissolution.

Although the automation of a dissolution process has been mentioned as a
research and development challenge on the study of VOs [2], there is not much
work addressing dissolution. This phase is often overlooked without getting into
deeper research. Yet, in economic terms, if an organization’s dissolution is not
properly managed, it can generate tremendous costs [3]. The timeliness of dis-
solution is dictated by the existing agents and resource availability. If a VO is
underperforming without a chance for reconfiguring itself (or the possible recon-
figuration is not enough to improve the performance), then it should dissolve in
order to free assigned resources and members.

Under normal circumstances, the dissolution should happen after the VO has
fulfilled its objectives [4]. Some researchers also mention that such partnerships
should dissolve when they are not longer sustainable [5] or the VO is no longer
needed. The main topic of this paper is the clarification of these terms, through
an identification of the causes that should be considered for the dissolution of a
VO.

The paper is organized as follows. Section 2 briefly describes some real life
organizations and their normative environment used to set the basis for the
dissolution process in Virtual Organizations. Section 3 describes the normative
framework used for supporting the dissolution process. Section 4 explains the
dissolution process, describing the steps needed for the dissolution and the causes
that a VO should dissolve. Section 5 present a case study focused on one of the
dissolution causes presented. Finally in section 6 the conclusions of the current
work are presented.

2 Real-World Organizations

In virtual environments, agent societies enable interactions between agents and
are therefore the virtual counterpart of real-life societies and organizations [6].
As such, when seeking to support VO dissolution, issues related with real life
organizations’ dissolution should be considered.

The most common type of regulated organization that exists in society is
the commercial organization, such as limited or public limited companies. These
organizations are regulated by the law, and therefore they live inside a normative
environment enforced by its respective institution. Every country has its own
laws, but there are several common key features among western countries that
can be used for reference. We shall use Spanish Commercial Law ([7], [8]) as
a starting point, specifically in what concerns the dissolution of this type of
commercial organization.

The dissolution of a commercial organization is divided in two phases. First
there is the identification of a dissolution cause. In some cases, the agreement of

94

An Approach for Virtual Organizations’ Dissolution 3

the organization’s members is also needed to move forward to the next phase. The
second phase is the liquidation, where once a dissolution cause is identified, the
society moves forward to perform the tasks needed to its final extinction, having
as output a dissolution report which summarizes the organization’s activity.

From the above, the dissolution causes can be classified in two different
groups:

– Causes that when identified, dissolve automatically the society without the
need of the members’ (or the board) agreement.

– Causes that when identified, need an agreement from the members (or the
board) for going on to the next step, the liquidation.

These causes depend, besides on the law itself, also on the contents of the
society’s articles of association, their statutes (where, for example, the duration
of the society is specified, in case the partners decide to have a fixed one) or the
society’s assets. The law may also include slightly different legislations on some
aspects depending on the society’s scope.

Institutions regulate interactions between the members of a society, defining
the ”rules of the game”, on what is permitted and what is forbidden and in what
conditions [9]. Similarly, a VO needs to operate within a normative environment,
enforced in this case by an Electronic Institution (EI from now on) which is the
electronic counterpart of the real-life institutions.

3 Normative Framework

Commercial organizations are restricted by a legal context where they operate
in, and internally by the statutes or articles of association created during the
organization’s formation. There are, then, different normative layers related to
the organizations’ activities, first a common set of norms for every organization
(the law) and then specific norms for each one of them (the statutes or articles
of association). An institutional normative framework should therefore include
a hierarchical organization of norms. Borrowing from [11], we consider norms
organized in three levels (see Figure 1).

The EI aims to support agent interaction as a coordination framework and
provides a level of trust by offering an enforceable normative environment. This
means that the EI will facilitate both the creation and the enforcement of con-
tracts among agents [12]:

– Institutional norms, at the higher level, influence the formation of VO consti-
tutional and operational contracts; they setup the normative background on
which cooperation commitments can be established. Regulations on general
contracting activities and the behavior of every agent in the EI are included
in this level.

– Constitutional norms represent the core of the cooperation agreement be-
tween the agents. The agreement is represented with norms that regulate
the created coalition, which usually exists for a period of time. Norms at
this level only affect the agents that participate in the VO.

95

4 Nicolás Hormazábal et al.

Fig. 1. Normative Framework.

– Operational Norms indicate the actions to be performed by contractual
agents by specifying operational contracts, which may be established among
a subset of the VO’s agents.

Drawing a parallel between the real life organizations (like commercial orga-
nizations) and the EI framework, institutional norms map the commercial law,
constitutional norms correspond to the organization’s articles of association or
statutes, and the operational norms represent the individual task commitments
inside the organization (table 1).

Table 1. Parallel between societies and EI

Real Life Societies Electronic Institution Framework

The Law Institutional Norms

Statutes Constitutional Norms

Task Commitments Operational Norms

The VO activity is therefore governed by norms placed on different layers on
the institutional normative framework. Focusing on the dissolution phase of a
VO lifecycle, there should be some norms related to the identification of when a
VO has to be dissolved, thus helping to identify the dissolution causes.

4 Dissolution Process

Inspired by the commercial law, in this work we suggest a two step dissolu-
tion process. First the dissolution activation (which will be called activation),
consisting on the identification of a dissolution cause for the VO, and then the
execution of the dissolution process, where the needed tasks for the dissolution
have to be ran (this step will be called liquidation).

96

An Approach for Virtual Organizations’ Dissolution 5

4.1 Activation

On the current literature, the causes for VO dissolution are mainly on the suc-
cessful achievement of all its goals or a decision of involved partners to stop the
operation [10]. But if the partners decide to stop the operation of the VO, they
should someway specify the cause of the decision; if the organization is ending its
activities before fulfilling its goals, this could be considered as an unsuccessful
state. This information should be used for future organization formation and
partner selection.

Before dissolve, VOs can attempt to adapt themselves to environmental
changes or perform a reorganization in order to maintain or improve the perfor-
mance due to different causes. This means that not always the right choice is to
move forward to the dissolution, or otherwise in some cases maybe is better to
dissolve instead of trying to make a VO reorganization.

We suggest then to distinguish two type of dissolution causes: First the causes
that need the decision of the involved members for moving onto the dissolution
which will be called Necessary Causes, as they are necessary for the dissolution,
but not sufficient as they need the member’s agreement.

Additionally, there are some causes that should automatically dissolve the
organization without the need for the partners’ decision. These causes are the
Sufficient Causes.

During the VO operation, necessary or sufficient causes could be identified,
which could lead the VO to different dissolution sub-states (figure 2). If a suffi-
cient cause is identified, the VO goes directly for the liquidation, the mandatory
step before the complete dissolution where the organization enters into an on-
liquidation sub-state until it finishes the related tasks. But if a necessary cause
is identified, the VO goes to a pending dissolution sub-state, where the VO waits
for the partners’ confirmation for the dissolution, or for the VO modifications
(the adaptation or evolution of the VO) that will avoid the dissolution and make
the VO return to the operation phase. If no measures are taken for returning to
the operation phase after a period of time defined by the EI, the VO dissolves
going to the on-liquidation sub-state.

Fig. 2. Dissolution Sub-States.

97

6 Nicolás Hormazábal et al.

In short during the dissolution, if a sufficient cause is detected, the organi-
zation goes for the liquidation. If a necessary cause is detected and no actions
on the VO are taken to solve the issues related to the dissolution cause, the VO
goes for the liquidation.

Sufficient Causes. Sufficient causes, once identified, are sufficient for the au-
tomatic dissolution of the VO. The causes of this type that we identify are:

Deadline: On the VO cooperation agreement created during its formation, the
duration of the organization can be specified. During the operation of a VO,
partners can modify their own norms, their cooperation agreement, so as well
they can extend the lifespan of the organization, but once it is reached, the
organization should dissolve as it was created for this duration.

Reduction: During the formation of a VO, the agents specify on the cooperation
agreement the resources they are willing to devote for the organization. This is
what defines the organization’s assets: The total amount of resources an orga-
nization has. The EI should establish the minimum required resources for a VO
to be considered as such. If for some reason the VO suffers a reduction of its
resources below the minimum, the VO dissolves. For example, in a football (soc-
cer) team the minimum resources for a team are 7 players, below that number
it is not a team anymore.

Agreement: As we cannot discard the case where the VO partners arbitrarily
decide to dissolve the organization, the agreement for the dissolution should be
considered too. For that, a minimum percentage (typically over 50%) of partners
must decide to dissolve the organization.

Necessary Causes. Necessary causes are necessary, but not sufficient. For
being sufficient, they need the agreement of the VO partners. Putting it another
way, the partners have to take actions to prevent the dissolution.

Fulfillment: As mentioned before, the dissolution can be reached by the success-
ful achievement of all the VO goals. During the formation of the VO, agents
must define the organization’s goals on the cooperation agreement. Once they
are fulfilled, the Institution can be dissolved. The reason that this is a necessary
cause and not a sufficient one is that once the goals have been achieved the
agents can evaluate if they want to set new ones based on the performance and
continue operating.

Unfeasibility: There are some cases when a VO cannot fulfill its goals. This
could happen by internal issues like the lost of key resources for achieving all
the goals, or could happen by external causes like changes on the environment
that affects the organization, like for example the arrival of a new organization
that competes for the same goals. The VO can make changes to improve its
performance, change its goals or add new resources, among other measures, to
prevent the dissolution.

98

An Approach for Virtual Organizations’ Dissolution 7

Inactivity: For any reason, it could happen that the VO could show no activ-
ity during a period of time; after a specified period, the organization could be
considered as idle or dead, after that it could go on to the dissolution phase.

Loss: This dissolution cause has sense only when the benefits of the VO are
measurable and in the same unit that the assets specified on the VO formation
(see the Reduction sufficient cause above). On the cooperation agreement, the
organizational assets are specified based on the resources that each member is
willing to spend on. If, during the operation of the VO, instead of benefits there
are losses and these losses are over the half of the organizational assets, the VO
can be dissolved as it can be considered unviable.

Some examples of possible action to take on the VO for avoiding the dissolution
after a necessary cause has been identified:

– New goal definition or reallocation of the resource and agent assignment for
the tasks.

– Addition of new agents to the VO or replacing partners.
– Force the resume of the VO activities after a period of inactivity.
– Modify the VO assets by adding new resources (or removing them).

In short, there are seven different dissolution causes, grouped by sufficient
causes and necessary causes (table 2).

Table 2. Dissolution Causes

Sufficient Causes
Deadline

Reduction
Agreement

Necessary Causes

Fulfillment
Unfeasibility

Inactivity
Loss

Activation on Electronic Institution Framework In the different layers of
the EI normative framework (from section 3), we should have norms that sup-
port the VO dissolution, more specifically at the institutional and constitutional
levels. Institutional norms should contain at least four values for the dissolution
support, which will be called dissolution support elements:

– Minimum Resources (R): The minimum resource requirements that a VO
needs to have to be considered as such. The VO assets have to be greater
than this value.

– Time of inactivity (Ti): The time that a VO has to be inactive before con-
sidering its dissolution.

99

8 Nicolás Hormazábal et al.

– Maximum loss over assets (Ml): The maximum percentage of loss over the
VO’s initial assets before considering its dissolution.

– Minimum votes for the majority (V): Here is specified the default value for
the minimum percentage of the total number of participants need to agree
on the dissolution can be specified.

These values in the top-level of the norms hierarchy (Institutional Norms) can
be context-dependent. The grouping of predefined norms through appropriate
contexts mimics the real-world organization of legislations applicable to specific
activities [13]. So depending on the type of organization, they could have some
different dissolution support elements.

The following is an abstraction of concepts that should be included in a VO
contract. Regarding the constitutional norms, the VO contract should include
at least the VO duration D; a starting and ending dates for the VO operation.
The contract structure should contain the Cooperation Effort each agent has
committed to as a result of the negotiation process prior to the VO formation.
For each agent Ai, with the assigned resources Rk, based on the cooperation
effort structure specified on [11]:

CoopEff = {〈Ai, Rk,W 〉}
W = 〈MinQt,MaxQt, Freq, UnitPr〉

W represents the workload for each participant agent Ai specified between
a minimum (MinQt) and a maximum value (MaxQt), with a frequency (Freq)
during the lifetime of the organization and the unit price (UnitPr) the agent
has assigned to perform the assigned workload.

The frequency depends on the unit used for measuring the VOs’ duration (i.e.
days, weeks, computer cycles), which depends on the VO’s scope. For example
when the duration unit is days, if the workload is specified for each week then
the frequency Freq is 7 (every seven days).

The significance of the cooperation effort for the dissolution is that with it,
the organizational asset Oa of the organization can be calculated, given the total
duration of the organization D for each agent Ai in the VO:

Oa =
∑
Ai

MaxQt ∗ UnitPr ∗ D

Freq

This organizational asset will be used to evaluate the Reduction and Loss
dissolution causes.

Each one of the dissolution causes depends on one normative level (table 3)
except for Reduction and Loss which depend on both Institutional and Consti-
tutional norms, as they depend on the initial VO assets (on the constitutional
norms) and on a minimum value specified on the institutional norms in the case
that the VO has not redefined it for itself.

100

An Approach for Virtual Organizations’ Dissolution 9

Table 3. Dependence between dissolution causes and normative framework levels

Normative Level Dissolution Cause

Institutional Norms

Agreement
Inactivity
Reduction

Loss

Constitutional Norms

Deadline
Fulfillment
Reduction

Loss

Unfeasibility is a different case. Although it can be considered as a constitu-
tional norms dependent cause, the truth is that is more complicated to identify
than observing the assigned resources for each VO goal. A VO could find itself
in a situation where it cannot fulfill its objectives for causes beyond the organi-
zation itself. Sometimes for external causes, the VO performance could decrease
and the organization should adapt to the environment, making modifications
by reconfiguring itself (some authors introduce a separate phase for adaptation
and others mention the adaptation as a part of the operation phase) or dissolve.
Tools for monitoring the VO are needed for identifying cases like the Unfeasi-
bility one, which once identified can avoid a useless extension of the operation
time of the VO if the expected results are to be negative.

4.2 Liquidation

The liquidation is the last step before the complete dissolution of the VO. Every
running task must be stopped and ‘freeze’ the VO activity for realizing the
liquidation step. The organization goes to an on-liquidation sub-state inside the
dissolution phase (see figure 2).

During the organization’s operation, a profit and expenses log must be main-
tained, which will allow creating the final balance during this step. Some of the
other main aspects that should be supported [10] are:

– Definition of general liabilities upon the dissolution of the VO.
– Keeping track of the individual contributions to a product/service that is

jointly delivered (namely in terms of the quality and product life cycle main-
tenance).

– Redefinition/ceasing information access rights after ceasing the cooperation.
– Assessing the performance of partners, generating information to be used by

partner selection tools in future VO creation.

This last item is especially relevant, as it does not only support the forma-
tion of future VOs, but can also support the identification of dissolution causes
based (such as unfeasibility) on past experiences. An organization can use this
information to identify if it is possible to fulfill its objectives given its status on
a specific time.

101

10 Nicolás Hormazábal et al.

For evaluating the partners’ performance it is better not to make a single
evaluation at the dissolution time, but at several times during the organization’s
lifespan in order to have a complete picture of the performance evolution. Three
fixed times are recommended for evaluating the organization: At the moment of
its formation, at the half of its expected lifespan and at the end, before dissolving
[14]. Additionally, new evaluations should be made if key elements are changed
on the VO like the Cooperation Agreement.

The evaluation of performance depends on the VO’s scope. A suggestion of
the evaluation elements is:

Ev = 〈Time,CA,Ben,Exp,Wf,Wr〉

Where:

– Time: The time when the evaluation has been made.
– CA: The VO Cooperation Agreements.
– Ben, Exp: A balance of the VO’s benefits and expenses.
– Wf : The workload (in time or price unit) used for the fulfilled tasks.
– Wr: The expected workload needed for fulfilling the remaining tasks.

The output of the liquidation process should be a Dissolution Report (DR),
which will contain all the evaluations made during the organization’s lifespan
Evs, together with the dissolution cause DC. Additionally, it can contain an
assessment Sc (a score between 0 and 1) from each agent Ai evaluating the VO’s
performance based on the fulfillment on their individual goals. A suggestion for
the content of the dissolution report DR:

DR = 〈Evs,DC, V als〉
Evs = {Ev1, Ev2, ..., Evn}

V als = {V al1, V al2, ..., V aln}
V ali = 〈Ai, Sc〉

DC ∈ {Deadline,Reduction,Agreement,
Fulfillment, Unfeasibility, Inactivity, Loss}

This dissolution report, stored on a knowledge base, will allow supporting
future VO formation and partner selection, giving information on the perfor-
mance (from the benefits and expenses) and evaluation of each agent , and for
the cases that the VO has not fulfilled its objectives, provides also information
on the causes of that.

5 Unfeasibility Case Study

We developed a simple digital environment for simulating the creation of agent’s
organizations, for testing a way to identify the unfeasibility dissolution cause.

102

An Approach for Virtual Organizations’ Dissolution 11

In this environment, agents form organizations (as the idea is to focus only on
the dissolution, the organization formation process is done automatically) with
a fixed duration (in time steps), after then the organization dissolves.

The mechanism is simple: agents move and interact asynchronously through a
grid space (which represents the environment), and when they find another agent
in their neighborhood (nearer than two cells), they send a message proposing
the creation of an organization. In the next time step, asked agents answer if
they accept or not. Every agent in the system offer a single (not unique) service,
where the advantage of forming an organization lies in that two agents together
can offer their own service plus their service combination, expanding their own
markets.

The idea is to demonstrate the utility of supporting tools to automate the
dissolution causes identification, and how the dissolution can affect in the overall
system performance comparing the results with cases without the unfeasibility
cause. Also here, agents have a transitional step between the dissolution activa-
tion and the liquidation for deciding if to proceed or not based on the evaluation
results on the organization’s performance.

Each organization, at the moment of their dissolution will generate a dissolu-
tion report containing evaluations of the organization at different time periods.
Each evaluation will contain only the benefits from the last evaluation (or the
benefits so far if it is the first evaluation), the diversity of the offered services
and the timesteps passed from the last evaluation. These evaluations will be
generated at three time periods of the VO’s lifespan: At the first third of its ex-
pected lifespan, at the second third, and at the moment of its dissolution when
the dissolution report containing the evaluations is created (i.e. if a VO has a
fixed lifespan of 30 steps, the report will contain evaluations of the VO’s benefits
at steps 10, 20 and 30). If an organization decides to extend its lifespan, new
evaluations will be added to the report.

A knowledge base with previous cases will be used to identify when the
agents’ expectations will probably not be fulfilled, at first this knowledge base
will be empty and it will be filled with the dissolution reports each dissolved
organization generates.

For the simulation, the following hypotheses related to the agents have been
made:

1. Each agent offers a single service.
2. Agents who coalesce are more probable to get benefits. To the extreme that,

for this case, single agents get no benefits.
3. When agents coalesce, there are three options related to the organization’s

lifespan: a) set a fixed lifespan, b) do not fix a lifespan and c) set an initial
lifespan which can be changed.

4. In the specific negotiation scenario, at least two agents coalesce; one agent
who makes an offer for creating an organization and one or more who receive
the offer. Each offer has a 50% of chances for being accepted. This is for
simplifying the negotiation process while still having the chance of offer
refusals.

103

12 Nicolás Hormazábal et al.

As for the calculated benefits and organization services, it is assumed that:

1. Two or more agents offering the same service can’t be part of the same
organization.

2. The benefits are calculated based on the services an organization offers and
the demand they have.

3. The organizations will offer the individual services of each member agent,
as well the combination of these services. For example, if an organization is
composed of two agents, which respectively offer the services A and B, the
organization will offer the services A, B and A+B (figure 3)

4. Every service has the same base demand, as well as the combined services.
5. The demand of a service depends of the competition that this service offer-

ing has (how many organizations offer the same service). For example, if an
organization offers the services A, B and A+B, and another active organi-
zation offers the services A, C and A+C, there will be two competitors for
the service A.

Fig. 3. Services on an organization.

Benefits for each time step are calculated by the following equation:

E =
∑

i

(
B

Ci
+N)

Where:

– E are the total earnings or benefits of the organsiation at each step.
– B is the base earning for each service i.
– Ci is the number of organizations that offer the same service i (including

the organization which its earnings are being calculated).

104

An Approach for Virtual Organizations’ Dissolution 13

– N is a random number from a normal distribution with average 0 and vari-
ance (B/2).

This implies that the greater the diversity on the services an organization
offers, the lower competition and the higher benefits it will likely get.

The organization’s goal is to get at each timestep a minimum ”‘acceptable”’
benefit E above B/5; if it identifies that the goal is not achievable, unfeasibility
cause is detected. On the other hand, if the organization estimates that its
expected benefits can be over B/2, it considers to extend its liefetime as the
expected benefits are good.

For supporting the dissolution cause identification, a knowledge base with
previous cases will be used. In this experiment we will use a case based algorithm
(which from now on will be referred as the algorithm) to identify cases when it’s
better to dissolve the organization if the goal cannot be fulfilled, which means
that it founds itself in an unfeasibility case. The same algorithm will be used
when the organization’s lifespan is about to reach its end, identifying if it’s better
to extend it as the benefit expectancies are good, instead of proceeding to the
liquidation.

As said before, during the organization’s dissolution, a dissolution report will
be created and stored on the knowledge base with different evaluation cases con-
taining the VO’s benefits, services diversity and the timestep when the evaluation
was made.

The algorithm, in its retrieving step, will identify pairs of consecutive evalu-
ations similar to the current and last evaluations. Once a similar case is found,
the algorithm will try to predict the following state based on the past case and
evaluate, reusing the past similar case, which is the best action to do for the
organization: if it is better to continue operating by extending its lifespan or
dissolve.

The similarity for the algorithm is calculated by:

Sim = (Divk ∗ w1 +Benk ∗W2) + (Divk−1 ∗ w1 +Benk−1 ∗W2)

Where:

– Div is the diversity similarity at a time k and a time k − 1. This value is
calculated by the percentage difference on the amount of different agent types
(identified by the service they offer) that are member of the organizations.
For example: Having in one case 4 different agents in an organization, and
in another 5, then the diversity similarity will be 4/5 = 0, 8.

– Ben are the benefits similarity per time step at a time k and a time k−1. Is
calculated by the same method above, but using the benefits per step instead
of the number of different agents.

– wn are the respective weights for the similarity values. For this case, the
weight will be equal for every similarity value.

In the knowledge base there must be an evaluation at a time k + 1 in order
to estimate the future benefits given the current state.

105

14 Nicolás Hormazábal et al.

To identify positive cases (when it seems the goal can be fulfilled for the
next timesteps) from the negative ones (when the goal cannot be fulfilled), the
algorithm will compare the earning expectations with the benefits found in the
similar past cases from the knowledge base, reusing them.

5.1 Setup

The simulation environment has been developed in RePast3. RePast is an open
source agent modeling toolkit developed in Java which provides different tools
for tracking and displaying agents’ and environment values. And the tests were
done in a grid of 50x50 cells, with 500 different agents that can offer one of the
10 different services. The base earning for each service was fixed in 1, and the
default duration time of an organization was 15 time steps. It was tested during
10.000 time steps through three different experiments:

Experiment 1: Organizations start with a defined lifespan, which it can be
extended or reduced, supported by the algorithm.

Experiment 2: Organizations have an unlimited lifespan, so new organi-
zations can never be dissolved, as agents only get benefits when they are part
of an organization (from hypothesis 2), this could be a reasonable strategy to
guarantee benefits for each agent at each timestep once they have formed an
organization, as opposite the other experiments where due the organization’s
dissolution, there are agents without organizations wandering in the grid with-
out getting benefits more often.

Experiment 3: Organizations have a fixed lifespan which cannot be modi-
fied, so they dissolve always when the expected deadline is reached.

5.2 Results

After ten runs of 10.000 steps for each experiment, the results on the average
benefits at each step can be seen on figure 4. After the step 8.600 the benefits
per step seem to stabilize and reach the 98% of the steady value, so for the
results will be considered for the average benefits, from the step 8.600 onward.
The average benefits per step are in the table 4.

Table 4. Average benefits per timestep from the step 8600 onward

Average Benefits Std. Deviation

Experiment 1 1.530,04 12,69
Experiment 2 997,21 13,35
Experiment 3 543,77 16,26

There is a significant improvement when the algorithm supports the identi-
fication of the unfeasibility dissolution cause of the organization and when the
3 http://repast.sourceforge.net

106

An Approach for Virtual Organizations’ Dissolution 15

Fig. 4. Average organization’s benefits per step, 3 experiments, 10 runs, 10.000 steps
each.

organization is allowed to modify its own lifespan (experiment 1). In the exper-
iment 2 there are not many agents out of a organization, and in consequence
most of them are getting benefits, but this does not guarantee that they are in
the best possible organization, as maybe they are better out of the organization
searching for new ones without making benefits instead being part of a bad per-
forming one. The unfeasibility dissolution cause in this case, not only helps to
prevent the organizations operate when the goals cannot be achieved, but also if
the goals are related to the benefits, helps to improve the overall performance.

6 Conclusions

VOs have been approached from different perspectives, but most of these ap-
proaches are focused mainly on the first phases of their lifecycle (formation
and operation), leaving the dissolution as an unresolved issue pending for fu-
ture work. The current paper makes an approach for this phase, presenting it
as a two steps phase (activation and liquidation), with two sub-states (pending
dissolution and on liquidation).

One of the main contributions of this work is in the description of the causes
originating dissolution, besides the VO goal fulfillment or the partner’s decision
to dissolve. We also provide elements from this dissolution process for supporting
future VO formation, as the resulting dissolution report from the liquidation
step, which could be significant for the future partner selection and for the future
identification of dissolution causes, like the unfeasibility which can be identified
by experience from past similar cases (see section 5).

Dissolution prevents the operation of bad performing or unnecessary organi-
zations, and can improve the overall performance by correctly identifying when
an organization should no longer operate.

Not all the dissolution causes are mandatory for dissolving the VO; some of
them need the partners’ approval for going on to the dissolution as they can be
also a cause for the VO reconfiguration. The VO formation phase should consider

107

16 Nicolás Hormazábal et al.

new issues during the negotiation process, related to the norms for dissolution
phase.

Finally, the basis for the dissolution process has been inspired from real-world
organizations’ dissolution, and because of this a normative framework is needed
for supporting the dissolution process with a similar structure from real life
norms (the law at a higher level, and the organizations’ statutes below). Although
the commercial law is used as an inspiration, this approach is not restricted
to economic-based organizations; assets, costs or benefits are not restricted to
economical approaches, as they can be identified within the amount of workload
inside a VO.

The dissolution phase is not trivial, here is an approach to it and hopefully
this work will fulfill the goal of emphasize its significance and provide a good
reference for contributing on the formalization of the VO. Future work will be
focused on completing the formalization of the dissolution phase.

References

1. Dignum, F., Dignum, V.: Towards an Agent-based Infrastructure to Support Virtual
Organisations, PRO-VE ’02: Proceedings of the IFIP TC5/WG5.5 Third Working
Conference on Infrastructures for Virtual Enterprises, vol: 213, 363–370, (2002)

2. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Enabling
Next Generation Computing (A Roadmap for Agent Based Computing), AgentLink,
(2005)

3. Parunak, H. Van Dyke: Technologies for Virtual Enterprises, Agility Journal, (1997)
4. Katzy, B., Zhang, C., Löh, H.: Reference Models for Virtual Organisations Virtual

Organizations Systems and Practices, 45–58, Springer US, (2005)
5. De Roure, D., Jennings, N.R., Shadbolt, N.R.: The Semantic Grid: Past, Present,

and Future, Proceedings of the IEEE, vol: 93/3, 669–681, (2005)
6. Dignum, V., Dignum F.: Modelling Agent Societies: Co-ordination Frameworks and

Institutions, Progress in Artificial Intelligence, vol: 2258/2001, 7–21, (2001),
7. Ley de Sociedades Anónimas, Texto Refundido de la Ley de Sociedades Annimas,

Aprobado por el RDLeg 1564/1989, de 22 de diciembre, BOE del 27/12/1989, (1989)
8. Ley de Responsabilidad Limitada, Ley 2/1995, de 23 de marzo, BOE del 24/03/1995,

(1995)
9. Esteva, M., Rodrguez-Aguilar, J. A., Sierra, C., Garcia, P., Arcos, J. L.: On the For-

mal Specification of Electronic Institutions, Agentmediated Electronic commerce:
The European AgentLink Perspective, LNAI 1991, 126–147, (2001)

10. Camarinha-Matos, L.M. and H. Afsarmanesh, H.: Virtual Enterprise Modeling and
Support Infrastructures: Applying Multi-Agent Systems Approaches, Lecture Notes
in Artificial Intelligence LNAI 2086, 335–364, (2001)

11. Lopes Cardoso, H., Oliveira, E.: Virtual Enterprise Normative Framework Within
Electronic Institutions, Engineering Societies in the Agents World V, 14–32, (2005)

12. Lopes Cardoso, H., Oliveira, E.: Electronic institutions for B2B: dynamic norma-
tive environments, Artificial Intelligence and Law, vol: 16, num: 1, 107–128, (2007)

13. Lopes Cardoso, H., Oliveira, E.: A Contract Model for Electronic Institutions, Pro-
ceedings of The AAMAS’07 Workshop on Coordination, Organization, Institutions
and Norms in agent systems (COIN@AAMAS’07), 73–84, (2007)

14. Collier, B., DeMarco, T., Fearey, P.: A Defined Process For Project Postmortem
Review, IEEE Software, vol: 13, num: 4, (1996)

108

A Normative Multiagent Approach to Requirements
Engineering

Guido Boella1 and Leendert van der Torre2 and Serena Villata1

1 Dipartimento di Informatica, University of Turin, Italy.
{boella,villata}@di.unito.it

2 Computer Science and Communication, University of Luxembourg.
leendert@vandertorre.com

Abstract. In this paper we present a new model for the requirements analysis
of a system. We offer a conceptual model defined following a visual modeling
language, called dependence networks. TROPOS [9] uses dependence networks
in the requirements analysis, in this paper we propose to extend them with norms.
This improvement allows to define a new type of dependence networks, called
conditional dependence networks, representing a new modeling technique for the
requirements analysis of the system. Our model, moreover, allows the definition
of the notion of coalition depending on the different kinds of network. We present
our model using the scenario of virtual organizations based on a Grid network.

1 Introduction

The diffusion of software applications in the fields of e-Science and e-Research un-
derlines the necessity to develop open architectures, ableto evolve and include new
software components. In the late years, the process of design of these software systems
became more complex. The definition of appropriate mechanisms of communication
and coordination between software components and human users motivates the devel-
opment of methods with the aim to support the designer for thewhole development
process of the software, from the requirements analysis to the implementation.

The answer to this problem comes from software engineering that provided numer-
ous methods and methodologies allowing to treat more complex software systems. One
of these methodologies is the TROPOS methodology [9], developed for agent-oriented
design of software systems. The intuition of the TROPOS methodology [9] is to couple,
together with the instruments offered by software engineering, the multiagent paradigm.
In this paradigm, the entities composing the system are agent, autonomous by defini-
tion, characterized by their own sets of goals, capabilities and beliefs. TROPOS covers
five phases of the software development process: early requirements allowing the anal-
ysis and modeling of the requirements of the context in whichthe software system
will be inserted, late requirements describing the requirements of the software system,
architectural and detailed design of the system and, finally, the code implementation.

The TROPOS methodology [9] is based on the multiagent paradigm but it does not
consider the addition of a normative perspective to this paradigm. Since twenty years,
the design of artificial social systems is using mechanisms like social laws and norms

109

to control the behavior of multiagent systems [3]. These social concepts are used in the
conceptual modeling of multiagent systems, for example in requirements analysis, as
well as in formal analysis and agent based social simulation. For example, in the game
theoretic approach of Shoham and Tennenholtz [19], social laws are constraints on sets
of strategies. In this paper, we propose to add norms, presented thanks to the normative
multiagent paradigm, both to the requirements analysis phases and to the conceptual
meta-model. This paper addresses the following research question:

– How to apply a normative multiagent approach to the early andlate requirements
analysis?

Our approach is based, following the approach of TROPOS [9],on a semiformal
language of visual modeling and it is composed by the following components. First,
as shown in the UML diagram of Figure 4, we present our ontology that defines the
set of concepts composing our conceptual metamodel. The elements composing the on-
tology are agents, goals, facts, skills, dependencies, coalitions with the addition of the
normative notions of roles, institutional goals, institutional facts, institutional skills, dy-
namic dependencies and obligations, sanctions, secondaryobligations and conditional
dependencies. Second, our model is defined as a directed labeled graph whose nodes
are instances of the metaclasses of the metamodel, e.g., agents, goals, facts, and whose
arcs are instances of the metaclasses representing relationships between them such as
dependency, dynamic dependency, conditional dependency.Finally, we have a set of
rules and constraints to guide the building of the main concepts of the metamodel, e.g.
the formation of coalitions and their stability is constrained to the kind of dependen-
cies linking its members. In TROPOS [9], the requirements analysis is split in two main
phases, the early requirements and the late requirements. In our methodology, these two
phases share the same conceptual and methodological approach, thus we will refer to
them just as requirements analysis.

We introduce the normative issue of obligations, representing them directly in de-
pendence networks. This introduction allows the definitionof a third kind of modeling
called conditional dependency modeling based on the structure of conditional depen-
dence networks. Conditional dependence networks represent obligations as particular
kinds of dependencies and these obligations are related to notions by means of sanc-
tions if the obligation is not fulfilled and contrary to duty when the primary obligation,
not fulfilled, actives a secondary obligation. Moreover, weintroduce the notion of coali-
tion and we propose to use methods of social order such as obligations and sanctions
to efficiently achieve the maintenance of the stability and the cohesion of these groups.
Our model is intended to support the requirements specification for high level open
interaction system where heterogeneous and autonomous agents may interact.

Our model is not intended to support all analysis and design activities in software
development process, from application domain analysis down to the system implemen-
tation as in the TROPOS methodology [9], but only the requirements analysis phases
which involve dependence networks. This paper is organizedas follows. Section 2 de-
scribes a Grid computing scenario . In Section 3, we present the dependency and the
dynamic dependency modeling while in Section 4 we present a new kind of dependence
network, called conditional dependence network. Related work and conclusions end the
paper.

110

2 The Grid Scenario

The Grid Computing paradigm provides the technological infrastructure to facilitate
e-Science and e-Research. Grid technologies can support a wide range of research in-
cluding amongst others: seamless access to a range of computational resources and
linkage of a wide range of data resources. It is often the casethat research domains and
resource providers require more information than simply the identity of the individual
in order to grant access to use their resources. The same individual can be in multiple
collaborative projects, each of which is based upon a commonshared infrastructure.
This information is typically established through the concept of a virtual organization
(VO) [14]. A virtual organization allows the users, their roles and the resources they can
access in a collaborative project to be defined. In the context of virtual organizations,
there are numerous technologies and standards that have been put forward for defining
and enforcing authorization policies for access to and usage of virtual organizations re-
sources. Role based access control (RBAC) is one of the more well established models
for describing such policies. In the RBAC model, virtual organization specific roles are
assigned to individuals as part of their membership of a particular virtual organization.

As presented by Zhao et al. [25], obligations are requirements and tasks to be ful-
filled, which can be augmented into conventional systems to allow extras information
to be specified when responding to authorization requests. For example in [25], admin-
istrators can associate obligations with permissions, andrequire the fulfillment of the
obligations when the permissions are exercised. The general idea of the RBAC model
is that, permissions are associated with functional roles in organizations, and members
of the roles acquire all permissions associated with the roles. Allocation of permission
to users is achieved by assigning roles to users. Failure of the fulfilling an obligation
will incur a sanction.

Some of the main features of a node in a Grid are reliability, degree of accepted
requests, computational capabilities, degree of faults and degree of trust for confiden-
tial data. These different features set up important differences among the nodes and the
possible kinds of coalitions that can be formed and maintained. Reciprocity-based coali-
tions can be viewed as a sort of virtual organizations in which there is the constraint that
each node has to contribute something, and has to get something out of it. The scenario
of virtual organizations based on Grid networks representsa case study able to under-
line the benefits of a normative multiagent paradigm for requirements analysis. First of
all, in the normative multiagent paradigm as well as in the common multiagent one, the
autonomy of agents is the fixed point of all representations,i.e., the Grid philosophy
imposes the autonomy of the nodes composing it. Second, the normative multiagent
paradigm allows a clear definition of the notion of role and its associated permissions,
i.e. the role based access control policy needs a design ableto assign roles and repre-
sents to all the consequent constraints based on them. Third, the normative multiagent
paradigm allows the introduction at requirements analysislevel of obligations able to
model the system. Fourth, the concept of coalition and the constraints introduced by
this concept can model the concept of ”local network“ in virtual organizations. Finally,
the presented modeling activities depict the system using structures similar to the Grid
network itself.

111

3 Dependency and Dynamic Dependency Modeling

Figure 1 shows the ontology on which is based our model containing a number of
concepts related to each other. We divide our ontology in three submodels: the agent
model, the institutional model, and the role assignment model, as shown in Figure 1.
Roughly, the institutional model represents sets of agentsregulated by social norms.
For more details, see [4]. The Figure depicts, following thelegend of Figure 2, the three
submodels which group the concepts of our ontology.

Fig. 1.The conceptual metamodel.

Such a decomposition is common in organizational theory, because an organization
can be designed without having to take into account the agents that will play a role
in it. Also, if another agent starts to play a role, for example if a node with the role of
simple user becomes a VO administrator, then this remains transparent for the organiza-
tional model. Likewise, agents can be developed without knowing in advance in which
institution they will play a role.

As shown in Figure 1, we add to the notions of agent, goal and capability compos-
ing the agent view, those related to the institutional view such as the notion of role and
all its institutional goals, capabilities and facts. Thesenotions are unified in the com-
bined view and to each agent it is possible to assign different roles depending on the
organization in which the agent is playing. In this way, early and late requirements can
be based both on agents and on roles. Models are acquired as instances of a conceptual
metamodel resting on the concepts presented in the following sections. For more details
on the three conceptual submodels, see Boella et al. [5] and Boella et al. [4].

3.1 Dependency Modeling

Figure 2 shows the components of our model. Our model is a directed labeled graph
whose nodes are instances of the metaclasses of the metamodel, e.g., agents, goals,
facts, and whose arcs are instances of the metaclasses representing relationships be-
tween them such as dependency, dynamic dependency, conditional dependency.

Dependence networks [20] represent our first modeling activity consisting in the
identification of the dependencies among agents and among roles. In the early require-
ments phase, we represent the domain stakeholders using these networks while in the

112

late requirements phase, the same kind of approach is followed representing the agents
of the future system involved in the dependence network. Figure 2-(a) shows the graph-
ical representation of the model obtained following this modeling activity, thedepen-
dency modeling. The legend describes the agents (depicted as white circles), the roles
(depicted as black circles), the agents assigned to roles (depicted as grey circles), the
agents’/roles’ goals (depicted as white rectangles) and the dependency among agents
(one arrowed line connecting two agents with the addition ofa label which represents
the goal on which there is the dependency). The legend considers dependencies among
agents but they can be also among roles or agents assigned to roles.

Fig. 2.Legend of the graphical representation of our model.

3.2 Dynamic Dependence Networks

Dynamic dependence networks have been firstly introduced byCaire et al. [11] and
then treated in Boella et al. [5] in which the existence of a dependency depends on the
actions of the agents which can delete it. Here, as shown in Figure 2-(a), we distinguish
“negative” dynamic dependencies where a dependency existsunless it is removed by
a set of agents due to removal of a goal or ability of an agent, and “positive” dynamic
dependencies where a dependency may be added due to the powerof a third set of
agents.Dynamic dependency modelingrepresents our second modeling activity for re-
quirements analysis. A formal definition of dynamic dependence networks is given in
Boella et al. [4].

The legend of Figure 2-(a) describes the sign of the dynamic dependency (depicted
as a black square) and the dynamic dependency among agents (depicted as one arrowed
line connecting two agents with the addition of a label whichrepresents the goal on
which there is the dependency and another arrowed dotted line with the sign’s label
connecting an agent to the arrowed plain line that can be deleted or added by this agent).
Figure 3 presents an example of dynamic dependence network on the Grid.

113

Fig. 3.An example of dynamic dependence network.

A coalition can be defined in dependence networks, based on the idea that to be part
of a coalition, every agent has to contribute something and has to get something out of
it. The graphical representation of coalitions is depictedin Figure 2-(b) which describes
coalitions (depicted as sets of agents and dependencies included in a dotted circle) and
vulnerable and potential coalitions (depicted as sets of agents and dependencies in a
circle in which one or more of these dependencies can be addedor deleted by another
agent with a labeled dynamic dependency). Definition 1 makesa distinction between
coalitionswhich are actually formed,vulnerable coalitionswhich can be destroyed by
the deletion of dynamic dependencies and,potential coalitions, which can be formed
depending on additions and deletions of dynamic dependencies.

Definition 1 (Coalition). Let A be a set of agents andG be a set of goals. A coalition
function is a partial functionC : A → 2A × 2G such that{a | C(a,B,G)} = {b |
b ∈ B,C(a,B,G)}, the set of agents profiting from the coalition is the set of agents
contributing to it. Let〈A,G, dyndep−, dyndep+,≥〉 be a dynamic dependence network,
and dep the associated static dependencies.

1. A coalition functionC is a coalition if ∃a ∈ A,B ⊆ A,G′ ⊆ G such that
C(a,B,G′) implies G′ ∈ dep(a,B). Coalitions which cannot be destroyed by
addition or deletion of dependencies by agents in other coalitions.

2. A coalition functionC is a vulnerable coalition if it is not a coalition and∃a ∈
A,D,B ⊆ A,G′ ⊆ G such thatC(a,B,G′) impliesG′ ∈ ∪Ddyndep−(a,B,D).
Coalitions which do not need new goals or abilities, but whose existence can be
destroyed by removing dependencies.

3. A coalition functionC is a potential coalition if it is not a coalition or a vulner-
able coalition and∃a ∈ A,D,B ⊆ A,G′ ⊆ G such thatC(a,B,G′) implies
G′ ∈ ∪D(dyndep−(a,B,D) ∪ G′ ∈ dyndep+(a,B,D)) Coalitions which could
be created or which could evolve if new abilities or goals would be created by
agents of other coalitions on which they dynamically depend.

Figure 3 presents two different coalitions. On the one hand,we have the areal
coalition composed by agentsn1, n2 andn3. On the other hand, we have a potential
coalition, such as a coalition which could be formed if agentn6 really performs the
dynamic addition, making agentn5 dependent on agentn4.

114

4 Conditional Dependency Modeling

In this section, we answer to the questionhow to introduce obligations in dependence
networksby defining the conditional dependency modeling. Normativemultiagent sys-
tems are “sets of agents (human or artificial) whose interactions can fruitfully be re-
garded as norm-governed; the norms prescribe how the agentsideally should and should
not behave. [...] Importantly, the norms allow for the possibility that actual behavior may
at times deviate from the ideal, i.e., that violations of obligations, or of agents’ rights,
may occur” [6]. The notion of conditional obligation with anassociated sanction is the
base of the so called regulative norms. Obligations are defined in terms of goals of the
agent and both the recognition of the violation and the application of the sanctions are
the result of autonomous decisions of the agent.

A well-known problem in the study of deontic logic is the representation of contrary-
to-duty structures, situations in which there is a primary obligation and what we might
call a secondary obligation, coming into effect when the primary one is violated [18]. A
natural effect coming from contrary-to-duty obligations is that obligations pertaining to
a particular point in time cease to hold after they have been violated since this violation
makes every possible evolution in which the obligation is fulfilled inaccessible. A clas-
sical example of contrary-to-duty obligations is given by the so called “gentle murder”
by Forrester [13] which says “do not kill, but if you kill, kill gently”.

The introduction of norms in dependence networks is based onthe necessity to
adapt the requirements analysis phases to model norm-basedsystems. An example of
application of this kind consists in the introduction of obligations in virtual Grid-based
organizations [25] where obligations, as shown in Section 2, are used to enforce the
authorization decisions. On the one hand, in approaches like [25], obligations are con-
sidered simply as tasks that have to be fulfilled when an authorization is accepted/denied
while, on the other hand, in approaches like [17], the failure in fulfilling the obligation
incurs a sanction but there is no secondary obligation.

The introduction of obligations brings us to introduce a newkind of goal, the nor-
mative one. These goals originate from norms and they represent the obligation itself.
We define a new set of normative concepts, based on Boella et al. [2] model of obli-
gations, and we group them in a new view, called the normativeview. The normative
view is composed by a set of normsN and three main functions,oblig, sanct andctd
representing obligation, sanctions and contrary-to-dutyobligations. The UML diagram
of Figure 4 provides a unified vision of the presented concepts of the ontology repre-
senting our conceptual metamodel.

Definition 2 (Normative View). Let the agent view〈A,F,G,X, goals: A → 2G, skills:
A → 2X , rules1 : 2X → 2G〉 and the institutional view〈RL, IF,RG,X, igoals :
RL → 2RG, iskills : RL → 2X , irules : 2X → 2IF 〉, the normative view is a tuple
〈A,G,RG,N, oblig, sanct, ctd〉 where:

– A is a set of agents,G is a set of goals,RG is a set of institutional goals;
– N is a set of norms;

1 rules andirules associate sets of (institutional) actions with the sets of (institutional) facts to
which they lead.

115

Fig. 4.The UML class diagram specifying the main concepts of the metamodel.

– the functionoblig : N ×A → 2G∪RG is a function that associates with each norm
and agent, the goals and institutional goals the agent must achieve to fulfill the
norm. Assumption:∀n ∈ N anda ∈ A, oblig(n, a) ∈ power({a})2.

– the functionsanct : N × A → 2G∪RG is a function that associates with each
norm and agent, the goals and institutional goals that will not be achieved if the
norm is violated by agenta. Assumption: for eachB ⊆ A andH ∈ power(B) that
(∪a∈Asanct(n, a)) ∩H = ∅.

– the functionctd : N×A → 2G∪RG is a function that associates with each norm and
agent, the goals and institutional goals that will become the new goals the agent
a has to achieve if the norm is violated bya. Assumption:∀n ∈ N and a ∈ A,
ctd(n, a) ∈ power({a}).

We relate norms to goals following a twofold direction. First, we associate with
each normn a set of goals and institutional goalsoblig(n) ⊆ G ∪ RG. Achieving
these normative goals means that the normn has been fulfilled; not achieving these
goals means that the norm is violated. We assume that every normative goal can be
achieved by the group, i.e., the group has the power to achieve it. Second, we associate
with each norm a set of goals and institutional goalssanct(n) ⊆ G ∪ RG which will
not be achieved if the norm is violated and it represents the sanction associated with
the norm. We assume that the group of agents does not have the power to achieve
these goals. Third, we associate with each norm (primary obligation) another norm
(secondary obligation) represented by a set of goals and institutional goalsctd(n) ⊆
G ∪RG that have to be fulfilled if the primary obligation is violated.

2 Power relates each agent with the goals it can achieve.

116

Our aim is not to present an new theorem that, using norms semantics, checks
whether a given interaction protocol complies with norms. We are more interested in
considering, in the context of requirements analysis, how agents’ behaviour is effected
by norms and in analyzing how to constrain the modeling of coalitions’ evolution thanks
to a normative system. There are two main assumptions in our approach. First of all we
assume that norms can sometimes be violated by agents in order to keep their autonomy.
The violation of norms is handled by means of sanctions and contrary to duty mecha-
nisms. Second, we assume that, from the institutional perspective, the internal state of
the external agents is neither observable nor controllablebut the institutional state or
public state of these agents is note since connected to a roleand it can be changed by
the other agents.

We define a new modeling activity, calledconditional dependency modeling, to sup-
port in the early and late requirements analysis the representation of obligations, sanc-
tions and contrary-to-duty obligations. Conditional dependence networks are defined as
follows:

Definition 3 (Conditional Dependence Networks (CDN)).
A conditional dependence network is a tuple〈A,G, cdep, odep, sandep, ctddep〉 where:

– A is a set of agents andG is a set of goals;
– cdep: 2A × 2A → 22G

is a function that relates with each pair of sets of agents all
the sets of goals on which the first depends on the second.

– odep: 2A × 2A → 22G

is a function representing a obligation-based dependency
that relates with each pair of sets of agents all the sets of goals on which the first
depends on the second.

– sandep⊆ (OBL ⊆ (2A × 2A × 22G

)) × (SANCT ⊆ (2A × 2A × 22G

)) is a
function relating obligations to the dependencies which represent their sanctions.
Assumption:SANCT ∈ cdep andOBL ∈ odep.

– ctddep⊆ (OBL1 ⊆ (2A × 2A × 22G

)) × (OBL2 ⊆ (2A × 2A × 22G

)) is a
function relating obligations to the dependencies which represent their secondary
obligations. Assumption:OBL1, OBL2 ∈ odep andOBL1 ∩OBL2 = ∅.

Fig. 5.Legend of the graphical representation of theconditional dependency modeling.

117

Figure 5 gives a graphical representation of theconditional dependency modeling.
It describes the obligation-based dependency (depicted asa striped arrowed line), the
obligation-based dependency with the associated sanctionexpressed as conditional de-
pendency (depicted as a striped arrowed line representing the obligation connected to
a common arrowed line representing the sanction by a stripedline) and the obligation-
based dependency with the associated secondary obligation(depicted as a striped ar-
rowed line representing the primary obligation connected to another striped arrowed
line representing the secondary obligation by a striped line). The two functionsctddep
andsandepare graphically represented as the striped line connectingthe obligation to
the sanction or to the secondary obligation.

Example 1.Considering Grid’s nodes of Figure 3, we can think to add two constraints
under the form of obligations and we build the following conditional dependence net-
work CDN = 〈A,G, cdep, odep, sandep, ctddep〉:
1. AgentsA = {n1, n2, n3, n4, n5, n6};
2. GoalsG = {g1, g2, g3, g4, g5, g6, g7, g8};
3. cdep({n1}, {n2}) = {{g1}}: agentn1 depends on agentn2 to achieve the goal

{g1}: to save the filecomp.log;
dep({n2}, {n3}) = {{g2}}: agentn2 depends on agentn3 to achieve the goal
{g2}: to run the filemining.mat;
dep({n3}, {n1}) = {{g5}}: agentn3 depends on agentn1 to achieve the goal
{g5}: to save the filesatellite.jpg;
dep({n4}, {n6}) = {{g3}}: agentn4 depends on agentn6 to achieve the goal
{g3}: to run the fileresults.mat;
dep({n6}, {n5}) = {{g4}}: agentn6 depends on agentn5 to achieve the goal
{g4}: to save the filesatellite.mpeg;
dep({n5}, {n4}) = {{g6}}: agentn5 depends on agentn4 to achieve the goal
{g6}: to have the authorization to open the filedataJune.mat;
odep({n2}, {n1}) = {{g7}}: agentn2 is obliged to perform goal{g7} concerning
agentn1 : to run the filemining.matwith the highest priority;
odep({n4}, {n5}) = {{g8}}: agentn4 is obliged to perform goal{g8} concerning
agentn5 : to share results of the running of filedataJune.matwith agentn5;
odep({n4}, {n6}) = {{g8}}: agentn4 is obliged to perform goal{g8} concerning
agentn6 : to share results of the running of filedataJune.matwith agentn6;
sandep{(({n2}, {n1}) = {{g7}}, ({n1}, {n2}) = {{g1}})};
ctddep{(({n4}, {n5}) = {{g8}}, ({n4}, {n6}) = {{g8}})};

Example 1 is depicted in Figure 6 which shows the network in the step after the
deletion and the insertion of the two dynamic dependencies of Figure 3. In Figure 6,
following the definition of coalition, we have two coalitions composing, e.g., two local
groups of a virtual organization. The first one is composed bynodesn1, n2, n3 and
the other one is composed by nodesn4, n5 and n6. Since these two subsets of the
virtual organization have to work with a good cohesion then it is possible to insert some
constraints, made clear by obligations. The first obligation consists in giving the highest
priority to, for example, a computation for an agent composing the same local coalition
as you. This first obligation is related to a sanction if it is violated. This link is made

118

Fig. 6.Conditional Dependence Network of Example 1.

clear by the functionsandepand it represents the deletion of a dependency concerning
a goal of the agent that has to fulfill the obligation. The second obligation, instead, is
related to a secondary obligation and it means that the agenthas to share the results of a
computation with a member of its coalition but, if it does notfulfill this obligation then
it has to share these results with another member of its coalition.

Figure 7 shows the graphical representation of how an obligation in a conditional
dependence network can evolve toward the application of a sanction or of a secondary
obligation. In the first case, if the obligation is fulfilled and it is linked to a sanction then
the obligation can be removed and also the connection among the obligation and the
sanction can be removed. The only dependency that remains inthe network is the one
related to the sanction that passes from being a conditionaldependency to a common
dependency. If the obligation is not fulfilled then it is deleted and the deletion involves
also the conditional dependency representing the sanction. The sanction consists exactly
the deletion of this conditional dependency associated to agoal that the agent would
achieve. In the second case, if the obligation is fulfilled and it is linked to a secondary
obligation then the obligation is deleted and also the secondary obligation is deleted
since there is no reason to already exists. If the obligation, instead, is not fulfilled then
the primary obligation is deleted but the secondary obligation not. Note that in Figure 7
are depicted only the conditional dependencies and the obligational dependencies and
not all the other kinds of possible dependencies present in the network.

Summarizing, we represent obligations, sanctions and contrary-to-duty obligations
as tuples of dependencies related to each other. An obligation is viewed as a particular
kind of dependency and it is related to dependencies due to sanctions and dependencies
due to secondary obligations. In the first case, we have that sanctions are common
dependencies, already existing inside the system that, because of their connection with
the obligation, can be deleted. These obligations can be of different kinds depending
on the involved agents. For example, we can have a primary obligation linked to two
secondary obligations: a first case con involve the same agents, e.g., agenta has to pay
agentb for a service but he does not do the payment thus the secondaryobligation is to
pay to agentb an additional cost, and second case can involve a third agent, e.g., agent
a continues to not pay you thus a third agentc is obliged to punish it for example with
the deletion of all the services he has to perform for this agent.

119

Fig. 7.The evolution of conditional dependence networks.

4.1 Two case studies: personal norms and transactions.

In the real life, everybody’s life is regulated by personal norms likenot kill andnot
leave trash on the roads. These norms are referred to every person and it seems that
everyone depends on the others to achieve these goals that can be represented as goals
of the whole society. It is similar to the social delegation cycle: do not do the others
what you do not want them to do to you. In this case, we can represent the dependence
network as a full connected graph since every agent depends on all the other agents,
for example to not be killed. This case study makes explicit the necessity to simplify
the dependence network with the aim to individuate the obligations. The simplification
brought by the representation of obligations is relevant, as can be seen in Figure 8-(a).

Fig. 8.Case studies: personal norms and transactions.

120

The second case study consists in transactions. A transaction is an agreement or
communication carried out between separate entities, often involving the exchange of
items of value, such as information, goods, services and money. This is the basic idea
underlying norm emergence. Let us consider the case of two agentsa andb, wherea is
a buyer andb is a seller. If we consider two goals such asg1: book sent by the sellerb to
buyera andg2: money transferred from the buyera to the sellerb, we have the depen-
dence network depicted in Figure 8-(b). The two agents depend on each other to achieve
their goals, the seller is waiting for its payment and the buyer is waiting for its good.
When introduced, our representation of obligations allows to obtain a simplified ver-
sion of the network in which each agent depends on itself to not violate the obligation.
The dependence network derived after the norm creation is much more simpler than the
previous one representing however the same concepts. This simplified version can be
used for the requirements analysis phase of the multiagent system allowing to individ-
uate in a simpler way the obligations present inside the system, without the necessity to
analyze all the goal-based dependencies present in the network.

4.2 Coalitions in Conditional Dependence Networks

In this section, we answer to the question: what kind of constraints are set by obli-
gations in conditional dependence networks concerning coalitions. In Section 3, we
presented a definition of coalition based on the structure ofdynamic dependence net-
works. In these dynamic coalitions we deal with conditionalgoals but there is not the
presence of obligations intended as sets of dependencies linked together by a relation
of the kind obligation-sanction or primary obligation-secondary obligation. Conditional
dependence networks have to be taken into account when a system is described in terms
of coalitions, vulnerable coalitions and potential coalitions since they can change de-
pending on the conditional dependencies set by obligations. A coalition has to consider
sanctions and secondary obligations, according to these constraints:

Definition 4 (Constraints for Coalitions in Conditional Dependence Networks).
Let A be a set of agents andG be a set of goals. A coalition function is a partial
functionC ⊆ A× 2A × 2G such that{a | C(a,B,G)} = {b | b ∈ B,C(a,B,G)}, the
set of agents profiting from the coalition is the set of agentscontributing to it.

Introducing conditional dependence networks, the following constraints arise:

– ∀(dep1, dep2) ∈ sandep,dep2 /∈ C if and only if dep1 /∈ C. If the obligation,
associated to the dependencydep1 is not part of the coalitionC then also the
sanctiondep2 associated to the obligation is not part of the coalitionC. If the
obligation, associated to the dependencydep1 is part of the coalitionC then also
the sanctiondep2 associated to the obligation is part of the coalitionC.

– ∀(dep1, dep2) ∈ ctddep,dep2 ∈ C if and only ifdep1 /∈ C. If the primary obli-
gation, associated to the dependencydep1 is not part of the coalitionC then the
secondary obligationdep2 is part of the coalitionC. If the primary obligation,
associated to the dependencydep1 is part of the coalitionC then the secondary
obligationdep2 is not part of the coalitionC.

121

Example 2.Let us consider conditional dependence network of Example 1, depicted
in Figure 6. Applying these constraints, we have that if the obligation on goalg7 is
fulfilled then the coalition composed by agentsn1, n2 andn3 already exists since the
dependency associated to the sanction is not deleted. If theobligation on goalg7 is not
fulfilled then the obligation is deleted but also the sanction is deleted and the coalition
does not exist any more. Concerning the second coalition, ifthe obligation on goalg8

is fulfilled then both the primary and the secondary obligation are removed but if the
primary obligation is not fulfilled then the secondary obligation is part of the coalition
composed by agentsn4, n5 andn6.

5 Related work

The idea of focusing the activities that precede the specification of software require-
ments, in order to understand how the intended system will meet organizational goals,
is not new. It has been first proposed in requirements engineering, specifically in Eric
Yu’s work with his i* model [24]. The rationale of the i* modelis that by doing an
earlier analysis, one can capture not only the what or the how, but also the why a piece
of software is developed. As stated throughout the paper, the most important inspiration
source for our model is the TROPOS methodology [9] that spansthe overall software
development process, from early requirements to implementation. Other approaches to
software engineering are those of KAOS [12], GAIA [23], AAII[16] and MaSE [15]
and AUML [1]. The comparison of these works is summarized in Figure 9.

Fig. 9.Comparison among different software engineering methodologies.

The main difference between these approaches and our one consists in the use at the
same time of the normative multiagent paradigm based on boththe notion of institution
and the notion of obligation with its related concepts of contrary-to-duty and sanction
and of graphical modeling language based on dependencies among agents. Moreover,
these approaches do not consider the notion of coalition, asgroup of actors with a
common set of goals and the possible constraints on their structure.

An example of normative multiagent system introducing obligations has been done
by Boella and van der Torre [7]. Interesting approaches on the application of the notion
of institution to multiagent systems are defined in Sierra etal. [21], Bogdanovych et al.
[8] and Vazquez-Salceda et al. [22].

122

6 Conclusions

This paper provides a detailed account of a new requirementsanalysis model based
on the normative multiagent paradigm, following the TROPOSmethodology [9]. The
paper presents and discusses the early and late requirements phases of systems design.
The first part of the paper presents the key concepts of the ontology of our methodology
as shown by the UML diagram of Figure 4. The second part of the paper presents the
graphical representations of the three modeling activities by which our model is com-
posed. These modeling activities are calleddependency modeling, dynamic dependency
modelingandconditional dependency modeling. The addition of normative concepts is
a relevant improvement to requirements analysis since it allows, first, to constrain the
construction of the requirements modeling and, second, to represent systems, as for
example Grid-based systems, in which there are explicit obligations regulating the be-
haviour of the components composing it. Moreover, we model the requirements analysis
phases also in a context in which there is the possible presence of coalitions.

Of course, this model is not intended for any type of software. For system software,
e.g., a compiler, or embedded software, the operating environment of the system-to-be
is an engineering artifact, with no identifiable stakeholders. In such cases, traditional
software development techniques may be most appropriate. However, a large and grow-
ing percentage of software operates within open, dynamic organizational environments.

Concerning future work, we are concentrating our efforts onthe definition of the
notion of coalitions’ stability in this model. We are interested in representing the coali-
tions’ evolution process by means of our modeling techniques and in defining more
powerful constraints on coalitions with the aim to maintain, thanks to the application
of norms, coalitions’ stability during this evolution process. In our opinion, this would
be a relevant improvement to the studies concerning coalitions’ stability because of
the application, at the same time, of a social network approach, providing measures and
graph-based methods, and a normative multiagent approach,providing mechanisms like
social laws and norms. Moreover, we aim in addressing an evaluation analysis to specify
the consistency of a system defined by means of our modeling techniques. Finally, we
are improving our conditional dependency modeling by adding also the representation
of prohibitions.

References

1. B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formalism for specifying multiagent
software systems.Software Engineering and Knowledge Engineering, 11(3):207–230, 2001.

2. G. Boella, P. Caire, and L. van der Torre. Autonomy implies creating one’s own norms norm
negotiation in online multi-player games.KAIS, 18:137–156, 2009.

3. G. Boella, L. van der Torre, and H. Verhagen. Introduction to normative multiagent systems.
Computational and Mathematical Organization Theory, 12:71–79, 2006.

4. G. Boella, L. van der Torre, and S. Villata. Changing institutional goals and beliefs of au-
tonomous agents. In Bui et al. [10], pages 78–85.

5. G. Boella, L. van der Torre, and S. Villata. Social viewpoints for arguing about coalitions.
In Bui et al. [10], pages 66–77.

123

6. G. Boella and L. W. N. van der Torre. Regulative and constitutive norms in normative multi-
agent systems. In D. Dubois, C. A. Welty, and M.-A. Williams, editors,KR, pages 255–266.
AAAI Press, 2004.

7. G. Boella and L. W. N. van der Torre. Power in norm negotiation. In N.T. Nguyen,
A. Grzech, R. J. Howlett, and L. C. Jain, editors,KES-AMSTA, volume 4496 ofLecture
Notes in Computer Science, pages 436–446. Springer, 2007.

8. A. Bogdanovych, M. Esteva, S. J. Simoff, C. Sierra, and H. Berger. A methodology for de-
veloping multiagent systems as 3d electronic institutions. InAOSE, volume 4951 ofLecture
Notes in Computer Science, pages 103–117. Springer, 2007.

9. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos.Tropos: An agent-
oriented software development methodology.Autonomous Agents and Multi-Agent Systems,
8(3):203–236, 2004.

10. T. D. Bui, T. V. Ho, and Q.-T. Ha, editors.Intelligent Agents and Multi-Agent Systems,
11th Pacific Rim International Conference on Multi-Agents, PRIMA 2008, Hanoi, Vietnam,
December 15-16, 2008. Proceedings, volume 5357 ofLecture Notes in Computer Science.
Springer, 2008.

11. P. Caire, S. Villata, G. Boella, and L. van der Torre. Conviviality masks in multiagent sys-
tems. In L. Padgham, D. C. Parkes, J. Müller, and S. Parsons, editors, AAMAS (3), pages
1265–1268. IFAAMAS, 2008.

12. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directedrequirements acquisition.
Sci. Comput. Program., 20(1-2):3–50, 1993.

13. J. W. Forrester. Gentle murder, or the adverbial samaritan.Journal of Philosophy, 81:193–
197, 1984.

14. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid:Enabling scalable virtual
organizations.Int. J. of Supercomputer Applications, 15, 2001.

15. J. C. García-Ojeda, S. A. DeLoach, Robby, W. H. Oyenan, and J. Valenzuela. O-mase: A
customizable approach to developing multiagent development processes. InAgent-Oriented
Software Engineering VIII, 8th International Workshop, volume 4951 ofLecture Notes in
Computer Science, pages 1–15. Springer, 2007.

16. D. Kinny, M. P. Georgeff, and A. S. Rao. A methodology and modelling technique for
systems of bdi agents. In W. V. de Velde and J. W. Perram, editors,MAAMAW, volume 1038
of Lecture Notes in Computer Science, pages 56–71. Springer, 1996.

17. N. H. Minsky and A. Lockman. Ensuring integrity by adding obligationsto privileges. In
ICSE, pages 92–102, 1985.

18. H. Prakken and M. J. Sergot. Contrary-to-duty obligations.Studia Logica, 57(1):91–115,
1996.

19. Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-line design.
Artif. Intell., 73(1-2):231–252, 1995.

20. J. S. Sichman and R. Conte. Multi-agent dependence by dependence graphs. InAAMAS,
pages 483–490. ACM, 2002.

21. C. Sierra, J. Thangarajah, L. Padgham, and M. Winikoff. Designing institutional multi-agent
systems. In L. Padgham and F. Zambonelli, editors,AOSE, volume 4405 ofLecture Notes in
Computer Science, pages 84–103. Springer, 2006.

22. J. Vázquez-Salceda, V. Dignum, and F. Dignum. Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems, 11(3):307–360, 2005.

23. M. Wooldridge, N. R. Jennings, and D. Kinny. The GAIA methodology for agent-oriented
analysis and design.Autonomous Agents and Multi-Agent Systems, 3(3):285–312, 2000.

24. E. Yu. Modeling organizations for information systems requirementsengineering. InFirst
IEEE International Symposium on Requirements Engineering, pages 34–41, 1993.

25. G. Zhao, D. W. Chadwick, and S. Otenko. Obligations for role basedaccess control. InAINA
Workshops (1), pages 424–431. IEEE Computer Society, 2007.

124

Towards a logical model of social agreement
for agent societies

Emiliano Lorini1 and Mario Verdicchio2 !

1 IRIT, Toulouse, France
lorini@irit.fr

2 Università degli studi di Bergamo
mario.verdicchio@unibg.it

Abstract. Multi-agent systems (MASs), comprised of autonomous entities with
the aim to cooperate to reach a common goal, may be viewed as computational
models of distributed complex systems such as organizations and institutions.
There have been several model proposals in the agent literature with the aim to
support, integrate, substitute human organizations, but no attempt has gone be-
yond the boundaries of this research context to become a mainstream software
engineering implementation guideline, nor has it been adopted as a universal
model of multi-agent interaction in economics or social sciences. In this work we
counter top-down, operational organization specifications with a logical model
of a fundamental concept: agreement, with the long-term aim to create a formal
model of multi-agent organization that can serve as a universally accepted basis
for implementation of collaborative distributed systems.

1 Introduction

Multi-agent systems (MASs) can provide an effective computational model of autono-
mous individuals interacting in a complex distributed system. The models that simulate
the operations of multiple entities can show how agent technology can be exploited in
economics and social sciences. The lack of a breakthrough so far is possibly paralleled
by some lack of generality in the proposed MAS implementations. Several research
works aim at proposing operational models of multi-agent organizations in the form of
templates of norms, roles, interaction patterns, and so on, that have a significant impact
on the agent community, but whose adoption by a wider audience may be hindered by a
discrepancy between how organizations are conceived in this research context and how
they actually emerge in the real world.

In this work we begin our attempt to formalize the concept of organization starting
from what we consider its most fundamental component: the agreement. We see an
organization as a way to coordinate agent interaction that starts from an agreement
between the relevant agents. Moreover, we adopt a bottom-up, formal approach to keep
our analysis as general as possible, and, as a consequence, the application field of our
current and future results as wide as possible.

! Emiliano Lorini is financed by the ANR French project ForTrust; Mario Verdicchio is financed
by the FP7 project PrimeLife.

125

The paper is organized as follows: Section 2 illustrates more in detail the moti-
vations to our efforts; Section 3 presents the syntax and the semantics of our logical
model, and some choices made in the model are discussed in Section 4, while Section
5 presents some theorems; Sections 6 and 7 illustrate how agreements are formed and
how commitments and norms can be grounded on them, respectively; Section 8 pro-
vides some pointers to significant related literature, and, finally, Section 9 concludes.

2 Motivation

MASs can be seen as conceived with two distinct purposes. In the scenarios envisioned
by the pioneers of this field, whose hopes were boosted also by the unprecedented
success of Internet technologies, agents were viewed as a further development of the
object-oriented paradigm, leading to the implementation of goal-driven, mobile pro-
grams that could cooperate with each other autonomously to reach a common objective.
In a broader interpretation going beyond the strictly technological aspects to include so-
cial, economic, legal ones, MASs would be seen as a computational model of any group
of interacting entities. In this respect, agents are programs that simulate a real-life com-
plex system whose properties are to be analyzed by means of a computer system.

The lack (so far) of a so-called ‘killer application’ based on MAS technology does
not necessarily entail that the latter interpretation traces the only viable path for agent
researchers, who thus should focus on simulation. Nevertheless, in our opinion, sig-
nificant achievements in the simulation-oriented MAS research are a necessary step
to finally reach a breakthrough also in the area of mainstream software development.
We agree with DeLoach [5] when he states that MAS researchers have not yet demon-
strated that the agent approach can yield competitive or even better solutions than other
programming paradigms by providing reliable, complex, distributed systems.

The context of virtual organizations is our point of reference, and from this perspec-
tive, a very effective demonstration of the impact of MAS technologies can be provided
by a believable agent-based simulation of real-life, human organizations. Once agents
are proven to be capable of delivering detailed models of complex organizations, then
they can become a very appealing candidate for cutting-edge software solutions aiming
at supporting, or even substituting, their human counterparts.

Several models of virtual organizations have been proposed in the literature [18],
[8]. In particular, Electronic Institutions [16] have been presented as a way to regulate
agent interaction in open environments. We see some issues rising from this research
line: How really open are these environments with respect to the constraints introduced
by the proposed organizational models? How does the fact that these models are op-
erational (as opposed to logical) affect their impact on the potential adopters? These
questions can be seen as different facets of our main concern: the affinity of virtual or-
ganizations with real ones is a key factor in MAS technology’s shift from research to
practice. Although it is very tempting to provide detailed specifications of virtual orga-
nizations in terms of roles, scenarios, interaction patterns, communication protocols and
so on, we think that such approach inevitably narrows down the scope of a proposal to
the researchers’ working hypotheses. The top-down specification of a predefined tem-
plate is not the way organizations are born in the real world, and this distance between

126

theoretical research and actual organizational dynamics might correspond to the gap
between the agent-based proposals and the solutions adopted in the industry.

Our work has a rather different (if not opposite) starting point. We intend to provide
a logical model (as opposed to operational) that allows for the formalization of the cre-
ation of organizations in a bottom-up fashion (as opposed to top-down). It might seem
surprising that researchers who call for the elimination of the gap between theory and
practice opt for a logic-based approach. However, this is a research field where univer-
sal models for basic concepts (including the very concept of ‘agent’) are still missing.
We think that theoretical definitions of general concepts might work as wider and more
solid foundations for the construction of a model of organizations that can eventually
provide effective implementation guidelines. This is also the idea behind the choice of
a bottom-up approach: To keep a model of organizations as general as possible, instead
of trying to impose a standard template (which is a surely successful approach only in
monopoly contexts), we aim at shedding some light on the basic mechanisms that lead
a group of independent individuals (or autonomous agents) to form an organization.

In a top-down approach, agents join an organization with pre-established rules. In
our bottom-up approach, we see an organization as the product of the agreement of
several agents on how their future interactions should be regulated. Thus, the aim of
this work is to formally define ‘agreement’ as a fundamental concept for the creation of
multi-agent organizations, that is, we intend to propose a logic of social agreement.

3 A modal logic of social agreement

We present in this section the syntax and semantics of the logic SAL (Social Agreement
Logic). The logic SAL specifies the conditions under which agreements are established
and annulled. Moreover it accounts for the relationships between agreement formation
and agents’ preferences.

3.1 Syntax

The syntactic primitives of the logic SAL are the following: a nonempty set of atomic
formulas ATM = {p, q, . . .}, a nonempty finite set of agents AGT = {i, j, . . .}, a
nonempty set of atomic actions ACT = {α,β, . . .}. We note 2ACT∗ = 2ACT \ ∅ the
set of all non-empty sets of actions, and 2AGT∗ = 2AGT \ ∅ the set of all non-empty
sets of agents.

We introduce a function REP that associates to every agent i in AGT a non-empty
set of atomic actions called action repertoire of agent i:

REP : AGT −→ 2ACT∗.
For every agent i ∈ AGT we define the set of i’s action tokens of the form i:α, that is,

∆i = {i:α | α ∈ REP(i)}.
That is, i:α is an action token of agent i only if α is part of i’s repertoire. We note

∆ =
⋃

i∈AGT ∆i

the pointwise union of the sets of possible action tokens of all agents.
The following abbreviations are convenient to speak about joint actions of groups

of agents. For every non-empty set of agents I we note JACT I the set of all possible

127

combinations of actions of the agents in I (or joint actions of the agents in I), that is,
JACT I =

∏
i∈I ∆i.

For notational convenience we write JACT instead of JACTAGT . Elements in every
JACT I are tuples noted δI , δ′I , δ′′I , Elements in JACT are simply noted δ, δ′,
δ′′, For example suppose that I = {1, 2, 3} and δI = 〈1:α, 2:β, 3:γ〉. This means
that δI is the joint action of the agents 1, 2, 3 in which 1 does action α, 2 does action β
and 3 does action γ.

The language of SAL is the set of formulas defined by the following BNF:

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ϕ | AgreeIϕ | Doi:αϕ

where p ranges over ATM , i ranges over AGT , i:α ranges over ∆i, and I ranges over
2AGT∗.

The classical Boolean connectives ∧, →, ↔ and + (tautology) are defined from ⊥,
∨ and ¬ in the usual manner.

The operators of our logic have the following reading.

– AgreeIϕ: ‘the agents in the group I agree that ϕ’.
– Doi:αϕ: ‘agent i is going to do α and ϕ will be true afterwards’ (therefore Doi:α+

is read: ‘agent i is going to do α’).

Operators of the form AgreeI enable one to express those issues on which the agents in
I agree, while forming a coalition. For example, AgreeI¬smokePublic expresses that
the agents in I agree that people should not smoke in public spaces.

The formula AgreeI⊥ literally means that ‘the agents in I agree on a contradic-
tion’. We assign a special meaning to this formula by supposing that ‘agreeing on a
contradiction’ means ‘not being part of the same group’ (or ‘not forming a coalition’).
This is because we assume that functioning as members of the same coalition is (at
least in a minimal sense) a rational activity, and a rational group of agents cannot agree
on a contradiction. Thus, AgreeI⊥ should be read ‘the agents in I do not function as
members of the same group’ or ‘the agents in I do not form a coalition’ or ‘the agents
in I do not constitute a group’. Conversely, ¬AgreeI⊥ has to be read ‘the agents in I
function as members of the same group’ or ‘the agents in I form a coalition’ or ‘the
agents in I constitute a group’. This concept of constituted group is expressed by the
following abbreviation. For every I ∈ 2AGT∗:

Group(I) def= ¬AgreeI⊥.
Note that this definition of group demands for some form of agreement, in particular
if the agents in I form a coalition (i.e. Group(I)) then the agents in I agree that they
form a coalition (i.e. AgreeIGroup(I)). Indeed, as we will show in Section 3.3, our
agreement operators satisfy the axiom ¬AgreeIϕ→ AgreeI¬AgreeIϕ.

If I is a singleton then AgreeI is used to express the individual preferences of agent
i. That is, for every i ∈ AGT :

Agree{i}ϕ
def= Prefiϕ.

Formula Prefiϕ has to be read ‘agent i prefers that ϕ is possible’ (semantically this
means that ‘ϕ is true in all states that are preferred by agent i’).

The following additional abbreviations will be useful to make more compact our
notation in the sequel of the article. For every i ∈ AGT :

128

Satiϕ
def= ¬Prefi¬ϕ.

Formula Satiϕ has to be read ‘ϕ is a satisfactory state of affairs for agent i’ (seman-
tically this means that ‘there exists at least one preferred state of agent i in which ϕ is
true’).

For every I ∈ 2AGT∗ and δI ∈ JACT :
DoδI

ϕ
def=

∧
j∈I Doδj

ϕ.
Formula DoδI

ϕ has to be read ‘the agents in I execute in parallel their individual actions
δi in the vector δI and ϕ will be true after this parallel execution’. We shorten this to
‘the joint action δI is going to be performed by group I and ϕ will be true afterwards’.
In other words, we consider a weak notion of joint action δI as the parallel execution of
the individual actions δi by every agent in I .

For every I ∈ 2AGT∗:
PrefIϕ

def=
∧

j∈I Prefjϕ;

SatIϕ
def=

∧
j∈I Satjϕ.

Formula PrefIϕ has to be read ‘every agent in I prefers that ϕ is true’, whilst SatIϕ
has to be read ‘ϕ is satisfactory for every agent in I’.

3.2 Semantics

Frames of the logic SAL (SAL-frames) are tuples F = 〈W, R,A〉 defined as follows.

– W is a non empty set of possible worlds or states.
– R : ∆ −→ W ×W maps every possible action token i:α to a deterministic relation

Ri:α between possible worlds in W .3

– A : 2AGT∗ −→ W ×W maps every non-empty set of agents I to a transitive4 and
Euclidean5 relation AI between possible worlds in W .

It is convenient to view relations on W as functions from W to 2W ; therefore we write
AI(w) = {w′ : (w, w′) ∈ AI} and Ri:α(w) = {w′ : (w, w′) ∈ Ri:α}. If
AI(w) -= ∅ and Ri:α(w) -= ∅ then we say that AI and Ri:α are defined at w.

Given a world w ∈ W , AI(w) is the set of worlds which are compatible with group
I’s agreements at world w. If I is a singleton {i} then A{i}(w) is the set of worlds that
agent i prefers. If (w, w′) ∈ Ri:α then w′ is the unique actual successor world of world
w, that will be reached from w through the occurrence of agent i’s action α at w. (We
might also say that Ri:α is a partial function). Therefore, if Ri:α(w) = {w′} then at w
agent i performs an action α resulting in the next state w′.

It is convenient to use RδI
=

⋂
i∈I Rδ{i} . If RδI

(w) -= ∅ then coalition I performs
joint action δI at w. If w′ ∈ ⋂

i∈I Rδi(w) then world w′ results from the performance
of joint action δI by I at w.

Frames will have to satisfy some other constraints in order to be legal SAL-frames.
For every i, j ∈ AGT , α ∈ REP(i), β ∈ REP(j) and w ∈ W we have:

3 A relation Ri:α is deterministic iff, if (w, w′) ∈ Ri:α and (w, w′′) ∈ Ri:α then w′ = w′′.
4 A relation AI is transitive iff for every w ∈ W , if (w, w′) ∈ AI and (w′, w′′) ∈ AI then
(w, w′′) ∈ AI .

5 A relation AI is Euclidean iff for every w ∈ W , if (w, w′) ∈ AI and (w, w′′) ∈ AI then
(w′, w′′) ∈ AI .

129

S1 if Ri:α and Rj:β are defined at w then Ri:α(w) = Rj:β(w).

Constraint S1 says that if w′ is the next world of w which is reachable from w through
the occurrence of agent i’s action α and w′′ is also the next world of w which is reach-
able from w through the occurrence of agent j’s action β, then w′ and w′′ denote the
same world. Indeed, we suppose that every world can only have one next world. Note
that S1 implies the determinism of every Ri:α.

We also suppose that every agent can perform at most one action at each world.
That is, for every i ∈ AGT and α,β ∈ REP(i) such that α -= β we have:

S2 if Ri:α is defined at w then Ri:β is not defined at w.

We impose the following semantic constraint for individual preferences by suppos-
ing that every relation A{i} is serial, i.e. an agent has always at least one preferred state.
For every w ∈ W and i ∈ AGT :

S3 A{i}(w) -= ∅.

The following semantic constraint concerns the relationship between agreements
and individual preferences. For every w ∈ W and I, J ∈ 2AGT∗ such that J ⊆ I:

S4 if w′ ∈ AI(w) then w′ ∈ AJ(w′).

According to the constraint S4, if w′ is a world which is compatible with I’s agreements
at w and J is a subgroup of group I , then w′ belongs to the set of worlds that are
compatible with I’s agreements at w′.

The last two semantic constraints we consider are about the relationships between
preferred states of an agent and actions. For every w ∈ W , i ∈ AGT and δ{i} ∈ ∆i:

S5 if Rδ{i} is defined at w′ for every w′ ∈ A{i}(w) then Rδ{i} is defined at w.

According to the constraint S5, if action δ{i} of agent i occurs in every state which is
preferred by agent i, then the action δ{i} occurs in the current state.

For every w ∈ W and i ∈ AGT :

S6 if Rδ{i} is defined at w then there exists I ∈ 2AGT∗ such that i ∈ I and Rδ{i} is
defined at w′ for every w′ ∈ AI(w).

According to the constraint S6, if agent i’s action δ{i} occurs at world w then there
exists a group I to which i belongs such that, for every world w′ which is compatible
with I’s agreements at w, i’s action δ{i} occurs at w′.

Models of the logic SAL (SAL-models) are tuples M = 〈F, V 〉 defined as follows.

– F is a SAL-frame.
– V : W −→ 2ATM is a truth assignment which associates each world w with the

set V (w) of atomic propositions true in w.

Given a model M , a world w and a formula ϕ, we write M,w |= ϕ to mean that
ϕ is true at world w in M . The rules defining the truth conditions of formulas are
just standard for p, ⊥, ¬ and ∨. The following are the remaining truth conditions for
AgreeIϕ and Doi:α.

130

– M,w |= AgreeIϕ iff M,w′ |= ϕ for all w′ such that w′ ∈ AI(w)
– M,w |= Doi:αϕ iff there exists w′ ∈ Ri:α(w) such that M,w′ |= ϕ

Note that AgreeI is a modal operator of type necessity, whilst Doi:α is of type possibil-
ity.

The following section is devoted to illustrate the axiomatization of the logic SAL.

3.3 Axiomatization

The axiomatization of the logic SAL includes all tautologies of propositional calculus
and the rule of inference modus ponens (MP).

From /SAL ϕ and /SAL ϕ→ ψ infer /SAL ψ(MP)

We have the following four principles for the dynamic operators Doi:α.

(Doi:αϕ ∧ ¬Doi:α¬ψ) → Doi:α(ϕ ∧ ψ)(KDo)
Doi:αϕ→ ¬Doj:β¬ϕ(AltDo)
Doi:α+ → ¬Doi:β+ if α -= β(Single)
From /SAL ϕ infer /SAL ¬Doi:α¬ϕ(NecDo)

Dynamic operators of the form Doi:α are modal operators which satisfy the axioms and
rule of inference of the basic normal modal logic K (Axiom KDo and rule of inference
NecDo). Moreover, according to Axiom AltDo, if i is going to do α and ϕ will be true
afterwards, then it cannot be the case that j is going to do β and ¬ϕ will be true after-
wards. According to Axiom Single, an agent cannot perform more than one action at
a time. This axiom makes perfectly sense in simplified artificial settings and in game-
theoretic scenarios in which actions of agents and joint actions of groups never occur in
parallel.

We have the following principles for the agreement operators and the preference
operators, and for the relationships between agreement operators, preference operators
and dynamic operators.

(AgreeIϕ ∧ AgreeI(ϕ→ ψ)) → AgreeIψ(KAgree)
¬Prefi⊥(DPref)
AgreeIϕ→ AgreeIAgreeIϕ(4Agree)
¬AgreeIϕ→ AgreeI¬AgreeIϕ(5Agree)

AgreeI(ϕ→
∧
J⊆I

SatJϕ)(CreateAgree)

PrefiDoδi
+ → Doδi

+(Int1Pref,Do)

Doδi+ →
∨
i∈I

AgreeIDoδi(Int2Pref,Do)

From /SAL ϕ infer /SAL AgreeIϕ(NecAgree)

131

Operators for agreement of the form AgreeI are modal operators which satisfy the
axioms and rule of inference of the basic normal modal logic K45 [4] (Axioms KAgree ,
4Agree and 5Agree , and rule of inference NecAgree). It is supposed that the agents in a
coalition always agree on the contents of their agreements and on the contents of their
disagreements (Axioms 4Agree and 5Agree). That is, if the agents in I agree (resp. do not
agree) that ϕ should be true then, they agree that they agree (resp. do not agree) that ϕ
should be true.

We add a specific principle for individual preferences by supposing that an agent
cannot have contradictory preferences (Axiom DPref).

Axiom CreateAgree expresses a property about the relationship between the agree-
ments of a group and the agreements of its subgroups. The agents of every group I
agree that ϕ should be true only if ϕ is a state of affairs which is satisfactory for every
subgroup J of I . Note that this axiom is based on the assumption that an agent i cannot
agree with the common view of a certain group I about a certain issue ϕ, if ϕ is incon-
sistent with i’s preferences. In our view this is a reasonable assumption for modeling
situations of team activity and collaboration in which agreements identify certain solu-
tions to coordination problems among the agents in a group which are satisfactory for
all agents.

Axiom Int1Pref,Do and Axiom Int2Pref,Do express general principles of intention-
ality describing the relationship between an agent’s action, his preferences, and the
agreements of the group to which the agent belongs. According to Axiom Int1Pref,Do ,
if agent i prefers that he performs action δ{i} (δ{i} occurs in all states that are preferred
by agent i) then agent i starts to perform action δ{i}. A similar principle for the rela-
tionship between individual intentions and action occurrences has been studied in [14].
According to Axiom Int2Pref,Do , if an agent i starts to perform a certain action δ{i} then
it means that either agents i prefers to perform this action or there exists some group
I to which agent i belongs such that the agents in I agree that i should perform action
δ{i}. In other terms, an agent i’s action δ{i} is intentional in a general sense: either it is
driven by i’s intention to perform action δ{i} or it is driven by the collective intention
that i performs action δ{i} of a group I to which agent i belongs.

We call SAL the logic axiomatized by the axioms and rules of inference presented
above. We write /SAL ϕ if formula ϕ is a theorem of SAL (i.e. ϕ is the derivable from
the axioms and rules of inference of the logic SAL). We write |=SAL ϕ if ϕ is valid in
all SAL-models, i.e. M,w |= ϕ for every SAL-model M and world w in M . Finally,
we say that ϕ is satisfiable if there exists a SAL-model M and world w in M such that
M,w |= ϕ. We can prove that the logic SAL is sound and complete with respect to the
class of SAL-frames. Namely:

Theorem 1 SAL is determined by the class of SAL-frames.

Proof. It is a routine task to check that the axioms of the logic SAL correspond one-to-
one to their semantic counterparts on the frames. In particular, Axioms 4Agree and 5Agree
correspond to the transitivity and Euclideanity of every relation AI . Axiom DPref corre-
sponds to the seriality of every relation A{i} (constraint S3). Axiom AltDo corresponds
to the semantic constraint S1. Axiom Single corresponds to the semantic constraint
S2. Axiom CreateAgree corresponds to the semantic constraint S4. Axiom Int1Pref,Do

132

corresponds to the semantic constraint S5. Int2Pref,Do corresponds to the semantic con-
straint S6.

It is routine, too, to check that all of our axioms are in the Sahlqvist class. This
means that the axioms are all expressible as first-order conditions on frames and that
they are complete with respect to the defined frames classes, cf. [2, Th. 2.42]. 01

4 Discussion

One might wonder why we did not include a principle of monotonicity of the form
AgreeIϕ → AgreeJϕ for J ⊆ I in our logic of agreement: for every sets of agents I
and J such that J ⊆ I , if the agents in I agree that ϕ should be true then the agents in
the subgroup J agree that ϕ should be true as well. We did not do include this principle
because we think that it is not sufficiently general to be applied in all situations. Indeed,
a minority group J of a larger group I might exist which does not have the same view
than the larger group. For example, an entire community agrees that taxes should be
payed even if every member of the community has a preferred state in which he does
not pay taxes. Axiom CreateAgree only requires that the members of the community
agree that the situation in which everybody pays taxes is satisfactory for everyone.

Consider now the following principle AgreeI(ϕ → ∧
i∈I Prefiϕ) and even the

weaker AgreeI(ϕ → ∨
i∈I Prefiϕ): every group of agents I agree that ϕ should be

true only if all of them prefer ϕ, and every group of agents I agree that ϕ should be
true only if some of them prefers ϕ. These two principles are also too strong. Indeed,
the agents in a group I might agree that ϕ should be true, without claiming that ϕ must
be preferred by every agent in I and without claiming that ϕ must be preferred by some
agent in I . For example, the members of a community I might agree that taxes should
be payed by every agent in I without claiming and agreeing that tax payment must be
preferred by every agent in I , and without claiming and agreeing that tax payment must
be preferred by some agent in I . The members of the community just agree that tax
payment must be something preferable by the whole community.

Finally, let us explain why we did not include stronger versions of Axiom Int1Pref,Do
and Axiom Int2Pref,Do of the form AgreeIDoδI

+ → DoδI
+ and DoδI

+ → AgreeIDoδI
+

in the axiomatization of our logic SAL for every I ∈ 2AGT∗. On the one hand the prin-
ciple AgreeIDoδI

+ → DoδI
+ is too strong because autonomous agents should be ca-

pable to violate norms and to decide not to conform to multiparty agreements with other
agents (see Section 7). For example, the agents in a population might agree at the public
level that each of them should pay taxes (i.e. Agree{1,...,n}Do〈1:payTaxes,...,n:payTaxes〉+)
but, in private, some of them does not pay taxes (i.e. ¬Do〈1:payTaxes,...,n:payTaxes〉+).
On the other hand the principle DoδI

+ → AgreeIDoδI
+ is too strong because there are

situations in which the agents in a set I perform a joint action δI without agreeing that
such a joint action should be performed. Each agent in I is doing his part in δI without
caring what the other agents in I do. For example, i might be cooking while j is reading
a book without reciprocally caring what the other does, and without agreeing that the
action of cooking performed by i and the action of reading performed by j should oc-
cur together. One might say that i and j do not have interdependent reasons for jointly
preferring that i cooks while j reads a book.

133

5 Some SAL-theorems

Let us now discuss some SAL-theorems. The first group of theorems present some
generalizations of Axioms AltDo and Single for joint actions of groups.

Proposition 1. For every I, J ∈ 2AGT∗ and δI , δ′I , δJ such that δI -= δ′I :

/SAL DoδI
ϕ→ ¬DoδJ

¬ϕ(1a)
/SAL DoδI

+ → ¬Doδ′
I
+(1b)

According to Theorem 1a, if group I is going to perform the joint action δI and ϕ will
be true afterwards, then it cannot be the case that group J is going to perform the joint
action δJ and ϕ is going to be false afterwards. According to Theorem 1b, every group
of agents can never perform more than one joint action at a time.

The second group of theorems present some interesting properties of agreement.
Theorems 2a and 2b are derivable from Axioms 4Agree , 5Agree and DPref. According to
these two theorems, the agents in I agree (resp. do not agree) that ϕ if and only if they
agree that they agree (resp. do not agree) that ϕ. According to Theorem 2c, a group of
agents I can intend to perform at most one joint action. Theorem 2d is just a variant
of Axiom CreateAgree (it is derivable from by means of Axiom KAgree). Theorem 2e
expresses an interesting property about coalition formation and coalition disintegration:
if the agents in I agree that a minority part J of I agrees that ϕ and another minority
part J ′ of I agrees that ¬ϕ, then the agents in I do not form a coalition (i.e. I is not a
constituted group).

Proposition 2. For every I, J, J ′ ∈ 2AGT∗ and δI , δ′I such that δI -= δ′I and J, J ′ ⊆ I:

/SAL AgreeIϕ↔ AgreeIAgreeIϕ(2a)
/SAL ¬AgreeIϕ↔ AgreeI¬AgreeIϕ(2b)
/SAL AgreeIDoδI

+ → ¬AgreeIDoδ′
I
+(2c)

/SAL AgreeIϕ→ AgreeI

∧
i∈I

Satiϕ(2d)

/SAL AgreeI(AgreeJϕ ∧ AgreeJ′¬ϕ) → ¬Group(I)(2e)

Before concluding this section it is to be noted that at the current stage our logic does
not allow to deal with situations in which I is a constituted group and I’s agreements
are in complete contradiction with the preferences of some agents in I . For instance, by
Theorem 2e and Axiom 4Agree , we can prove that formula AgreeIϕ∧AgreeIPrefi¬ϕ
implies ¬Group(I), if i ∈ I . In other terms our logic SAL does not allow to deal with
collective decisions which are taken sometimes in legal institutions and politics and
which are based on special procedures like majority voting. For example, the agents in
I might be the members of the Parliament of a certain country and form a coalition (i.e.
Group(I)). Moreover, they might collectively decide by majority voting to declare war
upon another country (i.e. AgreeIwar), although they agree that there is a (pacifist)
minority i, j ∈ I in the Parliament who prefer that war is not declared upon another
country (i.e. AgreeI(Prefi¬war ∧ Prefj¬war)). As emphasized above, in our logic

134

an agreement about a proposition ϕ in a group I exists only if ϕ is satisfactory for
every agent in I . As emphasized above, this is a reasonable assumption for modeling
situations of team activity and collaboration in which agreements are about solutions to
coordination problems in a group which are satisfactory for all agents of the group.

6 Reaching an agreement on what to do together

We can provide in our logic SAL the formal specification of some additional principles
explaining how some agents might reach an agreement on what to do together starting
from their individual preferences. We do not intend to add these principles to the ax-
iomatization of SAL presented in Section 3.3. We just show that SAL is sufficiently
expressive to capture them both syntactically and semantically so that the can be eas-
ily integrated into our formal framework. The principles we intend to characterize are
specified in terms of agreements about the conditions under which a certain joint action
should be performed.

In certain circumstances, it is plausible to suppose that a group of agents I agree
that if there exists a unique satisfactory joint action δI for all agents in I , then such a
joint action should occur. In other terms, the agents in a group I agree on the validity
of the following general principle: ‘Do together the joint action δI , if it is the only
joint action that satisfies every agent in I!’. This criteria is often adopted by groups
of agents in order to find cooperative solutions which are satisfactory for all them.
For example, in a Prisoner Dilemma scenario with two agents i and j the joint action
〈i:cooperate,j:cooperate〉 is the only satisfactory solution for both agents. If the two
agents i and j agree on the previous principle and face a PD game, then they will agree
that 〈i:cooperate,j:cooperate〉 is the joint action that they should perform. The previous
principle of agreement creation is formally expressed in our logic as follows. For every
I ∈ 2AGT∗ and δI ∈ JACT I :

AgreeI((SatIDoδI
+ ∧

∧
δ′

I '=δI

¬SatI Doδ′
I
+) → DoδI

+)(*)

Principle * corresponds to the following semantic constraint over SAL-frames. For
every w ∈ W , I ∈ 2AGT∗ and δI ∈ JACT I :

S6 if w′ ∈ AI(w) and Si ◦ RδI
(w′) -= ∅ for all i ∈ I and, for all δ′I -= δI there

exists i ∈ I such that Si ◦Rδ′
I
(w′) = ∅ then, RδI

(w′) -= ∅
where Si ◦RδI

(w′) is defined as
⋃{RδI

(v) | v ∈ Si(w′)}.
If we suppose that the Principle * is valid then the following consequence is deriv-

able for every I ∈ 2AGT∗ and δI ∈ JACT I :

(3) AgreeI(SatIDoδI
+ ∧

∧
δ′

I '=δI

¬SatI Doδ′
I
+) → AgreeIDoδI

+

REMARK. Note that in the previous Principles * and 3 of agreement creation mutual
trust between the agents in the group is implicitly supposed, that is, it is supposed that

135

every agent i in I thinks it possible that the other agents in I will do their parts in the
joint action δI . Indeed, trust between the members of the group is a necessary condition
for agreement creation (on this point, see [1] for instance). We postpone to future work
a formal analysis of the relationships between trust and agreement. To this aim, we will
have to extend our logic SAL with doxastic modalities to express agents’ beliefs.

Example 1. Imagine a situation of exchange of goods in EBay between two agents i
and j. Agent i is the buyer and agent j is the seller. They have to perform a one-shot
trade transaction. We suppose AGT = {i, j}. Agent i has the following two actions
available: pay and skip (do nothing). Agent j has the following two actions available:
send and skip (do nothing). That is, ∆i = {i:send , i:skip} and ∆j = {j:pay , j:skip}.
Therefore, the set of possible joint actions of the two agents is

JACT = {〈i:skip, j:skip〉, 〈i:send , j:skip〉, 〈i:skip, j:pay〉, 〈i:send , j:pay〉}.
The two agents i and j agree that the situation in which i sends the product and j pays
is satisfactory for both of them.

(A) Agree{i,j}Sat{i,j}Do〈i:send,j:pay〉+.

Moreover, agent i and agent j agree that the situation in which i does nothing and j
pays the product, the situation in which i sends the product and j does not nothing,
and the situation in which i and j do nothing, always leave one of them unhappy. Thus
we have that agent i and agent j agree that there is no other situation different from
〈i:send , j:pay〉 that is a satisfactory situation for both of them:

(B) Agree{i,j}
∧

δ′
{i,j} '=〈i:send,j:pay〉 ¬Sat{i,j}Doδ′

I
+.

From items A and B, by using Principle 3, we infer that agent i and agent j agree that
they should perform the joint action 〈i:send , j:pay〉:
(C) Agree{i,j}Do〈i:send,j:pay〉+.

Other conditions under which the agents in a group can reach an agreement on what to
do together could be studied in our logical framework. For instance, one might want to
have general principles of the following form which can be used to find a solution in
coordination problems. Suppose that δI and δ′I are both satisfactory joint actions for all
agents in group I . Moreover, there are no joint actions δ′′I different from δI and δ′I which
are satisfactory for all agents in I . Then, either the agents in I agree that δI should be
performed or they agree that δ′I should be performed. In other terms, if the agents in a
group I face a coordination problem then they strive to find a solution to this problem.

7 Grounding norms and commitments on agreements

The logic of agreement SAL presented in the previous section provides not only a for-
mal framework in which the relationships between individual preferences of agents in a
group and group agreements can be studied, but also it suggests a different perspective
on concepts traditionally studied in the field of deontic logic.

Consider for instance deontic statements of the following form “within the context
of group I it is required that agent i will perform action δ{i}” or “within the context of

136

group I it is required that agent i will perform his part in the joint action δI together
with the other agents in I”. These statements just say that i has a directed obligation
towards his group I to do a certain action as part of a joint plan of the group I (see e.g.
[12, 13] for a different perspective on directed obligations). By way of example, imag-
ine the situation in which agent i and agent j are trying to organize a party together.
After a brief negotiation, they conclude that i will prepare the cake, while j will buy
drinks for the party. In this situation, “within the context of group {i, j} it is required
that agent i will prepare the cake for the party and it is required that agent j will buy
drinks for the party”. The following abbreviation expresses the classical deontic notion
of directed obligation in terms of the concept of agreement. For every I ∈ 2AGT∗, i ∈ I
and δ{i} ∈ ∆i:

Obligi(δ{i},I) def= AgreeIDoδ{i}+.
Formula Obligi(δ{i},I) has to be read ‘within the context of group I it is required that
agent i will perform action δ{i}’. It is to be noted that the notion of directed obligation
represents an essential constituent of the notion of social commitment. Thus, in our ap-
proach, an essential aspect of an agent i’s commitment with respect to his group I to
do a certain action δ{i} is the fact that all agents in I agree that i should perform action
δ{i}. Since all agents in the group I agree on this, they are entitled to require agent i
to perform this action. Moving beyond the notion of directed obligation as an essential
constituent of social commitment, our logic SAL can be used to provide a a formal
characterization of the notion of mutual (directed) obligation in a group I , as ’every
agent in I is required to perform its parts in a joint action δI of the group’. Formally,
for every I ∈ 2AGT∗ and δI ∈ JACT I :

MutualObgI(δI)
def=

∧
i∈I Obligi(δ{i},I).

Formula MutualObgI(δI), which is equivalent to AgreeIDoδI
+, has to be read ‘the

agents in the group I are mutually obliged to perform their parts in the joint action δI ’.
This notion of mutual (directed) obligation is an essential constituent of the notion of
mutual (social) commitment. As already emphasized in Section 4, in our logic agents
can violate obligations assigned to them (breaking their social commitments). Violation
of a directed obligation is expressed in our logic by the construction Obligi(δ{i},I) ∧
¬Doδ{i}+: within the context of group I it is required that agent i will perform action
δ{i}, but agent i does not perform action δ{i}. The discussion on the notion of commit-
ment will be extended in Section 8 where our approach will be compared with some
formal approaches to agreement recently proposed in the MAS area.

8 Related work

The literature about the concepts this work deals with, such as agent, organization,
agreement, is too vast to be given an exhaustive overview here. The best we can do
is to provide pointers to some significant works that relate to our effort or that are set
against it in a way that stimulates discussion. We take inspiration from Garcia et al.
[9] to determine the dimensions along which multi-agent organizational concepts are
developed: structural, functional, dynamic, and normative.

From a conceptual perspective, the formalization of agreements comes before any
structural consideration. Let us refer to an example in the literature: in their work,

137

Dignum et al. [7] propose an attempt to describe minimum requirements for agents to be
organized into an institution. The minimum requirements rely on an existing institution
designed with the ISLANDER tool [8], and call for a middle agent. The ISLANDER
platform is probably the most complete tool to date for the specification of institutions.
A set of core basic notions are provided to enable a designer to specify, among other
things, the roles (i.e. standardized behavioral patterns) included in the institution and
the dynamics of agent interactions through scenes. The tool is kept as general as pos-
sible to allow for the widest possible variety of definable institutions. Nevertheless, the
specification of an institution is meant to be entirely performed by a human designer,
and agents are supposed to join an institution by assuming one or more roles. This ap-
proach does not take into account the process by which individuals look for and reach
agreements that give rise to an institution. Thus, the platform is an effective means to
translate an existing institution into a MAS, but the automatization of the creation of
organizations is out of scope. One important consequence is that human designers must
adapt to the guidelines provided by the proposed technology, which surely does not
lower the aforementioned barrier between research and industry.

We call for an analogous scope shift with respect to the functional dimension of
organizations, that is, their goals and how to achieve them. We follow the guidelines
provided by a conceptual distinction drawn by Griffiths and Luck [11] between team-
work and coalition formation. The former is seen as focused on task assignment and
action coordination among agents in the short term, whereas the latter is said to be deal-
ing with the establishment in the long term of a group of agents with a common aim
or goal. We agree with the authors in viewing multi-agent organizations as a means
to achieve long-termed objectives and in considering trust as a key concept for an or-
ganization: trust undoubtedly influences an agent’s decisions on whether undertaking
cooperation with others. Our focus is slightly different in the context of this research:
we consider an organization to be born when an agreement is made, so our efforts are
on the formalization of agreements. An investigation on the relationship between trust
and agreements lies ahead in our research path. Nevertheless, we share the authors’ aim
to determine the basic principles that lead to the creation of organizations, as opposed
to several coalition formation research works, where the effort is spent in optimizing
match-making algorithms between a set of tasks and a set of agent capabilities (e.g.:
[17]), which is very useful, but deals only with a specific facet of the MAS organization
context.

We can consider dynamic and normative dimensions as intrinsic to any attempt to
formalize a concept like a multi-agent organization. Dynamic aspects include the forma-
tion and the evolution of coalitions of agents and, on a smaller scale, the preconditions
and the consequences of an agent’s action. When these conditions deal with deontic
concepts the MAS is characterized also by a normative dimension. Human organiza-
tions have always included deontic aspects such as duties, rights, sanctions and so on,
so modeling these aspects in their virtual counterparts is a rather obvious consequence.
A much less obvious question is which concept or set of concepts to choose as the
fundamental basis for the formalization of organizations. Dignum et al., for instance,
choose violation as a fundamental concept to define deadlines in a MAS [6]. Violation is
surely a very important concept in any normative context, and especially in those where

138

deadlines are the central focus. Nevertheless, we argue that it does not play a primary
role when one wants to deal with a more general overview of organizations, especially
electronic ones. As pointed out by Cardoso et al. [3], one might wonder what happens
when agents ignore the sanctions attached to a violation. In real life, when an individual
is not able or willing to abide by a sanction deriving by some misdemeanor, a coercive
action is eventually enforced, such as confiscation or imprisonment. Such coercions are
not (yet?) implementable in a distributed information system, so that effectiveness of
violations and relevant sanctions is somehow diminished, and contingent upon the role
played by trust in the system.

With these considerations in mind, we see agreement as a more suitable concept to
equate agent-based organizations with real ones. In [19] a formal approach to multi-
party agreement between agents is proposed based on the notion of social commitment.
According to the authors, a multiparty agreement among the agents in {1, . . . , n} is
given by a set of commitments {C1, . . . , Cn} where Ci the commitment that agent i
has towards the other agents. Thus, in this approach the notion of commitment is taken
as a primitive concept and the notion of agreement is built on it. In our work we just
take the opposite direction: we start with a primitive notion of agreement in a group I
(which depends on the individual preferences of the agents in I), and on the top of it
we built a notion of directed obligation, the essential constituent of the notion of so-
cial commitment. The logic of agreement SAL has some similarities with the logical
framework based on the concept of acceptance we presented in [15] and [10], in which
a logical analysis of the relationships between the rules and norms of an institution and
the acceptances of these rules and norms by the members of the institution has been
provided. However, in [15] and [10] the relationships between individual preferences
of agents and collective acceptances (or agreements) were not investigated. This aspect
has been one of the main topics of the present paper.

9 Conclusions

We consider this paper only as a starting point of a long enterprise. Top-down specifi-
cations of MAS-based organizations have so far provided stimulating discussions and
promising applications which have not crossed the boundaries of the agent community.
Our long-term aim is to provide a formal specification of all the basic notions that char-
acterize organizations in general, including those in the real world, and we started with
what we consider to be a fundamental concept: agreement. The formalization of this
concept with a logical approach aims at analyzing in detail both its static characteristics
and its dynamic properties, that is, what is meant by the term agreement and how it is
supposed to influence agents’ behavior when cooperation is the common goal. Once a
model is universally established which is formal and general enough to abstract from
particular types of organizations or specific operational details, such a model may be
used as a sound basis for an agent-based implementation that can really have a sig-
nificant impact on economic or social scientific contexts. The relations between our
formalization of agreement and the notions of norms and commitments have been in-
vestigated in this work, but other dimensions of multi-agent interaction, such as trust,
are still to be tackled, which is what we intend to pursue in the future.

139

References

1. G. Andrighetto, L. Tummolini, C. Castelfranchi, and R. Conte. A convention or (tacit) agree-
ment between us. In V. F. van Benthem, J. Hendricks, J. Symons, and S. A. Pedersen, editors,
Between Logic and Intuition: David Lewis and the Future of Formal Methods, Philosophy
Synthese Library. Springer. to appear.

2. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,
Cambridge, 2001.

3. H. L. Cardoso, A. P. Rocha, and E. Oliveira. Supporting virtual organizations through elec-
tronic institutions and normative multi-agent system. In J. P. Rennard, editor, Handbook of
Research on Nature Inspired Computing for Economy and Management. Idea Group, 2006.

4. B. F. Chellas. Modal logic: an introduction. Cambridge University Press, Cambridge, 1980.
5. S. A. DeLoach. Moving multiagent systems from research to practice. In Future of Software

Engineering and Multi-Agent Systems (FOSE-MAS), 2008.
6. F. Dignum, J. Broersen, V. Dignum, and J. J. Meyer. Meeting the deadline: Why, when and

how. In Formal Approaches to Agent-Based Systems, pages 30–40. Springer, 2005.
7. F. Dignum, V. Dignum, J. Thangarajah, L. Padgham, and M. Winikoff. Open agent sys-

tems??? In Agent-Oriented Software Engineering VIII, pages 73–87, 2007.
8. M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions editor. In AA-

MAS ’02: Proceedings of the first international joint conference on Autonomous agents and
multiagent systems, pages 1045–1052. ACM, 2002.

9. E. Garcia, Argente E., Giret A., and Botti V. Issues for organizational multiagent systems
development. In Sixth International Workshop From Agent Theory to Agent Implementation
(AT2AI-6), pages 59–65, 2008.

10. B. Gaudou, D. Longin, E. Lorini, and L. Tummolini. Anchoring institutions in agents’ atti-
tudes: Towards a logical framework for autonomous mas. In International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS’08), pages 728–735. ACM Press,
2008.

11. N. Griffiths and M. Luck. Coalition formation through motivation and trust. In AAMAS
’03: Proceedings of the second international joint conference on Autonomous agents and
multiagent systems, pages 17–24. ACM, 2003.

12. S. Kanger and H. Kanger. Rights and parliamentarism. Theoria, 6(2):85–115, 1966.
13. L. Lindahl. Stig Kanger’s theory of rights. In G. Holmström-Hintikka, S. Lindström, and

R. Sliwinski, editors, Collected Papers of Stig Kanger with Essays on his Life and Work,
volume 2, pages 151–171. Kluwer, Dordrecht, 2001.

14. E. Lorini and A. Herzig. A logic of intention and attempt. Synthese, 163(1):45–77.
15. E. Lorini, D. Longin, B. Gaudou, and A. Herzig. The logic of acceptance: Grounding insti-

tutions on agents’ attitudes. Journal of Logic and Computation. to appear.
16. P. Noriega and C. Sierra. Electronic institutions: Future trends and challenges. In Proceed-

ings of the 6th International Workshop on Cooperative Information Agents, pages 14–17,
2002.

17. O. Shehory, K. P. Sycara, and S. Jha. Multi-agent coordination through coalition formation.
In ATAL ’97: Proceedings of the 4th International Workshop on Intelligent Agents IV, Agent
Theories, Architectures, and Languages, pages 143–154. Springer-Verlag, 1998.

18. K. Sycara, M. Paolucci, N. van Velsen, and J. A. Giampapa. The retsina mas infrastructure.
Autonomous Agents and MAS, 7(1-2), 2003.

19. F. Wan and M. P. Singh. Formalizing and achieving multiparty agreements via commit-
ments. In Proceedings of the Fourth international joint conference on Autonomous agents
and multiagent systems (AAMAS 2005), pages 770–777. ACM Press, 2005.

140

Policy-driven Planning in Coalitions - a Case
Study

Martin J. Kollingbaum[1,∗], Joseph A. Giampapa[1,†], Katia Sycara[1,‡], and
Timothy J. Norman[2,"]

1Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{∗mkolling,† garof,‡ katia}@cs.cmu.edu

2Dept. of Computing Science, Univ. of Aberdeen, Aberdeen AB24 3UE, UK
"t.j.norman@abdn.ac.uk

Abstract. A collaborative planning effort between partners that form
coalitions may be complicated by policies that regulate what actions
they may deploy in their plans and, in particular, what information they
are allowed to exchange during the planning process. We are interested
in situations where coalitions have to be formed ad-hoc without much
co-training. For this, we investigate how agents can support human plan-
ners in producing good plans while observing the normative standards
that regulate their planning and communication behavior. Based on an
implementation of such norm-processing agents, we conducted a set of
experiments, where human test subjects were conducting collaborative
planning tasks under the guidance of these agents. A summary of exper-
imental results is provided in the paper.

1 Introduction

Constructing joint plans within coalitions in time-stressed situations poses a par-
ticular challenge, especially in the face of individual goals, self interest and with
coalition members having only limited co-training for recognizing and resolving
their differences. During planning, coalition partners may also have to take into
account specific policies that describe what their obligations, permissions and
prohibitions are in terms of the actions comprising a plan and the communication
necessary to coordinate planning activities with coalition partners. With such
policies in place, human planners are under pressure to produce high-quality
plans, while adhering to all their obligations and prohibitions as described by
their policies. In this paper, we describe how agents can assist human planners
in a monitoring and advisory capacity in their policy-driven (norm-driven) plan-
ning efforts. The scope of this work is to investigate how policies (or norms)
influence collaborative planning and whether agents can ease the cognitive bur-
den for human planners to create high-quality shared plans in the face of such
policies.

In the following, we describe the development of agents that observe both
communication and planning activities and provide feedback on how these ac-
tions might impact on a human planner’s normative situation. We conducted a
set of experiments to investigate the effectiveness and impact of such agents in

141

a collaborative planning scenario and provide insights about the results of these
experiments.

2 Agents monitoring Policies

We consider the use of agents to monitor communication and planning activities
of coalition partners and reason about possible policy violations. As the human
planners are involved in a distributed planning problem, they may not be aware
of potential differences and conflicts between the different policies held by the
coalition partners. This may adversely impact on the planning process due to
the time and effort it may take to identify and reconcile policy conflicts. Also,
situations may occur that call for certain policies to be violated in order to
produce a viable plan. We base our notion of policies on normative concepts, in
particular, these are:

– the obligations that must be fulfilled,
– the prohibitions that constrain/forbid particular actions, and
– the permissions that define the range of actions that are allowed.

We regard policies to be relevant (or active) during a planning activity under
specific conditions only. Due to this conditional nature, a human planner may
not recognize that policies are in conflict with those of coalition members, that
violations occurred or that policies are relevant to the present circumstances.
Based on what planning actions are taken or what is communicated, this nor-
mative position may change – for example, an obligation may become fulfilled
or a specific planned action violates a prohibition. These changes have to be ob-
served and remembered by the human planner (which is a cognitively demanding
task) and make collaborative planning under such norms/policies a complicated
task. Agents can provide assistance to a human planner by detecting and ad-
vising a planner when policies become active, when policy violations occur and
may also propose courses of actions that may resolve such conflicts.

Agents, as we utilize them, do not form coalitions themselves or are part
of a virtual organization. These agents operate in a supportive role to a human
planner in order to ease the cognitive burden on human planners during a collab-
orative planning effort. The agent is assigned solely to a specific human planner
and operates in a monitoring, controlling and/or advicing capacity. In order for
the agent to work effectively in tandem with the human planner, the agent must
intercept any communication and planning action before it is actually performed
in order to provide the human planner with warnings in case violations were to
occur and possibly advise how to rectify such a situation. The agent, therefore,
has to maintain a representation of the normative position of the human planner,
which is a potential one (and not the actual situation). Based on this “outlook”
at a potential future normative situation, the agent can reason about appropriate
responses to that.

In the experiments performed, we were interested in how an agent can support
a collaborative planning activity. In particular, we investigated two supporting
strategies or “aiding conditions” for an agent:

142

– in the critique condition, the agent detects policy violations that are incurred
by the human planners in their communication and planning behavior. In
case of a violation, the agent either (a) intercepts the sending of a message or
(b) interrupts the planning of actions in order to inform the human planner
about the set of policies that become activated due to these intended and
violating actions – the planner can then decide whether to adhere to such
an advice or to ignore the agent and intentionally violate a policy;

– in the censor condition, the agent still monitors the activities of the human
planner, but silently interferes with the communication by deleting offending
parts of the exchanged messages (or blocking them completely) in order to
avert policy violations; in that case, the receiver is informed that a message
is either truncated or completely censored.

The difference between the two types of agents is in their policy-related feed-
back to the human planner and their subsequent interaction. The critic agent,
besides reasoning about policies, also monitors plan steps committed by a human
planner and reasons about the effect of policies on planned actions. The censor
agent, on the other hand, is not concerned with effects of policies on planned
actions int only interecpts and forbids the transmission of messages that con-
tain policy violations. The critique agent does not force the user to a particular
action, it merely provides advice and suggestions, which the user can accept or
reject. Both conditions are compared to a third control condition (the unaided
condition), where the test subjects did not have any agent support.

2.1 Modelling Policies

Policies are given to the human planner in a verbalized form. The following
example is taken from our example domain outlined in subsequent sections:

Example 1. “IF you want to deploy an ambulance along route R on day D for a
rescue operation, THEN you are obliged to obtain a commitment of escort from
your coalition partner”

This policy will become relevant to the human planner in the course of plan-
ning such a rescue operation, if the deployment of this specific resouce is in-
tended. In becoming relevant, it adds to the current “social burden” of the hu-
man planner – it has to observe this obligation (beside possible other activated
norms) and see to it that it is fulfilled. This obligation will be fulfilled when such
a commitment of escort is obtained. In that case, we regard the obligation to
have expired. We, therefore need to specify these additional fulfillment or expi-
ration conditions. The example above would then be complete by ammending it
with the following information:

Example 2. “IF you want to deploy an ambulance along route R on day D for a
rescue operation, THEN you are obliged to obtain a commitment of escort from
your coalition partner. IF you have aquired a commitment of escort along route
R before day D THEN this obligation is fulfilled”

143

Independent of whether an obligation is fulfilled, it will also be de-activated
in case that the activating circumstances no longer hold. In case of the above
example, if the human planner decides to discard the planned deployment of an
ambulance, this obligation is no longer relevant.

The following example shows a prohibition:

Example 3. “IF you know that the route R on day D is dangerous for deploy-
ments, THEN you are prohibited to deploy an ambulance along route R on day
D for a rescue operation”

This prohibition becomes relevant if there is knowledge about danger on the
given route available. As is obvious, this can also be formulated as a permis-
sion: “If there is no knowledge of danger ... THEN you are permitted ...”. It
shows that, in the design of policies, we have to clarify the default normative
position for a coalition partner: the point of view from which the policies are
designed – are we assuming that “everything is permitted that is not explic-
itly prohibited” or do we take the stance that “everything is prohibited that is
not explicitly permitted”? For the design of our policies, we decided that, per
default, any plan and communication action is permitted and that we provide
explicit prohibitions only in cases where this does not obtain (explicit permis-
sions may be included to specify particular exceptions to a given prohibition,
e.g. “You are ONLY permitted, IF ...”). In the same way as obligations, prohibi-
tions must be augmented with conditions that indicate the circumstances under
which a violation occurs. Due to the specific way the agent processes norms (as
described later), prohibitions have an activation condition that describes the (set
of) violating circumstances – with an activation of a prohibition, its violation is
indicated, whereas in its deactivated state, it is regarded as not violated.

In accordance with definitions used in previous work [1], we describe here the
normative position of the human planner, which is monitored by the agent (and,
therefore, is also the normative position of the agent), as the set Ω of currently
activated policies:

Definition 1. The set Ω comprises the currently instantiated policies, contain-
ing the permissions given, the obligations that must be fulfilled, and the prohibi-
tions that are potentially under threat of violation.

Note, that the agent intercepts the actions of the monitored human planner,
before these actions actually take place. This allows the agent to assess the
normative consequences of an action, before harm is done and can inform the
human planner accordingly. If Ω contains activated prohibitions then the agent
signals potential violations and not actual ones. By providing information about
those violations and active obligations to the human planners, the monitoring
agent may be able to motivate them to correct their behavior.

With respect to an implementation of such an agent, with each occurrence of
either a communication or planning action, we regard the set Ω being discarded,
the activations of all policies checked afresh and a new set Ω′ created. Ω′ repre-
sents the potential normative position of the human planner that would obtain,

144

if the intercepted actions take place. If the coalition finishes its collaborative
planning activity, the set Ωfinal, maintained for an individual coalition partner
by its monitoring agent, can have the following states:

(a) Ωfinal is empty or contains only permissions – the human planner has a
clean record with all obligations fulfilled and no prohibitions violated, or

(b) Ωfinal still contains obligations and/or prohibitions – this indicates, that
those obligations were not fulfilled and the violation of prohibitions persisted
beyond the planning session.

At that point in time, Ωfinal, represents the actual normative state of the
human planner.

Our representation of policies follows our earler work [2]. We specify an obli-
gation, permission or prohibition on a particular action with two condition –
an activation and an expiration/fulfillment condition – determining whether a
policy is relevant to the human planner. If we define the set Expr as the set
of all possible well-formed formulae comprising first-order predicates over terms
(constants, variables and the operators ∧, ∨ and ¬, then a policy can be defined
in the following way:

Definition 2. A policy, expressing an obligation, permission, prohibition is a
tuple 〈ν, ρ,ϕ, a, e〉, where

– ν ∈ {O,P,F} is a label indicating whether this is an obligation, permission
or prohibition

– ρ is a role identifier for a norm addressee
– ϕ describes the action regulated by this policy
– a ∈ Expr is the activation condition
– e ∈ Expr is the expiration condition

This definition displays in a simple fashion the elements that characterize
an implementation of our policies – they are ascribed to a specific role (in our
experiments, we have the roles “Party A” as the humanitarian organization and
“Party B” as the military organization) and are activated/de-activated under
certain conditions. The policies themselves exist in two forms, (a) formulated
in simple “IF ... THEN ...”-statements that are given to human planners, and
(b) implemented as a set of rules, expressing their activation/de-activation, in
order to allow agents a processing of these policies and the reasoning about their
current activation state.

3 Planning and Communication Environment

For agents to become operational, they must have access to plans in development
and communication activities. We use a traditional forward-chaining mechanism
(expert system shell Jess [3]) to implement the policy reasoning mechanism for
an agent. According to our model, a policy will experience activations and de-
activations under specific circumstances. In order to correctly implement their

145

activation and de-activation, each policy is expressed by a set of rules and data-
structures recording such an activation state.

As we noted before, the agent operates in a fixed monitoring cycle:

(a) detect the current situation changed by arriving messages expressing the
coalition partners’ commitments for action or revealed intelligence, as well
as new planned actions,

(b) reason about these changes, and
(c) create the new set of activated policies.

The agent has to intercept both communication and planning actions in order
to update an internal representation of the normative situation at hand.

3.1 Conversations during Planning

In terms of communication between human planners, we strongly simplified and
restricted the way conversations within a coalition takes place. In order for agents
to easily monitor communication and reason about the messages exchanged,
human planners converse in writing, using a specific set of message types.

In this conversation, a planning party may request another coalition member
to commit to a specific action or to provide particular information. The planning
party itself may also be the target of such a request. On the other hand, planning
parties may pro-actively offer information or commit to specific actions as they
develop their own plan. Finally, a planner may have to change its plan and,
therefore, withdraw commitments or withdraw requests or offers. By identifying
these general types of conversations, we can establish a set of message types:

Performative Type

REQUEST commitment, information
OFFER commitment
INFORM information
ACCEPT commitment
PROVIDE commitment, information
DENY commitment, information
WITHDRAW commitment, request for information

Table 1. Message Types

Messages according to these types are used in conversations that follow par-
ticular transitions as shown in figure 1. Dialogs for requesting a commitment
or pro-actively offering it are shown. A REQUEST (for commitment) has to
be answered with either a PROVIDE (a commitment) or a DENY. In the pro-
active case, an OFFER can be answered with either an ACCEPT or a DENY.
Requests, commitments, offers and the acceptance of offers can be withdrawn in
a separate WITHDRAW conversation. The state transistions in figure 1 show

146

annotations such as A:RCx etc. These indicate that, for example, party A sends
a REQUEST for a commitment (the x is a placeholder for particular domain-
specific information).

S Wait for B’s Reply

Committed

Uncommitted

A:RCx

B:PCx

B:DCx

A:WCx

A,B:WCx

Request‐Initial Commitments

S Wait for A’s Reply

Committed

Uncommitted

B:OCx

A:ACx

A:DCx

B:WCx

A,B:WCx

Offer‐Initial Commitments

Legend:
A = Requester
B = Provider

Fig. 1. Request and Offer Conversations

Not shown is INFORM, as it is a special case. It allows to disclose particular
information proactively such as the set of plan steps in the planner’s own plan
or confidential information, without requests from another party or expecting a
reply.

For planning, a human planner is provided with a set of domain-specific
actions and basic manipulation operations to assemble a plan.

4 Scenario

We chose rescue missions as an example scenario and performed a set of ex-
periments to investigate the effectiveness of agents supporting a collaborative
planning effort in the context of this scenario.

In this scenario, we assume that there are two parties that form a coalition,
a humanitarian relief organization with the individual goal of rescuing injured
civilians from a potentially hostile region, and a military organization that has
to coordinate its military objectives with the evacuation activities. In the exper-
imental setup, the humanitarian organization is regarded as “Party A” and the

147

military organisation as “Party B”. The goal of this coalition is to find a joint
plan for rescuing as many injured people from a dangerous region to a hospital
in the shortest possible time. The optimal situation for Party A would be to
provide medical attention and evacuation as soon as possible. For this, party
A may need support from party B, for example, an escort through a dangerous
region. Party B, on the other hand, has military objectives that, potentially, may
be in conflict with the support given to party A.

We assume that both parties have a set of resources such as ambulances, field
hospitals/paramedic units, rescue helicopters, Jeeps, etc.. During their planning
activity, the coalition partners will allocate these resources to be used in planned
actions. We assume that party A and party B have a small set of capabilities
they may plan to utilize in pursuing a mission. Party A can either evacuate
wounded people, taking round-trips to their location or dispatch a paramedic
unit to provide medical care at their location directly. Party B may either support
party A by providing escort through dangerous terrain or pursue its own military
goals by attacking enemy strongholds.

In support of the communication necessary during planning, a set of domain-
specific speech acts is provided according to the types of performatives outlined
above. Previously, we determined that there is a need for the performatives RE-
QUEST, OFFER, INFORM, PROVIDE, ACCEPT, DENY and WITHDRAW
to enable regimented conversations between human planners. We also saw that
these conversations are subject to the exchange of either commitments or spe-
cific information necessary to the decision process of whether a specific action
should be planned or not. The kind of commitments or information exchanged
with these messages is domain-specific. In our case, we assume that party A and
B exchange the following commitments:

– guarantee safety of a road (B to A)
– provide escort (B to A)
– evacuate (A to B)
– dispatch (A to B)

For example, party A can issue a REQUEST to party B asking for an es-
cort. Party B would then either provide this commitment or deny the request.
Information about the following aspects may be exchanged as well:

– intelligence
– intelligence source
– plan step
– specifics (request/provide more details regarding what road/resource/day)

With that, the parties are enabled to disclose intelligence or the source of
intelligence, or to communicate planned activities and whether a road is safe for
evacuating wounded etc.

148

Fig. 2. Experiment Interface

5 Experiments

The human planner interacts with the agent via the application as depicted in
figure 2 – the interface is shown in a mode where agents operate in the “critique”
condition. The purpose of this interface is to provide the user with the possibility
of sending messages to coalition partners, maintain a plan and interact with an
agent. If the agent operates in the “critique” condition, it will report back on
the results of its monitoring the communication and planning activities of the
human planner. The following information is provided to the user in the top
section of this interface (characterizing a potential normative situation):

– reminders about the current set of active obligations (right upper window)
– the set of potential violations of prohibitions (left upper window) – the user

can either ignore this warning (intentional violation of a norm) or accept it

If the user accepts the warning of a policy violation, the offending action –
sending a message or adding a particular plan step will be aborted. If the user
ignores the warning these actions would go ahead.

In addition, the user manages its communication by assembling messages via
pull-down menus (left part of the interface) or uses a chat window to directly
converse with a coalition partner (which is not monitored by the agent), as well
as its plan in the right part of the interface.

149

5.1 Experimental Task

The experiments conducted are characterized by the interaction of two human
test subjects acting as planners in the role of the humanitarian organization
(Party A) and the military organization (Party B). Both test subjects are pro-
vided with details about their private goals, resources, intelligence, their capabil-
ities, and policies. Both parties are given different maps that outline locations or
destinations, from where – in the case of Party A – injured people must be evac-
uated, or that represent insurgent strongholds that must be defeated by Party B.
These destinations have numerical requirements – in case of Party A, a specific
number of wounded to be evacuated, in case of Party B, insurgent strongholds
have a specific resistance value that must be overcome by military means and
incur costs.

Thirty teams, each comprising two paid subjects, were recruited to partici-
pate in the study. These teams were tested in their collaborative planning effort
in one of three conditions, the unaided condition (control), the condition where
the agent acted as a “critic”, and the condition where the agent acted as a “cen-
sor”, resulting in ten teams operating in each of the three conditions. The test
subjects were forbidden to share computer screens, note sheets or other such aids
and worked isolated from each other. They could only describe their intentions,
commitments and planned resource deployments by using either a structured
representation of messages or a free-form text chat box of the experiment soft-
ware environment. The test subjects were given written documents as well as
shown a video briefing them about the impending task explaining the mission ob-
jectives, resources, policies, resource deployment costs and planning constraints
(e.g. a jeep can take only 5 wounded in each deployment). In a first step, a team
performed a practice problem as a warmup in order to become familiar with
the planning process. In particular, the practice problem of party A was: “Plan
the lowest cost emergency medical evacuation to the village of Tersa on Day 1.
Be sure to do so in a way that is compatible with your policies. What is the
total cost of your operation?” As the second step, the team then performed the
complete planning problem in one of the described experimental conditions. The
total allotted time to finish the whole experiment including reading the briefing,
video viewing and performing the practice problem, was 2 hours.

6 Results

The results of these experiments have shown that agents can have a positive
impact on the enforcement of policies. We saw that in the unaided experiment
condition (no agent monitoring and feedback), individuals would make on av-
erage from 7 − 10 policy violations, with all individuals making at least three
policy violations, per session. With reference to Figure 3, we saw that the rate
of individuals deliberately violating policies dropped to a median average of one
violation per session, with many individuals not making any policy violations at
all.

150

Fig. 3. Willful User Override of Agent Enforcement

This article reports experiments with two types of aiding strategies: a critic
and a censor. Neither form of assistance prompted the human subjects to at-
tempt more or fewer policy violations, as evidenced by the lack of statistical
significance in differences shown in Figure 4. There was a minority of human
subjects, however, that adjusted the ways in which they used the agents as a re-
sult of the type of agent intervention. For example, in the censor condition, some
users would try to exhaustively generate-and-test communications for granting
clearances or committing to escorts against the censorship of the agent.

Fig. 4. All User-Committed Policy Violations

The following characteristics were observed about the critic condition.

151

– 60% of the subjects in both Parties A and B felt that it was necessary to
override the critic agent in order to complete their plans (Figure 3).

– only one subject out of thirty actually reached the mission objective of treat-
ing 100% of the wounded on the first day of the mission. The subject did
so without violating any policies, but with the assistance of 13 interventions
from the critic agent.

– there is a slight degradation of performance between subjects in the control
and in the critic conditions. We hypothesize that this behavior is due to the
critic agent focusing the user’s attention on avoiding policy violations rather
than on the objectives of their task.

– the mean plan cost is slightly higher in the critic condition than in the control
condition. When considering, however, that 4 out of 10 subjects in the critic
condition did not violate any mission-impacting policies, it is possible that
Party A’s plan costs are better approximations of the true plan costs.

The following characteristics were observed about the censor condition.

– Of the two agents, critic and censor, the censor agent was the most effec-
tive at preventing policy violations. Only 3 out of 20 individuals actually
circumvented the censorship of the censor agent, each one committing only
1 violation.

– The censor agent was unable to provide feedback on mission impacting policy
violations (MIPVs) that were introduced as plan steps, so its performance
in reducing MIPVs cannot be distinguished from the control condition.

– The Party A subjects in the censor condition were most distracted from
their mission objective of treating as many wounded as possible on day 1.
We hypothesize that the lack of direct feedback to the user committing the
violation may be the cause.

– Similarly for both parties, the plan costs were greatest in the censor condi-
tion. We hypothesize that the lack of direct feedback to the user committing
the violations may cause confusion, distracting the user from being mindful
of their plan costs.

Results from these experiments provide us with feedback that informs the de-
sign of future policy-enforcing agents. For example, the censor agent was clearly
the undisputed best enforcer of policy. Its enforcement reliability was countered
by a significant increase of plan costs and distraction from the mission objec-
tives for Party A. The critic agent immediately flagged policy violations, so it
was possible for at least one subject in all three conditions to achieve the perfect
plan (e.g. treating all the wounded on day 1), as well as enabling others to have
zero mission impacting policy violations. A possible next agent to test would
be a critiquing censor agent that: is capable of critiquing plan steps, provides
direct feedback to the user that it is censoring, and does so without allowing the
censored subject to override it.

152

7 Related Work

Policies have been used in disparate fields, ranging from security models of pro-
gramming languages to the management of resources in distributed IT systems
[4]. In this context, policies are usually regarded as “permissions” that allow
the performance of specific actions such as access to data or the use of network
resources. This view has its limitations: it is assumed that what is not explicitly
permitted is prohibited and the concept of an obligation is not present tradi-
tionally. Recent work [5, 6] introduces richer concepts for describing policies (e.g.
“obligation policies”).

Our concept of a policy is strongly alligned with research into normative sys-
tems, in particular work on norm-governed agency, virtual organizations [7–10]
and Electronic Institutions [11–14]. In this paper, we expand on work presented
in [15] and describe a specific application of normative agents, where agents
do not form virtual organisations, but observe the behaviour of human planners
within a coalition. In this setting, the agent is focussed on understanding current
knowledge held by the human planners – what intelligence they hold about the
current state of the world, what commitments they received and made, as well
as what requests they expressed and what their current plan is. With such mon-
itoring agents in place, we share similar concerns as those posed in the context
of Electronic Institutions, as outlined, for example, in [13, 14]. In a very simi-
lar fashion, we must monitor the communication behavior of coalition partners,
assess the eligibility of the messages exchanged and reason about the current
normative state. By using a rule-based language for encoding policies and, con-
sequently, a rule engine such as the Jess Expert System Shell for processing these
specifications, we followed a very similar implementation path as described in
[13, 12], in particular implementing the reasoning about norms in Jess [16].

8 Conclusion

In this paper, we discussed difficulties in establishing joint plans within coalitions
in the face of self interest, individual goals and diverse policies of the coalition
members. For a planner, it would be easiest to operate without any restrictions,
constraints or regulations on the operations that may be added to a plan. In a
social context and, in particular, a diverse one such as coalitions of independent
partners, this is not possible. As we showed, detailed and, sometimes, even con-
flicting policies have to be dealt with in practice, when coalitions try to engage
in collaborative planning. With such policies and restrictions in place, planning
becomes more complicated and optimal plans may be hard to achieve. We there-
fore advocate agent support for policy-based planning activities within coalitions.
In this paper, we demonstrated how agents can be integrated into the dialogi-
cal process of human planners establishing a collaborative plan. We described
two agent-based strategies for assisting the collaborative planning process: (a)
a “critic” that provides active feedback about the fulfillment of policies and (b)
a “censor” agent that silently manipulates the interaction between human plan-
ners so that their interaction and information exchanged takes place according

153

to given policies. We have outlined an experimental framework that allows us to
evaluate the effects of these strategies in the context of a military-humanitarian
scenario and presented data that shows the impact of agent support on the
planning results.

9 Acknowledgement

Research was sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence and was accomplished under Agreement Number W911NF-
06-3-0001. The views and conclusions contained in this document are those of
the author(s) and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

References

1. Vasconcelos, W.W., Kollingbaum, M.J., Garćıa-Camino, A., Norman, T.J.: Re-
solving Conflicts and Inconsistency in Norm-Regulated Virtual Organizations. In:
AAMAS 2007. (2007)

2. Kollingbaum, M.: Norm-governed Practical Reasoning Agents. PhD thesis, Uni-
versity of Aberdeen (2005)

3. Friedman-Hill, E.: Jess in Action. Manning (2003)
4. Charalambides, M., Flegkas, P., Pavlou, G., Bandara, A., Lupu, E., Russo, A.,

Dulay, N., Sloman, M., Rubio-Loyola, J.: Policy Conflict Analysis for Quality of
Service Management. In: 6th IEEE Workshop on Policies for Distributed Systems
and Networks (Policy 2005). (2005)

5. Zhao, H., Lobo, J., Bellovin, S.M.: An Algebra for Integration and Analysis of
Ponder2 Policies. In: 2008 IEEE Workshop on Policies for Distributed Systems
and Networks POLICY 2008. (2008)

6. Kagal, L., Finin, T.: Modeling Conversation Policies using Permissions and Obli-
gations. In: Journal of Autonomous Agents and Multi-Agent Systems. Volume 14.
Springer-Verlag (April 2007) 197–206

7. Dignum, F.: Autonomous Agents with Norms. Artificial Intelligence and Law 7
(1999) 69–79

8. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in
Logic. PhD thesis, SIKS Dissertation Series 2004 (2004)

9. Lopez y Lopez, F., Luck, M., dÍnverno, M.: Normative Agent Reasoning in Dy-
namic Societies. In: Third International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 2 (AAMAS2004). (2004)

10. Kollingbaum, M., Vasconcelos, W., Garcia-Camino, A., Norman, T.: Conflict Res-
olution in Norm-Regulated Environments via Unification and Constraints. In:
DALT 2007. (2007)

11. Rodŕıguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Elec-
tronic Institutions. PhD thesis, Institut d’Investigació en Intel·ligència Artificial
(IIIA), Consejo Superior de Investigaciones Cient́ıficas (CSIC), Campus UAB, Bel-
laterra, Spain, Spain (2001)

154

12. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Norm
Oriented Programming of Electronic Institutions. In: 5th Int’l Joint Conf. on
Autonomous Agents & Multiagent Systems. (AAMAS’06), Hakodate, Japan, ACM
Press (May 2006)

13. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A Rule-
based Approach to Norm-Oriented Programming of Electronic Institutions. ACM
SIGecom Exchanges 5(5) (January 2006) 33–40

14. Vasconcelos, W.W.: Norm Verification and Analysis of Electronic Institutions. In:
DALT 2004. Volume 3476 of LNAI. Springer-Verlag (2004)

15. Burnett, C., Masato, D., McCallum, M., Norman, T.J., Giampapa, J., Kolling-
baum, M.J., Sycara, K.: Agent Support for Mission Planning Under Policy Con-
straints. In: Proceedings of the Second Annual Conference of the International
Technology Alliance. (2008) 100–107

16. Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A.: Implementing Norms in
Electronic Institutions. In: Procs. 4th AAMAS. (2005)

155

Internal agent architecture for norm
identification

Bastin Tony Roy Savarimuthu, Stephen Cranefield, Maryam A. Purvis and
Martin K. Purvis

Department of Information Science, University of Otago, Dunedin, P O Box 56,
Dunedin, New Zealand

(tonyr,scranefield,tehrany,mpurvis)@infoscience.otago.ac.nz

Abstract. Most works on norms in the multi-agent systems field have
concentrated on how norms can be applied to regulate behaviour in agent
societies using a top-down approach. In this work, we describe the inter-
nal architecture of an agent which identifies what the norm of a society is
using a bottom-up approach. The agents infer norms without the norms
being given to them explicitly. We demonstrate how the norm associ-
ated with using a park can be inferred by an agent using the proposed
architecture.

1 Introduction

Software agents that act as proxies to real world entities need to adapt to the
changing needs of environments. An example would that be of virtual worlds (e.g.
SecondLife [1]). Virtual environments offer a rich and expressive environment for
agent interactions. Traditionally, norms have governed the behaviour of agent
interactions in a closed system. In open systems such as virtual worlds, agents
instead of possessing predetermined notions of what a norm is, should be able
to infer and identify norms through observing patterns of interactions and their
consequences.

Recognizing the norms of a society is beneficial to an agent. This process
enables the agent to know what is permissible within a society and what is
not. As the agent joins and leaves different agent societies, these capabilities
are essential for the agent to modify its expectations of behaviour depending
upon the society it is a part of. As the environment changes, the capability of
recognizing the new norm helps an agent to derive new ways of achieving its
intended goals.

In this work we describe an internal agent architecture for norm identification.
Using a park scenario as an example, we describe the design and implementation
of the internal agent architecture which aids the agent to infer what the norms
of using the park are.

156

2 Background and related work

2.1 Background on norms

Norms are expectations of an agent about the behaviour of other agents in the
society. Norms are of interest to multi-agent system (MAS) researchers as they
help in sustaining social order and increase the predictability of behaviour in
the society. However, software agents tend to deviate from these norms due to
their autonomy. So, the study of norms has become crucial to MAS researchers
as they can build robust multi-agent systems using the concept of norms and
also experiment with how norms evolve and adapt in response to environmental
changes.

Due to multi-disciplinary interest in norms, several definitions for norms ex-
ist. Ullman-Margalit [2] describes a social norm as a prescribed guide for conduct
or action which is generally complied with by the members of the society. She
states that norms are the resultant of complex patterns of behaviour of a large
number of people over a protracted period of time. Coleman [3] describes “I
will say that a norm concerning a specific action exists when the socially defined
right to control the action is held not by the actor but by others”. Elster notes the
following about social norms [4]. “For norms to be social, they must be shared
by other people and partly sustained by their approval and disapproval. They are
sustained by the feelings of embarrassment,anxiety, guilt and shame that a person
suffers at the prospect of violating them. A person obeying a norm may also be
propelled by positive emotions like anger and indignation ... social norms have
a grip on the mind that is due to the strong emotions they can trigger”.

Based on the definitions provided by various researchers, we note that the
notion of a norm is generally made up of the following two aspects.

– Normative expectation of a behavioural regularity: There is a general agree-
ment within the society that a behaviour is expected on the part of an agent
(or actor) by others in a society, in a given circumstance.

– A norm spreading factor: Examples of norm spreading factors include the
notion of advice from powerful leaders and the sanctioning mechanism. When
an agent does not follow the norm, it could be subjected to a sanction.
The sanction could include monetary or physical punishment in the real
world which can trigger emotions (embarrassment, guilt etc.) or direct loss
of utility resulting in the agent internalising the applicable norm to avoid
future sanctions. Other kind of sanctions could include agents not being
willing to interact with an agent that violated the norm or the decrease
of its reputation score. Other norm spreading factors include imitation and
learning on the part of an agent.

It should be noted that researchers are divided on what the differences be-
tween a norm and a convention are. Our belief is that convention is a common
expectation amongst (most) others that an agent adopts a particular action or
behaviour. Conventions may become norms once the non-adherence of the focal
action specified by the convention is sanctioned. In this paper our concern is on
norms.

157

2.2 Related work

Several researchers have worked on both prescriptive (top-down) and emergent
(bottom-up) approaches to norms. In a top-down approach, an authoritative
leader or a normative advisor prescribes what the norm of the society should
be [5, 6]. In the bottom-up approach, the agents come up with a norm through
learning mechanisms [7–9]. Researchers have used sanctioning mechanisms [10]
and reputation mechanisms [11,12] for enforcing norms.

The work reported in this paper falls under the bottom-up approach in the
study of norms. Many researchers in this approach have experimented with game-
theoretical models for norm emergence [7,10]. Agents using these models learn to
choose a strategy that maximizes utility . The agents do not possess the notion
of a “normative expectation” in these works. Very few have investigated how an
agent comes to know the norms of the society. Our objective in this work is to
propose an architecture where agents can identify what the norms of the society
are. Several researchers have proposed architectures for normative systems. For
a comparison of these architectures refer to Neumann’s article [13].

We note that our work parallels the work that is being carried out by the
researchers involved in the EMIL project [14]. Researchers involved in the EMIL
project [14] are working on a cognitive architecture for norm emergence. There
have been some attempts to explore how the mental capacities of agents play a
role in the emergence of norms.

The EMIL project aims to deliver a simulation-based theory of norm innova-
tion, where norm innovation is defined as the two-way dynamics of an inter-agent
process and an intra-agent process. The inter-agent process results in the emer-
gence of norms where the micro interactions produce macro behaviour (norms).
The intra-agent process refers to what goes inside an agent’s mind so that they
can recognize what the norms of the society are. This approach uses cognitive
agents that examine interactions between agents and are able to recognize what
the norms could be. The agents in this model need not necessarily be utility
maximizing like the ones in the learning models. The agents in the model will
have the ability to filter external requests that affect normative decisions and
will also be able to communicate norms with other agents. Agents just employing
learning algorithms lack these capabilities.

Researchers involved with the EMIL project [15,16] have demonstrated how
the norm recognition module of the EMIL-A platform works. In particular they
have experimented with an imitation approach versus the norm recognition ap-
proach that they have come up with. The norm recognition module consists of
two constructs, the normative board and a module for storing different types of
modalities for norms (which they refer to as modals). Each modal represents a
type of message that is exchanged between agents (e.g. the deontics modal refers
to distinguishing situations as either acceptable or unacceptable). The normative
board consists of normative beliefs and normative goals. They have shown that
norm recognizers perform better than social conformers (imitating agents) due
to the fact that the recognizers were able to identify a pool of potential norms
while the imitators generated only one type of norm.

158

The work reported here differs from this work in three ways. Firstly, we
have chosen “reaction” (positive and negative) to be a top level construct for
identifying potential norms when the norm of a society is being shaped. We note
that a sanction not only may imply a monetary punishment, it could also be an
action that could invoke emotions (such as an agent yelling at another might
invoke shame or embarrassment on another agent), which can help in norm
spreading. Agents can recognize such actions based on their previous experience.
Secondly, we identify three different sets of norms in agent’s mind: suspected
norms, candidate norms and identified norms. Thirdly, we demonstrate how our
architecture allows for an agent to identify co-existing norms.

Fig. 1: Higher level architecture of norm identification

159

3 Architecture for norm identification

This section describes the normative inference architecture of an agent. The
architecture provides a sequence of six steps that an agent goes through before
it comes to know what a norm of the society is, as shown in Figure 1.

To understand the architecture let us assume that an agent society exists.
Let us also assume that a norm does not exist to start with or only a few of the
agents have a notion of what an appropriate action should be in a particular
circumstance (a personal norm). In this architecture a typical agent would first
observe the interactions that occur between the agents in the society. The inter-
actions could be of two types. The first type of interaction is the one in which
the agent itself is involved and is called a personnel interaction (an action that
an agent does in an environment). The second type of interaction is an interac-
tion between other agents that is observed by the observer agent, referred to as
an observed interaction. The agent records these interactions. The top part of
Figure 1 shows the types of agents in an agent society. An agent in the society
can assume one or more of the three roles: a participant (P) that is involved in
a personal interaction, an observer (O) and a signaller (S).

The actions observed by an observer are of two types: regular actions and
signalling actions. A regular action is an event such as an agent moving to another
location in a park or sitting on a bench. Signalling actions can be thought of as
special events that agents understand to be either encouraging or discouraging
certain behaviour.

For example, let us assume that two agents are in a public park. One agent
(A) sees another agent (B) littering the park. Agent B may choose to sanction
the agent A (B nods or shakes its head in disapproval and in the worst case
yells at the litterer). The observer agent (C) records the signalling that takes
place between these agents. The signals can either be positive or negative and
it depends on one kind of norm to another. In the case of park littering, agents
might issue a negative signal when an agent litters while non-littering might be
considered as a normal or routine activity for which there is no positive signalling.
In our architecture, signalling is a top level entity because in normative systems
it is important for an agent to have an expectation of a particular behaviour.
Norms do not appear from nowhere. There might be some norm entrepreneurs
or norm innovators who come up with a norm (also known as personal norm
(p-norm)). Though few, these agents might sanction or reward others because
they violated or followed the norm.

The third step is for the agent to infer normative expectations of a society
based on noted observations and signalling. An agent correlates signalling with
the observations and infers what its notion of a relevant norm in the society is.
A detailed description of how the norm inference works is provided in the next
section.

The fourth step is to store this newly formed notion of norm in its belief
set. We call the beliefs that are based on norms normative beliefs. For every
signal that an agent processes, it re-evaluates its notion of the norm. Based on
the inference it can modify the notion of what the norm is at any point of time

160

which results in dynamic creation of norms. Once the agent has a norm, its
desires and intentions are influenced by the norm which might affect its goals
and plans (steps 5 and 6).

Once the agent has inferred what the norm it, it will then have to decide
whether to follow the norm. The norm assessor component is responsible for
making this decision. The agent weighs its own personal norm against the iden-
tified norm in a given circumstance and chooses an appropriate action. The
emphasis of this paper is on the norm inference component.

4 Inferring norms in a communal park

This section describes the design and implementation of a norm identification
system. The context for norms is the usage of a public park.

In many human societies there exists a norm that one should not litter a
communal area such as a park. However, software agents that join open societies
do not come to know of the norm of a society apriori. Let us assume that software
agents stroll through a virtual park in environments such as SecondLife [1]. Let
us imagine that the virtual park is a two dimensional grid where agents move
around and enjoy the park. Agents sometimes become hungry and eat food.
Some agents litter (i.e. drop the rubbish on the ground) and some agents carry
the rubbish with them and drop it in a rubbish bin. The actions that can be
performed by agent X are move, eat and litter. Some agents consider littering
to be an activity that should be discouraged, so they choose to sanction other
agents through actions such as yelling and shaking their heads in disapproval.
We assume that an agent has a filtering mechanism which categorizes actions
such as yell and shake-head as sanctioning actions. These sanctioning agents can
be considered as norm entrepreneurs.

Let us assume that the agents can observe each other within a certain visibil-
ity threshold (e.g. agents can only see other agents in a 3 cell neighbourhood).
Agents can either be a direct participant in interactions or observers. Some
participants can be sanctioning agents . The observer records another agent’s
actions until it disappears from its vicinity. Whenever it encounters an action of
type sanction, it recognizes that something has gone wrong (e.g. the action is
against the personal norm of the punishing agent). When such an event occurs,
the agent may become emotionally charged and perform certain sanctioning ac-
tion such as yelling at the litterer or shaking its head vigorously in disapproval.
Hence, an agent observing this can infer that someone involved in an interaction
has violated a norm. We assume that there exists a filtering mechanism in the
agent that can recognize sanctioning and rewarding actions when they occur.

Let us assume that an agent perceives other agents’ actions. An event that
is perceived consists of an event id, an observed action, and the agent(s) partic-
ipating in that event. For example an agent observing another agent eating will
have the representation of do(1,eat,A). This implies that the observer believes
that the first event was generated by agent A which performs an action eat. A
sample representation of events observed by an agent is given below.

161

do(1, eat, A)
do(2, litter, A)
do(3,move,B)
do(4,move,A)

do(5, sanction,B,A)

Event 5 is a sanctioning event where agent B sanctions agent A. An agent

records these events in its belief base. The agent has a filtering mechanism, which
identifies signalling events. We can consider the filtering mechanism to be a black
box that recognizes an emotionally charged event such as yelling and shaking
head in disapproval and categorizes those actions to be sanctions 1. When a
sanctioning event occurs, it triggers the invocation of the norm inference module
of the agent. It should be noted that signalling events can both be positive (e.g.
rewards) and negative (e.g. sanctions). In this work, we have focused on the
latter type of signalling.

Figure 2 shows the architecture of the norm inference component of an agent.
The following sub-sections describe the four sub-components of the norm infer-
ence component.

4.1 Creating event-episodes

Agents record other agents actions in their memory. Let us assume that there
are three agents A,B and C. Agent A eats, litters and moves while agent B
moves and then sanctions. Agent C observes these events and categorizes them
based on which agent was responsible for creating an event. {A} followed by
right arrow (→) indicates the categorization of events performed by agent A as
observed by agent C. A hyphen separates one event from the next.({A} → do(1, eat, A)− do(2, litter, A)− do(4,move,A)

{B} → do(3,move,B)− do(5, sanction,B,A)

)
When a sanction occurs, an observer agent extracts the sequence of actions

from the recorded history that were exchanged between the sanctioning agent
and the sanctioned agent. In the example shown above, the observer infers that
something that agent A did may have caused the sanction. It could also be
that something agent A failed to do might have caused a sanction. In this work
we concentrate on the former of the two. Agent C then extracts the following
sequence of events that take place between A and B based on the information
retrieved from its history.

{A,B} → eat(1, A)− litter(2, A)−move(4, A)− sanction(5, B,A)

1 Recognizing and categorizing a sanctioning event is a difficult problem. In this paper
we assume such a mechanism exists (e.g. based on an agent’s past experience)

162

Fig. 2: Architecture of the norm inference component

To simplify the notation here afterwards only the first letter of each event
will be mentioned (e.g. e for eat). The event episode for interactions between
agents A and B shown above will be represented as

({A,B} → e− l −m− s
)

There might be a few sanctioning events at any given point of time that an
agent observes. A sample list containing ten event episodes that are observed by
an agent in a certain interval of time is given below.

(
e− l −m− s, l − e− l − s,m− e− l − s, e− l − e− s, e− l − e− s
l − e− l − s, e− e− l − s,m− e− l − s, e− l −m− s, e− l − e− s

)

163

4.2 Constructing an event-tree based on conditional probability

Once the event episodes are constructed, the agent creates a tree of events that
occur in all episodes based on the estimation of conditional probabilities for
events that might have led to sanctioning. The mechanism for constructing a
decision tree is explained below.

For calculating the conditional probabilities for events that precede a sanc-
tion, an agent follows the following steps.

1. Categorizes episodes into events belonging to different levels.
2. Constructs a conditional probability tree of sub-episodes
3. Ranks sub-episodes and chooses candidate norms for verification

Categorizing episodes into event levels - Based on a certain fixed number
of events that precede a sanction, an agent categorizes events of an episode into
certain levels (e.g. single-level events, two-level events and three-level events).
Let us assume that an agent is interested in n events in a sequence that precede
a sanction. As an example let us consider e-l-m-s, which is the first episode from
the sample list of ten episodes. The sequence of events that precede a sanction
is e-l-m and hence the value of n is three. A single level event (level 1) is an
event that precedes a sanction (i.e. m). Two-level events (level 2) are the events
that are a combination of two events that precede a sanction (i.e. e-l and l-m).
Three-level events (level 3) are the events that are a combination of three events
that precede the sanction (i.e. e-l-m). Let us call each entry in these levels a
sub-episode.

Fig. 3: Events-tree of all episodes based on conditional probability

Constructing a tree based on conditional probability - For each sub-
episode in each level, the agent calculates the conditional probability. Sub-
episodes for an episode e-l-m are e,l,m at level 1, e-l and l-m at level 2 and
e-l-m at level three. The conditional probability tree of the sample list of ten
events as shown in Section 4.1 is given in Figure 3.

164

For the sake of simplicity, let us only consider those sub-episodes that end
with e in the region encompassed by a dashed line in Figure 3. In the sample
list that consists of ten episodes, there are three episodes that end with event e.
So, the conditional probability of event e given that a sanction has occurred is
p(e|s)=0.3. One of the three events (e or l or m) could have occurred before e. The
conditional probability of e occurring given that an e-s has occurred is p(e-e-s|e-
s)=0.0 and the other two conditional probabilities are p(l-e-s|e-s)=1.0 and p(m-
e-s|e-s)=0.0. Based on these, we know that p(l-e-s|s)=0.3 and the p(e-e-s|s)=0
and p(m-e-s|s)=0. Now again, three events (e or l or m) could have preceded l.
The conditional probabilities p(e-l-e-s|l-e-s)=1.0 and p(l-l-e-s|l-e-s)=0 and p(m-
l-e-s|l-e-s)=0. From these, we can infer that p(e-l-e-s|s)=0.3, p(l-l-e-s|s)=0 and
p(m-l-e-s|s)=0.

At level 2, we are also interested to find out the occurrences of all episodes
that are made up of two level events (indicated in figure 3 as levels 2a and 2b).
Based on permutations with repetitions we know that for choosing two out of
three events, there are 9 possible combinations (ee,el,em,le,ll,lm,me,ml,mm). The
respective probabilities of each of these sub-episodes is 0.1,1,0,0.5,0,0.2,0.2 and
0,0.

The list given below shows the conditional probabilities of all sub-episodes
that have a non-zero probability for all the three levels. We call these sub-
episodes suspected norms. Note that for simplicity we assume that the repre-
sentation of p(x|s) is p(x). Additionally, the hyphens will be omitted from the
sub-episodes (e.g. e-l-m will be represented as elm).

1. p(e)= 0.3, p(l)=0.5, p(m)=0.3
2. p(ee)=0.1, p(el)=1, p(le)=0.5, p(lm)=0.2, p(me)=0.2
3. p(ele) = 0.3, p(eel)=0.1, p(lel)=0.2, p(mel)=0.2, p(elm)=0.2

Ranking sub-episodes and selecting candidate norms - The agent ranks
sub-episodes based on these probabilities and creates a ranked list using the
norm selection parameter (ns). An agent chooses only those sub-episodes that
have conditional probabilities greater than ns. Elements in this subset of norms
are referred to as candidate norms. For example, if ns is set to 50, the following
are the candidate norms chosen from the set of suspected norms.

– el (100%)
– l (50%)
– le (50%)

Having compiled a set containing candidate norms, the agent passes this
information to the norm verification and identification component.

4.3 Norm verification and identification

In order to find whether a candidate norm is a norm of the society, the agent
asks another agent in its proximity. This happens in certain intervals of time
(e.g. once in every 10 iterations) 2.
2 We note that other techniques such as voting are possible.

165

When two agents A and B interact, A chooses its first candidate norm and
asks B whether its current norm is A’s candidate norm. If true, A stores this
norm in its set of identified norms. Otherwise, it chooses a sub-episode of the
norm and enquires whether that is the norm. It is possible that B might identify
the sub-episode as the norm. If not, A moves on to the second candidate norm
in its list 3.

In the case of the running example, the sub-episode el has the highest prob-
ability for selection and it is chosen to be communicated to the other agent. It
asks another agent (e.g. an agent who is the closest) whether it thinks that the
given candidate norm is a norm of the society. If it responds positively, the agent
infers prohibit(el) to be a norm. If the response is negative, this norm is stored
in the bottom of the candidate norm list. It then asks whether the sub-episodes
of el, which are e or l are the reasons for sanction. If yes, the appropriate action
is considered to be prohibited. Otherwise, the next event in the candidate norm
list is chosen. This process continues until a norm is found or no norm is found
in which case, the process is re-iterated once a new signal indicating a sanction
is generated. When one of the candidate norms has been identified as a norm of
the society, the agent still iterates through the candidate norm list to find any
co-existing norms.

It should be noted that an agent will have three sets of norms: suspected
norms, candidate norms and identified norms. Figure 4 shows these three sets
of norms. Once an agent identifies the norms of the system and finds that the
norms identified have been stable for a certain period of time, it can forgo using
the norm inference component for a certain amount of time. It only invokes the
norm inference component in regular intervals of time to check if the norms of
the society have changed, in which case it replaces the norms in the identified
list with the new ones.

Fig. 4: Three sets of norms

3 Other alternative mechanisms are also possible. For example, an agent could ask for
all the candidate norms from another agent and can compare them locally.

166

4.4 Related event recommender

Even if the event immediately preceding a sanction was responsible for causing
the sanction (e.g. event l), the agent would still be watchful of the event se-
quences that precede the sanctioned action 100% of the time (e.g. event e) for
two reasons. One reason is that when it produces events e and then l, it could
be sanctioned. Also when other agents produce events e-l, then if the observer
were a sanctioning agent, it may have to sanction the litterer. The purpose of the
related event recommender is to recommend event episodes that occur 100% of
the time preceding a sanctioning action so that the agent can be warned about
impending sanctions.

5 Experiments on norm identification

In an agent society, one or more norms can co-exist. In this section we demon-
strate that the agents using our architecture are able to infer the norms of the
society.

5.1 Scenario 1 : A society with one type of norm

We have experimented with an agent society comprising 100 agents. There are
agents with three different personality types. They are learning litterers (ll),
non-litterers (nl) and non-littering punishers (nlp). The learning litterers are
litterers who learn to change their behaviour based on normative expectations
inferred through the observation of interactions between agents. Non-litterers do
not litter the park and non-littering punishers are the non-litterers who sanction
littering because that action is against their personal norm.

There are 50 ll and 50 nl agents. Out of these 50 nl agents, 5 are nlp agents. In
each iteration, an agent performs one of m,e,l or s. The agents are initialized with
a uniform probability for choosing actions (p(m)=0.75, p(e)=0.25, p(l) having
eaten in the previous interaction =0.5). The nlp agents punish other agents if
they observe a littering action of an agent in the current iteration or the previous
iteration with 6% probability (in both the cases). An agent stores the actions
performed by other agents in its vicinity (in the current set up, a fully-connected
network topology is assumed where an agent can see all other agents). We ran
this experiment for 100 iterations and observed what kinds of suspected and
candidate norms emerged in the mind of an agent.

It should be noted that for an episode that is made up of 3 different events,
allowing permutation with repetition, 39 sub-episodes can be created (3 in level
1, 9 in level 2 and 27 in level 3). It can be observed from figures 5 and 6 that out
of 39 possible sub-episodes, only a subset of sub-episodes (13 of them) happen
to appear (i.e. the suspected norms). Assuming that an agent’s norm selection
threshold is 0.45 to construct the list of candidate norms, there are two such
norms, which are norms against el and l. The agent then moves on to the norm
verification stage which identifies the norm against littering.

167

Fig. 5: Sub-episode occurrence probabilities (level 1 and 2)

Fig. 6: Sub-episode occurrence probabilities (level 3)

5.2 Scenario 2 : Identification of co-existing norms in an agent
society

Let us assume that there are two types of sanctioning agents, one that sanctions
when an agent litters the park and the other sanctions if it sees anyone eating
in the park. In these cases, our mechanism will be able to generate different
sets of suspected norms. Retaining the experimental set-up used in the previous
scenario, we have set the probability of a nlp punishing eating action to be 3%
and the probability of punishing littering action to be 3%). The norm selection
threshold has been set to 0.25. Occurrence probabilities of sub-episodes (i.e sus-
pected norms) at level 2 is given in figure 7. It can be observed that there are
more occurrences of events involving e that appear in these sub-episodes than
event l. This is due to the set up of the system since p(e)=0.25 while p(l)=0.125.
The important thing to note in this experiment is that our architecture allows
for the identification of co-existing norms.

168

Fig. 7: Sub-episode occurrence probabilities (level 2) when two types of sanction-
ing agents were present

5.3 Scenario 3 : Identification of norms across different societies

Let us assume that there are three sections of a park. At any point of time, an
agent might be present in one of these sections. Let us also assume that there
are two types of sanctioning agents. One type of agents punish litterers while the
other type of agents punish those who eat in the park. Assume that these types
of agents are randomly placed in the three sections of a park. Our objective was
to see what type of norms might emerge in these three sub-groups.

Figure 8 shows the candidate norms of three different agents that belong to
three different sub-groups. The norm selection threshold was set to 0.3. It can be
observed that different types of candidate norms are generated in the minds of
these agents based on what they had observed in their respective agent society.
Figure 9 shows what were the identified norms of each of these agents. It can
be observed that the agent from sub-group one had identified the norm against
littering and the one from the third group had identified the norm against eating
while the agent from the second group had identified both these norms.

Fig. 8: Candidate norms of three agents that belong to three different sub-groups

An extension to this experiment is to allow an agent to move around in these
three sections of the park and see how it accommodates the changes to its norms.
Another extension will be to allow the sanctioning agents to move around which
will enable dynamic change of norms in the society.

169

Fig. 9: Identified norms in three sub-groups

6 Discussion

We note that the experimental set up is simple. We have assumed that an agent
considers three events (n=3) that precede a signal (a sanction or a reward). The
value of n can change and an agent being a computation machine should be able
to handle a large number of possible events. Most researchers agree that there
will be some form of sanction or reward once a norm is established (e.g. [3, 4]).
Hence, the notion of a reaction (positive or negative action) has been considered
to be a top level entity in our work. We have assumed that even when a norm
is being created, the notion of sanction is important for norm identification.

Our experimental set-up can be improved in many ways. Firstly, we do not
assume that there is a cost associated with sanctions. The cost for sanctions can
be included in the model. Secondly, our model identifies co-existing norms. If
the cost of sanctions is considered there could also be competing or conflicting
norms. For example, some agents might punish other agents when they litter
while some others may punish one when the littering agent is within 20 meters
from the rubbish bin. When there are competing norms the society might be
divided into groups. This type of dynamics will be interesting to study. Thirdly,
the experiments have only made use of observational information ignoring the
personal experience. We believe that the inclusion of personal experience will
speed up the rate at which norms are identified. Fourthly, we have assumed that
when an agent identifies a norm, it will follow the norm. Agents owing to their
autonomy do not always follow the norm. An agent might have its own personal
agenda and it can be an opportunistic norm follower. Autonomy of an agent
needs to be addressed in the future. In our architecture, this has been encapsu-
lated as a part of the norm assessment component which will be elaborated in
a future work. Fifthly, it might not always be possible to associate sanctions or
rewards with the events that immediately precede them. For example, speeding
might result in a fine that is sent to an agent after a couple of days. An observer
might not be able to recognize this sanction. In this work, we have only consid-
ered those norms where the sanctions can be recognized by an observer and the
events that caused the sanction occurred within an immediate window of time
before the sanction. Lastly, the problem of false negatives and positives for norm
identification needs to be dealt with in the future.

However, we believe that our work reports some advancements. Firstly, the
question of “how an agent comes to find out what the norm of society is” is being
dealt with by at least one other research group [14]. We have made some progress
in that regard by proposing an internal agent architecture and demonstrating

170

how an agent will identify the norms of a society. Secondly, other prominent
works identify one norm that exists in the society [6,10,17]. In our architecture
an agent is able to identify several norms that might exist in the society. Thirdly,
most works have not addressed how an agent might be able to identify whether
a norm is changing in a society and how it might react to this situation. In our
model, the agents will be able to identify the norm change and dynamically add,
remove and modify norms. Fourthly, our architecture can be used to study norm
emergence. We believe through norm identification at the agent level, we are
also in the realm of addressing how norms emerge using a bottom-up approach.

7 Conclusions

In this paper we have explained the internal agent architecture for norm iden-
tification. Through simulations we have shown how an agent infers norms in an
agent society. We have also discussed the related work and have identified issues
that should be addressed in the future.

8 Acknowledgments

We thank the three anonymous reviewers for their insightful comments.

References

1. Rymaszewski, M., Au, W.J., Wallace, M., Winters, C., Ondrejka, C., Batstone-
Cunningham, B., Rosedale, P.: Second Life: The Official Guide. SYBEX Inc.,
Alameda, CA, USA (2006)

2. Ullmann-Margalit, E.: The Emergence of Norms. Clarendon Press (1977)
3. Coleman, J.: Foundations of Social Theory. Belknap Press (August 1990)
4. Elster, J.: Social norms and economic theory. The Journal of Economic Perspec-

tives 3(4) (1989) 99–117
5. Verhagen, H.: Simulation of the Learning of Norms. Social Science Computer

Review 19(3) (2001) 296–306
6. Hoffmann, M.: Entrepreneurs and Norm Dynamics: An Agent-Based Model of the

Norm Life Cycle. Technical report, Department of Political Science and Interna-
tional Relations, University of Delaware, USA (2003)

7. Shoham, Y., Tennenholtz, M.: Emergent conventions in multi-agent systems: Initial
experimental results and observations (preliminary report). In: KR. (1992) 225–231

8. Walker, A., Wooldridge, M.: Understanding the emergence of conventions in multi-
agent systems. In Lesser, V., ed.: Proceedings of the First International Conference
on Multi–Agent Systems, San Francisco, CA, MIT Press (1995) 384–389

9. Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings
of Twentieth International Joint Conference on Artificial Intelligence (IJCAI), Hy-
derabad, India, MIT Press (2006) 1507–1512

10. Axelrod, R.: An evolutionary approach to norms. The American Political Science
Review 80(4) (1986) 1095–1111

171

11. Castelfranchi, C., Conte, R., Paolucci, M.: Normative reputation and the costs of
compliance. Journal of Artificial Societies and Social Simulation vol. 1, no. 3
(1998)

12. Hales, D.: Group reputation supports beneficent norms. Journal of Artificial
Societies and Social Simulation 5 (2002)

13. Neumann, M.: A classification of normative architectures. In: Proceedings of World
Congress on Social Simulation. (2008)

14. Andrighetto, G., Conte, R., Turrini, P., Paolucci, M.: Emergence in the loop:
Simulating the two way dynamics of norm innovation. In Boella, G., van der Torre,
L., Verhagen, H., eds.: Normative Multi-agent Systems. Number 07122 in Dagstuhl
Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

15. Andrighetto, G., Campenni, M., Cecconi, F., Conte, R.: How agents find out norms:
A simulation based model of norm innovation. In: 3rd International Workshop on
Normative Multiagent Systems (NorMAS 2008), 15-16 July, 2008, Luxembourg.
(2008)

16. Campenni, M., Andrighetto, G., Cecconi, F., Conte, R.: Normal = normative?
the role of intelligent agents in norm innovation. In: The Fifth Conference of the
European Social Simulation Association (ESSA), University of Brescia, September
1-5, 2008. (2008)

17. Epstein, J.M.: Learning to be thoughtless: Social norms and individual computa-
tion. Comput. Econ. 18(1) (2001) 9–24

172

Playing with agent coordination patterns in
MAGE

Visara Urovi and Kostas Stathis

Department of Computer Science,
Royal Holloway, University of London, UK

{visara,kostas}@cs.rhul.ac.uk

Abstract. MAGE (Multi-Agent Game Environment) is a logic-based
framework that uses games as a metaphor for representing complex agent
activities within an artificial society. More specifically, MAGE seeks to
(a) reuse existing computational techniques for norm-based interactions
and (b) complement these techniques with a coordination component to
support complex interactions. The reuse part of MAGE relates physical
actions that happen in an agent environment to count as valid moves of a
game representing the social environment of an application. The coordi-
nation part of MAGE supports the construction of composite games built
from component sub-games and corresponds to coordination patterns
that support complex activities built from sub-activities. To illustrate
the MAGE approach, we discuss how to use the framework to specify
the coordination patterns required to form a virtual organisation in the
context of a service-oriented scenario.

1 Introduction

Early work in multi-agent system has focused on the representation of
agent interaction construed in terms of communication protocols that
agents can use to interact with each other. As these protocols standar-
tise the way in which agents partake in social activities, more recent work
has put the emphasis on normative concepts such as obligation, permis-
sion, and prohibition, amongst other, to specify the social rules that
represent agent protocols (see [3, 15]). However, despite the plethora of
frameworks that support agent interactions about social concepts, there
is relatively less work on how to represent systematically more complex
activities that require agents to coordinate their actions when playing
many protocols at the same time. There is, in other words, the need for
computational frameworks that compose complex interactions and allow
for their coordination.
Our specific motivation results from our participation in ARGUGRID [1],
a research project that aims at providing a new model for programming a
service Grid at a semantic, knowledge-based level of abstraction through
the use of argumentative agent technology. Agents act on behalf of (a)
users who specify abstract service requests or (b) providers who offer
electronic services on the Grid. User requests result in agents interacting
with other agents by forming dynamic Virtual Organisations (VOs) in

173

order to enable the transformation of abstract user requests to concrete
services that the Grid can support. To guarantee that interactions in
VOs are of a certain standard, agent-oriented provision of services must
conform to service level agreements, while agent interaction more gener-
ally must be governed by electronic contracts. One of the requirements of
ARGUGRID is that agreements and contracts need to be negotiated on
the fly by agents, so there is the need to support protocols and workflows
that enable the activities of VO creation, operation, and dissolution. One
of the issues then becomes how to represent these complex activities at
a knowledge-based level, suitable for argumentation-based agents to use
as a framework to coordinate their interactions.
To manage agent coordination for VOs we present a logic-based frame-
work that we call MAGE (Multi-Agent Game Environment). The idea
behind MAGE is that the rules of a communication protocol between
agents are viewed as the rules of an atomic game played amongst play-
ers, the speech acts uttered by agents represent the legal moves in the
game, and the roles of agents in the interaction represent the roles of the
players in the game. The contribution of MAGE is that given the rep-
resentation of atomic games it provides a computational framework in
which atomic games can be composed into composite ones and provides
a systematic framework for their coordination. To illustrate how the re-
sulting framework can be applied to a practical application, we show
how to apply it in an ARGUGRID scenario that specifies workflows in
terms of agent protocols to support the creation of a VO and its relevant
electronic contracts.
The rest of the paper is organized as follows. Section 2 presents the
context of the problem that we try to formulate and relates it to two kinds
of games: atomic and compound. Atomic games and their specification
are discussed in Section 3, while compound games and their specification
are discussed in Section 4. Section 5 places our research in the context
of existing literature and compares it to related work. We conclude with
Section 6 where we also discuss our plans for future work.

2 ARGUGRID Games

We present a scenario that has motivated our work together with negotia-
tion protocol used to negotiate services. We also discuss the link between
the envisaged agent interactions and their representation as games. Once
we have established this relation, we use it as the base of the MAGE com-
putational framework developed in the next section.

2.1 The Earth Observation Scenario

The ARGUGRID scenario considers a government ministry official re-
quiring data about the detection of an offshore oil spill [18]. This abstract
and high-level goal cannot be immediately satisfied by data within the
ministry itself and requires the help of satellite companies that observe
parts of the earth at different days. These companies publicise their ser-
vices on a service Grid that is managed by agents. In this scenario a

174

software agent takes the abstract request of the official and tries to in-
stantiate it in a detailed set of services that can be invoked in sequence
to provide the requested information. The scenario further assumes that
satellite companies provide different services, each with different capabil-
ities and costs, and one satellite may be more appropriate than another
given certain conditions that the ministry sets. The official’s software
agent based on a set of preferences over the service requested, selects the
suitable satelite companies and engages in a contract negotiation process
with provider agents to create a VO that will instantiate the lower level
services required to meet the official’s request.

2.2 The Minimal Concession Protocol

Negotiation of contract terms in ARGUGRID uses a minimal concession
protocol, with or without rewards, described in Dung et al [7], see Fig.1.

Fig. 1. The Minimal Concession protocol with Rewards [7]

The protocol provides the following set of locutions available to agents:
request, introduce, reply, concede, standstill, accept, reject. The protocol
assumes two agent roles, a buyer (B) and a seller (S). The protocol can
start with an introduce move made by the seller or with a request move
made by the buyer. These moves are used to respectively request or
introduce an offer e.g. an oil spill detection service with some properties.
Afterwards, a reply move can be made from the buyer to reply to an
introduce move, or from a seller to reply to a request move. After this
move, standstill, reject or concede an offer are all moves that can be
made by any role. The accept move terminates successfully the protocol

175

and the accepted offer is considered the value of the result of the game.
Three consecutive standstill moves are considered as a reject move, which
terminates the protocol with no agreement.
An important property of this protocol is that if two agents use the
protocol in conjunction with a minimal concession strategy, then every
negotiation terminates successfully and the minimal concession strategy
is in symmetric Nash equilibrium [7]. A minimal concession strategy is
used if the offered service/product does not match what is requested.
An agent can concede on a property of the service/product when it is
possible to do so. Afterwards the agent will expect the other agent to
concede as well allowing the offer to get closer to match the request and
vice versa. If the agent decides not to concede, it can standstill. The
other agent will reply to a standstill with a concede locution if standstill
is not a consecutive locution, otherwise it will standstill as well.

2.3 The VO Life-Cycle in ARGUGRID

The minimal concession protocol is only a component of the more com-
plex activities that in ARGUGRID allow agents to form and participate
in VOs, as shown in Fig. 2.

Fig. 2. Negotiation in the VO Life-cycle of ARGUGRID

Fig. 2(a) shows how by negotiating a successful contract starts the execu-
tion and monitoring activities of a VO. Issues raised by the monitoring
or execution activities are reported and the VO must in this case be
reformed via re-negotiation. If, however, reformation does not apply to
these issues or if the execution has fulfilled the goals of the VO creation,
the VO is dissolved by having its result being evaluated first. Activities
in VOs may require further control-flows for sub-activities as shown in
Fig. 2(b); this illustrates how the activity of negotiation is in fact a more
complex activity that requires first to determine the roles of the agents in

176

the VO, then negotiate the terms of the VO contract using the minimal
concession protocol, and finally the complete contract must be signed
by all relevant parties. The details for the remaining activities of moni-
toring, execution, reportage, evaluation, and dissolution, are beyond the
scope of this work. In the remainder of this paper we focus on how to
model the control flows of activities as a complex game exemplified by
the negotiation activity.

2.4 VO Activities as Complex Games

The games metaphor was originally proposed to model human-computer
interaction by Stathis and Sergot in [17] and was subsequently applied
to formulate agent interaction protocols in [16]. We extend this model to
support agent coordination patterns in ARGUGRID as games.

The basic unit of the games metaphor is the notion of an atomic game,
which describes a set of rules about an initial state, a set of player roles,
a set of game moves, the effects the moves have on the state, a specifi-
cation of when a move is legal, a set of terminating states, and a set of
results [16]. The minimal concession protocol described earlier seen as a
game implies that the initial state of the protocol is the initial state of
the game, the roles of the participating agents are the roles of the play-
ers, the protocol locutions are the game moves, the effects of locutions on
the protocol state are the effects of moves on the state of the game, the
preconditions of locutions are the valid moves, the final protocol states
are the terminating states of the games, the set of protocol outcomes are
the possible game results. The result of a game does not necessarily need
to be zero-sum [12], by requiring a winner and a loser, but it can also
give rise to a win/win or loose/loose situations.

To obtain complex interactions we combine atomic games to build more
complex, composite games. An example of a complex interaction is the
control flow of the Fig. 2(b), where we need to combine three different
games: first the agents can play a role negotiation game to determine
their roles, after establishing their roles, they play a minimal concession
with reward game to agree on the terms of the contract, they can reiterate
this game for as long they find an agreement and finally the sign game
becomes active for the agents to sign the contract.

In a composite game we want to be able to parallelise, choose or syn-
chronize atomic games. To capture these control-flow aspects of complex
games we produce a coordination framework that allows us to coordinate
complex interactions build from simpler ones. The resulting framework
is then applied to support workflow activities. In general, the term work-
flow refers to the specification of a work procedure or a business process
in a set of atomic activities and relations between them in order to coor-
dinate the participants and the activities they need to perform [2]. The
link here is that the participants are the agents and the atomic activities
are the atomic games. By relating atomic games as atomic activities we
then use basic coordination patterns to enable agents to play more com-
plex activities as complex games. We will see later how our example of
the negotiation composite game (illustrated in Fig. 2(b)) will be defined

177

as an aggregation of three patterns: a sequence, a conditional, and an
iteration pattern.

3 Atomic Games in MAGE

Following earlier work on the games metaphor [17], we view communica-
tive interactions within an agent society abstractly as game interactions
[16]. As the rules of a game represent all valid evolutions of the game’s
state, we use the following logic program to describe the rules of a game:

game(State, Result)←
terminating(State, Result).

game(State, Result)←
not terminating(State, Result),
valid(State, Move),
effects(State, Move, NewState),
game(NewState, Result).

To formulate a particular game we need to decide how to represent a
game state, its initiating and terminating states, how players make valid
moves, and how the effects of these moves change the current state to
the next one until the terminating state is reached.

3.1 The State of Atomic Games

To represent the State of a game we use a term of the form Id@T, where
Id is a unique identifier of a complex term describing the attributes of the
state’s configuration, and T is the system’s time that uniquely identifies
the actual evolutions of the complex term as a result of the interaction.
The rationale behind this kind of representation is that in MAGE we
acknowledge the fact that the interaction within a multi-agent system
application can become quite complex. To cater for the complexities of
practical applications we assume that complex terms have an underlying
object-based data-model. To represent complex terms we use the syntax
of C-Logic [5]. A term of the form:

min concession:mc1 [
parties⇒ {agent:a1 [role ⇒ seller], agent:a2 [role⇒buyer]},
buyer position ⇒ offer:o1 [price ⇒80, resolution⇒20, delivery ⇒2],
seller position ⇒ offer:o2 [price ⇒100, resolution⇒20, delivery ⇒2],
standstill count ⇒ 1,
result ⇒ nil

]

is identified by mc1 denoting an instance of an object whose class is
the minimal concession protocol with two participating agents a1 and

178

a2, complex terms whose role attribute is seller and buyer respectively,
where the buyer in the previous round has made an offer o1 (a complex
term), while the seller has made another offer o2 (another complex term),
there is one standstill move that has been encountered, and the result of
the interaction is still incomplete as the value is still nil. Such a complex
term has a first-order logic translation, see [5] for details.

3.2 State Evolution

The moves of the game are represented by complex terms too. The com-
plex term below

speech act:m1[actor ⇒ a1, act⇒introduce, offer ⇒ o1, role⇒ seller],

describes that the seller agent a1 utters introduce about an offer o1. Such
moves are used as the contents of events that happen at a specific time.
An assertion of the form happens(m1, 12), states that move m1 has hap-
pened at time 12. Such an event changes the state of a game.

holds at(Id, Class, Attr, Val, T)←
happens(E, Ti), Ti ≤ T,
initiates(E, Id, Class, Attr, Val),
not broken(Id, Class, Attr, Val, Ti, T).

broken(Id, Class, Attr, Val, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤Tn,
terminates(E, Id, Class, Attr, Val).

holds at(Id, Class, Attr, Val, T)←
method(Class, Id, Attr, Val, Body),
solve at(Body, T).

attribute of(Class, X, Type)←
attribute(Class, X, Type).

attribute of(Sub, X, Type)←
is a(Sub, Class),
attribute of(Class, X, Type).

instance of(Id, Class, T)←
happens(E, Ti), Ti ≤ T,
assigns(E, Id, Class),
not removed(Id, Class, Ti, T).

removed(Id, Class, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤ Tn,
destroys(E, Id).

assigns(E, Id, Class)←
is a(Sub, Class),
assigns(E, Id, Sub).

terminates(E, Id, Class, Attr,)←
attribute of(Class, Attr, single),
initiates(E, Id, Class, Attr,).

terminates(E, Id, , Attr,)←
destroys(E, Id).

terminates(E, Id, , Attr, IdVal)←
destroys(E, IdVal).

Fig. 3. A subset of the Object-based Event Calculus from [9]

We use the object-based event calculus (OEC) of Kesim and Sergot [9]
to capture state changes of complex terms. A subset of the OEC is given
in Fig. 3. The first two clauses derive the value of an attribute for a
complex term holds at a specific time. The third clause describes how to

179

represent derived attributes of object as method calls computed by means
of a solve at/2 meta-interpreter as specified in [10]. The fourth and fifth
clauses support a monotonic inheritance of attributes for a class limited
to the subset relation. The sixth and seventh clauses determine how to
derive the instance of a class at a specific time. The effects of an event
on a class is given by assignment assertions; the eighth clause states how
any new instance of a class becomes a new instance of the super-classes.
Finally, the ninth clause deletes single valued attributes that have been
updated, while the tenth and eleventh clauses delete objects and dangling
references.

3.3 Valid Moves and their Effects

Before the event of a move being made in the state of the game, we must
have a way to check that the move is valid. One simple definition is to
make valid moves equivalent to the legal moves of the game:

valid(State, Move) ↔ legal(State, Move).

To specify valid moves, we specify when moves are legal. For example, to
specify when a request move is legal in the minimal concession protocol
we write:

legal at(Id@T, Move) ←
instance of(Id, min concession, T),
speech act:Move[actor ⇒ A, act⇒request, offer ⇒ Product, role⇒ buyer],
holds at(S, agent of, A, T),
holds at(A, role, buyer, T).

Other definitions of valid moves are possible, for instance, Artikis et
al [3] provide a more detailed account of valid moves in terms of social
concepts such as obligations, permission and power. The important point
here is that our framework can accommodate these for an application by
providing a different definition of valid/2.
Once a move has been determined as valid, a new state of the game must
be brought about due to the effects of the move. As by making moves
players cause events to happen, if we assume that the happening of such
moves take only one unit of time, we can specify their effects as:

effects(Id@T, Move, Id@NewT) ←
add(happens(Move T)),
NewT is T + 1.

In our representation of state, once an event has happened, its effects
are added to the state implicitly, via inititiates/4 definitions that initiate

180

new values for attributes of a state term, terminates/4 clauses that remove
attribute values from a state term, and assigns/3 definitions for assigning
to ids new instances of terms. An example, of how new values are initiated
for attributes for the minimal concession protocol is given below:

initiates(Ev, Id, seller position, Offer)←
happens(Ev, T),
instance of(Id, min concession, T),
Ev[act ⇒ Act, actor ⇒ Aid, role ⇒ seller, offer ⇒ Offer],
changes seller position(Act).

changes seller position(introduce).
changes seller position(concede).
changes seller position(reply).

The above definition initiates the current position made by a seller to
be stored in the state of the game as a result of a request, reply or
concede move. The old offer is terminated and substituted by a new
request because of the way the object event calculus is specified (see the
ninth clause in Fig. 3).
It is important to note that other specifications of effects/3 are possible
depending on what assumptions we make about the duration of moves
captured in events. In addition, the state could be represented explicitly
as a set of assertions as in [16] rather that implicitly, with rules that
define what holds in it, as in MAGE. Both of these issues, however, are
beyond the scope of this paper. It suffices to say here that once a choice
of state representation has been made, the framework can accommodate
it by suitably adjusting the effects/3 definition.

3.4 Initial and final states of a game

For the state of an atomic game to be created, the framework discussed
so far requires the assertion of an event that will first create the term
via an assigns/3 assertion. The assertion:

assigns(Ev, Id, min concession)←
Ev[act ⇒ construct, protocol ⇒ min concession, id ⇒ Id].

will allow the creation of an instance for the minimal concession protocol,
which can then be queried using the sixth clause of Fig. 3. To complete
the instantiation process we also need to specify the initial values for
the attributes of the complex term representing the minimal concession
protocol. For this we need to define separately the initiates/4 rules as the
one below:

initiates(Ev, Id, party of, Val)←
Ev[act ⇒ construct, protocol ⇒ min concession, parties ⇒ agent: Val].

181

Additional initiates/4 clauses are needed to define the whole of the initial
state, one for each attribute value.

The initial state of the game will evolve as a result of moves been made in
the state of a game. This state will eventually reach the final state from
which we can extract the game’s result. We specify this via terminating/2
predicates. For example, the definition:

terminating(Id@T, Result)←
instance of(Id, min concession, T),
holds at(Id, result, Result, T),
not Result==nil.

specifies the conditions under which the minimal concession protocol
terminates and at the same time returns the result.

4 Compound Games in MAGE

Compound games are complex games composed from simpler, possibly
atomic, sub-games. Based on our previous work in applying compound
games to develop multi-agent systems [16], in this section we show how
to develop compound games in the MAGE framework, with aim to sup-
port the coordination of complex agent activities such as ARGUGRID
workflows.

4.1 A Compound Game

To give an example of how sub-games will appear in the main game,
consider as an example the state of the VO negotiation in ARGUGRID,
as specified in Fig. 2.

vo negotiation: Id [
parties ⇒ {agent:a1, agent:a2, agent:a3},
process ⇒ Workflow

]

The sub-games of VO negotiation are specified in the Workflow value of
the process attribute, instantiated to terms of the form:

seq([
roles:r1,
if(r1[result⇒success], repeat(mcwr:r1, m1[result⇒exit])),
if(m1[agreement⇒achieved], sign:s1)

])

182

The above term states that the process of the negotiation is a sequence
(seq) of sub-games involving first a sub-game of roles game with iden-
tifier r1. This game must be played, and if the result of the roles game
is success, it means that the roles of the agents in the VO have been
agreed, and the workflow must continue with repeatedly creating a min-
imal concession protocol mcwr with identifier m1 and playing it until the
result of this game is exit (meaning that either an agreement has been
achieved during the negotiation or the game has been played more than
a certain maximum and no agreement was achieved). Only if the agree-
ment attribute of m1 is set to achieved, the sign game with identifier s1
is started and played to complete the negotiation process.

4.2 Coordination of active sub-games

The main issue to be considered in compound games is the coordina-
tion of moves in active sub-games. We define coordination specifying the
predicate active at/3. Using active sub-games, we can define valid moves
in a complex game to include all the valid moves in the active sub-games:

valid(Id@T, Move) ←active at(Id, SubId, T), valid(SubId@T, Move).

For VO negotiation we define active subgames as follows:

active at(Id, SubId, T)←
instance of(Id, neg, T),
Id [process⇒Workflow],
pattern(Workflow),
runs(Id, Workflow, SubId, T).

Patterns in our framework are interpreted by a runs/4 predicate that
parses the coordination structure and checks which sub-games are run-
ning. For the VO negotiation process three patterns are required: a se-
quence, an if-conditional, and a repeat loop, as specified below.

runs(G, seq([A|]), A, T)←
not pattern(A),
not terminating(A@T,).

runs(G, seq([A|B]), C, T)←
not pattern(A),
terminating(A@T,),
runs(G, seq(B), C, T).

runs(G, seq([A|B]), C, T)←
pattern(A),
(runs(G, A, C, T);
runs(G, seq(B), C, T)).

runs(G, if(Id[Prop⇒Val], P), C, T)←
holds at(Id, Prop, Val, T),
(pattern(P) →
runs(G, P, C, T); C=P).

runs(G, repeat(P, Id[Prop⇒Val]), A, T)←
not holds at(Id, Prop, Val, T),
runs(G, P, A, T).

pattern(P)← sequence(P).
pattern(P)← if conditional(P).
pattern(P)← repeat loop(P).

sequence(seq()).
if conditional(if(,)).
repeat loop(repeat(,)).

183

Note that the top-level game G is required as a parameter in the definition
of runs/4 as a reference to the global variables of the interaction. Note
also that the definition of the above patterns can be combined to form
arbitrary complex structures, which is indicative of the expressive power
of the framework.
More workflow primitives [19] can be specified in a similar manner. We
show next an and split pattern to illustrate how to support parallel com-
position. This pattern is specified as

and split(A, Condition, Activities)

and states that after activity A is completed, if the Condition is true,
then the set of Activities must be carried out in parallel. To support the
parallel composition required for this coordination pattern, we define
runs/3 as follows:

runs(G, and split(A, ,), A, T) ←
not pattern(A),
not terminating(A@T,).

runs(G, and split(A, Id[Prop ⇒Val], Activities), C, T)←
terminating(A@T,),
holds at(Id,Prop,Val,T),
member(Activity,Activities),
not terminating(Activity@T,),
(pattern(Activity) → runs(G,Activity,C,T); C=Activity).

We have formulated similarly the patterns for and join, xor split, and
xor join, but we cannot discuss them here due to lack of space. We plan
to present these in future work.

4.3 Status of the work

Implementation We have built a prototype of MAGE that allows the
deployment of a set of distributed objects in the GOLEM platform [4].
We call these objects Game Calculators. They are used by GOLEM
agents to interact with each other and to coordinate their interactions,
see Fig. 4. More specifically, GOLEM agents can call methods of a cal-
culator object by means of actions performed in the environment. The
content of such actions represents a move in the compound game. We
believe this to be advantageous in two ways: (a) space and time decou-
pling, i.e. because game calculators are a mediation service, agents do
not need to be in the same place at the same time in order to interact;
and (b) we do not have to treat everything as an agent to develop an
application.
To implement games, we link the internal part of the Game Calculator
object with a TuCSoN tuple centre [13], a Linda-like extension of the
concept of tuple space as a reactive logic based blackboard. The reason
why we chose TuCSoN to implement Game Calculators is that it allows

184

Fig. 4. Implementing MAGE using TuCSoN and GOLEM

us to use a main tuple centre and distribute the state of a compound
game in other tuple centres, each tuple centre could in principle map to
atomic or compound sub-games. To support this we use a combination
of the ReSPeCT language [13] and the OEC discussed here. A Game
Calculator can be configured from an agent (either a coordinator agent
or the agent who is interested to start the negotiation) to work as a
specific compound game (such as VO negotiation). Further details of the
implementation are beyond the scope of this work; we plan to present
the implementation separately in future work.

Evaluation MAGE is a mediation framework acting as a social envi-
ronment that supports interactions between heterogeneous self-interested
agents. We have developed MAGE so that it can work as a component-
based social infrastructure for the GOLEM agent environment [4] to
support practical applications. To do this we have tried to be flexible
with the way norms are incorporated in the system using the notion
of valid moves and we have focused on coordination. One of our con-
tributions is that we have extended the games metaphor, presented in
previous work, with the treatment of coordination patterns that this
framework did not support before. From our experimentation with the
minimal concession protocol in ARGUGRID VOs, a feature that we have
found interesting is that we can specify the interaction with workflows at
run-time, by keeping the same Game Calculator but changing the proto-
col and the workflow activities in a plug-and-play style. Moreover, using
object-based indexing of events already available in the Event Calculus,
we have experimented with interactions that give rise to approximately
1,000 events within a protocol, with acceptable performance. Again, we
plan to discuss these details separately, as future work.

185

5 Related Work

The Electronic Institution (EI) approach and the AMELI framework
[8] uses organisational concepts to model the interaction of agents. Our
framework is similar to EIs in the sense that their scenes are our atomic
games and their norms as the rules that capture the valid moves for the
agent as the game progresses. EIs also support a performative structure
that enables a developer to define dependencies such as choice points,
synchronization and parallelism mechanisms between scenes based on
role flow policies among scenes specifying which paths can be followed
by which agent’s role. In our framework the EI performative structures
are defined as compound games that structure atomic games, which can
be coordinated by activity patterns. One of the differences of MAGE with
AMELI is that we expect agents to interact via Game Calculators and
we do not use mediating agents such as AMELI governors. An explicit
feature of our approach is that the state of the interaction in a Game
Calculator is easily inspectable, while in EIs agent playing specific roles
need to communicate to build a coherent state. In addition we naturally
support complex games that consist of complex sub-games, while EIs
would require hierarchical performative structures and thus increase the
complexity of the overall EI approach.
Artikis et al [3] propose a model for norm-governed multi-agent systems
as executable specification of open agent societies. This work represents
social constraints by making a clear distinction between physical capabil-
ities, institutional power, permissions and sanctions to enforce policies.
Social constrains are a sophisticated version for defining our valid moves
of a game that captures the social state of the interaction. We too distin-
guish between possible actions happening in the environment supported
by GOLEM, from social actions happening in MAGE, and we link them
via physical objects that support agent coordination. As our focus is
on coordination and as their emphasis is on normative concepts, the
two approaches can be seen as complementary to each other, especially
as they both use the Event Calculus as the underlying computational
mechanism, even if we assume an object-based data-model. However, in
our model we do not prove properties of interactions, which can be an
extension of our work.
McBurney and Parson [11] present an abstract framework to represent
complex dialogues as sequences of moves in a combination of dialogue
games. Agents agree the game they need to play at a control layer, in
our terms a compound game, and then play the protocol at an execution
layer, in a our case a sub-game. The framework admits combinations of
different dialogue types that in our framework corresponds to the coordi-
nation of compound games. However, McBurney and Paron’s dialogical
games abstract away from the game state and they do not define the
valid moves as a way of analysing the different kinds of pre-conditions
and post-conditions on the state of the interactions. Instead their formal-
ism is based on agents selecting and agreeing to play these dialogues. On
the contrary our framework seeks to provide a computational mechanism
for coordination in complex interactions that are construed as compound
games.

186

Kesim et al [6] propose a framework to specify and execute workflows
based on Event Calculus. In this work, EC is used to describe the spec-
ification and execution of activities in a workflow. The activities are
assigned to agents using a coordinator agent that knows which agents
can perform which activities. Like Kesim’s work we use the EC to define
workflows but we use games to dynamically define compositions of work-
flows. Similarly, Omicini et al [14] propose a model to distribute a work-
flow among different tuple centres (conceived as the entities that coordi-
nate agent’s activities) by linking tuple centres with linkability operators.
In our approach we use the linkability of tuple centres as the coordina-
tion mechanism that the Game Calculator uses to start and terminate
new games. We also provide a representational framework that can be
used systematically to represent patterns of interactions, like workflows.

6 Conclusions and Future Works

We have presented MAGE, a logic-based framework that uses games as
a metaphor for representing complex agent activities within an artificial
society. We have illustrated how MAGE can reuse existing computational
techniques for norm-based interactions and support their coordination.
Using examples from the ARGUGRID projects, we have illustrated how
the reuse part of MAGE relates physical actions that happen in an agent
environment to count as valid moves of a game representing the social
environment of an application. Coordination in MAGE supports the con-
struction of complex games built from component sub-games and cor-
responds to coordination patterns that support complex activities built
from sub-activities. We have discussed how to use the framework to spec-
ify the coordination patterns required to form a virtual organisation in
ARGUGRID.
Future work involves formulating the VO lifecycle of ARGUGRID in
MAGE to build a library of reusable coordination patterns for similar
applications.

References

1. ARGUmentantion as a foundation for the semantic GRID (ARGU-
GRID). http://www.argugrid.eu/, 2009.

2. Workflow Management Coalition. http://www.wfmc.org/, 2009.
3. Alexander Artikis, Marek J. Sergot, and Jeremy V. Pitt. Specify-

ing Norm-Governed Computational Societies. ACM Trans. Comput.
Log., 10(1), 2009.

4. Stefano Bromuri and Kostas Stathis. Situating Cognitive Agents in
GOLEM. In Engineering Environment-Mediated Multi-Agent Sys-
tems, EEMMAS 2007, volume 5049/2008 of Lecture Notes in Com-
puter Science, pages 115–134. Springer, 2007.

5. W. Chen and D. S. Warren. C-logic of Complex Objects. In PODS
’89: Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 369–378, New
York, NY, USA, 1989. ACM Press.

187

6. Nihan Kesim Cicekli and Yakup Yildirim. Formalizing Workflows
Using the Event Calculus. In DEXA’00: Proceedings of the 11th
International Conference on Database and Expert Systems Applica-
tions, pages 222–231, London, UK, 2000. Springer-Verlag.

7. Phan M. Dung, Phan M. Thang, and Francesca Toni. Argument-
based Decision Making and Negotiation in E-business: Contracting
a Land Lease for a Computer Assembly Plant. In 9th Interna-
tional Workshop on Computational Logic in Multi-Agent Systems
(CLIMA), Dresden, 2008.

8. Marc Esteva, Bruno Rosell, Juan A. Rodriguez-Aguilar, and
Josep Ll. Arcos. Ameli: An agent-based middleware for electronic
institutions. In AAMAS ’04: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems,
pages 236–243, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

9. F. Nihan Kesim and Marek Sergot. A Logic Programming Frame-
work for Modeling Temporal Objects. IEEE Transactions on Knowl-
edge and Data Engineering, 8(5):724–741, 1996.

10. Nihan Kesim. Temporal Objects in Deductive Databases. PhD thesis,
Imperial College, 1993.

11. Peter McBurney and Simon Parsons. Games that agents play: A
formal framework for dialogues between autonomous agents. Journal
of Logic, Language and Information, 11(3):315–334, 2002.

12. Roger B. Myerson. Game Theory: Analysis of Conflict. Harvard
University Press, September 1997.

13. Andrea Omicini and Enrico Denti. From Tuple Spaces to Tuple Cen-
tres. Science of Computer Programming, 41(3):277–294, nov 2001.

14. Andrea Omicini, Alessandro Ricci, and Nicola Zaghini. Distributed
workflow upon linkable coordination artifacts. In Paolo Ciancarini
and Herbert Wiklicky, editors, Coordination Models and Languages,
volume 4038 of Lecture Notes in Computer Science, pages 228–246.
Springer, 2006.

15. Adrian Paschke and Martin Bichler. SLA Representation, Man-
agement and Enforcement. In EEE ’05: Proceedings of the 2005
IEEE International Conference on e-Technology, e-Commerce and e-
Service (EEE’05) on e-Technology, e-Commerce and e-Service, pages
158–163, Washington, DC, USA, 2005. IEEE Computer Society.

16. Kostas Stathis. A Game-based Architecture for Developing Inter-
active Components in Computational Logic. Journal of Functional
and Logic Programming, 2000(5), 2000.

17. Kostas Stathis and Marek J. Sergot. Games as a Metaphor for In-
teractive Systems. In In HCI’96, People and Computers XI., pages
19–33. Springer-Verlag, 1996.

18. Francesca Toni. E-business in ArguGRID. In Jörn Altmann and
Daniel Veit, editors, Grid Economics and Business Models, 4th In-
ternational Workshop, GECON 2007, volume 4685 of Lecture Notes
in Computer Science, pages 164–169. Springer, 2007.

19. Wil M. P. van der Aalst, Arthur ter Hofstede, Bartosz Kie-
puszewski, and Ana Barros. Workflow patterns home page.
http://www.workflowpatterns.com/, 2009.

188

	A Norm-based Organization Management System Natalia Criado, Vicente Julián, Vicent Botti and Estefania Argente
	 Building Multi-Agent Systems for Workflow Enactment and Exception Handling Joey Sik-Chun Lam, Frank Guerin, Wamberto Vasconcelos and Timothy Norman
	A Reputation Model for Organisational Supply Chain Formation Roberto Centeno, Viviane Torres da Silva and Ramón Hermoso
	Implementing Collective Obligations in Human-Agent Teams using KAoS Policies Jurriaan van Diggelen, Jeffrey Bradshaw, Matthew Johnson, Andrzej Uszok and Paul Feltovich
	Monitoring social expectations in Second Life Stephen Cranefield and Guannan Li
	Directed Deadline Obligations in Agent-based Business Contracts Henrique Lopes Cardoso and Eugénio Oliveira
	An Approach for Virtual Organizations' Dissolution Nicolas Hormazábal, Henrique Lopes Cardoso, Josep Lluis De la Rosa and Eugénio Oliveira
	A Normative Multiagent Approach to Requirements Engineering Guido Boella, Leon van der Torre and Serena Villata
	Towards a logical model of social agreement for agent societies Emiliano Lorini and Mario Verdicchio
	Policy-driven Planning in Coalitions - a Case Study Martin Kollingbaum, Joseph Giampapa, Katia Sycara and Timothy Norman
	Internal agent architecture for norm identification Bastin Savarimuthu, Stephen Cranefield, Maryam Purvis and Martin Purvis
	Playing with agent coordination patterns in MAGE Visara Urovi and Kostas Stathis

