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Preface

The ProMAS workshop series aims at promoting research on programming tech-

nologies and tools that can effectively contribute to the development and de-

ployment of multi-agent systems. In particular, the workshop encourages the

discussion and exchange of ideas concerning the techniques, concepts, require-

ments, and principles that are important for establishing multi-agent program-

ming platforms that are useful in practice and have a theoretically sound basis.

Topics addressed include but are not limited to the theory and applications of

agent programming languages, the verification and analysis of agent systems, as

well as the implementation of social structures in agent-based systems.

In its previous editions, since 2003 ProMAS constituted an invaluable occa-

sion bringing together leading researchers from both academia and industry to

discuss issues on the design of programming languages and tools for multi-agent

systems. We are very pleased to be able to again present a range of high quality

papers at ProMAS’09. Overall, in 2009 ProMAS received 34 submissions from

which 9 were selected for long and 6 for short presentation. Due to the high

number of quality submissions ProMAS could attract this year, it will be held,

for the first time, as a 1.5 days workshop. Similar as in previous editions, the

themes covered include a wide range of, theoretical, conceptual as well as tech-

nical aspects of multi-agent programming.

We hope that ProMAS’09 will continue the successful series of its previous edi-

tions and contribute to the vision of creating industrial strength programming

languages and software tools for developing multi-agent systems.

May 2009

Lars Braubach, Jean-Pierre Briot, John Thangarajah

ProMAS.09 Workshop Organizers
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Abstract. Setting up a marine reserve involves access monitoring, with
the goal of avoiding intrusions of not authorized boats – also considering
that typically marine reserves are located in not easily accessible areas.
Nowadays, intrusion detection in marine reserves is carried out by using
radar systems or suitable cameras activated by movement sensors. In
this paper, we present a multiagent system aimed at monitoring boats in
marine reserves. The corresponding scenario requires to discriminate be-
tween authorized and not authorized boats – the formers being equipped
with GPS+GSM devices. Boats are tracked by a digital radar that de-
tects their positions. The system has been used to monitor boats in a
marine reserve located in the north Sardinia. Results show that adopting
the proposed approach allows system administrator and staff operators
to easily identify intrusions.

1 Introduction

Nowadays, the agent research community provides powerful theories, algorithms
and techniques that may have a great potential in deploying various real appli-
cations. Several research and industrial experiences already put into evidence
the advantages of using agents in manufacturing processes [15], web services and
web-based computational markets [10], and distributed network management
[6]. Moreover, further studies suggest to exploit agents and MASs as enabling
technologies for a variety of novel scenarios, i.e., autonomic computing [14], grid
computing [9], and semantic web [5].
According to [13], the main bottlenecks in fast and massive adoption of the

agent-based solutions in real applications are: (i) limited awareness about the
potentials of agent technology in industry; (ii) limited publicity of the successful
industrial projects with agents; (iii) misunderstandings about the technology
capabilities, over-expectations of the early industrial adopters and subsequent
frustration; (iv) risk that comes with adoption of new technology that has not
been already proven in large scale industrial applications, and (v) lack of design
and development tools mature enough for industrial deployment.
In our opinion, multiagent technology may help in deploying real applications

both from software engineering [17] and technological perspectives [4]. In this
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paper we present a multiagent system aimed at monitoring boats in marine re-
serves. The system has been implemented by using X.MAS, a generic multiagent
architecture devised to implement information retrieval and filtering applications
[2].
The corresponding scenario requires to discriminate between authorized and

not authorized boats – the formers being equipped with GPS+GSM devices.
Boats are tracked by a digital radar that detects their positions. The system has
been used to monitor boats in a marine reserve located in the north Sardinia.
Results show that adopting the proposed approach allows system administrator
and staff operators to easily identify intrusions.
The remainder of the paper is organized as follows: first, selected related work

on agent-based systems for monitoring and surveillance are presented. Then,
the underlying scenario is sketched. Subsequently, the adopted MAS solution is
described focusing on the corresponding macro-architecture and on the imple-
mented agent capabilities. The current deployed prototype is then presented.
Conclusions and future research end the paper.

2 Related Work: Agent-based Systems for Monitoring

and Surveillance

Application of agent methodologies in process monitoring and control is a rela-
tively new approach, particularly suitable for distributed and dislocated systems.
In particular, agent-based solutions have been proposed to monitor: (i) control
systems [8], (ii) distant control experimentation systems [16], and forest fires [7].
In [8], a methodology for the design of agent-based production control sys-

tems, which can be successfully applied by an engineer with no prior experience
in agent technology, has been proposed. Authors proposes a design method for
identifying the agents of a production control system. The identification of agents
allows the designer to move from pure domain concepts (such as production pro-
cesses), to agent-oriented concepts (such as agents and decision responsibilities).
In addition, the identification of agents provides the basis for all other subsequent
design steps, such as interaction design or agent programming.
In [16], an approach to the realization of distant control experimentation

system has been described, the main task being to realize the temperature and
humidity monitoring and control experiment with the possibility of the video
tele-presence (video monitoring) of the experimental area. The underlying idea
is to integrate an existing laboratory greenhouse model and an existing video
system. A multiagent system is then developed that involves five specific software
agents. Agents are responsible of all operations: from user-system communication
to telecontrol and video monitoring operations. As for the agent communication
languages, KQML is used.
In [7], a TCP/IP-based system conceived of sensor networks, central server

units for collecting, processing and storing all data, has been presented. Each
sensor network has several monitoring units, each of them including: (i) pan,
tilt, zoom-controlled video camera connected to the network-embedded video

2
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web server, (ii) mini meteorological stations connected to network-embedded
data web servers, and (iii) a wireless communication unit. Agents designed for
the forest fire monitoring system follows these guidelines strictly, because the
system is conceived as a modular system where each module is autonomous,
aware of its environment and capable for active behavior if alarmed. Environment
awareness is accomplished by connecting numerous meteorological sensors to
a network-embedded microcontroller unit. Network-embedded microcontroller
unit is responsible for collecting data from sensors, formatting and preprocessing
it and giving it to the central server agent when asked for.

Agent-based solutions have also been proposed to develop video surveillance
systems ([12], [1], [11]). Video surveillance is an active area of research. In this
field, researchers have been concentrated on detection and tracking based on a
security issue. In particular, researchers are mainly interested in autonomous
system configuration, object identification, and multi-modal systems.

In [12], an architecture for implementing scene understanding algorithms
in the visual surveillance domain has been presented. The agent paradigm is
adopted to provide a framework in which inter-related and event-driven processes
can be managed in order to achieve a high level description of events observed
by multiple cameras. Each camera has associated an agent, which detects and
tracks moving regions of interest. Each camera is calibrated in order to transform
image co-ordinates into ground plane locations. By comparing properties, two
agents can infer that they have the same referent, i.e. that two cameras are
observing the same entity, and, as a consequence, merge identities. Agents store
a hidden Markov model of learned activity patterns.

In [1], a video-based traffic surveillance multi-agent system, called Monitorix,
is presented. Agent interactions are controlled by a BDI-like architecture. Agents
communicate using FIPA-ACL messages with SL contents. Each agent defines
a set of predicates, functions and actions that may be referred in the messages
that it receives. Vehicles are tracked across cameras by the a suitable agent,
using a traffic model whose parameters are continuously updated by learning
algorithms. The classification of mobile objects uses competitive learning algo-
rithms. The computation of typical trajectories uses statistical adaptation. The
tracking of mobile objects, from one camera into the next, updates the parame-
ters of its prediction model, using a combination of symbolic learning and genetic
algorithms.

In [11], a coordinated video surveillance system, which can minimize the spa-
tial limitation and can precisely extract the 3D position of objects, is presented.
The proposed system uses an agent based system and also tracks the normal-
ized object using active wide-baseline stereo method. The system is composed
of two parts: multiple camera agents (CAs) and a support module (SM). Each
CA treats image processing and camera controlling. SM are devoted to manage
communication between CAs. The system extracts object positions independent
of environment via the collaboration of CAs and a SM.

To our best knowledge, no agent-based solutions have been proposed in the
literature to monitoring and signaling intrusions in marine reserves.
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3 Scenario

In the summertime, in Sardinia and in its small archipelago there a lot of tourists
that often sail in protected or forbidden areas and/or close to the coast. Moni-
toring such areas is quite complicated since the corresponding scenario requires
to discriminate between authorized and not authorized boats.
Along the length of Sardinia coast, there are two-hundred tourist ports with

about thirteen thousands places available for boats and several services for boat
owners. Small ports typically have to monitor large areas in order to guarantee
the access to authorized boats without suitable resources (e.g., radars). In this
areas, staff operators have to directly patrol the surface in an uneconomic way.
A typical solution consists of using a radar system controlled by a central

unit located ashore in a strategical position. Radar signals allow to detect the
positions of the boats that sail in the controlled area. The main problem is that
it is needed to distinguish among authorized and not authorized boats. In this
paper, we present a novel down-market approach.
Being interested in monitoring and signaling intrusion in marine reserves, we

decided to supply each authorized boats with suitable devices able to transmit
(through the GSM technology) their position (through the GPS technology). In
this way, the corresponding scenario encompasses two kinds of boats: authorized
ones recognizable by the GPS+GSM devices, and not authorized ones. Both
kinds of boats will be identified by a digital radar able to detect the position of
all the mobile objects located in the protected area. Comparing the position sent
by the boat and the one detected by the radar will easily help in identifying not
authorized boats signaling intrusions to the staff operators. Furthermore, such
approach may also allow to establish communication between the central server
and the boats in order to send information about the weather or to provide
assistance.
From a conceptual perspective, we can consider the problem of monitoring

and signaling intrustions in marine reserves as an information retrieval task. In
fact, a typical information retrieval task has to take into account the following
issues:

i. how to deal with different information sources and to integrate new infor-
mation sources without re-writing significant parts of it;

ii. how to suitably encode data in order to put into evidence the informative
content useful to discriminate among categories;

iii. how to allow the user to specify her / his preferences;
iv. how to exploit the user feedback to improve the overall performance of the

system.

As for the considered scenario, information sources are radar and GPS+GSM
devices; the categories among discriminate with are authorized and not autho-
rized boats; user preferences depend on the specific role of the user (e.g., system
administrator or staff operators); and the feedback could be adopted by the
system administrator to signal possible errors in the intrusion detection. The

4



V

above issues are typically strongly interdependent in information retrieval sys-
tems. To better concentrate on these aspects separately, we adopted radar and
GPS+GSM devices together with a multiagent system, able to promote the de-
coupling among all aspects deemed relevant.

Moreover, resorting to a multiagent solution may help in dealing with the
underlying scenario that is a distributed environment with limited resources,
needs a light-weight task allocation, and has to support flexible and scalable
requirements.

4 The Adopted Solution

The adopted multiagent system consists of a society of software agents, each em-
bodying heterogeneous characteristics and responsibilities. Each agent is devoted
to exhibit an intelligent behavior to provide a useful support to the final user
in monitoring the boats. To this end, several kinds of agents have been devised:
(i) agents aimed at extracting information from the information sources (i.e. the
radar and the mobile devices); (ii) agents devoted to encode such information;
(iii) cooperative agents that perform the role of domain experts and are aimed
at following boats signaling intrusions; and (iv) interface agent through the user
can interact with.

The proposed system has been devised by customizing to this specific task
X.MAS, a generic multiagent architecture devised to implement information
retrieval and filtering applications. For the sake of completeness, in this section
we first summarize X.MAS (the interested reader may consult [2] for further
information) and then illustrate its customization to monitor boats in marine
reserves.

4.1 X.MAS

The X.MAS architecture encompasses four main levels: information, filter, task,
and interface.

At the information level, agents are entrusted with extracting data from the
information sources. Each information agent is associated to one information
source, playing the role of wrapper.
At the filter level, agents are aimed at selecting information deemed relevant

to the users, and at cooperating to prevent information from being overloaded
and/or redundant. In general, two filtering strategies can be adopted: generic
and personalized.

At the task level, agents arrange data according to users personal needs and
preferences. Task agents are devoted to achieve user goals by cooperating to-
gether and adapting themselves to the changes of the underlying environment.

At the interface level, a suitable interface agent is associated with each dif-
ferent user interface. In fact, a user can generally interact with an application
through several interfaces and devices (e.g., pc, pda, mobile phones, etc.).

5
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X.MAS agents are JADE [3] agents that can (i) interact by exchanging FIPA-
ACL messages, (ii) share a common ontology in accordance with the actual ap-
plication, and (iii) exhibit a specific behavior according to their role. As for agent
internals (see Figure 1), each agent encompasses a scheduler devoted to control
the information flow between adjacent levels. Information and interface agents
embody information sources and specific devices, respectively. Filter and task
agents encompass an actuator that depends on the actual application. Middle
agents contain a dispatcher aimed at handling interactions among requesters and
providers.

Fig. 1. Agent internals.

4.2 SEA.MAS: X.MAS for Monitoring Boats in Marine Reserves

Figure 2 sketches the macro-architecture of the implemented customization of
X.MAS for monitoring boats in marine reserves, the corresponding system has
been called SEA.MAS.

Information level. In this particular scenario, the information sources are
the digital radar and the GPS+GSM devices. For each information source a
suitable information agents will be devoted to embody the information provided
by the corresponding source. To this end, we implemented a wrapper of the
digital radar and a wrapper of the GPS+GSM device. Retrieved information
becomes available to the other agents of the system by invoking the middle
agent corresponding to the middle-span level “Information-Filter”.

6
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Fig. 2. SEA.MAS macro-architecture

Filter level. Filter agents are aimed at encoding the information extracted
by the information agents in order to create events containing the position of
the detected objects and its identify code, if available. Moreover, filter agents are
devoted to avoid two kinds of redundancy: information detected more than once
from the same device (caching) or by different devices (information overloading).
Then, the middle agent corresponding to the middle-span level “Filter-Task”
forwards the event to the corresponding task agent assuming the role of yellow
pages if the identify code is available, or the role of broker otherwise. In case of
the detected event does not correspond to an authorized boat, the middle agent
creates the corresponding task agent able to handle the event.

Task level. To each boat corresponds a task agent, the underlying motiva-
tion being the necessity to centralize the knowledge regarding the boat position,
its state and other possible further communication channels. As for the position,
the events provided by the agents belonging to the upper level are taken into
account also considering the past and are classified as follows: events belonging
to anonymous detection systems and events belonging to known detection sys-
tems (i.e., with an identify code). As for the state, it depends on the identity
code and/or on possible information provided by the corresponding boat. As for
possible further communication channels, a bidirectional message exchange be-
tween the boats and the server could be also available (e.g., to provide weather
information). The main tasks of the agents belonging to this architectural level
are: (i) to follow a boat position during its navigation, also dealing with any
temporary lack of signal; (ii) to promptly identify not authorized boats alerting
the interface agents; and (iii) to handle messages coming from the interface level
in order to notify the involved devices.

Interface level. A suitable interface agent allows users to interact with
the system. Final users are the system administrator and staff operators. The

7
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interface agent is also devoted to pass information from the user to the rest of
the agents, for example to notify the interested agents about changes occurred
in the environment.
Let us note that the corresponding system involves a number of agents that

depends on the number of boats. In fact, whereas the number of information-,
filter-, and interface-agents is fixed (i.e., two information-, one filter-, and one
interface-agent), a task agent must be instantiated for each boat. This is not
a problem for two main reasons: agent can be distributed on several nodes,
and, typically, marine reserves can host about 20 boats at the same time as a
maximum.

As for the capabilities that X.MAS agents can exhibit, in our opinion, in
this particular scenario, the main ones are: (i) cooperation, (ii) mobility, (iii)
personalization, (iv) adaptativity, and (v) deliberative capability.

Cooperation. Cooperation is the main requirement to be implemented in
SEA.MAS agents. In particular, agents must cooperate to coordinate their ac-
tions in order to achieve their goals. In SEA.MAS cooperation may occur both
horizontally and vertically. The former kind of communication supports coop-
eration among agents belonging to a specific level, whereas the latter supports
the flow of information and/or control between adjacent levels through suitable
middle-agents. Cooperation is implemented in accordance with the following
modes: centralized composition, pipeline, and distributed composition (see Fig-
ure 3). Centralized compositions can be used for integrating different capabili-
ties, so that the resulting behavior actually depends on the combination activity.
Pipelines can be used to distribute information at different levels of abstraction,
so that data can be increasingly refined and adapted to the user’s needs. Dis-
tributed compositions can be used to model a cooperation among the involved
components aimed at processing interlaced information. Communication among
agents is performed by the FIPA-ACL support provided by JADE.

Fig. 3. Cooperation modes

Mobility. All the involved agents can be mobile, if needed. In fact, in case
of a large number of agents (i.e., boats) this requirement becomes mandatory
in order to handle with the computational complexity. Thus, mobility allow to
divide the computation in several nodes. Let us recall that X.MAS agents are, in
fact, JADE agents. So that, it is very easy to build mobile agents able to migrate
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or copy themselves across multiple network hosts. In particular, JADE supports
both intra-platform and inter-platform mobility, i.e., a JADE mobile agent can
navigate across different agent containers and platforms. Mobile agents need to
be location aware in order to decide when and where to move. Therefore, X.MAS
provides a suitable ontology that holds the necessary concepts and actions.

Personalization. Personalization is provided to perform profiling at the in-
terface level. In fact, the system is able to provide a different interface depending
on the actual operator (e.g., system administrator and several kinds of staff op-
erators). The information about the user profile is stored by agents belonging to
the interface level. It is worth noting that, to exhibit personalization, filter and
task agents may need information about the user profile. This flows up from the
interface level to the other levels through the middle-span levels. In particular,
agents belonging to mid-span levels (i.e., middle agents) take care of handling
synchronization and avoiding potential inconsistencies. Moreover, the user be-
havior is tracked during the execution of the application to support explicit
feedback, in order to improve her/his profile.

Adaptativity. Currently, SEA.MAS agents exhibit a very trivial adaptive
capability. Task agents, in fact, are able to adapt their behavior in order to avoid
to loose boats in case of signal absence (i.e., areas devoid of GSM signal). In a
future release of the system, we are planning to implement multiagent learning
strategies, such as evolutionary computation strategies, to allow task agents to
self-adapt to further changes that may occur in the environment.

Deliberative capability. Currently, SEA.MAS agents do not exhibit de-
liberative capabilities. In a future release of the system, we are planning to
implement reasoning algorithms that allow task agents to autonomously replan
their actions if needed.

5 The Current Prototype

Figure 4 illustrates the components involved in the system.
First a simulator has been devised in order to test SEA.MAS. Such com-

ponent simulates both the radar and the GPS+GSM devices. In particular, it
simulates signals belonging to GPS and radar by randomizing temporal dis-
placement and by adding detection errors. Furthermore, the simulator mimics
the behavior of the boats by reproducing accelerations and flipping. The presence
of GPS devices on the boats have been also simulated. To test the robustness
of the approach, the prototype has been tested scaling up the number of boats
from 20 to 100. Let us recall that, in the worst case (i.e., 100 boats) the sys-
tem involves on the whole 104 agents. Performances put into evidence that, also
considering 100 boats, the system is able to signal intrusions in a very few time.
To assess the capability of SEA.MAS in detecting intrusions, we perform

experiments considering first a scenario with minus than 40 boats, and then a
scenario with a number of boats varying from 40 to 100. In the former scenario,
being boats enough spaced out, the filter agent is able to easily distinguish among
authorized and not authorized boats and, consequently, task agents are correctly
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Fig. 4. Schema of the overall system

instantiated and able to signal the detected intrusions as soon as they occur. In
the latter scenario, the signals provided by the boats could overlap, and, as a
consequence, the filter agent could not correctly distinguish among authorized
and not authorized boats. In this case, some task agent could be associated
to not authorized boats even if they actually correspond to an authorized one,
and vice versa. To measure such error, we calculate the confusion matrix as
follows: true positives (TP) are the not authorized boats recognized as intrusions;
true negatives (TN) are the authorized boats recognized as not intrusions; false
positives (FP) are authorized boats recognized as intrusions; and false negatives
(FN) are not authorized boats recognized as not intrusions. Starting from those
values we then calculated accuracy (α), precision (π), and recall (ρ), as follows:

α =
TP + TN

TP + TN + FP + FN
(1)

π =
TP

TP + FP
(2)

ρ =
TP

TP + FN
(3)

Experiments showed that, on the average, the system accuracy is 95%. As for
precision and recall, on the one hand the system showed the same propensity to
make mistake in FP and FN, on the other hand the overall error is quite low.
On the average, precision and recall are 93%. Furthermore, for both scenarios
we test the system varying the percentage of positive (not authorized boats, i.e.,
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intrusions) and negative (authorized boats, i.e., not intrusions) examples. In both
cases, the system is not influenced by those variations in the inputs, meaning
that the behavior of the system is independent from the kind of involved boats.
Once SEA.MAS has been tested, the simulator has been switched off and

the system has been used to monitor boats in a marine reserve located in the
north Sardinia. The GPS- and radar-signals are retrieved by suitable informa-
tion agents that are able to extract the actual position according to GPS and
NMEA standards. As for the interface agent, it represents in different colors
the different states corresponding to the boats: authorized, not authorized, not-
detected, under verification. In case of intrusions, an acoustic sound is generated
together with the position of the not authorized boats. Such signal is then sent
to the boats devoted to reach the not authorized boat. The maximum number
of boats in the selected marine reserve was 20. Experiments performed on the
real scenario showed results comparable with the ones performed during the
simulation.
Summarizing, results show that adopting the proposed approach allows sys-

tem administrator and staff operators to easily identify intrusions. Results are
quite interesting also considering that the system is down-market.
Finally, SEA.MAS has been also used to monitor a tourist port. In this

application, the sistem is able to detect arriving boats that have booked a place
in order to provide them all the required facilities as soon as they arrive. In
Figure 5 the interface of this application is showed.

Fig. 5. The application to monitor a tourist port

6 Conclusions and Future Work

In this paper, SEA.MAS, a multiagent system for monitoring boats in marine
reserves, has been presented. The system has been built upon X.MAS, a generic
multiagent architecture devoted to support the implementation of information
retrieval applications managing information among different and heterogeneous
sources. The system has been used to monitor boats in a marine reserve located
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in the north Sardinia. Results show that adopting the proposed approach allows
system administrator and staff operators to easily identify intrusions.
As for the future work, we are implementing a new release of the system in

which further information about weather and/or points of interest will be also
provided. Furthermore, task agents will also exhibit adaptive and deliberative
capabilities. Finally, more sophisticated user profiling techniques for the interface
agent implementation are currently under study.
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Abstract. Organizations and roles are often seen as mental constructs, good to

be used during the design phase in Multi Agent Systems, but they have also been

considered as first class citizens in MAS, when objective coordination is needed.

Roles facilitate the coordination of agents inside an organization, and they give

new abilities in the context of organizations, called powers, to the agents which

satisfy the requirements necessary to play them. No general purpose program-

ming languages for multiagent systems offer primitives to program organizations

and roles as instances existing at runtime, so, in this paper, we propose our ex-

tension of the Jade framework, with primitives to program in Java organizations

structured in roles, and to enable agents to play roles in organizations. We provide

classes and protocols which enable an agent to enact a new role in an organiza-

tion, to interact with the role by invoking the execution of powers, and to receive

new goals to be fulfilled. Since roles and organizations can be on a different plat-

form with respect to the role players, the communication with them happens via

protocols. Since they can have complex behaviours, they are implemented by ex-

tending the Jade agent class. Our aim is to give to programmers a middle tier,

built on the Jade platform, useful to solve with minimal implementative effort

many coordination problems, and to offer a first, implicit, management of norms

and sanctions.

1 Introduction

Roles facilitate the coordination of agents inside an organization, giving new abilities in

the context of organizations, called powers, to the agents which satisfy the requirements

necessary to play them. Organizations and roles are often seen as mental constructs,

good to be used during the design phase in MAS, but they have also been considered

as first class citizens in multiagent systems [8], when objective coordination is needed.

No general purpose programming languages for multiagent systems offer primitives to

program organizations and roles as instances existing at runtime, yet.

So, this paper answers the following research questions:

– How to introduce organizations and roles in a general purpose framework for pro-

gramming multiagent systems?

– Which are the primitives to be added for programming organizations and roles?
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– How it is possible to restructure roles during runtime?

Another subquestion could be the following: what does it bring to program roles

and organisations as instances?

As methodology, we build our proposal as an extension of the Jade multiagent sys-

tem framework, with primitives to program, in Java, organizations structured in roles,

for enabling agents to play roles in organizations. As ontological model of organiza-

tions and roles we select [6] which merges two different and complementary views or

roles, providing an high level logical specification.

To pass from the logical specification to the design and implementation of a frame-

work for programming multiagent systems, we provide classes and protocols which

enable an agent to enact a new role in an organization, to interact with the role by in-

voking the execution of powers (as intended, in OO programming, in [7], and shortly

explained in Section 2.4), and to receive new goals to be fulfilled. Since roles and orga-

nizations can be on a different platform with respect to the role players, the communi-

cation with them happens via protocols. Since they can have complex behaviours, they

are implemented by extending the Jade agent class. Our aim is to give to programmers

a middle tier, built on the Jade platform, useful to solve with minimal implementative

effort coordination problems.

We test our proposal on a possible scenario, highlighting the features of our model.

In this paper we do not consider the possibility to have BDI agents, even if both the

ontological model (see [7]) and the Jade framework allow such extension.

The paper is organized as follows. First, in Section 2, we summarize the model of

organizations and roles we take inspiration from, and we give a short description of our

concept of “power”. In Section 3, we describe an example of a typical MAS situation

in the real life; in Section 4 we describe how our model is realized introducing new

packages in Jade; in Section 5 we discuss a possible powerJade solution to a practical

problem (the manager-bidder one), and Section 6 will finsh this paper with related work

and conclusions.

2 The model of organizations and roles

Since we speak about organizations and roles, we need to refer to a formalized on-

tological model, in order to avoid ad hoc solutions imposed by the Jade framework,

and to make understandable to programmers how to use the primitives. In the follow-

ing subsections we shortly show two different (but complementary) views about roles

(see [7] and [9]), and we introduce a unified model starting from these, and define a

well-founded metamodel. Then, we explain our concept of “power”.

2.1 The Ontological Model for the Organization

In [7] an ontological analysis shows the following properties for roles:

– Foundation: a role instance has always to be associated to an instance of the orga-

nization to which it belongs, and to an instance of the player of the role too;
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– Definitional dependence: the role definition depends from the one of the organiza-

tion to which it belongs;

– Institutional powers: the operations defined into the role can access the state of the

organization, and of the other roles of the organization too;

– Prerequisites: to play a role, it is necessary to satisfy some requisites, that means

that the player has to be able to do actions which can be used in the role’s operations

execution.

Also the model of [7] is focused on the definition of the structure of organizations,

given their ontological status, which is only partly different from the one of agents or

objects. On the one hand, roles do not exist as independent entities, since they are linked

to organizations. Thus, they are not components like objects. Moreover, organizations

and roles are not autonomous and act via role players. On the other hand, organizations

and roles are description of complex behaviours: in the real world, organizations are

considered legal entities, so they can even act like agents, albeit via their representative

playing roles. So, they share some properties with agents, and, in some respects, can be

modelled using similar primitives.

2.2 The Model for the Role Dynamics

[9]’s model focus on role dynamics, rather than on their structure; four operations to

deal with role dynamics are defined: enact and deact, which mean that an agent starts

and finishes to occupy (play) a role in a system, and activate and deactivate, which

means respectively that an agent starts executing actions (operations) belonging to the

role and suspends their execution. Although it is possible to have an agent with multiple

roles enacted simultaneously, only one role can be active at the same time: when an

agent performs a power, he is playing only one role in that moment.

2.3 The Unified Model

Using the distinction of Omicini [19], we use the model presented in [7] as an objec-

tive coordination mechanism, in a similar way, for example, artifacts do: organizations

are first class entities of the MAS rather than a mental construction which agents use

to coordinate themselves. However, this model leaves unspecified how, given a role,

its player will behave. So, we merge it with [9]’s model, to solve the problem of for-

mally defining the dynamics of roles, by identifying the actions that can be done in a

open system, such that agents can enter and leave. Organizations are not simple men-

tal constructions, roles are not only abstractions used at design time, and players are

not isolated agents: they are all agents interacting the one with the others. A logical

specification of this integrated model can be found in [6].

2.4 “Powers” in our view

We knows that roles work as “interfaces” between organizations and agents, and they

give so called “powers” to agents. A power can extend agents abilities, allowing them

to operate inside the organization and inside the state of other roles. An example of such
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powers, called “institutional powers” in [17], is the signature of a director which counts

as the commitment of the entire institution.

The powers added to the players, by mean of the roles, can be different for each role

and, thus, represent different affordances offered by the organization to other agents to

interact with it [4].

Powers are invoked by players on their roles, but they are executed by the roles,

since they own both state and behaviour.

3 An example of MAS in real life

We will start with a real-life example, in order to explain a common situation that could

be modeled with a Multi Agent System application. The scenario we want to consider

involves two organizations: a bank, and a software house. Bob has been engaged as a

programmer in a software house. The software house management imposes to him the

owning of a bank account, in order to directly deposit his salary on it. Bob goes to the

bank, where the employee, George, gives him some templates to fill. Once that Bob

finished compiling the modules, George inputs the data on the terminal, creating the

new account, which needs to be activated. George forwards the activation request to his

director, Bill, who is the only able to activate an account in all the bank. Once that the

account will be activated, Bob will be a new bank customer.

Years later, become a project manager, Bob decides to buy a little house. He has to

obtain a loan, and the bank director informs him that for calling a loan, his wage packet

is needed. Bob calls to the management of the software house for his wage packet, and

bring it to Bill. After some days (and other templates filled), the bank gives the loan to

Bob, who can finally buy his new house.

Each organization offers some roles, which have to be played by some agents,

called, for this reason, players. In the bank, Bob plays the customer role, while George

plays the employee one, and Bill the director one. Since Bob interacts with both the

organizations, he has to play a role also inside the software house: he enters as a pro-

grammer, but after some years he changes it, becoming a project manager. As a bank

customer, Bob has some powers: to call for an account, to transfer money on it, to

request for a loan. George, being a simple employee, has the power to create Bob’s

account, but the account activation has to be done by Bill, the director. The call for

activation is done by mean of a specific George’s call to Bill, for the execution of a

responsibility. Also in the case of the loan request, the director has to manage the sit-

uation, maybe examining Bob’s account, and calling him for his wage packet. Another

Bob’s power is to call for his wage packet into the software house. Speaking about per-

sonal capabilities, we can imagine that Bill, in order to access to the bank procedures

for which he is enabled, must fill a login page with his ID and password; the same

happens for George too, and for Bob, in the moment in which he access to his account

using Internet. Bob, however, has also another capability, that is requested when he

plays the programmer role (but the same happens for the project manager one): to give

his login name and password for entering the enterprise IT system. Finally, the director

is required to have more complex capabilities, like evaluating the solvency of a client

requesting a loan.
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4 PowerJade

The main idea of our work is to offer to agents programmers a complete middle tier

with the primitives for implementing organizations, roles, and players in Jade (see Fig-

ure 1). We called this middleware powerJade, remembering the importance of powers

in the interaction between roles and organizations. The powerJade conceptual model is

inspired to open systems: participants can enter in and leave from the system whenever

they want. For granting this condition, and for managing the (possible) continuous op-

erations for enacting, activating, deactivating, and deacting roles (in an asynchronous

and dynamic way), many protocols have been realized. Another starting point has been

the re-use of the software structure already implemented in powerJava [5], based on an

intensive use of so-called inner classes.

Fig. 1. The Jade architecture and the powerJade middle tier.

In order to give an implementation based on the conceptual model we discussed in

Section 2.3, not only the three subclasses of the Jade Agent class (Organization,
Role, and Player) have been realized (they will be described in Sections 4.1, 4.2,
4.3), but also classes for other central concepts, like Power, and Requirement were
implemented (and showed in Sections 4.2, 4.3). For representing the dynamics of the

roles, we implemented also all the needed communication protocols, that will be de-

scribed in Section 4.4.

Organization, Role, and Player have similar structures: they contain a finite
state machine behaviour instance which manages the interaction at the level of the new

middle tier by means of suitable protocols for communication.

To implement each protocol in Jade two further FSMBehaviour are necessary, each

one dealing the part of the protocol of the two interactants; for example, the enactment
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protocol between the organization and the player requires two FSMBehaviours, one in

the organization and one in the player.

4.1 The Organization Class

The Organization class is structured as in Figure 2. The OrgManagerBehaviour
is a finite state machine behaviour created inside the setup() method of

Organization. It operates in parallel with other behaviours created by the pro-

grammer of the organization, and allows the organization to interact via the middle

tier. Its task is to manage the enact and deact requests done by the players. At each it-

eration, the OrgManagerBehaviour looks for any message having theORGANIZA-
TION PROTOCOL and the performative ACLMessage.Request.

EnactProtocolOrganization and DeactProtocolOrganization are the
counterpart of the respective protocols inside the players which realize the interaction

between organizations and players: instances of these two classes are created by the

OrgManagerBehaviourwhen needed.

Fig. 2. The Organization diagram.

When the OrgManagerBehaviour recognize a message to manage, it extracts

the sender’s AID, and the type of request required. In case of an Enact request (and

whether all the controls described on Subsection 4.4 about the Enact protocol suc-

ceeded), a new instance of EnactProtocolOrganization behaviour is created,
and added to the queue of behaviours to be executed. The same happens (with a new

instance of the DeactProtocolOrganization behaviour) if a Deact request has
been done, while if the controls related to the requested protocol will not succeed, the

iteration terminate, and the OrgManagerBehaviour takes again its cycle. In the be-
havioural part of this class, programmers can add a “normative” control on the players’
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good intentions, and managing the possibility of discovering lies before enacting the

role, or immediately after having enact it (and before w.r.t. its activation). Primitives

implementing these controls are ongoing work.

4.2 The Role Class

As described in [3], the Role class is an Agent subclass, but also an Organization
inner class. Using this solution, each role can access to the internal state of the orga-

nization, and to the internal state of other roles too. Like the Organization class

has the OrgManagerBehaviour, the Role has the RoleManagerBehaviour,
a finite state machine behaviour created inside the setup() method of Role. Its task
is to manage the commands (messages) coming from the player: a power invocation, an

Activate, or a Deactivate.

Inside the role, an instance of the PowerManager class is present. The

PowerManager is a FSMBehaviour subclass, and it has the whole list of the pow-
ers of the role (linked as states of the FSM). It is composed as follows:

– a first state, the ManagerPowerState, that must understand which power has
been invoked;

– a final state, the ResultManager, that has to give the power result to its caller;
– a self-created and linked state for each power implemented by the role programmer.

All the transitions between states are added at run-time to the FSM, respecting the code

written by the programmer.

The Powers Powers are a fundamental part of our middleware. They can be invoked

by a player on the active role in the particular moment of the invocation, and they

represent the possibility of action for that role inside the organization. For coherence

with the Jade framework and to exploit the scheduling facility, powers are implemented

as behaviours, getting also advantage of their more declarative character with respect to

methods.

Some times, a power execution needs some requirements to be completed; this is

a sort of remote method call dealt by our middleware, since requirements are player’s

actions. In our example, George, as bank employee, has the power of creating a bank

account for a customer; to exercise this power, George as player has to input his cre-

dentials: the login and the password.

The problem to be solved is that players’ requirement invocationmust be transparent

to the role programmer, who should be relieved from dealing the message exchange

with the player.

We modeled the class Power as a FSMBehaviour subclass, where the complete
finite state machine is automatically constructed from a declarative specification con-

taining the component behaviours to be executed by the role and the name of the re-

quirements to be executed by the player; in this way, we can manage the request for

any requirement as a particular state of the FSM. When a requirement is required,

a RequestRequirementState (that is another subclass of FSMBehaviour) is
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added automatically in the correct point invoking the required requirement by means of

a protocol: the programmer has only to specify the requirement name.

The complexity of this kind of interaction is shown in Figure 3. The great balloon

indicating one of the powers for that particular role contains the final state machine

obtained writing the following code:

addState(new myState1("S1", "R1", "E1"));
addState(new myState2("S2"));

where S1 and S2 are names of possibly complex behaviours implemented by the role

programmer which will be instanced and added to the finite state machine representing

the power, R1 is the name requested requirement, and E1 is a behaviour representing

the error management state. Analyzing the structure of the power, we can see that the

execution of the first state S1 is followed by a macro-state (that is a FSMBehaviour),
managing the request for a requirement, automatically created by the addState()
method. This state will send to the player the request for the needed requirement, also

managing the possible parameters, waiting for the answer. Whether the answer is posi-

tive, the transition to the following state of the power is done (or to the

ResultManager, if needed); otherwise, the error can be managed (if possible), or
the power is aborted. The ErrorManager is a particular state that allows to manage

all the possible kinds of error, also the case in which a player lied about its require-

ments).

Error management is done via the middle tier. We can individualize two kinds of

possible errors: (i) the accidental ones, and (ii) the voluntary ones. Typical cases of

the (i) are the “practical” problems (i.e. network too busy and timeout expired), or the

ones linked to a player bad working (also, a programming problem); those indicated as

(ii) are closely linked to an incorrect behaviour of the player, like the case in which an

agent lied on its requirements during an enact protocol. The latter case of error manag-

ing allows to the organization and roles programmer a fist, rough, implicit, normative

and sanctionative mechanism: if the player, for any reason, shows a lack of require-

ments, it could be obliged to the deact protocol w.r.t. that particular role, or it can be

“marked” with a negative score, that could mean a lower trust level exercised from the

organization to it.

An advantage given by using a declarative mechanism like behaviours for modelling

powers is that new powers can be dynamically added or removed from the role. It is suf-

ficient to add or remove transactions linking the power to the ManagerPowerState
which is a FSMBehaviour too.

This mechanism can be used to model both dynamics of roles in organizational

change or access restrictions. In the former case we can model situations like the power

of the director to add to the employee the power of giving loans. In the latter case, we

can model security restriction by removing powers from roles, so to avoid the situation

where first a power is invoked and then aborted after controlling an access control list.

4.3 The Player Class

Analogously to Organization and Role, also the Player class is an Agent sub-
class. Like in the other two cases, we have a PlayerManagerBehaviour, a FSM-
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Fig. 3. Power management.

Behaviour managing all the possible messages that the player can receive. The player

is the only agent totally autonomous. It contains other behaviours created by the agent

programmer which are scheduled in parallel with the manager behaviour and it can ob-

viously also interact with other agents, not involved in any organization (since the com-

munication protocol existing in Jade always continues working), but it’s constrained to

interact with any kind of organization using a role offered by the organization itself.

In case of a communication with another agent inside the organization, it can be done

only via roles. Any other activity, communication, or action that both the agents could

do without passing through their roles will not have effect on the internal state of the

organization at all. Only the player can use all the four protocols described in Subsec-

tion 2.2: Enact and Deact with the organization, Activate and Deactivate with the role.

While the role has to manage powers, the player deals with requirements: this is done

by a RequirementManager.

The Player class offers some methods. They can be used in programming the

other behaviours of the agent when it is necessary to make change to the state of role

playing or to invoke powers. We assume invocations of powers to be asynchronous via

the invokePowermethod from any behaviour implemented by the programmer. The

call informs the PlayerManagerBehaviour which starts the interaction with the
role and returns a call id which is used to receive the correct return value in the same

behaviour if necessary. It is left to the programmer how to manage the necessity of

blocking of the behaviour till an answer is returned, with the usual block instruction of

JADE. This solution is coherent with the standard message exchange of JADE and al-

lows to avoid using more sophisticated behaviours based on threads. The behaviour can
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then consult the PlayerManagerBehaviour to get the return value of the power if
it is available.

The player, once having invoked a power, stays waiting, i.e., for messages o requests

from the active role. When the role needs for some requirements, the

PlayerManagerBehaviour passes the control to the RequirementManager,
which execute all the tasks which are needed.

It’s important to notice that a player can always groww.r.t. its capabilities/requirements.

A player can know organizations and roles on the platform by using the Yellow

Pages mechanism, that in a basic JADE feature.

The Requirements Requirements are, for a player, a subset of the behaviours repre-

senting its capabilities, and, in some sense, the plans for achieve the personal goals of

the agent. Playing a role, an agent can achieve more goals (i.e., the goals achievable in-

voking a power), but, in a general case, the execution of one or more requirements can

be needed during the invocation of a power. Referring to our bank example, George can

achieve many goals dealing with its employee role (i.e., create a new account), but to

do it, it’s necessary for him to log in inside the bank IT system. Seen as a requirement,

its log in capability denote his “attitude”, his “possibility” of playing his employee role.

During the enact protocol, the organization sends (see Section 4.4) to the agent

wanting to play one of its roles, the list of requirements to be fulfilled. As we said, the

candidate player could lie, entering in the role in a not honest way. The organization

and role programmer, however, has all the possibility to check the truth of the candidate

player’s answer before it begins to play the role, not enacting it, or deacting immediately

after the enact. Also this kind of choice has been done to grant the highest freedom

degree

4.4 Communication Protocols

In this Section, an example of a complex communication between a player, an or-

ganization, and a role is shown. We have to make some preliminary considerations,

about communication. Each protocol is split in two, specular, but complementary be-

haviours, one for each actor. In fact, if we consider a communication, two “roles” can

be seen: an initiator, which is the object sending the first message, and a responder,

which never can begin a communication. For example, when a player wants to play

a role inside an organization, an EnactProtocolPlayer instance is created. The

player is the initiator, and a request for a role is done from its new behaviour to the

OrgManagerBehaviour,which instantiates an EnactProtocolOrganization
behaviour. This behaviour will manage the request, sending to the

EnactProtocolPlayer an Inform containing the list of the requirement needed

to play the requested role.

The EnactProtocolPlayer evaluates the list, answering to the organization

part whether it agrees (notice that the player programmer could implement a behaviour

that always answers in a positive way, that sounds like a lie). Only after receiving

the agreement, the EnactProtocolOrganization creates a RoleManager in-

stance, and sends the AID of the role just created to the player. The protocol ends with

the update by the player of its internal state.
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Since the instance of a role, once created, is not yet activated, when the player wants

to “use” a role, has to activate it. Only one role at a time is active, while the others,

for which the agent finished successfully the enactment protocol, are deactivated. The

activation protocol moves from the player to the role instance. The player creates an

ActivateProtocolPlayer, which sends a message to the role, calling for the

activation. This message produces a change into the internal state of the role, which

answers with an inform telling its agreement.
Once the role has been activated, the player can proceed with a power invocation.

As we discussed in [3], this is not the only way in which player and role instance can

communicate.We consider it, since it can require a complex interaction, beginning from

the invoke done by the player on a power of the role. As we shown in Subsection 4.2,
the power management can involve the request to the player for the execution of one or

more requirements. In this case, the role sends a requestwith the list of requirements
to be fulfilled. The player, since autonomous, can evaluate the opportunity to execute

the requirement(s), and take the result(s) to the role (using an inform, waiting for

the execution of the power and for receiving the inform with the result. A particular

case, not visible in Figure 4, is the one in which the player, for any reason, does not

execute the required requirements. This “bad” interaction will finish with an automatic

deactment of the role.

Fig. 4. The Sequence Diagram for a complex communication.

5 The CNP scenario in powerJade

In Section 3, we discussed the bank example, trying to focus on roles’ powers, players’

requirements, responsibility calls, and all that has a place in our middleware. In this
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Section, we want to show a more technical example: the CNP one, or manager-bidder

problem. In Figure 5, a little part of the interaction between the player for the man-

ager role and its role is shown. Let’s consider an agent doing one of its behaviours.

In a particular moment, a task has to be executed, but the agent knows that it cannot

execute it, since this job is not achievable with its capabilities. The only solution is to

find someone able to execute the task, possibly paying the least is possible. The agent

has no knowledge about the ContractNet Protocol, but it knows that there is an orga-

nization that offers the CNP by mean of its roles. The (candidate) player contacts the

organization, starting the enact protocol for the role of manager in the CNP M CNP.
The organization sends the list of requirements to be fullfilled, composed by the “task”

requirement (that is the ability to send a task for a call for proposal operation), and the

“evaluate” task (that is the ability to evaluate the various bidders’ proposals, choosing

the best one). The candidate player owns the requirements, so the role is created. When

the player come to execute once again the behaviour containing the not executable task,

an invokePower() is executed, calling for the power with name CNP (the bold arc

with number 1 in Figure 5). The role begins the power execution (managed by the

PowerManager, after the RoleManager has passed to it the control). The first state
for the power is the request for a requirement: for starting a call for proposal, the task

to be delegated must be specified by the player. The RequestRequirementState
sends a request for requirement to the PlayerManager (the bold arc with number

2 in Figure 5), that passes the control to the RequirementManager. The correct
requirement is executed (the state which entering arc is labeled “task”), and the result

is sent back to the RequestRequirementState (the bold arc with number 3). The
power execution goes on, arriving to the SEND CFP state, that provides the call for

proposal to any bidder known inside the organization (bold arc with label 4, we assume

that some agents already enacted the bidder role), going directly to add the opportune

behaviour to the PowerManager of the B CNP instances found. The bidder roles will
send messages back to the manager roles, after requesting to their players the require-

ment to specify or not a price for the task to be delegated.

The complicated interaction between players and their roles, and between role and

role, is executed without that players have to know the CNP dynamics, since all the

complexity has been introduced in the roles. For the player playing the manager role,

and for the ones playing the bidder role, the organization is a kind of black box; roles are

the “wizards” managing the communication logics, and opportunely calling operations

to be done by the players (that are absolutely autonomous: they are the only agents able

to take decisions.

6 Related work and conclusions

On organizations and roles representations, many models have been proposed [12], ap-

plications modeling organizations or institutions [19], software engineering methods

using organizational concepts like roles [25]. Several agent programming languages

(among which 3APL [24]) have been developed, but few of them have been endowed

with primitives for modeling organizations and roles as first class entities. Exceptions

can be found in MetateM [11] (which is BDI oriented, is based on the notion of group,
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Fig. 5. Part of the solution for the CNP example. We can notice three interactions between dif-

ferent actors: (1) is from a player’s behaviour to the active role; (2) is from a role’s power to the

player; (3) is from a the player to the role, communicating the requirement result; (4) is from a

role’s power to another role.

and it is not a general purpose language), J-MOISE+ [15] (which is more oriented to

programming how agents play roles in organizations), and the Normative Multi-Agent

Programming Language in [22] (which is more oriented to model the institutional

structure composed by obligations, more than the organizational structure composed

by roles). Considering frameworks for modelling organizations like SMoise+ [16] and

MadKit [13], can be noticed limited possibilities to program organizations.

Regarding the analysis of organizations, in [23] can be found what is called the

perspective of computational organization theory and artificial intelligence, in which

organizations are basically described at the role, and group, composed of roles, levels.

Under this perspective, works such as GAIA [25] (which is a model for designingMAS,

more than a framework) and the already cited (with extensions) MOISE [14] can be

found, while other models, such as ISLANDER [10], define organizations as electronic

institutions, in terms of norms and rules.

With respect to organizational structures, HolonicMAS [21] present particular pyra-

midal organizations in which agents of a layer (under the same coordinator, also known

as the holon’s head) are able to communicate and to negotiate directly between them

[1]. Roles and groups can express quite naturally Holonic structures, under the previ-

ously described perspective.
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Looking at agent platforms, there are two other—other than JADE—which can be

considered relevant in this context. First, JACK Intelligent Agents [2] supports orga-

nizational structures through its Team Mode, where goals can be delegated to team

member in order to achieve the team goals. JADEX [20] presents another interesting

platform for the implementation of organizations, even if it does not currently have

organizational structures.

[18] make a very similar proposal to powerJade. However, it does not propose a

middle tier supported by a set of managers and behaviours making all the communica-

tion transparent to agent programmers. It presents a simpler approach that relies mostly

on the extension of agents through behaviours and represents Roles as components on

an ontology, while our approach presents a slightly more complex approach, in which

roles are implemented as agents that provide further decoupling by brokering between

organizations and players, and provides a state machine that permits precise monitoring

of the state of the roles.

In this paper we introduce organizations and roles as new classes in the Jade frame-

work which are supported by a middle tier offering to agents the possibility to enact

roles, invoke powers and to coordinate inside an organization.

The framework is based on a set of FSMBehaviours which realize the middle tier

by means of managers keeping track of the state of interaction and protocols to make

the various entities communicate with each other.

Powers offered by roles to players have a declarative nature that does not only make

them easier to be programmed, but allows the organization to dynamically add and

remove powers so to have a restructuring of the roles.

The normative part of our work has to be improved, since, at the moment, only a

kind of “implicit” one is present. It can be seen, for example, in the constraints which

make possible to play a role only if some requirements are respected. We are also con-

sidering possible merge with Jess (in order to use an engine for goals processing), and

Jason.
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Abstract. The development of multi-agent programs requires debug-
ging tools and techniques to find and resolve possible defects in such
programs. This paper focuses on BDI-based multi-agent programs, dis-
cusses some existing debugging approaches that are developed for specific
BDI-based multi-agent programming languages, and proposes a generic
and systematic approach for debugging BDI-based multi-agent programs.
The proposal consists of an assertion language to specify cognitive and
temporal behavior of multi-agent programs and a set of debugging tools.
The assertions can be assigned to the debugging tools which will be ac-
tivated as soon as the execution of a multi-agent program satisfies the
assertion.

1 Introduction

Debugging is the art of finding and resolving errors or possible defects, also called
bugs, in a computer program. In the context of this paper we divide bugs into
three categories: syntax bugs, semantic bugs (logical and concurrent bugs), or
design bugs. Design bugs arise before the actual programming and are based on
erroneous design of software programs. In contrast to design bugs, both syntax
and semantic bugs arise during programming and are related to the actual code
of the program. Although syntax bugs are (most of the time) simple typos, which
can easily be detected by the program parser (compiler), semantic bugs are, as
the name implies, mistakes at the semantic level. Because they often depend
on the intention of the developer they can rarely be detected automatically by
the program parsers. Therefore, special tools are needed to detect semantic bugs.
The ease of the debugging experience is largely dependent on the quality of these
debugging tools and the ability of the developer to work with these tools.
A promising approach to develop computer programs for complex and con-

current applications are multi-agent systems. In order to implement multi-agent
systems, various agent-oriented programming languages and development tools
have been proposed [2]. These agent-oriented programming languages facilitate
the implementation of individual agents and their interactions. A special class
of these programming languages aims at programming BDI-based multi-agent
systems, i.e., multi-agent systems in which individual agents are programmed in
terms of cognitive concepts such as beliefs, events, goals, plans, and reasoning
rules [13, 8, 3, 7].
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Despite numerous proposals for BDI-based multi-agent programming lan-
guages, there has been little attention on building effective debugging tools for
BDI-based agent-oriented programs. The existing debugging tools for BDI-based
programs enable the observation of program traces (the sequence of program
states generated by the program’s execution) [5, 8, 6, 7, 3] and browsing through
these traces, allowing to run multi-agent programs in different execution modes
by for example using breakpoints and assertions [5, 7, 3, 8], observing the message
exchange between agents and checking the conformance of agents’ interactions
with a specific communication protocol [4, 12, 8, 5, 9, 10]. Although most propos-
als are claimed to be applicable to other BDI-based multi-agent programming
languages, they are presented for a specific multi-agent platform and the cor-
responding multi-agent programming language. In these proposals, debugging
multi-agent aspects of such programs are mainly concerned with the interaction
between individual agents and the exchanged messages. Finally, the temporal
aspects of multi-agent program traces are only considered in a limited way and
not fully exploited for debugging purposes.

In this paper, we focus on semantic bugs in BDI-based multi-agent programs
and propose a generic approach for debugging such programs. Our proposal ex-
tends previous ones by debugging not only the interaction between individual
agents in terms of exchanged messages, but also debugging relations between
internal states of different individual agent programs.1 Moreover, we propose
a set of debugging constructs that allow a developer to debug both cognitive
and temporal aspects of the multi-agent program traces. For example, the de-
bugging constructs allow a developer to log specific parts of the cognitive state
of individual agent programs (e.g., log the beliefs, events, goals, or plans) from
the moment that specific condition holds, stop the execution of multi-agent pro-
grams whenever a specific cognitive condition holds, or check whether a trace of
a multi-agent program (a sequence of cognitive states) satisfies a specific (tem-
poral) property. In general, we propose a set of debugging actions/tools and an
assertion language. The expressions of the assertion language are assigned to
the proposed actions/tools such that they are performed/activated when their
associated assertions hold during the execution of multi-agent programs. Our ap-
proach does not assume a specific representation for the internals of individual
agents and can be applied to any BDI-based multi-agent programming language.
We only assume that the state of individual BDI-based agents consists of cog-
nitive components such as beliefs, goals, plans, and events/messages without
assuming how these components are represented.

In section 2, we discuss some related works on debugging multi-agent pro-
grams, and in section 3, we present our generic vision on multi-agent programs
and their semantics. Based on this vision, our approach for debugging multi-
agent programs is presented in section 4. The paper concludes with some com-
ments and future works.

1 A developer/debugger of a multi-agent program is assumed to have access to the
multi-agent program code and therefore to the internal state of those programs.
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2 Background and Related Work

A well-known technique often used for debugging single sequential and concur-
rent programs is a breakpoint. A breakpoint is a marker that can be placed in
the program’s code. Breakpoints can be used to control the program’s execution.
When the marker is reached program execution is halted. Breakpoints can be
either conditional or unconditional. Unconditional breakpoints halt the program
execution when the breakpoint marker is reached. Conditional breakpoints only
halt the program execution when the marker is reached and some extra condition
is fulfilled. Another (similar) functionality, that can be used to re-synchronize
program executions, is called a process barrier breakpoint. Process barrier break-
points are much like normal breakpoints. The difference is they halt the processes
that reached the barrier point until the last process reaches the barrier point.
A different debugging technique used for traditional programming practices is
called the watch. The watch is a window used to monitor variables’ values. Most
watch windows also allow the developer to type in a variable name and if the
variable exists the watch will show the variable’s value. In the IDEs of most
high-level programming languages the watch is only available when the pro-
gram’s execution is halted. Other traditional debugging techniques are logging
and visualization. Logging allows a developer to write some particular variable’s
value or some statement to a logging window or a file. Visualization is particu-
larly helpful in the analysis and fine tuning of concurrent systems. Most relevant
in light of our research is the ability to visualize the message queue.

These traditional debugging techniques have inspired many agent researchers
to develop debugging frameworks for multi-agent programs. An example of such
a framework, proposed by Collier [5], is designed for Agent Factory and its
corresponding AFAPL (Agent Factory Agent Programming Language). In this
approach, debugging can be done both at compile time and at run time. At
compile time, syntax errors as well as reference to non-existing files, the definition
of belief terms, and the declaration of actions and plans are checked. Run time
debugging focuses on semantic bugs such as sending wrong messages and the
internal working of individual agents. The run time debugging is done by a
debugging tool called AFAPL Debugger. This tool provides a number of views
of an agent system, among which, a view that enables to inspect and trace an
agent’s internal state, and to start, stop, and step through the execution of
the agent program. Beside these standard functionalities, this view enables to
highlight the interplay between different mental attitudes of one individual agent,
to check the performance of an agent with respect to the execution of perceptors
and actuators, and to increase the level of control over granularity of the step
operation using breakpoints. Using this extended view tool, one can inspect
beliefs that are generated by a perceptor, the current primary commitments of
the agent, and a list of all messages sent/received by the agent. The views can
be filtered to, for example, focus on the beliefs generated by a single preceptor.
Other views present information about services that are deployed on the agent
platform and the previous runs (histories) of the agent system.
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Sudeikat [11] presents an assertion based debugging mechanism for the Jadex
platform and its corresponding programming language. In this approach, asser-
tions statements can be annotated to the BDI elements (e.g., beliefs, goals,
plans) of an individual agent program. Assertions specify relations between BDI
concepts or the invariant properties of the execution of an agent program. Asser-
tion statements, which evaluate to boolean values, are arbitrary Java statement
executed by the underlying Jadex assertion mechanism. When an assertion is
evaluated to false, a warning is generated to inform the developer about the
agent and the element where the assertion evaluated to false. The execution of
the Java statements is triggered by the Jadex BDI reasoning events. They also
propose a three dimensional graph of the overall communication structure of the
multi-agent system. Finally, they propose run time monitoring of exchanged mes-
sages in order to detect possible violation with respect to a given communication
protocol.

An important aspect of debugging multi-agent programs is related to mes-
sage exchanges between individual agents. In many existing approaches, e.g., [1,
7, 3, 8], message exchanges are logged and presented by means of different visu-
alization techniques. In [4], Bot́ıa and his colleagues use traditional data mining
techniques to visualize the logged (FIPA) exchanged messages. This approach
creates two main types of graphs: an agent communication graph, and a clus-
tered graph where agents are clustered based on similar communication activity
or cooperation activity. In another work [12], Vigueras and Bot́ıa propose the
use of causality graphs to track causality amongst messages sent by individual
agents. The causality graph is created from conversations that are previously
logged. The ordering of the messages is done by using a logical vector clock.

Yet another approach to debug a multi-agent program based on comparing
the actual behavior of the program with the desired behavior is proposed by
Lam [6]. In this paper, a tracing method and tracer tool are proposed. The
tracing method captures dynamic runtime data by logging actual agent behavior.
The data is logged by introducing logging statements into the agent program.
The captured data is used to create behavioral models of the agents’ activities
in terms of agent concepts (e.g. beliefs, goals, and intentions). These models can
be used to compare the actual behaviour of the models with the expected agent
behaviour, to identify bugs in the agent’s program. Currently the comparision
has to be made manually, since no specification for expected agent behavior has
been developed yet. The tracer tool creates relational graphs which can be used
to manually verify the initial design diagrams.

The techniques mentioned above are helpful when errors manifest themselves
directly to the developer or user. However, errors in a program do not always
manifest themselves directly. For mission and industrial critical systems it is nec-
essary to extensively test the program before deploying it. This testing should
remove as many bugs (and possible defects) as possible. However, it is infeasible
to test every single situation the program could be in. A testing approach pro-
posed for multi-agent programs is proposed by Poutakidis and his colleagues [9,
10].
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3 Programming Multi-Agent Systems

Amulti-agent program is the declaration of a set of agents, possibly together with
the specification of organizational structures and laws that should be respected
by the declared agents during their executions. In order to keep our approach
generic, we do not make any assumption about organizational structures and
laws. So, without losing generality, we assume that a multi-agent program looks
like the following program.2

Agents: cleaner : cleaner.prog 1

explorer : explorer.prog 3

Environment: gridworld

This program declares one cleaner agent and three explorer agents that should
cooperate to clean bombs from a grid-like environment, called gridworld. This
multi-agent program indicates that agents can perform actions in the gridworld
environment. For this program, we assume that the goal of the explorer agent is
to explore the environment and find the bombs, which are placed in that envi-
ronment. When a bomb is found, the explorer agent communicates the location
of the bomb to the cleaner agent who has to dismantle the bomb.

An individual BDI-based agent can be programmed by specifying its initial
(cognitive) state/configuration in terms of beliefs (information), events (obser-
vation), goals (objectives), plans (means), and reasoning rules (for generating
plans). In programming terminology, these ingredients can be considered as (cog-
nitive) data structures specifying the (initial) state/configuration of the agent
program. Without losing generality and committing to a specific knowledge rep-
resentation scheme, we assume in the rest of the paper a BDI-based agent pro-
gramming language that provides (cognitive) data structures to represent the
initial cognitive state/configuration of each individual agent.

The execution of a BDI-based multi-agent program is the concurrent execu-
tions of all individual agent programs. The execution of each individual agent
program is based on a cyclic process called deliberation cycle (sense-reason-act
cycle). Each iteration of this process starts with sensing the environment (i.e.,
receive events and messages), reasoning based on its state (i.e., update beliefs
and goals based on events and messages, and generate plans to either achieve
goals or to react to events), and performing actions (i.e., perform actions of the
generated plans). An execution of a multi-agent program generates a trace (a
sequence of multi-agent program states). Each state in such a trace consists of
the states of all individual cognitive agents, i.e., it consists of beliefs, events,
goals, plans of all individual agents. It is important to note that similar BDI
ingredients and deliberation cycle are used in existing BDI-based programming
languages such as Jason [3], 2APL [7], Jadex [8], and Jack [13].

2 It should be noted that the declaration of agents can also be done by means of
loading agents in a multi-agent platform such that there is no need for a specific
multi-agent program.
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In the following, we assume that an execution of a multi-agent program starts
with the initial state of the declared agents (specified by the individual agent
programs) and generates a sequence of states based on a deliberation cycle (i.e.,
sense, reason and act cycle). Formally, a state of a multi-agent program is a
tuple 〈A1, . . . , An, χ〉, where Ai = 〈i, σ, γ,Π, ξ〉 is the state of individual agent i
(with beliefs σ, goals γ, plans Π, and events ξ) and χ is the environment in which
agents’ actions can be performed. An execution of a multi-agent program is then
a sequence s0, s1, . . ., where s0 = 〈A0

1
, . . . , A0

n
, χ0〉 is the initial state specified by

a multi-agent program, and state sn is reached by means of a deliberation action
(update beliefs, generate/execute plans, process events) performed by one of the
agents in state sn−1.
For example, the multi-agent program mentioned above specifies the ini-

tial state 〈cleaner, explorer1, explorer2, explorer3, gridworld〉. The state of the
cleaner agent is cleaner = 〈c, σc, γc,Πc, ξc〉, where σc represents the beliefs of
the cleaner agent (initially specified by cleaner.prog), γc represents its goal
base, Πc represents its plan base, and ξc represents its event base. The beliefs
can be a set of propositions, a set of objects, or any other data structure that
can represent facts. The exact nature of beliefs depends on the programming
constructs provided by the programming language. Note that Π is a set of plans
each consists of domain actions, e.g., Π = {goto(2, 3); pickup() , sense(bombs)}
consists of two plans; the first plan indicates that the agent should move to
location (2, 3) followed by a picking up (a bomb) action, and the second plan
indicates that the agent should sense the world to find some bombs. The state
of other agents are similar. The gridworld is assumed to be an specification of
the state of the gridworld environment.

4 Debugging Multi-Agent Programs

Given an execution of a multi-agent program, one may want to check if an agent
drops a specific goal when it is achieved, when two or more agents have the
same beliefs, whether the number of agents is suited for the environment (e.g.
it is useless to have a dozen explorers on a small area, or many explorers when
there is only one cleaner that cannot keep up with them.), whether the protocol
is suited for the given task (e.g. there might be a lot of overhead because facts
are not shared, and therefore, needlessly rediscovered), whether important beliefs
are shared and adopted, or rejected, once they are received. We may also want
to check if unreliable sources of information are ignored, whether the actions of
one agent are rational to take based on the knowledge of other agents, or if sent
messages are received by the recipient. This can, for example, be used to locate
deadlocks where one more agents keep waiting for a message to be sent.
Ideally one would specify a property by creating an assertion and get notified

when the assertion evaluates to true. Similar ideas are proposed in Jadex [8].
In the following, we introduce an assertion language, called MDL (multi-agent
description language), to specify the cognitive and temporal behavior of BDI-
based multi-agent programs. An MDL assertion is evaluated against the (finite)
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trace of a multi-agent program and can activate some debugging tools when they
are evaluated to true. The debugging tools are inspired by traditional debugging
tools, extended with the functionality to verify a multi-agent program trace. One
example of such a debugging tool is a multi-agent version of the breakpoint. The
breakpoint can halt a single agent, a group of agents or the complete multi-
agent program. This multi-agent version of the breakpoint can also have a MDL
assertion as a condition, making it a conditional breakpoint.

4.1 Syntax of Assertion language

In this section, we present the syntax of the MDL written in EBNF notation. An
expression of this language describes a property of a multi-agent program execu-
tion and can be used as assertions based on which debugging actions/tools will be
performed/activated. In the following, 〈group id〉 is a group identifier (uncapital-
ized string), 〈agent id〉 an agent identifier (uncapitalized string), 〈query name〉
a property description name (a reference to an assertion used in the definition
of macros; see later on for a discussion on macros), 〈V ar〉 a variable (Variables
are capitalized strings), [all] indicates the group of all agents, and 〈agent var〉
an agent identifier, a group identifier, or a variable. In order not to make any as-
sumption about the exact representation of an agent’s beliefs, goals, events, and
plans, we assume Bquery, Gquery, Equery, and Pquery to denote an agent’s
Beliefs, Goals, Events, and Plans, respectively. This makes it possible to apply
this assertion language to other BDI-based multi-agent programming languages.

〈group def〉 : := “ [” 〈group id〉 “] ”“ = ” 〈agent list〉

〈agent list〉 : := “ [” 〈agent id〉 (“, ” 〈agent id〉) ∗ “] ”

〈mdl pd〉 : := 〈query name〉 “{” 〈mdl query〉 “}”

〈mdl query〉 : := “{” 〈mdl query〉 “}”

| 〈agent var〉 “@Beliefs (”〈Bquery〉“) ”

| 〈agent var〉 “@Goals (”〈Gquery〉“) ”

| 〈agent var〉 “@Plans (”〈Pquery〉“) ”

| 〈agent var〉 “@Events (”〈Equery〉“) ”

| 〈UnOp〉 〈mdl query〉

| 〈mdl query〉 〈BinOp〉 〈mdl query〉

|“?” 〈query name〉

〈BinOp〉 : := “and” | “or” | “implies” | “until”

〈UnOp〉 : := “not” | “next” | “eventually” | “always”

〈agent var〉 : := 〈V ar〉 | 〈agent id〉 | 〈group id〉 | “[all]”

Note that 〈mdl pd〉 is an assertion that describes the (temporal and cogni-
tive) behavior of a multi-agent program execution. In order to illustrate the
use of this assertion language, we present a number of examples in which logic-
based representation are used to express an agent’s beliefs, goals, events, and
plans. For example, bomb(2,3) (read as there is a bomb at position (2,3))
and clean(gridworld) and carry(bomb) (read as the gridworld is clean and
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the agent carries a bomb) are used to represent an agent’s beliefs or goals,
event(bombAt(3,4)) (read as it is perceived that a bomb is at position (3,4))
or message(explorer, inform, bombAt(2,3)) (read as a message is received
from explorer informing there is a bomb at position (2,3)) are used to represent
an agent’s events and messages, and goto(X, Y); dropBomb(X’,Y’) (read as
go first to position (X,Y) and then drop the bomb that is originally found at
position (X’,Y’)) are used to represent an agent’s plan.
In order to specify that either all agents believe that there is a bomb at

position 2,3 (i.e., bomb(2,3)) or all agents believe that there is no bomb at
that position (i.e. not bomb(2,3)), we can use the following assertion.

[all]@Beliefs( bomb(2,3) ) or [all]@Beliefs( not bomb(2,3) )

We can generalize this assertion by assigning a name to it and parameterizing
the specific beliefs (in this case bomb(X,Y)). This generalization allows us to de-
fine an assertion as a macro that can be used to define more complex assertions.
For example, consider the following generalization (macro) that holds in a state
of a multi-agent program if and only if either all agents believe the given belief
φ or all agents do not believe φ.

isSharedBelief(φ) { [all]@Beliefs( φ ) or [all]@Beliefs( not φ ) }

Note that isSharedBelief(φ) can now be used (e.g., in other assertions) to check
whether or not φ is a shared belief. In general, one can use the following abstract
scheme to name an MDL assertion. Parameters Var1, Var2, and Var3 are assumed to
be used in the MDL assertion.

name( Var1, Var2, Var3, ...) { MDL assertion }

The following example demonstrates the use of macros. To use a MDL assertion
inside another one, the macro’s names should be preceded by a “?” mark. We now
define a cell as detected when agents agree on the content of that cell. We define
detectedArea(R) as follows.

detectedArea(X, Y) { ?isSharedBelief( bomb(X,Y) ) }

The next example shows a MDL assertion that can be used to verify whether the
gridworld will eventually be clean if an agent has the goal to clean it. In particular, the
assertion states that if an agent A has the goal to clean the gridworld then eventually
that agent A will believe that the gridworld is clean.

cleanEnvironment(A) {

A@Goals(clean(gridworld)) implies eventually A@Beliefs(clean(gridworld))

}

The following MDL assertion states that an agent A will not unintentionally drop
the bomb that it carries. More specifically, the assertion states that if an agent believes
to carry a bomb, then the agent will believe to carry the bomb until it has a plan to
drop the bomb. It is implicitly assumed that all plans will be successfully executed.
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doesNotLoseBomb(A) {

always ( A@Beliefs(carry(bomb))

implies

( A@Beliefs(carry(bomb)) until A@Plans(dropBomb(X,Y)) ) )

}

4.2 Semantics

The semantics of the MDL language describe how an assertion is evaluated against a
trace of a BDI-based multi-agent program. In the context of debugging, we consider
finite traces generated by partial execution of multi-agent programs (a partial execution
of a program starts in the initial state of the program and stops after a finite number
of deliberation steps). A finite trace is a finite sequence of multi-agent program states
in which the state of each agent is a tuple consisting of beliefs, goals, events, and plans.
In the following, we write σi to denote the belief base σ of individual agent i. Similar
notation will be used for goal base, plan base, and event base.

Definition 1. Let s = 〈A1, . . . , An, χ〉 be a state (configuration) of a multi-agent pro-
gram, and Ai = 〈i, σi, γi, Πi, ξi〉 be the state of the individual agent i. The assignment
functions Vb, Vg, Ve, and Vp determine the beliefs, goals, events, and plans of an
individual agent in a state of a multi-agent program. These assignment function are
defined as follows: Vb(i, s) = σi, Vg(i, s) = γi, Vp(i, s) = Πi, and Ve(i, s) = ξi.

An arbitrary MDL assertion can be evaluated with respect to a finite multi-agent
program trace that is resulted by a partial execution of a multi-agent program. In the
following, we use t to denote a finite trace, |t| to indicate the length of the trace t (a
natural number; a trace consists of 1 or more states), st to indicate a trace starting
with state s followed by the trace t, |st| = 1+ |t|, and functions head and tail, defined
as follows: head(st) = s, head(t) = t if |t| = 1, tail(st) = t and tail(t) is undefined
if |t| ≤ 1 (tail is a partial function). Moreover, given a finite trace t = s1s2 . . . sn, we
write ti to indicate the suffix trace si . . . sn.

Definition 2. Let t = s1s2 . . . sn be a finite trace of a multi-agent program such that
|t| ≥ 1. The satisfaction of MDL expressions by the trace t is defined as follows:

t |= i@Beliefs(φ)⇔ φ ∈ Vb(i, head(t))
t |= i@Goals(φ)⇔ φ ∈ Vg(i, head(t))
t |= i@Plans(φ)⇔ φ ∈ Vp(i, head(t))
t |= i@Events(φ)⇔ φ ∈ Ve(i, head(t))
t |= φ and ψ ⇔ t |= φ and t |= ψ

t |= φ or ψ ⇔ t |= φ or t |= ψ

t |= φ implies ψ ⇔ t |= φ implies t |= ψ

t |= not φ ⇔ t *|= φ

t |= next φ ⇔ tail(t) |= φ and |t| > 1
t |= eventually φ ⇔ ∃i ≤ |t| (ti |= φ)
t |= always φ ⇔ ∀i ≤ |t| (ti |= φ)
t |= φ until ψ ⇔ ∃i ≤ |t| (ti |= ψ and ∀j < i (tj |= φ))

Based on this definition of MDL assertions, we have implemented some debugging
tools that are activated and updated when their corresponding MDL assertion holds
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in a partial execution of a multi-agent program.3 These debugging tools are described
in the next section.

4.3 Multi-Agent Debugging Tools

This section presents the Multi-Agent Debugging Tools (MADTs). In order to use
the debugging tools, markers are placed in the multi-agent programs to denote under
which conditions which debugging tool should be activated. A marker can consists of
a (optional) MDL assertion and a debugging tool. The MDL assertion of a marker
specifies the condition under which the debugging tool of the marker should be acti-
vated. In particular, if the MDL assertion of a marker evaluates to true for a given
finite trace/partial execution of a multi-agent program, then the debugging tool of the
marker will be activated. Besides a MDL assertion, a marker can also have a group
parameter. This group parameter specifies which agents the debugging tool operates
on. The general syntax of a marker is defined as follows:

〈marker〉 : := “MADT(” 〈madt〉 [“, ” 〈mdl query〉][“,@” 〈group〉]“)”

〈group〉 : := “[” 〈group id〉 “]”| 〈agent list〉

The markers that are included in a multi-agent program are assumed to be processed
by the interpreter of the corresponding multi-agent programming language. In particu-
lar, the execution of a multi-agent program by the interpreter will generate consecutive
states of a multi-agent program and, thereby, generating a trace. At each step of the
trace generation (i.e., at each step where a new state is generated) the interpreter eval-
uates the assertion of the specified markers with respect to the finite trace (according
to the definition of the satisfaction relation; see definition 2) and activates the corre-
sponding debugging tools if the assertions are evaluated to true. This means that the
trace of a multi-agent program is verified after every change in the trace. This mode
of processing markers is called continuous mode as it does not stop the execution of
the multi-agent program; markers are processed during the execution of the program.
An alternative mode of processing markers would be post mortem. In this alternative
mode, a multi-agent program can be executed and stopped after some deliberation
steps. The markers can then be processed based on the finite trace generated by the
partial execution of the program. The following example illustrates the use of a marker
in a multi-agent program:

Agents: cleaner : cleaner.prog 1

explorer : explorer.prog 3

Environment: gridworld

Markers: MADT(breakpoint_madt, eventually cleaner@Beliefs(bomb(X,Y)) )

In this marker, a breakpoint will be activated as soon as the cleaner agent believes
that there is a bomb in a cell. Examples of debugging tools are breakpoint, logging,
state overview, or message list. These debugging tools are explained in the rest of this
section. It is important to note that if no MDL assertion is given in a specified marker,
then the debugging tool of the marker will be activated after each update of the trace.
Moreover, if no group parameter is given in the marker, the “[all]” group is used by
default.
3 It should be noted that this definition of the satisfaction relation can behave different
than the standards definition of satisfaction relation of LTL which is defined on
infinite traces.
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Breakpoint The breakpoints for multi-agent programs are similar to breakpoints
used in concurrent programs. They can be used to pause the execution of a single agent
program, a specific group of agent programs, or the execution of the entire multi-agent
program. The example below demonstrates the use of a conditional breakpoint on the
agents explorer1 and explorer2. The developer wants to pause both agents as soon
as agent cleaner has the plan to go to cell (5, 5).

MADT(breakpoint_madt,

eventually cleaner@Plans(goto(5, 5)), @[explorer1, explorer2])

Note that it is possible to use the cognitive state of more than one agent as the break
condition. The next example demonstrates how a developer can get an indication about
whether the number of explorer and cleaner agents are suitable for a certain scenario.
In fact, if there are not enough cleaners to remove bombs, or when all explorers are
located at the same area, then all explorers will find the same bomb.

MADT(breakpoint_madt, eventually [explorers]@Beliefs(bomb(X,Y)))

The breakpoint tool is set to pause the execution of all agents, once all agents
that are part of the “explorers” group have the belief that a bomb is located at the
same cell (X,Y). Note that it need not be explicitly defined to pause the execution of
all agents. The breakpoint is useful in conjunction with the watch tool to investigate
the mental state of the agent. Other agent debugging approaches, e.g., [5], propose
a similar concept for breakpoints, but for a single BDI-based agent program. Also,
Jason [3] allows annotations in plan labels to associate extra information to a plan.
One standard plan annotation is called a breakpoint. If the debug mode is used and
the agent executes a plan that has a breakpoint annotation, execution pauses and the
control is given to the developer, who can then use the step and run buttons to carry
on the execution. Note that in contrast with other approaches, the condition in our
approach may contain logic and temporal aspects.

Watch The watch can display the current mental state of one or more agents. Further-
more, the watch allows the developer to query any of the agents’ bases. The developer
can, for example, use the watch to check if a belief follows from the belief base. It is
also possible to use a MDL assertion in the watch; if the assertion evaluates to true,
the watch will show the substitution found. The watch tool can also be used to visu-
alize which agents have shared or conflicting beliefs. The watch tool is regularly used
in conjunction with a conditional breakpoint. Once the breakpoint is hit, the watch
tool can be used to observe the mental state of one or more agents. In general, the
watch tool should be updated unconditionally and for all agents in the system. Adding
MADT(watch madt) to a multi-agent program will activate the watch on every update
of its execution trace. In Jason [3], a similar tool is introduced which is called the
mind inspector. This mind inspector, however, can only be used to observe the mental
state of individual agents. Jadex [8] offers a similar tool called the BDI-inspector which
allows visualization and modification of internal BDI-concepts of individual agents.

Logging Logging is done by the usage of probes which, unlike breakpoints, do not
halt the multi-agent program execution. When a probe is activated it writes the current
state of a multi-agent program, or a part of it, to a log screen or a file (depending on
the type of probe). Using a probe without a MDL assertion and without a group
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specification is very common and can be done by adding MADT(probe madt) in multi-
agent programs. The probe will be activated on every update of the program trace
such that it keeps a log of all multi-agent program states. The next example saves the
state of the multi-agent program when the cleaner agent drops a bomb in a depot, but
there is still some agent who believes the bomb is still at its original place.

MADT(probe_madt,

eventually(cleaner@Plans(dropBomb(X,Y)) and A@Beliefs(bomb(X,Y)))

)

Similar work is done in Jadex [11] where a logging agent is introduced to allow
collection and viewing of logged messages from Jadex agents. It should be noted that
the probes in our approach offer the added functionality of filtering on a cognitive
condition of one ore more agents.

Message-list Another visualization tool is the message-list, which is one of the sim-
plest forms of visualization. The message-list keeps track of the messages sent between
agents, by placing them in a list. This list can be sorted on each of the elements of
the messages. For example, sorting the messages on the “sender” element can help
finding a specific message send by a known agent. Besides ordering, the list can also
be filtered. For example, we could filter on “Senders” and only show the message from
the sender with the name “cleaner”. To update the message-list on every update of
the trace, we can place the marker MADT(message list madt) in the multi-agent pro-
gram. Another use of the message-list could be to show only the messages from within
a certain group, e.g., MADT(message list madt, @[explorers]) can be used to view
the messages exchanged between the members of the explorers group. Finally, in our
proposal one can also filter exchanged messages based on conditions on the mental
states of individual agents. For example, in the context of our gridworld example, one
can filter useless messages, i.e., messages whose content are known facts. Note that
exchanging too many useless messages is a sign of non-effective communication. The
example below triggers the message list when an agent A, who believes there is a bomb
at coordinates X,Y, receives a message about this fact from another agent S.

MADT(message_list_madt,

eventually( A@Beliefs(bomb(X,Y)) and A@Messages(S,P,bombAt(X,Y)) )

)

All existing agent programming platforms offer a similar tool to visualize exchanged
messages. The main difference with our approach is the ability to log when certain
cognitive conditions hold.

Causal tree The causal tree tool shows each message and how it relates to other
messages in a tree form. The hierarchy of the tree is based on the relation between
messages (replies become branches of the message they reply to). Messages on the same
hierarchical level, of the same branch, are ordered chronologically. The advantage of
the causal tree (over the message-list) is that it is easier to spot communication errors.
When, for example, a reply is placed out of context (not in relation with its cause) this
implies there are communication errors. The causal tree also provides an easy overview
to see if replies are sent when required. The causal tree tool can be used by adding
the marker MADT(causal tree madt) to multi-agent programs. Another example could
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be to set the group parameter and only display message from a certain group, e.g.,
MADT(causal tree madt, @[explorers]). It should be noted that for the causal tree
to work, the messages need to use performatives such as inform and reply.

Sequence diagram The sequence diagram is a commonly used diagram in the
Unified Modeling Language (UML) or its corresponding agent version (AUML). An
instantiation of a sequence diagram can be used to give a clear overview of (a specific
part of) the communication in a multi-agent program. They can help to find irreg-
ularities in the communication between agents. The sequence diagram tool can be
used in our approach by adding the marker MADT(sequence diagram madt) to multi-
agent programs. This example updates the sequence diagram on every update of the
trace. Another example could be to use the group parameter and only update the se-
quence diagram for the agents in a certain group, e.g., MADT(sequence diagram madt,

@[cleaner, explorer2]). Adding this marker to our multi-agent program will show
the communication between the agents “cleaner” and “explorer2”. The sequence di-
agram tool is useful in conjunction with a conditional breakpoint and the stepwise
execution mode where the diagram can be constructed step by step. The sequence di-
agram is also useful in conjunction with the probe. The probe can be used to display
detailed information about the messages. Similar tools are proposed in some other ap-
proaches, e.g., the sniffer agent in [1]. However, we believe that the sequence diagram
tool in our approach is more effective since it can be used for specific parts of agent
communication.

Visualization Sometimes the fact that a message is sent is more important than the
actual contents of the message. This is, for example, the case when a strict hierarchy
forbids certain agents to communicate. In other cases it can be important to know
how much communication takes place between agents. For such situations the dynamic
agent communication tool is a valuable add-on. This tool shows all the agents and
represents the communication between the agents by lines. When agents have more
communication overhead the line width increase in size and the agents are clustered
closer together. This visualization tool, which can be triggered by adding the marker
MADT(dynamic agent madt) to multi-agent program, is shown in figure 1.

Fig. 1. The dynamic agent communication tool.
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Another visualization tool is the static group tool. This debugging tool, which shows
specific agent groups, is illustrated in figure 2. The line between the groups indicates the
(amount) of communication overhead between the groups. In addition the developer
can “jump into” a group and graphically view the agents and the communication
between them.

Fig. 2. The static group tool.

The static group tool can be helpful to quickly check if the correct agents are in the
correct group. It can also be used to check communication between different groups.
If two groups show an unusual amount of communication overhead the developer can
jump into the group and locate the source of the problem. The marker to activate the
static group tool can be specified as follow:

MADT(static_group_madt, @[explorers])

MADT(static_group_madt, @[cleaners])

The above markers update the tool on every change of the multi-agent program
trace. According to these markers, the groups “explorers” and “cleaners” will be vi-
sualized. Generally it is most valuable to have a visualization of all communication
between agents. However, to pinpoint the exact problem in a communication protocol
it can be an invaluable addition to use a condition, which filters the messages that are
shown. These same principles apply to the filtered view. As discussed in the related
works section, other approaches (e.g., [4]) offers similar tools.

5 Conclusion

In this paper, we briefly discussed existing debugging approaches for multi-agent pro-
grams and presented a generic approach for debugging BDI-based multi-agent pro-
grams. Our approach is generic as it does not assume any specific representation for
the internals of individual agents as well as the content of their exchanged messages.
The proposed approach is based on an assertion language to express cognitive and
temporal properties of the executions of multi-agent programs. The expressions of the
assertion language can be used to trigger debugging tools such as breakpoints, watches,
probes, and different visualization tools to examine and debug communication between
individual agents. Since the assertion language is abstract, it can be applied to arbitrary
BDI-based multi-agent programming languages.

We have already applied this debugging approach to 2APL [7] platform by modify-
ing its corresponding interpreter to process debugging markers in a continuous mode.
The 2APL interpreter evaluates the expressions of the assertion language based on the
partial execution trace of the multi-agent programs. We have also implemented the
proposed debugging tools that are discussed in this paper for the 2APL platform. The
parser of 2APL is modified to analyze the markers included in the multi-agent pro-
gram file. This implementation of 2APL is the official 2APL distribution that can be
downloaded from http://www.cs.uu.nl/2apl/. It should be noted that the examples
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discussed in this paper are already implemented in 2APL and the provided analysis is
based on our implementation results.

We plan to extend the debugging mechanism of 2APL implementation such that
debugging markers can be processed both in continuous and post mortem modes. More-
over, we believe that testing is an indispensable part of evaluating multi-agent programs
and plan to follow the existing approaches on testing multi-agent programs and inte-
grate them in our proposed debugging approach. In this way, we hope to generate a
set of critical test traces and start debugging them in post mortem mode. Finally, in
this proposal the groups are defined at design time and remain unchanged during the
whole lifetime of the multi-agent program. A valuable extension is the ability to create
dynamic groups, which defines the member of a group based on the cognitive state of
one or more agents. One approach is to use a MDL assertion to specify which agents
are members of the group. When the MDL assertion evaluates to true, the agent is a
member of the defined group. To declare which agent would be a member of the group,
a reserved agent variable name should be used. For example, every agent that can be
substituted for the variable ”MemberAgent” is a member of the defined group, if the
MDL assertion evaluates to true.
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Abstract. Advances in Agent Oriented Software Engineering have fo-

cused on the provision of frameworks and toolkits to aid in the creation

of Multi Agent Systems. However, despite the inherent complexity of

such systems, little progress has been made in the development of tools

to allow for the debugging and understanding of their inner workings.

This paper introduces a novel performance analysis system, named

AgentSpotter, that is aimed at facilitating such analysis. AgentSpot-

ter was developed by mapping more conventional profiling concepts to

the domain of multi agent systems. We outline its integration into the

Agent Factory multi agent toolkit.

1 Introduction

Recent developments in the area of Multi Agent Systems (MASs) have been
concerned with bridging the gap between theory and practice, by allowing concrete
implementations of theoretical foundations to be built and deployed. However,
the dearth of agent-specific development and debugging tools remain a significant
obstacle to MASs being adopted in industry on a large scale.
While some simple debugging and logging tools exist for MAS analysis,

these tend not to aid in reasoning about large-scale system when viewed at the
high agent-oriented abstraction layer. Such tools typically allow for traditional
debugging actions such as state stepping and breakpoint insertion.

One popular performance analysis technique is known as profiling. Profiling is
based on the observation that the majority of the execution time of a program can
be attributed to a small number of bottlenecks (or hot spots). By improving the
efficiency of these portions of a program, overall performance can be dramatically
improved. Profiling was initially introduced by Donald E. Knuth in an empirical
study conducted on FORTRAN programs [1]. Since then, the technique has been
successfully applied to a variety of languages, platforms and architectures.

The aim of this paper is to apply the principles of traditional profiling systems
in a multi agent environment, so as to facilitate the developers of MASs in
debugging their applications by gaining a better understanding of where the
bottlenecks exist and performance penalties are incurred.
This paper is organised as follows: Section 2 provides a brief overview of

existing tools aimed at aiding in the analysis of MASs. In Section 3, we introduce
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the AgentSpotter profiling system, with particular focus on outlining a conceptual
model for generic MAS profiling. A concrete implementation of this work, aimed
at the Agent Factory MAS framework is outlined in Section 4. Section 5 presents
the agent call graph produced by AgentSpotter in more detail, with the evaluation
of its usefulness given in Section 6. Finally, Section 7 presents our conclusions
and ideas for future work.

2 Related Work

In designing a profiling application for MASs, it is necessary to identify the
features that tend to be present in traditional profilers for non-MAS applications.
It is also necessary to examine those debugging and analysis tools that already
exist for MASs.

The motivation behind the use of profiling on computer applications is clearly
outlined in Knuth’s observation that “less than 4% of a program accounts for
more than half of its running time” [1]. This statement implies that a developer
can achieve substantial increases in performance by identifying and improving
those parts of the program that accounts for the majority of the execution time.
The key aim of profilers is to identify these bottlenecks.

Another observation leading to the widespread adoption of profilers as debug-
ging tools is that there frequently exists a mismatch between the actual run-time
behaviour of a system and the programmers’ mental map of what they expect
the behaviour to be. Profilers are useful in enlightening developers to particular
aspects of their programs that they may not otherwise have considered.

A traditional profiler typically consists of two logical parts:

– An instrumentation apparatus that is directly weaved into the program under
study or run side-by-side to gather and record execution data

– A post-processing system that uses the recorded data to generate meaningful
performance analysis listings or visualisations

In the traditional software engineering community, historical profilers such
as gprof [2] or performance analysis APIs like ATOM [3] and the Java Virtual
Machine Tool Interface (JVMTI) [4] have made performance analysis more
accessible for researchers and software engineers. However, the MAS community
does not yet have general access to these types of tools.

Unique amongst all of the mainstream MAS development platforms, Cougaar
is the only one that integrates a performance measurement infrastructure directly
into the system architecture [5]. Although this is not applicable to other platforms,
it does provide a good insight into the features that MAS developers could
reasonably expect from any performance measurement application. The principal
characteristics of this structure are as follows:

– Primary data channels consist of raw polling sensors at the heart of the
system execution engine gather simple low-impact data elements such as
counters and event sensors. These are triggered whenever the system steps
through a predefined portion of the code.
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– Secondary channels provide more elaborate information, such as summaries
of the state of individual components and history analysis that stores perfor-
mance data over lengthy running times.

– Computer-level metrics provide data on such items as CPU load, network
load and memory usage.

– The message transport service captures statistics on messages flowing through
it.

– An extension mechanism based on servlets allows the addition of visualisation
plugins that bind to the performance metrics data source.

– The service that is charged with gathering these metrics is designed so as to
have no impact on system performance when not in use.

Other analysis tools exist for aiding the development of MASs. However,
these tend to be narrower in their focus, concentrating only on specific aspects of
debugging MASs. The Agent Factory Debugger [6] is an example of a tool that
is typical of most multi agent frameworks. Its principal function is inspecting the
status and mental state of individual agents: its goals, beliefs, commitments and
the messages it has exchanged with other agents. Tools such as this give limited
information about the interaction between agents and the consequences of these
interactions.
Another type of agent debugging tool is the ACLAnalyzer that has been

developed for the JADE platform [7]. Rather than concentrating on individual
agents, it is intended to analyse agent interaction in order to see how the commu-
nity of agents interacts and is organised. In addition to visualising the number
and size of messages sent between specific agents, it also employs clustering in
order to identify cliques in the agent community.

These latter tools are focused mostly on identifying what actions an agent is
carrying out, together with identifying the reasons why such actions are taken (in
response to the agents own belief set or as a result of receiving communication
from other agents).

3 AgentSpotter Overview

The overriding objective of AgentSpotter is to map the traditional concepts
of profiling to agent-oriented concepts so as to build a profiler tool for MAS
developers. It could be argued that most mainstream agent toolkits are written
in Java and so the existing profiling tools for the Java programming language
are appropriate for the analysis of such platforms and their agents. However, to
do so would necessitate the mapping of low-level method profiles to high-level
agent-specific behaviour. Thus, tools aimed specifically at Java operate at an
inappropriate conceptual level to be of use in agent analysis.
Ideally, MASs should be capable of managing their own performance and

identifying their own bottlenecks that hamper system efficiency, and indeed much
work is being undertaken towards this goal [8]. However, until this aim is realised,
the provision of analysis tools aimed at aiming human developers identify issues
with their systems remains of paramount importance.
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Fig. 1. AgentSpotter abstract architecture
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This section outlines the abstract infrastructure of the AgentSpotter system,
that is capable of being integrated into any agent platform. Analysis of the
integration of AgentSpotter into a specific agent platform (namely Agent Factory)
is contained in Section 4.

The AgentSpotter abstract architecture is displayed in Figure 1, using the
following graphical conventions:

– Top-level architectural units are enclosed in dashed lines and are titled in

slanted capital letters, e.g.
AGENT PLATFORM

– Self-contained software packages are enclosed in solid lines e.g Profiler

– Logical software modules (groups of packages) are titled using slanted capi-

talised names e.g. AgentSpotter Service

– Arrows denote data or processing interactions e.g. queries
 

At the highest level, the AgentSpotter Service should communicate with the
Run-Time Environment to capture the profiling data from a Profiled Application

running inside an Agent Platform. The captured data should be stored into a
Snapshot File which would then be processed by a Query Engine to generate the
input data for AgentSpotter Station, the visualisation application.

The AgentSpotter profiler monitors performance events generated by the
Agent Platform’s Run-Time Environment. These include such events as agent
management events, agent scheduler activity, messaging other platform service
activity. Additionally, the AgentSpotter service may employ system monitors to
record performance information such as CPU load, memory usage or network
throughput. This provides a general context for the event-based information
being gleaned by the profiler.
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The event data and other information collected by the AgentSpotter profile is
stored in a snapshot file, which contains the results of a single uninterrupted data
capture session. This snapshot contains a series of raw instrumentation data. A
difficulty arises in that a large MAS may generate potentially hundreds of events
per second. For this reason, it is necessary to introduce a Query Engine that is
capable of extracting summaries and other information and make it available to
visualisation tools in a transparent manner. Ideally, this should be through a
data manipulation language such as SQL so as to facilitate the specification of
rich and complex queries.

The final component of the abstract architecture is the AgentSpotter Station,
which is the visualisation tool that summarises the information gathered from
the Query Engine in a visual form. The principal focus of this paper is the
Space-Time Diagram, which is presented in Section 5.
At this stage of planning an agent profiler, it is vital to decide upon the

minimum information that should be available from the system. When profiling
any application, it is important to identify the appropriate execution unit for
profiling (e.g. in the context of object-oriented programming, this would typically
be an object or a method). For profiling a MAS, we believe that the appropriate
execution units are individual agents, in which case the information provided
should include:

– Agent description: name, role, type (deliberative or reactive) of the agent.
– Cumulative activity: cumulative computation time used by the agent.
– Perception time: perception time used by a deliberative agent.
– Action time: task execution time used by a deliberative agent.
– Reasoning time: reasoning time used by a deliberative agent.
– % session activity percentage of the global session computation time used
by the agent.

– Number of iterations: number of non-zero duration iterations used by the
agent.

– Number of time slice overshoots: number of times where an agent has
overused its time slice allocation.

– Maximum and average iteration duration: maximum and average du-
ration of these time slices

– Total number of messages sent and received: total number of ACL
messages exchanged by the agent.

In addition to these agent-specific metrics, a number of global statistics should
also be maintained:

– Total duration: session run-time recorded.
– Total activity: amount of computation time recorded over the session.
– Total number of messages: number of messages sent or received by agents
on the platform being profiled.

– Average number of active agents per second: This gives an idea of the
level of concurrency in the application.
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Following the convention of traditional profiling tools, we describe this in-
formation as a flat profile. AgentSpotter displays this by means of a JTable
(provided by Java’s Swing interface tools). An example of how the information is
presented is given below in Table 1.

4 Agent Factory Integration

Following the definition of the abstract architecture outlined above, a concrete
(i.e. platform-specific) implementation was created for Agent Factory. Agent
Factory is a cohesive framework that supports a structured approach to the
development of agent-oriented applications [9]. This implementation is illustrated
in Figure 2, which uses the same graphical conventions as Figure 1.

Fig. 2. AgentSpotter concrete architecture
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In order to create a concrete implementation, only the platform-specific
details must change, as the mechanisms required to monitor events varies from
one agent platform to another. In contrast, the AgentSpotter file processing and
visualisation components (shown in the lower part of Figure 2) are identical
to those in the abstract architecture (Figure 1). Thus, when making use of
AgentSpotter for a new type of agent platform, only the AgentSpotter Service
that is coupled directly with the platform needs to be reprogrammed. Provided
this service creates snapshot files in a consistent way, the Query Engine need not
differentiate between agent platforms.
Within, the Agent Factory Run-Time Environment, there are three specific

subsystems that generate events that are of interest in agent profiling, and as
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such are recorded by the AgentSpotter service. First, the Agent Management

Service is responsible for creating, destroying, starting, stopping and suspending
agents. It generates events corresponding to each of these actions, which are
recorded in the snapshot file. The Scheduler is charged with scheduling which
agents are permitted to execute at particular times and generates events based
on this. Finally, the Message Transport Service records the sending and receipt
of FIPA messages by agents.

5 Space-Time Diagram

In Section 3, we outlined the minimum amount of information that should be
made available by an agent profiler. However, this information can be presented
merely by the creation of a simple table. We believe that proper visualisation
tools will be far more useful to a developer in understanding a MAS. This section
introduces the Space-Time Diagram that is at the core of the AgentSpotter
Station visualisation application. The aim of this diagram is to make as much
detail and context about the performance of the MAS available to the developer.
The user may pan the view around and zoom in and out so as to reveal hidden
details or focus on minute details.

The Session Time Line represents the running time of the application being
profiled. Regardless of the position and scale of the current viewport, this time
line remains visible to provide temporal context to the section being viewed and
also to allow a developer to move to various points in the session.

The CPU Line displays a graphical of the CPU load of the host system during
the session. A vertical gradient going from green (low CPU usage) to red (high
CPU usage) provides a quick graphical sense of system load. A popup information
window reveals the exact usage statistics once the mouse is hovered over the line.

Perhaps the most important feature of the space-time diagram is the Agent

Time Lines. Each of these display all the performance and communication events
that occur for a single agent during a profiling session. A number of visual features
are available to the developer so as to gain greater understanding of the status
and performance of the system. For instance, an agent time line begins only at
the point in time when the agent is created. This facilitates the developer in
viewing the fluctuations in the agent population. Another simple visual aid is
that a life line’s caption (i.e. the name of the associated agent) is always visible,
regardless of what position along the line a developer has scrolled to. Visual
clutter may also be reduced by temporarily hiding certain life lines that are not
of interest at a particular point in time.

The time line also changes colour in order to distinguish busier agents from
the remainder of the community. Darker lines indicate agents that have consumed
a greater proportion of the system’s CPU time. In a situation where system per-
formance has been poor, this will allow a developer to quickly identify candidate
agents for debugging, if they are consuming more resources that is appropriate
or expected.

65



Metrics Service

Agent Management Service

Scheduler

Message Transport Service

Agent Factory Run-Time EnvironmentPro!led Application AgentSpotter Service

Pro!lerCustom Metrics

Agents

CPU Monitor

Heap Monitor

AGENT FACTORY PLATFORM

Session Time Line

CPU Line

Agent Life Line

intra-platform message lines

Agent Life Line

information window on mouse hover

External Platform Life Line

Heap Monitor

Message Transport ServiceMessage Transport ServiceMessage Transport Service

inter-platform messages linestimed events (with duration)

“Bird’s Eye View”

♣♦♠

simple events (no duration)

Session Time Line

CPU Line

Agent Life Line

Agent Life Line

External Platform Life Line

♣♦♠

cu
rre

n
t v

ie
w

p
o

rt

Fig. 3. AgentSpotter Space-Time Diagram specification annotated with AgentSpotter
for Agent Factory infrastructure links (see Figure 2).

The default ordering of the time lines shares this aim. The ordering of the time
lines is in descending order of total computation time, again visually notifying
the developer of those agents consuming more processing resources. However,
a developer may alter this default order by dragging time lines into different
positions, perhaps to group life lines with particularly interesting interactions.
In addition to this simple information, the main purpose of the time line

is to show events performed by an agent that is likely to be of interest from
a performance point of view. These performance events are divided into two
categories. Simple performance events are those that have a time stamp only.
These are shown by means of standard icons (such as an envelope icon to denote
that a message was received by the agent).

The other category of performance events are timed performance events. These
events are typically actions being performed by an agent. An example of how
these timed performance events are represented is given in Figure 4. Each agent
has a particular timeslice within which it is expected to perform all of its actions
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Fig. 4. Agent Factory agent activity representation in the Space-Time Diagram

in a particular iteration. Agents exceeding their time slice may prevent or delay
other agents from getting access to the CPU. As a visual aid to identifying when
this situation occurs, timing events are represented by coloured rectangles. The
size of these rectangles is proportional to the duration of the event and the
percentage of the allocated timeslice used. The colour code also indicates how
the agent has used its time available. A green rectangle indicates that the agent
has used anything up to 75% of the time available. From 75% to 100%, an orange
rectangle indicates that the agent has used most of its allocated time, and may
require further analysis from the developer to avoid the danger of exceeding the
time slice. Finally, whenever an agent exceeds its time, a red rectangle is used.

For either form of event, hovering the mouse over the event indicator (whether
an icon for a simple event or a rectangle for timed events) will cause a popup
window to display the specific details about the event.

Communication between agents is shown by means of lines linking the ap-
propriate agent timelines. These have arrows attached so as to clearly indicate
the direction of the communication. Hovering the mouse pointer over such a line
causes a popup information window to display the FIPA headers and content of
the message that was sent. There is also a distinction made between messages
passed between agents housed on the same agent platform (intra-platform) and
those passed between agents on different platforms (inter-platform). Since agents
on other platforms will not have an agent time line associated with them, an
external platform life line is drawn for each other platform with which agents on
the platform being profiled communicate. Rather than linking with individual
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agent time lines, communications with these platforms are drawn directly to the
external platform life line.
The combination of these communication lines and the performance event

indicators are very useful in identifying the causes of agent activity. Given
the inherently social nature of MASs, it is very common for agent activity to
be motivated by communication in some way. For example, an agent may be
requested to perform a task by some other agent. Alternatively, an agent may
receive a piece of information from another agent that it requires in order to
perform a task that to which it has previously committed as a result of its own
goals and plans.

Providing such a detailed visualisation of a MAS requires a substantial amount
of screen space. The basic features of zooming and panning are complimented by
the provision of a “bird’s eye view”, which displays a zoomed-out overview of
the entire session. This allows the user to quickly move the current viewport to
focus on a particular point in time during the session, as illustrated in Figure 3.

6 Evaluation

Having outlined the required features of AgentSpotter, along with details of
its implementation, it is necessary to demonstrate how it can be utilised on a
running MAS. To this end, a specialist benchmark application was developed
that will allow the features of the AgentSpotter application to be shown.

6.1 Specification

The aim of the benchmark application is to perform all the activities necessary
for AgentSpotter to display its features. The requirements for the application
can be summarised as follows:

– Load history: a normally distributed random load history should be gener-
ated so that we can get an idea of a “normal” profile which can be contrasted
with “abnormal” profiles where, for example, a single agent is monopolising
all the load, or the load is spread equally among all agents.

– Agent population: the number of active agents should be changeable
dynamically to simulate process escalation.

– Interactions: in addition to direct interactions, the application should
exercise some task delegation scenarios. The idea is to generate multiple hops
messaging scenarios and see their impact on performance.

– Messages: agents should generate a steady flow of messages with occasional
bursts of intense communication.

– Performance events: all three performance behaviours described in 3
should be represented, i.e. green (t ≤ 50% time slice), orange (50% ≤ t ≤ 75%
time slice), and red (t > 100%).

These requirements were satisfied by creating a MAS with overseer agents
that request worker agents to execute small, medium or large tasks. Worker
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agents that have been recently overloaded will simply refuse to carry out the
tasks (in a real application they would inform back the requester about their
refusal). From time to time, overseer agents would request agents to delegate
some tasks. In this case, worker agents will behave as overseers just for one round.
A simple interface allows the user to start and pause the process, along with the
ability to set the number of active worker agents.

6.2 Evaluation Scenario and Objective

The following simple scenario was played out in order to gather the information
required for the AgentSpotter application to generate its flat profile and space-
time diagram.

1. Start the session with 12 worker agents and 2 overseer agents.
2. After 10 minutes add 15 worker agents to spread the load.
3. After 4 further minutes, suspend the process for 20 seconds.
4. At this point, reduce the number of worker agents to a 12.
5. Run for 5 minutes more then stop the session.

6.3 Flat profile

The resulting flat profile of this test is reproduced in Table 1. For the reader’s
convenience, the maximum value for each column is identified by an enclosing
box. Overseer agents are called “master1” and “master2”. The worker agents are
called “agent” followed by a number e.g. “agent007”.

Firstly, the benchmark appears to make a good job of producing a load history
following a normal distribution.

Secondly, we can draw the following conclusions from a quick study of Table 1:

– The most active agents in terms of number of iterations are the overseer agents,
“master1” and “master2”, however in terms of CPU load and overload, three
worker agents are topping the list with 30% of the total activity: “agent001”,
“agent009”, and “agent003”.

– The agents with the highest CPU load also display a high number of time
slice overshoots, and a high average time slice duration.

– As expected, the overseer agents were very busy exchanging messages with
the workers. However, it seems that messaging is not CPU intensive. This is
possibly as a result of the way in which message sending is implemented, with
the CPU load indicated here corresponding to the scheduling of a message for
sending, rather than the actual sending of the message. It may be necessary
to attach a specialist monitor to the Message Transport Service to gain full
information about the impact of sending messages. This causes the activity
percentage of the overseer agents to be very low, at only 1%.

In this instance, the flat profile lends evidence to the notion that the actual
behaviour of the system matches the design principles on which it was built.
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Table 1. Benchmark application flat profile

Total Session Time 18:50.691
Total Activity 10:29.164
Messages Sent 1206
Messages Received 1206
Time Slice Duration 1000 ms

Agent T > 0 T > 100% Activity % Session Max(T ) Average(T ) Msg. Msg.
iterations overload mm:ss.ms activity ss.ms ss.ms sent rec.

agent001 338 22 1:08.564 10.90 3.740 0.202 6 57
agent009 365 21 1:04.257 10.21 3.425 0.176 13 77

agent004 349 22 1:01.529 9.78 3.235 0.176 10 69
agent014 284 14 46.413 7.38 3.148 0.163 2 36
agent003 401 13 43.881 6.97 3.323 0.109 12 76
agent006 361 12 40.141 6.38 3.279 0.111 12 73
agent005 367 12 34.903 5.55 3.325 0.095 17 76
agent013 301 9 34.716 5.52 3.190 0.115 14 71
agent007 378 11 31.864 5.06 3.356 0.084 21 71
agent008 357 7 30.850 4.90 3.201 0.086 14 72
agent010 330 8 30.280 4.81 3.147 0.091 21 81
agent015 285 9 29.382 4.67 3.257 0.103 4 42
agent002 348 8 23.196 3.69 3.147 0.066 9 70
agent011 357 5 19.363 3.08 3.095 0.054 4 39
agent012 225 3 13.172 2.09 3.049 0.058 9 41

master2 901 0 6.681 1.06 0.183 0.007 504 86

master1 873 0 6.485 1.03 0.227 0.007 514 82
agent024 46 2 6.281 1.00 3.045 0.136 3 7
agent019 31 1 4.449 0.71 3.014 0.143 0 5
agent026 42 1 4.400 0.70 3.084 0.104 0 4
agent030 26 1 4.002 0.64 3.132 0.153 2 8
agent017 46 1 3.811 0.61 3.031 0.082 0 3
agent025 40 1 3.767 0.60 3.006 0.094 0 3
agent027 31 1 3.694 0.59 3.103 0.119 0 2
agent018 38 1 3.384 0.54 3.044 0.089 2 7
agent020 39 0 1.762 0.28 0.547 0.045 0 3
agent022 47 0 1.523 0.24 0.559 0.032 5 13
agent021 32 0 1.300 0.21 0.555 0.040 2 7
agent016 219 0 1.194 0.19 0.555 0.005 2 6
agent029 38 0 1.039 0.17 0.550 0.027 2 8
agent028 45 0 0.749 0.12 0.546 0.016 1 4
agent032 34 0 0.749 0.12 0.561 0.022 1 4
agent031 36 0 0.742 0.12 0.545 0.020 0 2
agent023 40 0 0.598 0.10 0.543 0.014 0 1
agent033 30 0 0.043 0.01 0.003 0.001 0 0
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Fig. 5. Benchmark application sample space-time diagram (18 minute long session)
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6.4 Space-Time Diagram

The space-time diagram associated with this session is displayed in Figure 5. In
this diagram, the individual agent time lines can clearly be seen as horizontal bars
in the main window of the application. Within these, rectangular boxes represent
processing tasks being carried out by each agent. The vertical lines between the
time lines represent messages being passed between agents within the system.
For this simple scenario, only a single agent platform was used, meaning that
there are no external platform life lines to indicate messages travelling to and
from other agent platforms. A number of points of interest are labelled on the
diagram. These can be described as follows:

1. This portion of the diagram shows what happens when the initial 12 workers
are active. The large red rectangles illustrate the time-consuming tasks
ordered by the overseer agents. As mentioned in Section 5, these are also
identifiable by their size, which increases proportionally to the processing
time taken. These blocks never overlap because of the way Agent Factory
schedules agents (i.e. agents are given access to the CPU sequentially, rather
than each agent running in a concurrent thread of execution). It is also
noteworthy that the Agent Factory scheduler does not preempt agents that
have exceeded their time allocation. The red rectangles also come in bursts,
because both overseers send the same order to the same worker at the same
time. This was revealed by zooming into what initially appeared to be a
single message line. At a high magnification level, there were in fact two
messages lines within a few microseconds interval to the same worker.

2. At this point, 15 more workers are added to the system, following a slight
pause that is indicated by the temporary absence of message lines. The agent
time lines for the additional agents only begin at this point, clearly indicating
an increase in the agent population.

3. This third portion shows the impact of the new workers. The red blocks are
still present, but they are better spread among the agents, with the new
agents taking some of the load from their predecessors.

4. The Bird’s Eye View reveals the bigger picture, and reminds us that we are
looking only at one third of the overall session.

7 Conclusions and Future Work

Currently, the only concrete implementation of AgentSpotter is for the Agent
Factory platform. As noted in Section 3, only the data capture apparatus should
require a separate implementation for another platform. It is intended to develop
such an implementation for other platforms, such as JADE [10].
The most obvious source of improvement for the AgentSpotter application

is the addition of extra information above that which is already available. For
instance, the performance of additional system services should be recorded, and
more details should be collected about agents’ performance events, such as the
distribution of an agent’s execution time among its sensors, actuators, reasoning
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engine and other components. Finally, the AgentSpotter application currently
supports only one agent platform at any given time. The capability to visualise
multiple platforms concurrently would be desirable.
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Abstract. Recent technological advances in open systems have imposed
new needs on multi-agent systems. Nowadays, open systems require open
autonomous scenarios in which heterogeneous entities (agents or ser-
vices) interact to fulfill the system goals. The main contribution of this
paper is the definition of an open architecture and computational model
for large-scale open multi-agent systems based on a service-oriented ap-
proach. The new proposed architecture, called THOMAS, is specifically
addressed for the design of virtual organizations. A simplified example
for the management of a travel agency system, which shows the features
of the proposal, is also included.

1 Introduction

The technological advances of recent years have defined the ”new society”, in
which a multi-agent system participates as an open environment in which het-
erogeneous entities (agents and services) interact. This new environment needs
to meet several requirements such as: distribution, constant evolution, flexibil-
ity to allow members enter or exit the society, appropriate management of the
organizational structure that defines the society, multi-device agent execution
including devices with limited resources, and so on. All these requirements de-
fine a set of features that can be addressed through the open system paradigm
and virtual organizations.

Regarding organizations, this paradigm has been conceived as an encouraging
solution for managing coordination and controlling agent behavior, specially in
open multi-agent systems [11]. Organization modeling not only allows describ-
ing structural composition (i.e. roles, agent groups, interaction patterns, role
relationships) and functional behavior (i.e. agent tasks, plans or services), but
also normative regulations for controlling agent behavior, dynamic entry/exit of
components and dynamic formation of agent groups.

Over recent years, several works have appeared trying to solve the problem
of integrating the multi-agent system paradigm and the service-oriented com-
puting paradigm. By integrating these two technologies it is possible to model
autonomous and heterogeneous computational entities in dynamic and open en-
vironments. Such entities may be reactive, proactive and have the ability to
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communicate in a flexible way with other entities [27]. The Agent and Web Ser-
vices Interoperability (AWSI) IEEE FIPA Working Group 1 proposes to create
links, as a gateway, between the two approaches. In contrast, we propose a new
open multi-agent system architecture consisting of a related set of modules that
are suitable for the development of systems applied in environments such as those
raised above. This new architecture is called THOMAS (MeTH ods, Techniques
and Tools for Open Multi-Agent Systems). The proposed solution tries to com-
municate agents and web services in a transparent, but independent, way, going
beyond related works, raising a total integration of both technologies. So agents
can offer and invoke services in a transparent way to other agents or entities, as
well as external entities can interact with THOMAS agents through the use of
the offered services.

This paper is structured as follows: Section 2 presents the proposed architec-
ture model. The description of the services offered by the THOMAS main com-
ponents are described in Sections 3 and 4. Section 5 shows a simplified example
of a travel agency in which the overall functioning of the THOMAS architecture
can be observed. In Section 6, a prototype of THOMAS is overviewed. Section
7 presents a discussion on the features of the proposal related with state of the
art works. Finally, conclusions are presented.

2 THOMAS Architecture

THOMAS architecture basically consists of a set of modular services. Though
THOMAS feeds initially on the FIPA architecture, it expands its capabilities
to deal with organizations, and to boost up its service abilities. In this way,
a new module in charge of managing organizations has been introduced, along
with a redefinition of the FIPA Directory Facilitator that is able to deal with
services in a more elaborated way, following Service Oriented Architectures2

guidelines. As it has been stated before, services are very important in THOMAS.
In fact, agents have access to the THOMAS infrastructure through a range of
services included on different modules or components. The main components of
THOMAS are the following (Figure 1):

– Service Facilitator (SF), it offers simple and complex services to the active
agents and organizations. Basically, its functionality is like a yellow page
service and a service descriptor in charge of providing a green page service.
The detailed description of this module is presented in Section 3.

– Organization Management System (OMS), it is mainly responsible of the
management of the organizations and their entities. Thus, it allows creation
and management of any organization. The OMS is described in Section 4.

– Platform Kernel (PK), it maintains basic management services for an agent
platform. The PK represents any FIPA compliant platform. In this way,
THOMAS can be configured to work with any agent platform which imple-
ments the FIPA AMS and the FIPA communication network layer.

1 http://www.fipa.org/subgroups/AWSI-WG.html
2 http://www.oasis-open.org
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Fig. 1. THOMAS Architecture (Notation used: “Org” represents an organization; “A”
an agent; “S” an external service; and “WS” a Web Service)

The following sections describe, in a deeper detail, the main components of
the THOMAS architecture.

3 Service Facilitator

The Service Facilitator (SF) is a mechanism and support by which organizations
and agents can offer and discover services. The SF provides a place in which the
autonomous entities can register service descriptions as directory entries.

The SF acts as a gateway to access the THOMAS platform. It manages this
access transparently, by means of security techniques and access rights manage-
ment. The SF can find services searching for a given service profile or searching
by the goals that can be fulfilled when executing the service. This is done using
the matchmaking and service composition mechanisms that are provided by the
SF. The SF also acts as a yellow pages manager and in this way it can find which
entities provide a given service.

A service represents an interaction of two entities, which are modeled as
communications among independent processes. Regarding the service descrip-
tion, keywords or semantic annotations can be used. Languages as OWL-S[17],
WSMO3, SAWSDL[8] or WSDL-S4 are the most used ones to describe services.

Furthermore, a service offers some capabilities, each of which enables fulfill-
ing a given goal. Services are characterized by their inputs, outputs, precondi-
tions and effects. Furthermore, there could be additional parameters in a service

3 http://www.wsmo.org/wsml/wsml-syntax
4 http://www.w3.org/Submission/WSDL-S/
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description, which are independent of the service functionality (non-functional
parameters), such as quality of service, deadlines and security protocols. Taking
into account that THOMAS works with semantic services, another important
data is the ontology used in the service. Thus, when the service description is
accessed, any entity will have all needed information in order to interact with
the service and make an application that can use this service. Such a description
can also be employed for pre-compiled services, in which the process model of
the service is composed of the sequence of the elementary services that will be
executed, instead of the internal processes of this service.

Therefore, OWL-S is the language chosen to represent semantic services in
the SF. This language has been extended to empower its functionality, adding
goals, preconditions and effects (or postconditions) as logical formulas.

A service can be supplied by more than one provider in the system. In this
way, a service has an associated list of providers. All providers can offer exact
copies of the service, that is, they share a common implementation of the service.
Or they may share only the interface and each provider may implement the
service in a different way. This is easily achieved in THOMAS because the general
service profile is separated from the service process.

A service is defined as a tuple <sID, goal, prof, proc, ground, ont> where:

– sID is an unique service identifier.
– goal is the final purpose of the service, composed by a set of abstract concepts
provided in the system’s design. It gives a first abstraction level for service
search and composition.

– prof is the service profile that describes the service in terms of its IOPEs
(Inputs, Outputs, Preconditions and Effects) and non-functional attributes,
in a readable way for those agents that are searching information.

– proc specifies how to call a service and what happens when the service is
executed.

– ground specifies in detail how an agent can access the service. A grounding
specifies a communication protocol, the message formats, the contact port
and other specific details of the service.

– ont is the ontology that gives meaning to all the elements of the service.
OWL-DL is the chosen language.

The tuple defined above for service specification is implemented in two parts:
the abstract service, general for all providers; and the concrete service, with the
implementation details. In this way, services are stored inside the system split
into these two parts: the service profile (that represents the abstract service
specification) and a set of service processes specifications (that detail the concrete
service). Thus, in THOMAS services are implemented as the following tuple:

<ServiceID, Providers, ServGoal, ServProfile>
Providers ::= <ProvIDList, ServImpID, ServProcess, ServGround> +

ProvIDList ::= ProviderID+

where:
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– Providers is a set of tuples composed of a Providers identifier list (ProvIDList),
the service process model specification (ServProcess), and its particular in-
stantiation (ServGround).

– ProvIDList maintains a list of service provider identifiers.

The SF supplies a set of standard services to manage the services provided
by organizations or individual agents. These services can also be used by the
rest of THOMAS components to advertise their own services. SF services are
classified in three types:

– Registration: they allow to add, modify and remove services from the SF
directory.

– Affordability: for managing the association between providers and their ser-
vices.

– Discovery: for searching and composing services as an answer to user re-
quirements.

The complete relation of the SF services can be found in Table 1.

Service Description

Registration

RegisterProfile(?p:Profile, ?g:Goal) Creates a new service description (profile)
RegisterProcess(?s:ID, ?pr:Process,
?gr:Grounding, ?prov:ID)

Creates a particular implementation (process) for a
service

ModifyProfile(?s:ID, ?p:Profile, ?g:Goal) Modifies an existing service profile
ModifyProcess(?sImp:ID, ?pr:Process,
?gr:Grounding)

Modifies an existing service process

DeregisterProfile(?s:ID) Removes a service description
Affordability

AddProvider(?sImp:ID, ?prov:ID) Adds a new provider to an existing service process
RemoveProvider(?sImp:ID, ?prov:ID) Removes a provider from a service process
Discovery

SearchService(?pu:ServPurpose) Searches a service (or a composition of services) that
satisfies the user requirements

GetProfile(?s:ID) Gets the description (profile) of a specific service
GetProcess(?sImp:ID) Gets the implementation (process) of a specific service

Table 1. SF Services

4 Organization Management System

The Organization Management System (OMS) is in charge of the organization
life-cycle management, including specification and administration of both the
structural components of the organization (roles, units and norms) and its exe-
cution components (participant agents and roles they play).

Organizations are structured by means of organizational units (OUs), which
represent groups of entities (agents or other units), that are related in order to
pursue a common goal. These OUs have an internal structure (i.e. hierarchi-
cal, team, plain), which imposes restrictions on agent relationships and control
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(ex. supervision or information relationships). OUs can also be seen as virtual
meeting points because agents can dynamically enter and leave them by means
of adopting (or leaving) roles inside. Roles represent all required functionality
needed in order to achieve the unit goal. They might also have associated norms
for controlling role actions. Agents can dynamically adopt roles inside units, so
a control for role adoption is needed. Finally, services represent some function-
ality that agents offer to other entities, independently of the concrete agent that
makes use of them.

The OMS keeps record on which are the Organizational Units of the system,
the roles defined in each unit and their attributes, the entities participating
inside each OU and the roles that they enact through time. Moreover, the OMS
also stores which are the norms defined in the system. Regarding roles, the role
attributes are: accesibility, that indicates whether a role can be adopted by an
agent on demand; visibility, that indicates whether agents can obtain information
from this role on demand; position, that indicates whether it is a supervisor,
subordinate or simple member of the unit; and inheritance, that indicates which
is its parent role, establising a hierarchy of roles.

The OMS offers a set of services for organization life-cycle management, clas-
sified in (Table 2): (i) structural services, which modify the structural and norma-
tive organization specification; (ii) informative services, that provide information
of the current state of the organization; and (iii) dynamic (role-management)
services, which allow managing dynamic entry/exit of agents and role adoption.

The structural services deal with adding/deleting norms (RegisterNorm,
DeregisterNorm), adding/deleting roles (RegisterRole, DeregisterRole) and cre-
ating new organizational units or deleting them (RegisterUnit, DeregisterUnit).

The informative services give specific information of the current state of
the organization, detailing which are the roles defined in an OU (InformUni-
tRoles), the roles played by an agent (InformAgentRoles), the specific members
that participate inside an OU (InformMembers), the number of members of an
OU (InformQuantity), its internal structure (InformUnit), and the services and
norms related with a specific role (InformRoleProfiles, InformRoleNorms).

The dynamic services allow defining how agents can adopt roles inside
OUs (AcquireRole, LeaveRole) or how agents can be forced to leave a specific
role (Expulse), normally due to sanctions.

By means of the publication of the structural services, the OMS allows the
modification of some aspects related to the organization structure, functionality
or normativity at execution time. For example, a specific agent of the organiza-
tion can be allowed to add new norms, roles or units during system execution.
These types of services should be restricted to the internal roles of the system,
which have a level of permission high enough to these kinds of operations (i.e.
supervisor role). Moreover, these services might not be published in the SF in
some specific applications in which the system structure must not be dynamically
modified. The information services might also be restricted to some internal roles
of the system, as they provide with specific information of all the components
of the organization
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Service Description

Structural Services

RegisterRole(?Role:ID, ?Unit:ID,
?Attr:Attributes)

Creates a new role within a unit, with specific at-
tributes (visibility, accesibility, position, inheritance)

RegisterNorm(?Norm:ID, ?Role:ID,
?Content: NormContent, ?Issuer:ID,
?Defender:ID, ?Promoter:ID)

Includes a new norm within a unit, indicating its con-
tent (deontic value, conditions, actions and associated
sanctions or rewards)

RegisterUnit(?Unit:ID, ?UnitType:Type,
?UnitGoal:Goal, [?UnitParent:ID])

Creates a new unit within a specific organization, in-
dicating its structure (type), goal and its parent inside
the organization hierarchy

DeregisterRole(?Role:ID, ?Unit:ID) Removes a specific role description from a unit
DeregisterNorm(?Norm:ID) Removes a specific norm description
DeregisterUnit(?Unit:ID,
[?UnitParent:ID])

Removes a unit from an organization

Informative Services

InformAgentRole(?Agent:ID) Indicates roles adopted by an agent
InformMembers(?Unit:ID, [?Role:ID]) Indicates entities that are members of a specific unit.

Optionally, indicates only members playing the spe-
cific role inside that unit.

QuantityMembers(?Unit:ID, [?Role:ID]) Provides the number of current members of a spe-
cific unit. Optionally, it indicates only the number of
members playing the specific role inside the unit

InformUnit(?Unit:ID) Provides unit description
InformUnitRoles(?Unit:ID) Indicates which roles are the ones defined within a

specific unit
InformRoleProfiles(?Role:ID) Indicates all profiles associated to a specific role
InformRoleNorms(?Role:ID) Provides all norms addressed to a specific role
Dynamic Services

RegisterAgentRole(?Agent:ID, ?Role:ID,
?Unit:ID)

Creates a new <entity, unit, role> relationship. Pri-
vate OMS service.

DeregisterAgentRole(?Agent:ID,
?Role:ID, ?Unit:ID)

Removes a specific <entity, unit, role> relation. Pri-
vate OMS service.

AcquireRole(?Unit:ID, ?Role:ID) Requests the adoption of a specific role within a unit
LeaveRole(?Unit:ID, ?Role:ID) Requests to leave a role
Expulse(?Agent:ID, ?Unit:ID, ?Role:ID) Forces an agent to leave a specific role

Table 2. OMS Services

The OMS offers a set of basic services for dynamical role adoption and the
entry/exit of unit members, which are not directly accessible to agents, but are
combined through compound services. The basic services for role adoption are
RegisterAgentRole (that creates a new <entity, unit, role> relationship) and
DeregisterAgentRole (that removes a specific <entity, unit, role> relationship).
The OMS also offers a set of compound services that can be used by agents for
adopting roles, leaving them and applying sanctions. These compound services
are AcquireRole, LeaveRole and Expulse, detailed in Table 2. Publishing these
services enables external agents to participate inside the system.

To sum up, the OMS is responsible for managing the life-cycle of the or-
ganizations. Thus, it includes services for defining structural components of or-
ganizations, i.e. roles, units and norms. These structural components could be
dynamically modified over the lifetime of the organization. Moreover, it includes
services for creating new organizations (i.e. creating new units), admitting new
members within those organizations (i.e. acquiring roles) and member resigning
(i.e. expulsing or leaving roles).
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5 A simplified usage sample

In order to illustrate the usage of the THOMAS architecture, a simplified case-
study for making flight and hotel arrangements is used (a more complete speci-
fication can be downloaded from the project’s web-page5). This is a well known
example that has been modeled by means of electronic institutions in previ-
ous works [10, 36]. The Travel Agency example is an application that facilitates
the interconnection between clients (individuals, companies, travel agencies) and
providers (hotel chains, airlines); delimiting services that each one can request or
offer. The system controls which services must be provided by each agent. Inter-
nal functionality of these services is responsibility of provider agents. However,
the system imposes some restrictions about service profiles, service requesting
orders and service results.

The Travel Agency case-study has been modelled as a THOMAS organization
composed of different agents that implement travel agency services. The Trave-
lAgency unit is formed by two organizational units (HotelUnit and FlightUnit)
which represent groups of agents, dedicated to hotels or flights, respectively. The
Customer role requests system services and it is specialized into HotelCustomer
and FlightCustomer. Similarly, the Provider role is in charge of performing ser-
vices (hotel or flight search services) and it is also specialized into HotelProvider
and FlightProvider. The TravelAgency organizational unit offers a SearchTravel
service, which is internally specialized into SearchHotel and SearchFlight. The
visibility of these internal services is limited to the members of the TravelAgency
unit.

The scenario depicted in Figure 2 shows the set of service calls for registering
new agents as service clients inside the TravelAgency organization. A new client
agent C1, which has already been registered in the THOMAS platform, requests
SearchService to SF for finding services of its interest (message 1). As a result,
C1 obtains SearchTravel service identifier and a ranking value (message 2). Then,
C1 employs GetProfile (message 3), which specifies that service clients must play
Customer role inside the TravelAgency (message 4). Therefore, C1 must adopt
the Customer role for demanding this service, requesting AcquireRole to OMS
(messages 5 and 6).

Once C1 plays this customer role, it employs GetProcess service in order
to know who are the service providers and how this service can be requested
(message 7). However, there are none providers for the general SearchTravel
service (message 8). Inside the TravelAgency unit, C1 requests SearchService
again (message 9). In this case, SF returns SearchFlight and SearchHotel ser-
vices because both services are accessible from the TravelAgency organization.
Then C1 demands the profile of SearchHotel service (using GetProfile, message
11), since this service is more appropriated to its needs. Taking into account
the SearchHotel profile (message 12), C1 requests adopting HotelCustomer role
inside HotelUnit, demading the AcquireRole service to the OMS (messages 13
and14). The OMS checks all restrictions (ex. role compatibility, norms related

5 http://www.dsic.upv.es/users/ia/sma/tools/Thomas
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Fig. 2. A client registering scenario of a Travel Agency system

to the requested role) and registers the <C1,HotelUnit, HotelCustomer> rela-
tionship.

6 The THOMAS Framework: a prototype

Nowadays, a new agent platform based on the above described THOMAS ab-
stract architecture is available. But, as this abstract architecture has been de-
signed to work making use of any FIPA-compliant platform (as the Platform
Kernel of the architecture) a new idea has arisen: the THOMAS Framework.
This framework is composed by the OMS and SF modules of the abstract ar-
chitecture, and its purpose is to try to obtain a product wholly independent of
any internal agent platform, and as such, that is fully addressed for open sys-
tems. This framework is based upon the idea that no internal agent exists, and
the architecture services are offered as web services. In this way, only the OMS
and the SF are composing such framework (avoiding the use of the PK due to
the lack of internal agents to control). Therefore, the THOMAS framework (see
Figure 3) allows any agent to create a virtual organization with the structure
and norms he wants, along with the demanding and offering services that he
needs. The framework is in charge of the management of this organization struc-
ture, norms and life cycle, on one hand. On the other hand, it also controls the
visibility of the offered and demanded services and the fulfillment of the condi-
tions to use them. But, as it is fully addressed to open systems, the framework
does not control the involved agents life-cycle, being all of them external to the
framework.

The first version of this framework, v0.1, is available for download in the
project’s web-page. It implements the whole set of services described in the
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Fig. 3. THOMAS Framework

abstract architecture, with a basic support for norm management. This version
has been used to check the feasibility of this approach with several examples
using JADE and SPADE [15] agents.

7 Discussion and related works

In previous sections an abstract architecture for the development of real open
multi-agent systems has been proposed. This proposal aims to instigate the to-
tal integration of two promising technologies, that is, multi-agent systems and
service-oriented computing as the foundation of such virtual organizations. Both
technologies try to deal with the same kind of environments formed by loose-
coupled, flexible, persistent and distributed tasks [28]. Traditional web services,
or even semantic web services, might be a valid solution when point-to-point
integration of static-binded services is needed. But they are clearly not good
enough for working in a changing environment, in which new services appear,
have to be discovered and composed or adapted to different ontologies. The
nature of agents, as intelligent and flexible entities with auto-organizative ca-
pabilities, facilitates automatic service discovery and composition. The vision of
agents and organizations as service-provider entities is not new. The main effort
in the integration of agents and web services is directed at masking services for
redirection, aggregation, integration or administration purposes [22].

We can identify two approaches in previous related works: (i) direct inte-
gration of web services and agents by means of message exchange and (ii) the
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consideration of agents as matchmakers for service discovering and composition.
Works related with the former are the Web Service Integration Gateway Service
(WSIG) architecture [23] and AgentWeb Gateway [35] which are based on the
idea of using an intermediary entity between agents and web services. Another
examples are WSDL2JADE [38] and WS2JADE [32] which provide agents with
an interface for communicating directly with web services. Finally, Web Service
Agent Integration 6 (WSAI) solves the problem in the opposite way by allowing
web service clients to use agent services.

The latter approach is represented by works as [6], which presents an ap-
proach that complements the existing methods by considering the types of in-
teractions and roles that services can be used in. Other approaches, such as [34],
use the objective experience data of agents in order to evaluate their expectations
from a service provider and make decisions using their own criteria and mental
state. [37] presents a brokering protocol which consists of two complex reasoning
tasks: discovery and mediation. Negotiation protocols are another mechanism
normally used. In this case, participant agents negotiate about the properties
of the services they request and provide to bind agreements and contracts with
each other [9]. Our proposal goes beyond because agents can offer and invoke
services in a transparent way from other agents, virtual organizations or enti-
ties, plus external entities can interact with agents through the use of the offered
services.

Regarding organizational concepts in an open MAS system, we consider an
agent organization as a social entity composed of a specific number of members
which accomplish several distinct tasks or functions. These members are struc-
tured following some specific topology and communication interrelationship in
order to achieve the main aim of the organization [3]. Agent organizations as-
sume the existence of global goals, outside of the objectives of any individual
agent, and they exist independently of agents [11].

Organizations have been usefully employed as a paradigm for developing
agent systems [4, 19]. One of the advantages of the organization development
is that systems are modeled with a high level of abstraction, so the conceptual
gap between real world and models is reduced. Also, these kinds of systems
provide the facilities to implement open systems and heterogeneous member
participation [31].

Research into MAS organizations has ranged from basic organizational con-
cepts, such as groups, communities, roles, functions [29, 39, 18, 33, 20]; organiza-
tional modeling [25, 13, 18, 14]; Human Organization Theory [21, 2]; structural
topologies [24, 3]; to normative research, including internal representation of
norms [30], deontic logics [12, 5] and institutional approaches [16]. Our work
presents an approach which covers all the life-cycle management of an agent
organization through the use of the OMS entity, which is in charge of the speci-
fication and administration of all the structural and dynamic components of an
agent organization.

6 http://www.agentcities.org/rec/00006/actf-rec-00006a.pdf
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Finally, another key problem for open MAS development is the existence
of real agent platforms that support organizational concepts. Over the last few
years, many agent platforms and agent architectures have been proposed. A de-
tailed comparison of these platforms, focusing on organizational concepts, can be
found in [1]. Despite the large number of agent platforms in existence, the ma-
jority are lacking in the management of virtual organizations for dynamic, open
and large-scale environments. Designers must implement nearly all of the orga-
nizational features by themselves, namely organization representation, control
mechanisms, organization descriptions, AMS and DF extensions, communica-
tion layer, monitoring, organization modeling support and organizational API.
These features are briefly explained as follows.

With respect to organization representation, a possible solution is that agents
have an explicit representation of the organization which has been defined. This
paper deals with this approach as S-Moise+ [26] and Ameli (EI platform) [16].
They have an explicit representation of the organization and both have similar
architectures. Another feature well supported by AMELI and S-Moise+ are
control mechanisms that ensure the satisfaction of the organizational constraints.
The organization should have an available description in a standard language.
This allows external and internal agents to get specific information about the
organization at run-time. This feature is not only useful in open systems, but
also when considering a reorganization process. A good example of organization
specification can be found in the S-Moise+ platform.

One of the main lacks in current agent platforms is the AMS and DF exten-
sion. The AMS should have information on the existing organizations and their
members. The DF should publish the services offered by agents individually and
the services offered by organizations. Another important features are: the com-
munication layer, as the kind of communication layer used in communicative acts
is a very important feature; the system monitoring, i.e. the platform should offer
a mechanism for monitoring the states of agents and organizations; the modeling
concepts support, as the platform and the programming language should cover
all of the concepts related to the virtual organization. For example, which types
of topologies are defined within the platform, which kind of norms are modeled,
etc. Not all platforms have a complete modeling concept support. For example
AMELI is focused on the management of rules and norms but does not support
the definition of complex topologies. Jack Teams platform allows the creation of
composed ”Teams” but it does not take into account other topologies.

Finally, the platform should offer an organizational API that makes it pos-
sible to create, destroy and modify organizations; consult and modify the or-
ganization description; add, query and delete agents of an organization; send
messages to a whole organization, etc [3, 7]. Our proposal includes a platform
fully addressed for open systems which has in mind all these factors trying to
obtain a framework wholly independent of any internal agent platform.
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8 Conclusions

The main contribution of this paper is the definition of an open architecture
for large scale open multi-agent systems based on a service-oriented approach.
As the previous mentioned discussion has shown, there exists a current research
interest in the integration of agents and services, agents being complex entities
that can handle the problem of service discovery and composition in dynamic
and changing open environments. Moreover, current agent approaches are not
organized into plain societies, but into structured organizations that enclose the
real world with the society representation and ease the development of open and
heterogeneous systems. Current agent architectures and platforms must integrate
these concepts to allow designers to employ higher abstractions when modeling
and implementing these complex systems. All of these concerns are gathered in
the previously presented THOMAS proposal.

Moreover, the proposal has been implemented and is available for download-
ing in the project’s web-page.
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Abstract. Hybrid automata are used as standard means for the specification and

analysis of dynamical systems. Several researches have approached them to for-

mally specify reactive Multi-agent systems situated in a physical environment,

where the agents react continuously to their environment. The specified systems,

in turn, are formally checked with the help of existing hybrid automata verifica-

tion tools. However, when dealing with multi-agent systems, two problems may

be raised. The first problem is a state space problem raised due to the composition

process, where the agents have to be parallel composed into an agent capturing all

possible behaviors of the multi-agent system prior to the verification phase. The

second problem concerns the expressiveness of verification tools when modeling

and verifying certain behaviors. Therefore, this paper tackles these problems by

showing how multi-agent systems, specified as hybrid automata, can be modeled

and verified using constraint logic programming(CLP). In particular, a CLP im-

plementation is presented to show how the composition of multi-agent behaviors

can be captured dynamically during the verification phase. This can relieve the

state space complexity that may occur as a result of the composition process. Ad-

ditionally, the expressiveness of the CLP implementation model flexibly allows

to not only model multi-agent systems, but also to check various properties by

means of the reachability analysis. Experiments are promising to show the feasi-

bility of our approach.

1 Motivation

Specifying behavior for (physical) multi-agent systems is a sophisticated and demand-

ing task, because of the high complexity of the interactions among agents and the

dynamics of the environment. An important aspect of multi-agent systems is that the

agents interact with a physical environment. Such interactions typically consist of con-

tinuous changes of behaviors of agents (e.g. a movement of a robot, or an agent is

waiting for occurrence of an event), as well as discrete changes of behaviors. Those

scenarios can be captured by the use of hybrid automata [12]. Here the discrete changes

are modeled using a form of transition diagrams dialect like statecharts [24], while the

continuous changes are modeled using differential equations. Hybrid automata formal

semantics make them accessible to formal validation of systems in safety critical en-

vironments. Thus, it is possible to prove desirable features as well as the absence of

unwanted properties for the modeled systems automatically with the help of hybrid

automata verification tools [13, 8, 3].
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Hybrid automata can be used to model multi-agent systems that are defined through

their capability to continuously react to a physical environment, while respecting

some time constraints. Therefore, several researches for example [22, 6, 7, 9], have ap-

proached hybrid automata as a framework to model reactively multi-agent plans, where

the time is critical. There are authors, for example [18], who have approached multi-

agent systems with a simple form of hybrid automata that are called timed automata

[2]. Nevertheless, two problems occur when applying hybrid automata to multi-agent

systems. Firstly, multi-agent systems are specified as a network of synchronized hybrid

automata that have to be parallel composed statically into an automaton (synonymy

agent). By statically we mean that agents have to be parallel composed prior to the

verification phase. Technically, the composition of hybrid automata is obtained from

the Cartesian product of the number of states of all concurrent automata, unless the

automata have mutual synchronization messages. In this case, the states have to be

considered simultaneously. As a result of the composition process, an agent captures all

possible behaviors that may occur in the multi-agent systems. In turn, the resulting com-

posed agent afterwards is checked by hybrid automata verification tools. Consequently,

this composition process may lead to a state explosion problem.

The second problem concerns the expressiveness of the modeling tools. Standard

hybrid automata tools are not flexible enough to model multi-agent systems, because

they are special purpose tools, which model the agents’ decision depending on the

evaluation of continuous dynamics. However,there are favorable situations of modeling

multi-agent systems where the agents’ decision steps do not depend on the evaluation

of continuous dynamics, but on evaluation functions (e.g. shortest distance, max, or

min) happening during the continuous dynamic. Imagine, for example, an agent who

wants to cooperate with the nearest agent to conduct certain tasks in a rescue team of

a multi-agent system. To our knowledge, this type of decision making is beyond the

capabilities of the current hybrid automata verification tools. Therefore it is necessary

to have expressive tools that can handle such situations. Ideally, modeling tools are

favorable when they are flexibly able to verify the systems’ requirements.

To this end, the purpose of this paper is to cope with the mentioned problems when

approaching hybrid automata to model multi-agent systems. In particular, we present a

novel approach which models hybrid automata based on constraint logic programming,

which is appropriate to represent multi-agent systems specified as hybrid automata. The

novelty of the presented approach is the composition of hybrid automata that is built on

the fly, where only the reached behaviors are captured dynamically, instead of building

all possible behaviors in advance. On the other hand, the expressiveness of CLP does

not only allow us to model multi-agent systems, but also to check various properties by

representing requirementswith a suitable query.We show the feasibility of our approach

with experimentations on standard benchmarks taken from the hybrid automata context.

1.1 Overview on the Rest of the Paper

In summary, the main contributions of this paper are as follows: First, a lean but effec-

tive implementation of hybrid automata, suitable to multi-agent systems, is presented.

Second, compositions of automata do not have to be computed explicitly, which avoids

the state explosion problem. Last but not least, by employing CLP, constraints can be
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ṫ= 1 ṫ = 1ṫ= 0

ġ= 0

x: =1000

app

lower

exit
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Fig. 1. Specification of the train gate controller as hybrid automata.

derived automatically, under which certain states of the system can be tested for reach-

ability. This enhances standard model checking methodologies.

In the sequel, we first introduce a running example that will be used throughout

the paper to illustrate our approach in Sec. 2. Then hybrid automata syntax and se-

mantics are discussed in Sec. 3. In Sec. 4 a CLP implementation model is discussed,

before showing how to specify and verify requirements in Sec. 5. The evaluation of our

CLP implementation model is discussed in Sec. 6. Then Sec. 6.1 briefly reviews related

works, before we end up with the conclusion Sec. 7

2 Running Example

Before we present both syntax and semantic of hybrid automata, we first introduce an

illustrating running example that we use throughout the paper, before we shows the

basics formalism which we use to demonstrate the CLP implementation.

A train gate controller [14] is a reactive multi-agent system consisting of three agent

components: the train, the gate, and the controller. In this system, a road is crossing a

train track, which is guarded by a gate, which must be lowered to stop the traffic when

the train approaches, and raised after a train passed the road. The gate is supervised by

a controller that has the task to receive signals from the train and to issue lower or raise

signals to the gate. Initially, a train is at a distance of 1000 meters away from the gate

and moves at a speed 50meter per second. At 500 meters, a sensor on the tracks detects

the train, sending a signal app to the controller. The train slows down, obeying the
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differential equation ẋ=− x
25 −30. After a delay of five seconds, which is modeled by

the variable t, the controller sends the signal lower to the gate, which begins to descend

from 90 degrees to 0 degrees at a rate of -20 degrees per second. After crossing the gate,

the train accelerates according to the differential equation ẋ= x
5 +30. A second sensor

placed 100 meters past the crossing detects the leaving train, sending a signal exit to the

controller. After five seconds, the controller raises the gate.

The specification of the previous multi-agent system is graphically illustrated as

concurrent hybrid automata in Fig. 1. The variable x represents the distance of the train

from the gate. The variable t represents the delay time of the controller, while the posi-

tion of the gate in radius degrees is represented by the variable g.

3 Hybrid Automata Preliminaries

In this section, we show the basics syntax and the semantics of hybrid automata.

3.1 Hybrid Automaton: Syntax

A hybrid automaton is represented graphically as a state transition diagram dialect like

statecharts, augmented with mathematical formalisms on both transitions and locations.

Formally speaking, a hybrid automaton (agent in continuous domain) is defined as fol-

lows.

Definition 1 (basic components). A hybrid automaton is a tuple H =
(X ,Q, Inv,Flow,E,Jump,Reset,Event, Init) where:

– X ⊆ℜn is a finite set of n real-valued variables that model the continuous dynamics.

– Q is a finite set of control locations. For example, the train automaton (Fig. 1) has

the locations far, near,and past.

– Inv(q) is the invariant predicate, which assigns a constraint on variables X for each

control location q ∈ Q. The control of a hybrid automaton remains at a location

q∈Q, as long as Inv(q) holds. For instance, the location far in the train automaton

has the invariant x≥ 500

– Flow(q) is the flow predicate on variables X for each control location q∈Q, which

defines how the the variables in X evolve over the time at location q. It constrains

the time derivative of the continuous part of the variables at location q. In the

graphical representation, a flow of a variable x is denoted as ẋ. For example, ẋ =
x
5
+ 30 describes the speed of the train at the location past in the train automaton

(Fig. 1). If ẋ = c, then the hybrid automaton is called linear (a special case of

linear hybrid automata are a timed automata [2], where c = 1). if ẋ = c1x+ c2,

then a hybrid automaton is called non-linear.

– E ⊆ Q×Q is the discrete transition relation over the control locations. Each edge

e ∈ E is augmented by the following annotations:

Jump: jump condition (guard), which is a constraint over X that must hold to

fire transitions. Upon firing a transition e, values of the variables X may be

changed by executing a specific action.
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Reset: is a constraint, which may reset the variables by executing a specific as-

signments. For example, the variable X in the train automaton on the transition

between locations past and far is reset to X := 1000. Resetting variables are

omitted on transition, if the values of the variables do not change before the

control goes from a location to another location.

Event: synchronization label, used to synchronize concurrent automata. For in-

stance, the train automaton contains the synchronization labels app, in, and

exist, which must be synchronized with all automata sharing the same syn-

chronization labels. These synchronization labels define the composition of the

automata.

– Init is the initial condition that assigns an initial values to the variables X to each

control location q ∈ Q. For example, x = 1000 is the initial condition of the train

automaton.

3.2 Hybrid Automaton: Semantics

Informally speaking, the semantics of a hybrid automaton is defined in terms of a la-

beled transition system between states, where a state consists of the current location of

the automaton and the current valuation of the real variables. To formalize the seman-

tics of the hybrid automaton, we first need to define the concept of a hybrid automaton’s

state.

Definition 2 (State). At any instant of time, a state of a hybrid automaton is given by

σi= 〈qi,vi,t〉, where qi ∈Q is a control location, vi is the valuation of the real variables,

and t is the current time. A state σi = 〈qi,vi,t〉 is admissible if Inv(qi)[vi] holds.

A state transition system of a hybrid automaton H starts with the initial state σ0 =
〈q0,v0,0〉, where the q0 and v0 are the initial location and valuations of the variables

respectively. For example, the initial state of the train (see Fig. 1 ) can be specified as

〈 f ar,1000,0〉.
Intuitively, an execution of a hybrid automaton corresponds to a sequence of tran-

sitions from a state to another. In fact, a hybrid automaton evolves depending on two

kinds of transitions: continuous transitions, capturing the continuous evolution of states,

and discrete transitions, capturing the changes of location. More formally, we can define

hybrid automaton semantics as follows.

Definition 3 (Operational Semantic). A transition rule between two admissible states

σ1 = 〈q1,v1,t1〉 and σ2 = 〈q2,v2,t2〉 is defined as follows:

discretely: iff t1 = t2 and Jump(v1) holds, then variables are reset at location q2 such

that, Inv(q2)[v2] holds. In this case an event a ∈ Event may occur.

continuously(time delay): iff q1 = q2, and (t2− t1 > 0) is the duration of time passed

at location q1, during which the invariant predicate Inv(q1) continuously holds,

v1,v2 are the variable valuations according to the flow predicate Flow(q1).

In principle, an execution of a hybrid automaton corresponds to a sequence of tran-

sitions from one state to another, therefore we define the valid run as follows.
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Definition 4 (Run). A run of hybrid automaton ∑ = σ0σ1σ2, .., is a finite or infinite

sequence of admissible states, where σ0 is the initial state.

In a run ∑, the transition from a state σi to a state σi+1 is related by either discrete or

continuous transition, according to Def. 3.

It should be noted that the continuous change in the run may generate an infinite

number of reachable states. It follows that state-space exploration techniques require

a symbolic representation system for the sets of states that have to be manipulated (in

this paper, CLP represents the infinite states symbolically as a finite interval). we call

the symbolic interval as region. Consequently, the set of all reachable states at location

q ∈ Q can be represented as 〈q,V,Time〉, where V and Time represent the reachable

region and time at location q respectively. Now, the run of hybrid automata can be re-

stated as a form of reachable regions, where the change from one region to another one

is fired using a discrete step.

The operational semantics is the basis for verification of hybrid automata. In partic-

ular, model checking of a hybrid automaton is defined in terms of reachability analysis

of the hybrid automaton.

Definition 5 (Reachability). A state σ j is reachable from a state σi, if there is a se-

quence of admissible states starting from σi and ending in σ j. A state σ j is called

reachable if it can be reached from the initial state σ0.

The classical method to compute the reachable states consists of performing a state

space exploration of the system, starting from a set containing only the initial state

and spreading the reachability information along control locations and transitions until

a stable region is obtained. Stabilization is detected by testing if the current region is

included in the union of the reached regions obtained in previous steps. It is worth men-

tioning that checking reachability for hybrid automata is generally undecidable even for

a simple class of hybrid automaton [15].

3.3 Hybrid Automata: Composition

To model concurrent systems, hybrid automata can be extended by parallel composition.

Basically, parallel composition of hybrid automata can be used for specifying larger

systems (multi-agent systems), where a hybrid automaton is given for each part of the

system, and communication between the different parts may occur via shared variables

and synchronization labels. Technically, the parallel composition of hybrid automata

is obtained from the different parts using a product construction of the participating

automata. The transitions from the different automata are interleaved, unless they share

the same synchronization label. In this case, they are synchronized during the execution.

As a result of the parallel composition, an automaton is created, which captures the

behavior of the entire system.

Intuitively, if A and B are two automata, then a run of the composed hybrid automata

is a sequence ∑ = σ0σ1σ2, .. and σi = 〈(q,r),(V,U),T 〉, where q and r are the control

locations of both automata A and B respectively, whereas V and U are the respective

reached regions during the time interval T in both locations q and r. The previous means

that a state of composed automata consists a vector of the current locations of the hybrid
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automata - one for each automaton - along with the valuations of the respective variables

and time.

4 CLP Model

In the following, we will show how to encode the hybrid automata described in the pre-

vious section as a Constraint Logic Program CLP [19]. There are diverse motivations

for choosing CLP. Firstly, hybrid automata can be described as a constraint system,

where the constraints represent the possible flow, invariant, and transitions. Further,

constraints can be used to characterize a certain part of the state space (e.g, the set of

initial state or a set of unsafe state). Secondly, there are close similarities in operation

semantics between CLP and hybrid system. Ideally, state transition systems can be rep-

resented as a logic program, where the set of reachable states can be computed. More-

over, constraints enable us to represent infinite states symbolically as a finite interval.

Hence, the constraint solver can be used to reason about the reachability of a particular

state. In addition, CLP is enriched with many efficient constraint solvers for interval

constraints and symbolic domains, where the interval constraints can used to represent

the continuous evolution, whereas symbolic domains are appropriate to represent the

synchronization events (communication messages ).

Our implementation prototype was built using ECLiPSe Prolog [21]. A preliminary

implementation model was introduced in [23]. The prototype follows both the formal

syntax and semantics definition of hybrid automata (Def. 1) and the semantics of the

labeled transition semantics of hybrid automata. We start modeling each hybrid au-

tomaton individually. Therefore, we start by modeling locations that are implemented

in the automaton predicate, ranging over the respective locations of the automaton,

real-valued variables, and the time:

automaton(+Location,?Vars,+Vars0,+T0,?Time):-
Vars#c2(Vars0,T0,Time),
c1(Inv),Time $>=T0.

Here, automaton is the name of automaton itself, and Location represents the cur-

rent locations of the automaton. Vars is a list of real variables participating in the

automata, whereas Vars0 is a list of the correspondent initial values. c1(Invs)
is the invariant constraint inside the location, and the constraint predicate Vars #
c2(Vars0,T0,Time), where #∈ {<,≤,>,≥,=} are constraints, which represent the

continuous flows of the variables in Vars wrt. time T0 and Time, given initial values

Vars0 of the variables Vars at the start of the flow. T0 is the initial time at the start

of continuous flow, while (Time-T0) represents the delay inside the location. The fol-

lowing is an example showing the implementation of location far in automaton train

Fig. 1.

train(far,[X],[X0],T0,Time):-
X $= X0-50*(Time-T0),
X $>=500, Time $>=T0.
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According to operational semantics defined in Def. 3, a hybrid automaton has two

kinds of transitions: continuous transitions, capturing the continuous evolution of vari-

ables, and discrete transitions, capturing the changes of location. For this purpose, we

encode transition systems into the CLP evolve predicate as follows.

evolve(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event) :-
continuous(Automaton,(L1,Var1),(L1,Var2),T0,Time,Event);
discrete(Automaton,(L1,Var1),(L2,Var2),T0,Time,Event).

When a discrete transition occurs, it gives rise to update the initial variables from

Var1 into Var2, where Var1 and Var2 are the initial variables of locations L1 and L2
respectively. Otherwise, a delay transition is taken using the predicate continuous. It is

worth noting that there are infinite states due to the continuous progress. However, this

can be handled efficiently as interval constraint that bounds the set of infinite reachable

state as a finite interval (i.e., 0≤ X ≤ 250).
Additionally, an event ∈EventAutomaton is associated with each transition, a variable

Event, which is used to define the parallel composition from the automata individual
sharing the same event. Event ranges over symbolic domains. It guarantees that when-
ever an automaton generates an event, the corresponding synchronized automata have
to be taken into consideration simultaneously. When an automaton generates an event,
the symbolic domain solver will exclude all the domain values that are not coincident
with the generated event from the automata having the common event. This means that
only one event is generated at a time. Consequently, it shows that the automata com-
position can be implicitly constructed efficiently on the fly, during the computation.
Appropriately, the way that we construct the composition helps us to construct complex
automata in terms of simpler ones. The following is the general implementation of the
discrete predicate, which defines transitions between locations.

discrete(automaton,(+Loc1,+Var1),(?Loc2,?Var2),T0,Time,-Event):-
automaton,(Location,Var1,Var,T0,Time),
jump(Var) , reset(Var2)
Event &::events,Event &=event.

Here, event must be a member in EventAutomaton. The & symbol is the constraint re-

lation for symbolic domains (library sd in ECLiPSe Prolog), while the $ symbol (see

below) marks interval constraints (library ic).
The following is an instance showing the implementation of the discrete predicate

between locations far and near in automaton train.

discrete(train,(far,[X0]),(near,[XX0]),T0,Time,Event):-
train(far,[X0],[X],T0,Time),
X $=500, XX0 $=X,
Event &::events,Event &=app.

The description of the above discrete predicate means that a transition between the

locations far and near in the train automata takes place if the continuous variable X ,

based on the initial value X0, satisfies the jump condition given as X=500. If such a case

occurs, then the new variable, denoted XX0, is updated, and the event app is fired. The

executed events afterwards synchronize the train automaton with the automata sharing

the same event. The & symbol is the constraint relation for symbolic domains (library sd
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in ECLiPSe Prolog), while the $ symbol (see below) marks interval constraints (library

ic). Once the transition rules have been modeled, a driver program needs to be supplied:

driver((+L1,+Var01),(+L2,+Var02),...,(+Ln,+Var0n),+T0,
[(L1,L2,..,Ln,-Var1,-Var2,..,-Varn,-Time,-Event)|-NextRegion]) :-

automaton1(L1,Var1,Var01,T0,Time1),
automaton2(L2,Var2,Var02,T0,Time2),
... ,
automatonn(Ln,Varn,Var0n,T0,Timen),
Time1 $=Time2, Time1 $=Time3, ..., Time1 $=Timen,
evolve(automaton1,(L1,Var01),(NextL1,Nvar01),T0,Time1,Event),
evolve(automaton2,(L2,Var02),(NextL2,Nvar02),T0,Time1,Event),
... ,
evolve(automatonn,(Ln,Var0n),(NextLn,Nvar0n),T0,Time1,Event),

driver((NextL1,Nvar01),(NextL2,Nvar02),...,(NextLn,Nvar0n),Time1,NextRegion).

The driver is a simulator predicate that is responsible to generate and control the

execution behavior of the concurrent hybrid automata, as well as to provide the reach-

able states symbolically.

Recall again, Event is a symbolic domain variable shared among all automata,

where it is used by the solver to ensure that only one event is generated at a time.

All automata sharing the same events have to be synchronized. During the computa-

tional process, each automaton Ai ,1 ≤ i ≤ n, produces a time Timei, which is needed

to jump from the automaton’s current location into another location. Constraining these

times of each automaton together leads to a time holding the minimum time among

them. This minimum time,manipulated by the constraints solver, is least time needed

to fire an event. Consequently, the predicate evolve, based on this time,alternates each

automaton between continuous or discrete transition.

The last argument of the predicate driver is the list of finite reached regions. At

each step of the driver, a region, of the form 〈locations,Variables,Time〉 symbolically

represents the set of reached states and time to each control location as mathematical

constrains. Additionally, each region contains the event generated at the end of reached

regions before the control goes to another region using a discrete step.
The driver has to be invoked with a query starting from the initial states of the hybrid

automata. An example showing how to query the driver on our multi-agent scenario
(Fig. 1) takes the form:

?- driver((far,1000),(open,90),(idle,0),0,Reached).

Reachable states should contain only those variables, which are important for the

verification of a given property. Therefore, the last argument list of the predicate driver
can be expanded or shrunk as needed to contain the significant variables.

5 Verification as Reachability Analysis

Now we have an executable constraint based specification, which can be used to ver-
ify properties of our multi-agent team. Several properties can now be investigated. In
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particular, one can check properties on states using reachability analysis of hybrid au-
tomata. Fundamentally, the reachability analysis consists of two basic steps: computing
the state space of the automaton under consideration (in our case, this is done using
the predicate driver), and searching for states that satisfy or contradict given proper-
ties. In terms of CLP, a state is reached iff the constraint solver succeeds in finding a
satisfiable solution for the constraints representing the intended state. In other words,
assuming that Reached represents the set of all reachable states computed by the CLP
model from an initial state, then the reachability analysis can be generally specified, us-
ing CLP, by checking whether Reached |=Ψ holds, whereΨ is the constraint predicate
that describes a property of interest. In practice, many problems to be analyzed can be
formulated as a reachability problem. For example, a safety requirement can be checked
as a reachability problem, where Ψ is the constraint predicate that describes forbidden
states, and then the satisfiability of Ψ wrt. Reached is checked. For instance, one can
check that the state, where the train is near at distance X=0 and the gate is open, is a
disallowed state. Even a stronger condition can be investigated, namely that the state
where the train is near at distance X=0 and the gate is down, is a forbidden state. The
CLP computational model, with the help of the standard Prolog predicate member/2,
gives us the answer no as expected, after executing the following query:

?- driver((far,1000),(open,0),(idle,0),0,Reached),
member((near,down,_,Time,_,X,),Reached), X $= 0.

Other properties concerning the reachability of certain states can be verified similarly.
Fundamentally, different properties can be checked in this framework As previously

demonstrated, the set of reachable states Reached contains the set of finite, reachable
regions. Within each region, the set of all states is represented symbolically as a math-
ematical constraint, together with the time delay. Therefore, constraint solvers ideally
can be used to reason about the reachability of interesting properties within some re-
gion. For example, an interesting property is to find the shortest distance of the train to
the gate before the gate is entirely closed. This can be checked by posing the following
query:

?- driver((far,1000),(open,0),(idle,0),0,Reached),
member((near,_,_,Time,to_close,_),Reached), get_max(Time,Tm),
member((near,_,_,Tm,_,X),Reached), get_min(X,Min).

The previous query returns Min=104.8 meters, which is the minimum distance of

the train that the model guarantees before the gate is completely closed.
Since the events and time are recorded particularly at reached regions, verifying

timing properties or computing the delay between events are further tasks that can be
done within the reachability framework too. For instance, we can find the maximal time
delay between in and exit events, by stating the following query:

?- driver((far,1000),(open,0),(idle,0),Reached),
append(A,[(past,_,_,Time1,exit,_)|_],Reached),
append(B,[(near,_,_,Time2,in,_)|_],A),
get_max(Time1,Tmax1),get_max(Time2,Tmax2),
Delay $= Tmax1-Tmax2.

where the predicate append/3 is the standard Prolog predicate. The constraint solver

answers yes and yields Delay=2.554. This value means that the train needs at most

2.554 seconds to be in the critical crossing section before leaving it. Similarly, other

timing properties can be verified.
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6 Experimental Results

In the previous section, we have demonstrated how different properties can be verified

within the CLP implementation framework.

We did several experiments comparing our approach with HyTech [16]. We chose

HyTech as a reference tool, because it is one of the most well-known tools for the

verification of hybrid automata, and it tackles verification based on reachability analysis

similar to the approach in this paper. In HyTech however, the automata working in

parallel are composed before they are involved in the verification phase. Obviously, this

may lead to state explosion as stated earlier.

Now to use our approach to model and verify multi-agent systems, specified as hy-

brid automata, we have to demonstrate the feasibility of our proposed approach by ex-

periments taken from the hybrid automata context. Therefore, we will refer to standard

benchmarks of verification of real-time systems. Querying these benchmarks to check

safety properties (cf. Fig. 2). First, in the scheduler example [11], it is checked whether

a certain task (with number 2) never waits. Second, in the temperature control example

[1], it has to be guaranteed, that the temperature always lies in a given range. Third, in

the train gate controller example [13], it has to be ensured that the gate is closed when-

ever the train is within a distance less than 10 meter toward the gate. In the water level

example [1, 11] the safety property is to ensure that the water level is always between

given thresholds (1 and 12). Last but not least, a non-linear version of both train gate

controller (described throughout this paper) and of the thermostat are taken from [14].

The safety property of the former one is the same as in the linear version, whereas in the

second one we need to prove that the temperature always lies between 0.28 and 3.76.

For more details on the examples, the reader is referred to the cited literature.

Example HyTech CLP

Scheduler 0.12 0.07

Temperature Controller 0.04 0.02

Train Gate Controller 0.05 0.02

Water Level 0.03 0.01

Train Gate Controller2 - 0.02

Thermostat - 0.01

Fig. 2. Experimental results.

The symbol− in Fig. 2 indicates that the example is inadequate to HyTech. This is

because HyTech can not treat a non-linear dynamic directly.

When comparing HyTech to the approach depicted in this paper, several issues have

to be taken into consideration. The first issue concerns the expressiveness of the dynam-

ical model. HyTech restricts the dynamical model to linear hybrid automata in which the

continuous dynamics is governed by differential equations. The nonlinear dynamics e.g.

of the form ẋ ⋊⋉ c1 ∗ x+ c2, where c1,c2 ∈ℜ,c1 ,= 0,⋊⋉∈ {<,≤,>,≥,=} are first ap-

proximated either by a linear phase portrait or clock translation [17]. Then, the verifica-
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tion phase is done on the approximated model. On the other hand, CLP is more expres-

sive, because it allows more general dynamics. In particular, CLP can directly handle

dynamics expressible as a combination of polynomials, exponentials, and logarithmic

functions explicitly without approximating the model. For instance the last equation can

be represented in CLP form as X $⋊⋉ X0− c2/c1+ c2/c1 ∗ exp(c1 ∗ (T −T0)), where

(T − T0) is the computational delay. Although clearly completeness cannot be guar-

anteed, from a practical point of view, this procedure allows to express problems in a

natural manner. The CLP technology can be fully exploited; it suspends such complex

goals until they become solvable.

Another issue that should be taken into account is the type of verifiable properties.

HyTech cannot verify simple properties that depend on the occurrence of events, despite

of the fact that synchronization events are used in the model. On the other hand, simple

real-time duration properties between events can be verified using HyTech. However,

to do so, the model must be specified by introducing auxiliary variables to measure de-

lays between events or the delay needed for a particular conditions to be hold. Bounded

response time and minimal event separation are further properties that can be veri-

fied using HyTech. These properties, however, can only be checked after augmenting

the model under consideration with what is called a monitor or observer automaton

(cf. [13]), whose functionality is to observe the model without changing its behavior

under consideration. It records the time as soon as some event occurs. Before the model

is verified, the monitor automaton has to be composed with the original model, which

in turns may add further complexity to the model. As demonstrated in this paper, how-

ever, there is no need to augment the model with an extra automaton for the reason that

during the run, not only the states of variables are recorded, but also the events and the

time, where the constraint solver can be used to reason about the respective property

6.1 Related Works

Several tools exist for formal verification of hybrid automata [13, 8, 3], where a multi-

agent team can be verified. Differently to our approach, however, these tools compose

the automata prior to the verification phase.

We are not the first one who approached modeling and verifying hybrid automata

using CLP. In contrast to our proposed approach, several authors propose the explicit

composition of different concurrent automata by hand leading to one single automaton,

before a CLP implementation is applied. This is a tedious work, especially in the case

of multi-agent systems, where a group of agents exists. The latter case is exemplified in

[25, 20].

Other authors employ CLP for implementing hybrid automata [4, 5, 10], but restrict

their attention to a simple class of hybrid systems (e.g. timed systems). They do not

construct the overall behavior prior to modeling, but model each automaton separately.

However, the run of the model takes all possible paths into consideration, resulting from

the product of each component, which leads to unnecessary computation.
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7 Conclusion

Multi-agent systems need to coordinate their plans especially in a safety critical envi-

ronment, where unexpected events typically arise. Therefore, it is becoming increas-

ingly important to react to those events in real time in order to avoid the risk that may

occur during the planning. For this purpose, various researches have approached hy-

brid automata as a framework to model reactively multi-agent plans. In this paper, we

have showed how multi-agent systems can be formally specified and verified as hybrid

automata without explicitly composing the system prior to the verification phase. The

previous helps to tackle the state space problem that may arise during the composition

process. We have programmed our approach by means of constraint logic program-

ming, where constraint solvers help us to build dynamically the entire behavior of a

multi-agent system and to reason about its properties. Furthermore, we have showed

how various properties can be verified using our CLP framework. In addition, we have

conducted several experiments taken from the hybrid automata context to show the fea-

sibility of our approach.

CLP is a suitable framework, where we can reason not only about the time behav-

iors, bout also about the knowledge. The combination of both worlds is subjected to

future work.
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Abstract Development of embodied cognitive agents in agent oriented
programming languages naturally leads to writing underspecified pro-
grams. The semantics of BDI inspired rule based agent programming
languages leaves room for various alternatives as to how to implement
the action selection mechanism of an agent (paraphrased from [5]).
To facilitate encoding of heuristics for the non-deterministic action selec-
tion mechanism, I introduce a probabilistic extension of the framework
of Behavioural State Machines and its associated programming language
interpreter Jazzyk. The language rules coupling a triggering condition
and an applicable behaviour are extended with labels, thus allowing finer
grained control of the behaviour selection mechanism of the underlying
interpreter. In consequence, the agent program not only prescribes a set
of mental state transitions enabled in a given context, but also specifies
a probability distribution over them.

1 Introduction

Situated cognitive agents, such as mobile service robots, operate in rich, unstruc-
tured, dynamically changing and not completely observable environments. Since
various phenomena of real world environments are not completely specifiable, as
well as because of limited, noisy, or even malfunctioning sensors and actuators,
such agents must operate with incomplete information.

On the other hand, similarly to mainstream software engineering, robustness
and elaboration tolerance are some of the desired properties for cognitive agent
programs. Embodied agent is supposed to operate reasonably well also in con-
ditions previously unforeseen by the designer and it should degrade gracefully
in the face of partial failures and unexpected circumstances (robustness). At the
same time the program should be concise, easily maintainable and extensible
(elaboration tolerance).

Agent programs in the reactive planning paradigm [15] are specifications of
partial plans for the agent about how to deal with various situations and events
occurring in the environment. The inherent incomplete information on one side,
stemming from a level of knowledge representation granularity chosen at the
agent’s design phase, and striving for robust and easily maintainable programs
on the other yield a trade-off of intentional underspecification of resulting agent
programs.
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Most BDI inspired agent oriented programming languages on both sides of
the spectrum between theoretically founded (such as AgentSpeak(L)/Jason [2],
3APL [3] or GOAL [4]) to pragmatic ones (e.g., JACK [16] or Jadex [14]) fa-
cilitate encoding of underspecified, non-deterministic programs. Any given sit-
uation, or an event can at the same time trigger multiple behaviours, which
themselves can be non-deterministic, i.e, can include alternative branches.

A precise and exclusive qualitative specification of behaviour triggering con-
ditions is often impossible due to the, at the design time chosen and fixed, level
of knowledge representation granularity. This renders the qualitative condition
description a rather coarse grained means for steering agent’s life-cycle. In such
contexts, a quantitative heuristics steering the language interpreter’s choices be-
comes a powerful tool for encoding developer’s informal knowledge, or intuitions
about agent’s run-time evolutions. For example, it might be appropriate to exe-
cute some applicable behaviours more often than others, or some of them might
intuitively perform better than other behaviours in the same context, and there-
fore should be preferably selected.

In this paper I propose a probabilistic extension of a rule-based agent pro-
gramming language. The core idea is straightforward: language rules coupling
a triggering condition with an applicable behaviour are extended with labels
denoting a probability with which the interpreter’s selection mechanism should
choose the particular behaviour in a given context. The idea is directly applicable
also to other agent programming languages, however here I focus on extension of
the theoretical framework of Behavioural State Machines [10] and its associated
programming language instance Jazzyk, which I use in my long-term research.
One of elegant implications of the extension of the BSM framework is that
subprograms with labelled rules can be seen as specifications of probability dis-
tributions over actions applicable in a given context. This allows steering agent’s
focus of deliberation on a certain sub-behaviour with only minor changes to the
original agent program. I call this technique adjustable deliberation.

After a brief overview of the framework of Behavioural State Machines (BSM )
with the associated programming language Jazzyk in Section 2, sections 3 and 4
introduce P-BSM and Jazzyk(P), their respective probabilistic extensions. Sec-
tion 5 discusses practical use of the P-BSM framework together with a brief
overview of related work. Finally, a summary with final remarks concludes the
paper in Section 6.

2 Behavioural State Machines

In [10] I introduced the framework of Behavioural State Machines. BSM frame-
work draws a clear distinction between the knowledge representation and be-
havioural layers within an agent. It thus provides a programming framework
that clearly separates the programming concerns of how to represent an agent’s
knowledge about, for example, its environment and how to encode its behaviours
for acting in it. This section briefly introduces the BSM framework, for simplic-
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ity without treatment of variables. For the complete formal description of the
BSM framework, see [10].

2.1 Syntax

BSM agents are collections of one or more so-called knowledge representation
modules (KR modules), typically denoted by M, each representing a part of
the agent’s knowledge base. KR modules may be used to represent and maintain
various mental attitudes of an agent, such as knowledge about its environment, or
its goals, intentions, obligations, etc. Transitions between states of a BSM result
from applying so-called mental state transformers (mst), typically denoted by
τ . Various types of mst’s determine the behaviour that an agent can generate.
A BSM agent consists of a set of KR modulesM1, . . . ,Mn and a mental state
transformer P, i.e. A = (M1, . . . ,Mn,P); the mst P is also called an agent
program.

The notion of a KR module is an abstraction of a partial knowledge base of
an agent. In turn, its states are to be treated as theories (i.e., sets of sentences)
expressed in the KR language of the module. Formally, a KR module Mi =
(Si,Li,Qi,Ui) is characterised by a knowledge representation language Li, a set
of states Si ⊆ 2Li , a set of query operators Qi and a set of update operators
Ui. A query operator    ∈ Qi is a mapping    : Si × Li → {⊤,⊥}. Similarly an
update operator ⊕ ∈ Ui is a mapping ⊕ : Si × Li → Si.

Queries, typically denoted by ϕ, can be seen as operators of type    : Si →
{⊤,⊥}. A primitive query ϕ = (   φ) consists of a query operator    ∈ Qi and a
formula φ ∈ Li of the same KR moduleMi. Complex queries can be composed
by means of conjunction ∧, disjunction ∨ and negation ¬.

Mental state transformers enable transitions from one state to another. A
primitive mst ⊘ψ, typically denoted by ρ and constructed from an update op-
erator ⊘ ∈ Ui and a formula ψ ∈ Li, refers to an update on the state of the
corresponding KR module. Conditional mst’s are of the form ϕ −→ τ , where
ϕ is a query and τ is a mst. Such a conditional mst makes the application of
τ depend on the evaluation of ϕ. Syntactic constructs for combining mst’s are:
non-deterministic choice | and sequence ◦.

Definition 1 (mental state transformer). Let M1, . . . ,Mn be KR modules
of the formMi = (Si,Li,Qi,Ui). The set of mental state transformers is defined
as below:

– skip is a primitive mst,
– if ⊘ ∈ Ui and ψ ∈ Li, then ⊘ψ is a primitive mst,
– if ϕ is a query, and τ is a mst, then ϕ −→ τ is a conditional mst,
– if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦ τ ′ are mst’s ( choice, and sequence

respectively).

2.2 Semantics

The yields calculus, summarised below after [10], specifies an update associated
with executing a mental state transformer in a single step of the language inter-
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preter. It formally defines the meaning of the state transformation induced by
executing an mst in a state, i.e., a mental state transition.

Formally, a mental state σ of a BSM A = (M1, . . . ,Mn, τ) is a tuple
σ = 〈σ1, . . . , σn〉 of KR module states σ1 ∈ S1, . . . , σn ∈ Sn, corresponding
toM1, . . . ,Mn respectively. S = S1 × · · · × Sn denotes the space of all mental
states over A. A mental state can be modified by applying primitive mst’s on
it and query formulae can be evaluated against it. The semantic notion of truth
of a query is defined through the satisfaction relation |=. A primitive query    φ
holds in a mental state σ = 〈σ1, . . . , σn〉 (written σ |= (   φ)) iff    (φ, σi), oth-
erwise we have σ :|= (   φ). Given the usual meaning of Boolean operators, it is
straightforward to extend the query evaluation to compound query formulae.
Note that evaluation of a query does not change the mental state σ.

For an mst ⊘ψ, we use (⊘, ψ) to denote its semantic counterpart, i.e., the
corresponding update (state transformation). Sequential application of updates
is denoted by •, i.e. ρ1 •ρ2 is an update resulting from applying ρ1 first and then
applying ρ2. The application of an update to a mental state is defined formally
below.

Definition 2 (applying an update). The result of applying an update ρ =
(⊘, ψ) to a state σ = 〈σ1, . . . , σn〉 of a BSM A = (M1, . . . ,Mn,P), denoted by
s
⊕

ρ, is a new state σ′ = 〈σ1, . . . , σ
′
i, . . . , σn〉, where σ′i = σi⊘ψ and σi, ⊘, and

ψ correspond to one and the sameMi of A. Applying the empty update skip on
the state σ does not change the state, i.e. σ

⊕

skip = σ.
Inductively, the result of applying a sequence of updates ρ1 •ρ2 is a new state

σ′′ = σ′
⊕

ρ2, where σ′ = σ
⊕

ρ1. σ
ρ1•ρ2
→ σ′′ = σ

ρ1
→ σ′

ρ2
→ σ′′ denotes the

corresponding compound transition.

The meaning of a mental state transformer in state σ, formally defined by the
yields predicate below, is the update set it yields in that mental state.

Definition 3 (yields calculus). A mental state transformer τ yields an up-
date ρ in a state σ, iff yields(τ, σ, ρ) is derivable in the following calculus:

⊤
yields(skip,σ,skip)

⊤
yields(⊘ψ,σ,(⊘,ψ)) (primitive)

yields(τ,σ,ρ), σ|=φ
yields(φ−→τ,σ,ρ)

yields(τ,σ,ρ), σ (|=φ
yields(φ−→τ,σ,skip) (conditional)

yields(τ1,σ,ρ1), yields(τ2,σ,ρ2)
yields(τ1|τ2,σ,ρ1), yields(τ1|τ2,σ,ρ2)

(choice)

yields(τ1,σ,ρ1), yields(τ2,σ
L

ρ1,ρ2)
yields(τ1◦τ2,σ,ρ1•ρ2)

(sequence)

We say that τ yields an update set ν in a state σ iff ν = {ρ|yields(τ, σ, ρ)}.

The mst skip yields the update skip. Similarly, a primitive update mst⊘ψ yields
the corresponding update (⊘, ψ). In the case the condition of a conditional mst
φ −→ τ is satisfied in the current mental state, the calculus yields one of the
updates corresponding to the right hand side mst τ , otherwise the no-operation

106



skip update is yielded. A non-deterministic choice mst yields an update corre-
sponding to either of its members and finally a sequential mst yields a sequence
of updates corresponding to the first mst of the sequence and an update yielded
by the second member of the sequence in a state resulting from application of
the first update to the current mental state.

Notice, that the provided semantics of choice and sequence operators implies
associativity of both. Hence, from this point on, instead of the strictly pairwise
notation τ1|(τ2|(τ3|(· · · |τk))), we simply write τ1|τ2|τ2| · · · |τk. Similarly for the
sequence operation ◦.

The following definition articulates the denotational semantics of the notion
of mental state transformer as an encoding of a function mapping mental states
of a BSM to updates, i.e., transitions between them.

Definition 4 (mst functional semantics). Let M1, . . . ,Mn be KR modules.
A mental state transformer τ encodes a function fτ : σ )→ {ρ|yields(τ, σ, ρ)} over
the space of mental states σ = 〈σ1, . . . , σn〉 ∈ S1 × · · · × Sn.

Subsequently, the semantics of a BSM agent is defined as a set of traces in the
induced transition system enabled by the BSM agent program.

Definition 5 (BSM semantics). A BSM A = (M1, . . . ,Mn,P) can make a
step from state σ to a state σ′, iff σ′ = σ

⊕

ρ, s.t. ρ ∈ fP(σ). We also say, that

A induces a (possibly compound) transition σ
ρ
→ σ′.

A possibly infinite sequence of states σ1, . . . , σi, . . . is a run of BSM A, iff for
each i ≥ 1, A induces a transition σi → σi+1.

The semantics of an agent system characterised by a BSM A, is a set of all
runs of A.

Additionally, we require the non-deterministic choice of a BSM interpreter to
fulfil the weak fairness condition, similar to that in [7], for all the induced runs.

Condition 1 (weak fairness condition) A computation run is weakly fair iff
it is not the case that an update is always yielded from some point in time on
but is never selected for execution.

2.3 Jazzyk

Jazzyk is an interpreter of the Jazzyk programming language implementing the
computational model of the BSM framework. Later in this paper, we use a
more readable notation mixing the syntax of Jazzyk with that of the BSM mst’s
introduced above. when φ then τ encodes a conditional mst φ −→ τ . Symbols ; and
, stand for choice | and sequence ◦ operators respectively. To facilitate operator
precedence, mental state transformers can be grouped into compound structures,
blocks, using curly braces {. . .}.

To better support source code modularity and re-usability, Jazzyk interpreter
integrates a macro preprocessor, a powerful tool for structuring and modularising
and encapsulating the source code and writing code templates.

For further details on the Jazzyk programming language and the macro pre-
processor integration with Jazzyk interpreter, consult [10].
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3 Probabilistic BSMs

In the plain BSM framework, the syntactic construct of a mental state trans-
former encodes a transition function over the space of mental states of a BSM
(cf. Definition 4). Hence, an execution of a compound non-deterministic choice
mst amounts to a non-deterministic selection of one of its components and its
subsequent application to the current mental state of the agent. In order to
enable a finer grained control over this selection process, in this section I intro-
duce an extension of the BSM framework with specifications of a probability
distributions over components of choice mst’s.

The P-BSM formalism introduced below heavily builds on associativeness of
BSM composition operators of non-deterministic choice and sequence. We also
informally say that an mst τ occurs in a mst τ ′ iff τ ′ can be constructed from
a set of mst’s T , s.t. τ ∈ T , by using composition operators as defined by the
Definition 1.

Definition 6 (Probabilistic BSM). A Probabilistic Behavioural State Ma-
chine (P-BSM) Ap is a tuple Ap = (M1, . . . ,Mn,P, Π), where A = (M1, . . . ,

Mn,P) is a BSM and Π : τ )→ Pτ is a function assigning to each non-
deterministic choice mst of the form τ = τ1| · · · |τk ∈ P occurring in P a discrete

probability distribution function Pτ :τi )→ [0, 1], s.t.
∑k

i=1 Pτ (τi) = 1.

W.l.o.g. we assume that each mst occurring in the agent program P can be
uniquely identified (e.g. by its position in the agent program).

The probability distribution function Pτ assigns to each component of a non-
deterministic choice mst τ = τ1|τ2| · · · |τk a probability of its selection for appli-
cation by a BSM interpreter.

Note, that because of the unique identification of mst’s in an agent program
P, the function Π assigns two distinct discrete probability distributions Pτ1 and
Pτ2 to choice mst’s τ1, τ2 even when they share the syntactic form but occur as
distinct components of P.

To distinguish from the BSM formalism, we call mst’s occurring in a P-BSM
probabilistic mental state transformers. BSM mst’s as defined in Section 2 will
be called plain.

Similarly to plain mst’s, the semantic counterpart of a probabilistic mst is a
probabilistic update. A probabilistic update of a P-BSM Ap = (M1, . . . ,Mn,P, Π)
is a tuple p:ρ, where p ∈ R, s.t. p ∈ [0, 1], is a probability and ρ = (⊘, ψ) is an
update from the BSM A = (M1, . . . ,Mn,P).

The semantics of a probabilistic mental state transformer in a state σ, for-
mally defined by the yieldsp predicate below, is the probabilistic update set it
yields in that mental state.

Definition 7 (yieldsp calculus). A probabilistic mental state transformer τ

yields a probabilistic update p:ρ in a state σ, iff yieldsp(τ, σ, p:ρ) is derivable in
the following calculus:
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⊤
yieldsp(skip,σ,1:skip)

⊤
yieldsp(⊘ψ,σ,1:(⊘,ψ)) (primitive)

yieldsp(τ,σ,p:ρ), σ|=φ

yieldsp(φ−→τ,σ,p:ρ)

yieldsp(τ,σ,θ,p:ρ), σ )|=φ

yieldsp(φ−→τp,σ,1:skip) (conditional)

τ=τ1|···|τk, Π(τ)=Pτ , ∀1≤i≤k: yieldsp(τi,σ,pi:ρi)

∀1≤i≤k: yieldsp(τ,σ,Pτ (τi)·pi:ρi)
(choice)

τ=τ1◦···◦τk, ∀1≤i≤k: yieldsp(τi,σi,pi:ρi)∧σi+1=σi
L

ρi

yields(τ,σ1,
Q

k
i=1 pi:ρ1•···•ρk)

(sequence)

The modification of the plain BSM yields calculus introduced above for primi-
tive and conditional mst’s is rather straightforward. A plain primitive mst yields
the associated primitive update for which there’s no probability of execution
specified. A conditional mst yields probabilistic updates of its right hand side if
the left hand side query condition is satisfied. It amounts to a skip mst other-
wise. The function Π associates a discrete probability distribution function with
each non-deterministic choice mst and thus modifies the probability of applica-
tion of the probabilistic updates yielded by its components accordingly. Finally,
similarly to the plain yields calculus, a sequence of probabilistic mst’s yields
sequences of updates of its components, however the joint application probabil-
ity equals to the conditional probability of selecting the particular sequence of
updates. The following example illustrates the sequence rule of the probabilistic
yieldsp calculus.

Example 1. Consider the following mst: (0.3:τ1 | 0.7:τ2) ◦ (0.6:τ3 | 0.4:τ4). Let’s
assume that for each of the component mst’s τi, we have yieldsp(τi, σ, pi:ρi) in
a state σ. The plain yields calculus yields the following sequences of updates
ρ1 • ρ3, ρ1 • ρ4, ρ2 • ρ3 and ρ2 • ρ4. The probability of selection of each of them,
however, equals to the conditional probability of choosing an update from the
second component of the sequence, provided that the choice from the first one
was already made. I.e. the probabilistic yieldsp calculus results in the following
sequences of probabilistic updates 0.18:(ρ1 •ρ3), 0.12:(ρ1 •ρ4), 0.42:(ρ2 •ρ3) and
0.28:(ρ2 • ρ4).

The corresponding adaptation of the mst functional semantics straightforwardly
follows.

Definition 8 (probabilistic mst functional semantics). Let Ap = (M1, . . . ,

Mn,P, Π) be a P-BSM. A probabilistic mental state transformer τ encodes a
transition function fpτ : σ )→ {p : ρ|yieldsp(τ, σ, p : ρ)} over the space of mental
states σ = 〈σ1, . . . , σn〉 ∈ S1 × · · · × Sn.

According to the Definition 6, each mst occurring in a P-BSM agent program
can be uniquely identified. Consequently, also each probabilistic update yielded
by the program can be uniquely identified by the mst it corresponds to. The
consequence is, that w.l.o.g. we can assume that even when two probabilistic
updates p1:ρ1, p2:ρ2 yielded by the agent program P in a state σ share their
syntactic form (i.e. p1 = p2 and ρ1, ρ2 encode the same plain BSM update) they
both independently occur in the probabilistic update set fp(σ).
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The following lemma shows, that the semantics of probabilistic mst’s em-
bodied by the yieldsp calculus can be understood as an encoding of a probability
distribution, or a probabilistic policy over updates yielded by the underlying plain
mst. Moreover, it also implies that composition of probabilistic mst’s maintains
their nature as probability distributions.

Lemma 1. Let Ap = (M1, . . . ,Mn,P, Π) be a P-BSM. For every mental state
transformer τ occurring in P and a mental state σ of Ap, we have

∑

p:ρ∈fpτ (σ)

p = 1 (1)

Proof. Cf. Appendix A.

Finally, the semantics of a P-BSM agent is defined as a set of traces in the
induced transition system enabled by the P-BSM agent program.

Definition 9 (BSM semantics). A P-BSM Ap = (M1, . . . ,Mn,P, Π) can
make a step from state σ to a state σ′ with probability p, iff σ′ = σ

⊕

ρ, s.t.
p:ρ ∈ fpτ (σ). We also say, that with a probability p, Ap induces a (possibly

compound) transition σ
p:ρ
→ σ′.

A possibly infinite sequence of states ω = σ1, . . . , σi, . . . is a run of P-BSM

Ap, iff for each i ≥ 1, A induces the transition σi
pi:ρi
→ σi+1 with probability pi.

Let pref (ω) denote the set of all finite prefixes of a possibly infinite com-

putation run ω and |.| the length of a finite run. P (ω) =
∏|ω|

i=1 pi is then the
probability of the finite run ω.

The semantics of an agent system characterised by a P-BSM Ap, is a set
of all runs ω of Ap, s.t. all of their finite prefixes ω′ ∈ pref (ω) have probability
P (ω′) > 0.

Informally, the semantics of an agent system is a set of runs involving only
transitions induced by updates with a non-zero selection probability.

Additionally, we require an admissible P-BSM interpreter to fulfil the fol-
lowing specialisation of the weak fairness condition, for all the induced runs.

Condition 2 (P-BSM weak fairness condition) Let ω be a possibly infinite
computation run of a P-BSM Ap. Let also freqp:ρ(ω

′) be the number of transitions
induced by the update p:ρ along a finite prefix of ω′ ∈ pref (ω).

We say that ω is weakly fair w.r.t. Ap iff for all updates p:ρ we have, that if
from some point on p:ρ is always yielded in states along ω, 1) it also occurs on ω

infinitely often, and 2) for the sequence of finite prefixes of ω ordered according
to their length holds

lim inf
|ω′|→∞

ω′∈pref (ω)

freqp:ρ(ω
′)

|ω′|
≥ p
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Similarly to the plain BSM weak fairness Condition 1, the above stated Con-
dition 2 embodies a minimal requirement on admissible P-BSM interpreters. It
admits only P-BSM interpreters which honor the intended probabilistic seman-
tics of the non-deterministic choice selection of the yieldsp calculus. The first
part of the requirement is a consequence of the plain BSM weak fairness condi-
tion (Condition 1), while the second states that in sufficiently long computation
runs, the frequency of occurrence of an always yielded probabilistic update cor-
responds to its selection probability in each single step.

4 Jazzyk(P)

Jazzyk is a programming language instantiating the plain BSM theoretical frame-
work introduced in [10]. This section informally describes its extension Jazzyk(P),
an instantiation of the framework of Probabilistic Behavioural State Machines
introduced in Section 3 above.

Jazzyk(P) syntax differs from that of Jazzyk only in specification of prob-
ability distributions over choice mst’s. Jazzyk(P) allows for explicit labellings
of choice mst members by their individual application probabilities. Consider
the following labelled choice mst p1:τ1 ; p2:τ2 ; p3:τ3 ; p4:τ4 in the Jazzyk(P) no-
tation. Each pi ∈ [0, 1] denotes the probability of selection of mst τi by the
interpreter. Furthermore, to ensure that the labelling denotes a probability dis-
tribution over τi’s, Jazzyk(P) parser requires that

∑k
i=1 pi = 1 for every choice

mst p1:τ1 ; . . . ; pk:τk occurring in the considered agent program. Similarly to
Jazzyk, during the program interpretation phase, Jazzyk(P) interpreter proceeds
in a top-down manner subsequently considering nested mst’s from the main
agent program, finally down to primitive update formulae. When the original
Jazzyk interpreter faces a selection from a non-deterministic choice mst, it ran-
domly selects one of them assuming a discrete uniform probability distribu-
tion. I.e., the probability of selecting from a choice mst with k members is 1

k

for each of them. The extended interpreter Jazzyk(P) respects the specified se-
lection probabilities: it generates a random number p ∈ [0, 1] and selects τs,

s.t.
∑s−1

i=1 pi ≤ p ≤
∑s

i=1 pi.
For convenience, Jazzyk(P) enables use of incomplete labellings. An incom-

pletely labelled non-deterministic choice mst is one containing at least one mem-
ber mst without an explicit probability specification such as p1:τ1 ; p2:τ2 ; τ3 ; τ4.
In such a case, the Jazzyk(P) parser automatically completes the distribution
by uniformly dividing the remaining probability range to unlabelled mst’s. I.e.,
provided an incompletely labelled choice mst with k members, out of which
m < k are labelled (p1:τ1 ; . . . ; pm:τm ; τm+1 ; · · · ; τk), it assigns probability

p =
1−
Pm

i=1 pi
k−m

to the remaining mst’s τm+1, . . . , τk.
The Listing 1 provides an example of a Jazzyk(P) code snippet adapted from

the Jazzbot project [6]. Consider a BDI-style virtual agent (bot) in a simulated
3D environment. The bot moves around a virtual building and searches for items
which it picks up and delivers to a particular place in the environment. Upon
encountering an unfriendly agent (attacker), it executes an emergency behaviour,
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Listing 1 Example of Jazzyk(P) syntax.

when |=bel [{ threatened }] then {
/∗ ∗∗∗Emergency modus operandi∗∗∗ ∗/

/∗ Detect the enemy’s position ∗/
0.7 : when |=bel [{ attacker(Id) }] and |=env [{ eye see Id player Pos }]
then ⊕map [{ positions[Id] = Pos }] ;

/∗ Check the camera sensor ∗/
0.2 : when |=env [{ eye see Id Type Pos }] then {

⊕bel [{ see(Id, Type) }] ,
⊕map [{ objects[Pos].addIfNotPresent(Id) }]

}

/∗ Check the body health sensor ∗/
when |=env [{ body health X }] then ⊕bel [{ health(X). }] ;

} else {
/∗ ∗∗∗Normal mode of perception∗∗∗ ∗/

/∗ Check the body health sensor ∗/
when |=env [{ body health X }] then ⊕bel [{ health(X). }] ;

/∗ Check the camera sensor ∗/
when |=env [{ eye see Id Type Pos }] then {

⊕bel [{ see(Id, Type) }] ,
⊕map [{ positions[Id] = Pos }]

}
}

such as running away until it feels safe again. The agent consists of several
KR modules bel, map and env respectively representing its beliefs about the
environment and itself, the map of the environment and an interface to its sensors
and actuators, i.e. the body. The corresponding query and update operators |=
and ⊕ are sub-scripted with the KR module label they correspond to.

The Listing 1 provides a piece of code for perception of the bot. In the normal
mode of operation, the bot in a single step queries either its camera, or its body
health status sensor with the same probability of selection for each of them,
i.e., 0.5. However, in the case of emergency, the bot focuses more on escaping
the attacker, therefore, in order to retrieve the attacker’s position, it queries the
camera sensor more often (selection probability p = 0.7) than sensing objects
around it (p = 0.2). Checking it’s own body health is of the least importance
(p = 0.1), however not completely negligible.

In an implemented program, however, the Listing 1 would be rewritten using
the macro facility of the Jazzyk interpreter and reduced to a more concise code
shown in the Listing 2.

5 Discussion

Probabilistic Behavioural State Machines, and in turn Jazzyk(P), allow for la-
belling of alternatives in non-deterministic choice mental state transformers,
thus providing a specification of a probability distribution over the set of en-
abled transitions for the next step in agent’s life-cycle. Besides the, in the field
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Listing 2 Example of focusing bot’s attention during emergency situations
rewritten with reusable macros.

when |=bel [{ threatened }] then {
/∗ ∗∗∗Emergency modus operandi∗∗∗ ∗/
0.7 : DETECT ENEMY POSITION ;

0.2 : SENSE CAMERA ;

SENSE HEALTH

} else {
/∗ ∗∗∗Normal mode of perception∗∗∗ ∗/
SENSE HEALTH ;

SENSE CAMERA

}

of rule based agent programming languages conventional, Plotkin style opera-
tional semantics [13], the BSM semantics allows a functional view on mental
state transformers (cf. Definition 8). In turn, the informal reading of a P-BSM
choice mst’s can be seen as a specification of the probability with which the next
transition will be chosen from the function denoted by the particular member
mst. In other words, a probability of applying the member mst function to the
current mental state.

The proposed extension allows a finer grained steering of the interpreter’s
non-deterministic selection mechanism and has applications across several niches
of methodologies for rule based agent oriented programming languages. Our
analyses and first experiments in the context of the Jazzbot application have
shown that labelling probabilistic mst’s is a useful means to contextually focus
agent’s perception (cf. Listing 2). Similarly, the labelling technique is useful in
contexts, when it is necessary to execute certain behaviours with a certain given
frequency. For example, approximatelly in about every 5th step broadcast a
ping message to peers of the agent’s team. Finally, the technique can be used
when the agent developer has an informal intuition that preferring more frequent
execution of certain behaviours over others (e.g. cheaper, but less efficient over
resource intensive, but rather powerful) might suffice, or even perform better
in a given context. Of course writing such programs makes sense only when a
rigorous analysis of the situation is impossible, or undesirable and at the same
time a suboptimal performance of the agent system is acceptable.

An instance of the latter technique for modifying the main control cycle of
the agent program is what I call adjustable deliberation. Consider the following
Jazzyk BSM code for the main control cycle of an agent adapted from [12]:

PERCEIVE ; HANDLE GOALS ; ACT

The macros PERCEIVE, HANDLE GOALS and ACT encode behaviours for percep-
tion (similar to that in the Listing 1), goal commitment strategy implementa-
tion and action selection respectively. In the case of emergency, as described in
the example in Section 4 above, it might be useful to slightly neglect delibera-
tion about agent’s goals, in favour of an intensive environment observation and
quick reaction selection. The following reformulation of the agent’s control cycle
demonstrates the simple program modification:

113



when |=bel [{ emergency }] then { PERCEIVE ; HANDLE GOALS ; ACT }
else { 0.4 : PERCEIVE ; HANDLE GOALS ; 0.4 : ACT }

The underlying semantic model of Behavioural State Machines framework is a
labelled transition system [11]. In consequence, the underlying semantic model of
the P-BSM framework is a discrete probabilistic labelled transition system, i.e.,
a structure similar to a Markov chain [8]. This similarity suggest a relationship
of the P-BSM underlying semantic structure to various types of Markov models
(cf. e.g. [9]), however a more extensive exploration of this relationship is beyond
the scope of this paper.

In the field of agent oriented programming languages, recently Hindriks et
al. [5] introduced an extension of the GOAL language [4], where a quantitative
numeric value is associated with execution of an action leading from a mental
state m to another mental state m′. I.e., a triple of a precondition φ (partially
describingm), an action a and a post-condition ψ (describingm′) is labelled with
a utility value U(φ, a, ψ). Subsequently, in each deliberation cycle, the interpreter
selects the action with the highest expected future utility w.r.t. agent’s goals.

The approach of Hindriks et al. focuses on estimating aggregate utility values
of bounded future evolutions of the agent system, i.e., evaluating possible future
courses of evolution, plans, the agent can consider, and subsequently choosing
an action advancing the system evolution along the best path. The P-BSM, on
the other hand, is concerned only with selection of the next action resulting from
the bottom-up propagation of probabilistic choices through the nested structure,
a decision tree, of the agent program. So, while the approach of Hindriks et al.
can be seen as a step towards look-ahead like reactive planning, P-BSM remains
a purely reactive approach to programming cognitive agents. Informally, except
for the nested structuring of agent programs (the distinguishing practical feature
of the BSM framework w.r.t. to other theoretically founded agent programming
languages), the P-BSM framework could be emulated by the approach of Hin-
driks et al. with the look-ahead planning bound of the length one.

6 Conclusion

The main contribution of the presented paper is introduction of Probabilistic
Behavioural State Machines framework with the associated agent programming
language Jazzyk(P). The proposed extension of the plain BSM framework is a re-
sult of practical experience with BSM case-studies [6] and introduces a straight-
forward and pragmatic, yet quite a powerful, extension of the BSM framework.
However, the presented paper presents only first steps towards a more rigorous
approach to dealing with underspecification in agent oriented programming by
means of probabilistic action selection.

Underspecification of agent programs is in general inevitable. However, in sit-
uations when a suboptimal performance is tolerable, providing the agent program
interpreter with a heuristics for steering its choices can lead to rapid development
of more efficient and robust agent systems.

114



References

1. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni.
Multi-Agent Programming Languages, Platforms and Applications, volume 15 of
Multiagent Systems, Artificial Societies, and Simulated Organizations. Kluwer Aca-
demic Publishers, 2005.
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A Proofs

Proof (Proof of Lemma 1). The proof follows by induction on nesting depth of
mst’s. The nesting depth of an mst is the maximal number of steps required
to derive yieldsp(τ, σ, p:ρ) in the yieldsp calculus for all σ from Ap and all p:ρ
yielded by τ .

depth = 1: Equation 1 is trivially satisfied for primitive updates from Ap of the
form skip and ⊘ψ.

depth = 2: let’s assume τ1, . . . , τk are primitive mst’s yielding 1:ρ1, . . . , 1:ρk in a
state σ respectively, and φ be a query formula. We recognise three cases:

conditional in the case σ |= φ, we have yieldsp(φ −→ τ1, σ, 1:ρ1). Similarly
for σ 5|= φ, we have yieldsp(φ −→ τ1, σ, 1:skip), hence Equation 1 is
satisfied in both cases.

choice according to Definition 7 for each 1 ≤ i ≤ k we have

yieldsp(τ1| · · · |τk, σ, Pτ1|···|τk(τi):ρi)

where Π(τ1| · · · |τk) = Pτ1|···|τk . Since Pτ1|···|τk is a discrete probability
distribution (cf. Definition 6) over the elements τ1, . . . , τk, we have

∑

1≤i≤k

Pτ1|···|τk(τi) = 1

hence Equation 1 is satisfied as well.
sequence for the sequence mst, we have yieldsp(τ1◦· · ·◦τk, σ, 1:(ρ1•· · ·•ρk)),

so Equation 1 is trivially satisfied again.

depth = n: assume Equation 1 holds for mst’s of nesting depth n−1, we show it
holds also for mst’s of depth n. Again we assume that φ is a query formula
of Ap and τ1, . . . , τk, are compound mst’s of maximal nesting depth n − 1
yielding sets of updates fpτ1(σ), . . . , fpτk(σ) in a mental state σ respectively.
Similarly to the previous step, we recognise three cases:

conditional according to the derivability of φ w.r.t. σ, for the conditional
mst φ −→ τ1 we have either fpφ−→τ1

(σ) = fpτ1(σ), or fpφ−→τ1
(σ) =

{1:skip}. For the latter case, Equation 1 is trivially satisfied and since
τ1 is of maximal nesting depth n − 1, we have

∑

p:ρ∈fpφ−→τ1
(σ) p =

∑

p:ρ∈fpτ1
(σ) p = 1 as well.

choice let Pτ1|···|τk be the probability distribution function assigned to the
choice mst τ1| · · · |τk by the function Π. We have

fpτ1|···|τk(σ) =
{

p:ρ|∃0 ≤ i ≤ k : yieldsp(τi, σ, pi:ρ) ∧ p = Pτ1|···|τk(τi) · pi
}

Subsequently,

∑

p:ρ∈fpτ1|···|τk
(σ)

p =
∑

0≤i≤k



Pτ1|···|τk(τi) ·
∑

p:ρ∈fpτi
(σ)

p
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However, because of the induction assumption that Equation 1 holds for
mst’s τi with maximal nesting depth n−1, for all i

∑

p:ρ∈fpτi
(σ) p = 1, and

since Pτ1|···|τk is a discrete probability distribution function, we finally
arrive to

∑

p:ρ∈fpτ1|···|τk
(σ)

p =
∑

0≤i≤k

Pτ1|···|τk(τi) = 1

sequence for the sequence mst τ1 ◦ · · · ◦ τk, we have

fpτ1◦···◦τk(σ) =

{

k
∏

i=1

pi:(ρ1 • · · · • ρk)|∀1 ≤ i ≤ k : yieldsp(τi, σ, pi:ρi)

}

and subsequently

∑

p:ρ∈fpτ1◦···◦τk
(σ)

p =
∑

Q

k
i=1 pi:(ρ1•···•ρk)∈fpτ1◦···◦τk

(σ)

k
∏

i=1

pi (2)

Observe, that if we fix the update sequence suffix ρ2 • · · · • ρk, the sum 2
can be rewritten as





∑

p1:ρ1∈fpτ1
(σ)

p1



 ·







∑

Q

k
i=2 pi:(ρ2•···•ρk)∈fpτ2◦···◦τk

(σ)

k
∏

i=2

pi







Finally, by reformulation of the sum of products 2 as a product of sums
and by applying the induction assumption for the mst’s τ1, . . . , τk of
nesting depth n− 1, we arrive to

k
∏

i=1

∑

p:ρ∈fpτi
(σ)

p =

k
∏

i=1

1 = 1

Hence, Equation 1 is satisfied. ⊓⊔
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Abstract. In this paper, we relate two of the most well developed approaches

to agent-oriented programming, namely, BDI (Belief-Desire-Intention) style pro-

gramming and “Golog-like” high-level programming. In particular, we show how

“Golog-like” programming languages can be used to develop BDI-style agent

systems. The contribution of this paper is twofold. First, it demonstrates how

practical agent systems can be developed using high-level languages like Golog

or IndiGolog. Second, it provides BDI languages a clear classical-logic-based

semantics and a powerful logical foundation for incorporating new reasoning ca-

pabilities not present in typical BDI systems.

1 Introduction

BDI (Belief-Desire-Intention) agent programming languages and platforms (e.g., PRS

[11], AgentSpeak and Jason [20, 2], Jack [4], and JAM [14]) and the situation calculus-

based Golog high-level programming language and its successors (e.g., ConGolog [6],

IndiGolog [7, 24], and FLUX [26]) are two of the most well developed approaches within

the agent-oriented programming paradigm. In this paper, we analyze the relationship be-

tween these two families of languages and show that BDI agent programming languages

are closely related to IndiGolog, a situation calculus based programming language where

programs are executed on-line in a dynamic environment, supporting sensing actions to

acquire information from the environment and exogenous events.

BDI agent programming languages were conceived as a simplified and operational-

ized version of the BDI (Belief, Desire, Intention) model of agency, which is rooted in

philosophical work such as Bratman’s [3] theory of practical reasoning and Dennet’s

theory of intentional systems [8]. Practical work in the area has sought to develop pro-

gramming languages that incorporate a simplified BDI semantics basis that has a com-

putational interpretation. An important feature of BDI-style programming languages

and platforms is their interleaved account of sensing, deliberation, and execution [19].

By executing as they reason, BDI agents reduce the likelihood that decisions will be

made on the basis of outdated beliefs and remain responsive to the environment by

making adjustments in the steps chosen as they proceed. Because of this, BDI agent

programming languages are well suited to implementing systems that need to operate

in “soft” real-time scenarios [16, 1]. Unlike in classical planning-based architectures,

execution happens at each step. The assumption is that the careful crafting of plans’

preconditions to ensure the selection of appropriate plans at execution time, together

with a built-in mechanism for retrying alternative options, will usually ensure that a

successful execution is found, even in the context of a changing environment.
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In contrast to this, high-level programming languages in the Golog line aim for a

middle ground between classical planning and normal programming. The idea is that

the programmer may write a sketchy non-deterministic program involving domain spe-

cific actions and test conditions and that the interpreter will reason about these and

search for a valid execution. The semantics of these languages is defined on top of the

situation calculus, a popular predicate logic framework for reasoning about action [23].

The interpreter for the language uses an action theory representing the agent’s beliefs

about the state of the environment and the preconditions and effects of the actions to

find a provably correct execution of the program. By controlling the amount of nonde-

terminism in the program, the high-level program execution task can be made as hard

as classical planning or as easy as deterministic program execution. In IndiGolog, this

framework is generalized to allow the programmer to control planning/lookahead and

support on-line execution and sensing the environment.

In this paper, we show how a BDI agent can be built within the IndiGolog situation

calculus-based programming framework. More concretely, we describe how to trans-

late an agent programmed in a typical BDI programming language into a high-level

IndiGolog program with an associated situation calculus action theory, such that (i) their

ultimate behavior coincide; and (ii) the original structure of the propositional attitudes

(beliefs, intentions, goals, etc.) of the BDI agent and the model of execution are pre-

served in the IndiGolog translation. We first do this for what we call the core engine

of BDI systems, namely, the reactive context-sensitive expansion of events/goals. Af-

ter this, we show how to accommodate more sophisticated BDI reasoning mechanisms

such as goal failure recovery. In doing so, we highlight the potential additional advan-

tages of programming BDI agents in the situation calculus, by pointing out different

reasoning about action techniques that IndiGolog BDI agents may readily incorporate.

2 Preliminaries

2.1 BDI Programming

BDI agent systems were developed as a way of enabling abstract plans written by

programmers to be combined and used in real-time, in a way that is both flexible and

robust. A BDI system responds to events, the inputs to the system, by selecting a plan

from the plan library, and placing it into the intention base, thus committing to the plan

for responding to the event/goal in question. The execution of this plan-strategy may,

in turn, post new subgoal events to be achieved. The plan library stands for a collection

of pre-defined hierarchical plans indexed by goals (i.e., events) and representing the

standard operations of the domain. There are a number of agent programming languages

and development platforms in the BDI tradition, such as PRS [11], AgentSpeak and

Jason [20, 2], Jack [4], SPARK [17], Jack [4], and JADEX [18]. Our discussion is based

on the CAN family of BDI languages [27, 25], which are AgentSpeak-like languages

with a semantics capturing the common essence of typical BDI systems.

A BDI agent Υ is a configuration tuple 〈Π,B,A, Γ 〉, where B stands for the agent’s

current beliefs about the world, generally a set of atoms, Π is the (static) plan-library, A
is the sequence of actions executed so far, and Γ is the multi-set of intentions the agent is

currently pursuing. The plan library contains plan rules of the form e : ψ ← P , where e
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is an event/goal that triggers the plan, ψ is the context for which the plan may be applied

(i.e., the precondition of the rule), and P is the body of the plan rule—P is a reason-

able strategy in order to resolve the event/goal e when condition ψ is believed to hold.

The plan-body P is a program built from primitive actions act that the agent can exe-

cute directly (e.g., drive(loc1, loc3)), operations to add +b and delete −b beliefs, tests

for conditions ?φ, and (internal) subgoaling event posting !e (e.g., !Travel(mel, yyz)).
Complex plan bodies are built with the usual sequence ; and concurrency ‖ constructs.

There are also a number of auxiliary constructs internally used when assigning seman-

tics to programs: the empty (terminating) program nil; the construct P1 ⊲ P2, which

tries to execute P1, falling back to P2 if P1 is not possible; and  ψ1 : P1, . . . , ψn : Pn!,
which encodes a set of guarded plans. Lastly, the intention base Γ contains the current,

partially instantiated, plan-body programs that the agent has already committed to for

handling some events—since Γ is a multi-set it may contain a program more than once.

As with most BDI agent programming languages, the Plotkin-style operational se-

mantics of CAN closely follows Rao and Georgeff’s abstract interpreter for intelligent

rational agents [22]: (i) incorporate any pending external events; (ii) select an intention

and execute a step; and (iii) update the set of goals and intentions. A transition relation

C −→ C ′, on so-called configurations is defined by a set of derivation rules and spec-

ifies that executing configuration C a single step yields configuration C ′. A derivation

rule consists of a, possibly empty, set of premises, typically involving the existence of

transitions together with some auxiliary conditions, and a single transition conclusion

derivable from these premises. Two transition systems are used to define the semantics

of the CAN language. The first transition relation −→ defines what it means to execute

a single intention and is defined in terms of intention-level configurations of the form

〈Π,B,A, P 〉 consisting of the agent’s plan-library Π and belief base B, the actions A
executed so far, and the program P being executed. The second transition relation =⇒
is defined in terms of the first and characterizes what it means to execute a whole agent.

So, the following are some of the intention-level derivation rules for the language:3

∆ = {ψ : P | e : ψ ← P ∈ Π}

〈Π,B,A, !e〉 −→ 〈Π,B,A,  ∆!〉
Ev

〈Π,B,A, P1〉 −→ 〈Π,B′,A′, P ′
1〉

〈Π,B,A, P1  P2〉 −→ 〈Π,B′,A′, P ′
1  P2〉

 

B |= φθ

〈B,A, ?φ〉 −→ 〈B,A, nil〉
?

ψ : P ∈ ∆ B |= ψθ

〈Π,B,A,  ∆!〉−→〈Π,B′,A′, Pθ   ∆ \ {ψ : P}!〉
Sel

Derivation rule Ev captures the first stage in the plan selection process for a (pending)

event-goal e, in which the agent collects, from the plan library, the set  ∆! of the so-

called “relevant” (guarded) plans that may be used to resolve the pending event. Such

set is later used by rules Sel and to commit to and execute, respectively, an applicable

strategy/plan P (one whose condition ψ is believed true). Notice in rule Sel how the

remaining non-selected plans are kept as backup plans as the second program in the  

construct. Finally, rule ? accounts for transitions over a basic test program.

On top of these intention-level derivation rules, the set of agent-level derivation rules

are defined. Basically, an agent transition involves either assimilating external events

3 Configurations must also include a variable substitution θ for keeping track of all bindings

done so far during the execution of a plan-body. For legibility, we keep substitutions implicit

in places where they need to be carried across multiple rules (e.g., in rule ?).
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from the environment or executing an active intention. Also, in the rules below, the

following auxiliary function is used to represent the set of achievement events caused

by belief changes: Ω(B,B′) = {!b− | B |= b, B′ .|= b} ∪ {!b+ | B .|= b, B′ |= b}.

E is a set of external events B′ = (B \ {b | −b ∈ E}) ∪ {b | +b ∈ E}

〈Π,B,A, Γ 〉 =⇒ 〈Π,B′,A, Γ ⊎ {!e | !e ∈ E} ⊎Ω(B,B′)〉
Aext

P ∈ Γ 〈Π,B,A, P 〉 −→ 〈Π,B′,A′, P ′〉

〈Π,B,A, Γ 〉 =⇒ 〈Π,B′,A′, (Γ \ {P}) ⊎ {P ′} ⊎Ω(B,B′)〉
Aexec

Rule Aext assimilates a set of external events, both achievement ones, of the form !e,
as well as belief updates events, of the form +b or −b—both the belief and intention

bases of the agent may be updated. Note that, by means of auxiliary function Ω, a new

(achievement) event of the form !b+ or !b− is posted for each belief b that changes due

to an external belief update; such an event may in turn trigger some new behavior.

Rule Aexec states that the agent may evolve one step if an active intention P can be

advanced one step with remaining intention P ′ being left to execute. In such a case, the

intention base is updated by replacing P with P ′ and including the belief update events

produced by potential changes in the belief base. Observe that the intention base is a

multi-set, which means that it may contain several occurrences of the same intention.

Relative to the above derivation rules, one can formally define the meaning of an

agent as its possible execution traces. (See [27, 25] for the complete semantics.)

Definition 1 (BDI Execution). A BDI execution E of an agent Υ0 = 〈Π,B0,A0, Γ0〉,
relative to an environment E , is a, possibly infinite, sequence of agent configurations

Υ0 · Υ1 · . . . · Υn · . . . such that Ci =⇒ Ci+1, for all i ≥ 0. A terminating execution is a

finite execution Υ0 · . . . · Υn where Υn = 〈Π,Bn,An, {}〉.

2.2 High-Level Programming in Golog

The situation calculus [23] is a logical language specifically designed for represent-

ing dynamically changing worlds in which all changes are the result of named actions.

The constant S0 is used to denote the initial situation where no actions have yet been

performed. Sequences of actions are built using the function symbol do: do(a, s) de-

notes the successor situation resulting from performing action a in situation s. Relations

whose truth values vary from situation to situation are called fluents, and are denoted by

predicate symbols taking a situation term as their last argument (e.g., Holding(x, s)). A

special predicate Poss(a, s) is used to state that action a is executable in s.

Within this language, we can formulate action theories describing how the world

changes as the result of the available actions. For example, a basic action theory [23]

includes domain-independent foundational axioms to describe the structure of situa-

tions, one successor state axiom per fluent (capturing the effects and non-effects of

actions), one precondition axiom per action, and initial state axioms describing what is

true initially (i.e., what is true in the initial situation S0).

On top of situation calculus action theories, logic-based programming languages

can be defined, which, in addition to the primitive actions, allow the definition of com-

plex actions. Golog [15], the first situation calculus agent language, provides all the
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usual control structures (e.g., sequence, iteration, conditional, etc.) plus some nonde-

terministic constructs allowing the programmer to write “sketchy” plans. ConGolog [6]

extends Golog to support concurrency. To provide an intuitive overview of the language,

consider the following nondeterministic program for an agent that goes to work in the

morning (shamelessly taken from Ryan Kelly):

proc goToWork

ringAlarm; (hitSnooze; ringAlarm)∗; turnOffAlarm;
(πfood)[Edible(food)?; eat(food)];
(haveShower ‖ brushTeeth);
(driveToUni | trainToUni);
(Time < 11 : 00)?

endProc

While this high-level program provides a general strategy for getting up and going to

work, it is underspecified, and many details, such as what to eat and how to travel to

work, are left open. Program δ1 | δ2 nondeterministically chooses between programs

δ1 and δ2, πx. δ(x) executes program δ(x) for some legal binding for variable x, and

δ∗ performs δ zero or more times. Concurrency is supported by the following three

constructs: (δ1‖δ2) expresses the concurrent execution (interpreted as interleaving) of

programs δ1 and δ2; δ1〉〉δ2 expresses the concurrent execution of δ1 and δ2 with δ1
having higher priority; and δ‖ executes δ zero or more times concurrently. Note that

a concurrent process may become (temporarily) blocked when it reaches a test/wait

action φ? whose condition φ is false (or a primitive action whose precondition is false).

Test/wait actions can also be used to control which nondeterministic branches can be

executed, e.g. [(φ?; δ1) | (¬φ?; δ2)], and to constrain the value of a nondeterministically

bound variable, e.g., πx.[φ(x)?; δ(x)]. Finally, the language also accommodates the

standard if-then-elses, while loops, and recursive procedures.

Finding a legal execution of a high-level program is at the core of the whole ap-

proach. Originally, Golog and ConGolog programs were intended to be executed of-

fline, that is, a complete execution was obtained before committing even to the first ac-

tion. However, IndiGolog [7, 24], the latest language within the Golog family, provides

a formal logic-based account of interleaved planning, sensing, and action by executing

programs online and using a specialized new construct Σ(δ), the search operator, to

perform local offline planning when required.

Roughly speaking, an online execution of a program finds a next possible action, ex-

ecutes it in the real world, then obtains sensing information, and repeats the cycle until

the program is completed. Formally, an online execution is a sequence of so-called on-

line configuration of the form (δ, σ), where δ is a high-level program and σ is a history

(see [7] for its formal definition). A history contains the sequence of actions executed

so far as well as the sensing information obtained. Online executions are characterized

in terms of the following two predicates [6]: Final(δ, s) holds if program δ may legally

terminate in situation s; and Trans(δ, s, δ′, s′) holds if a single step of program δ in sit-

uation s may lead to situation s′ with δ′ remaining to be executed. In the next section,

we will generalize the notion of online execution to suit our purposes.
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3 BDI Programming in IndiGolog

Programming a BDI agent in the situation calculus amounts to developing a special

basic action theory and a special IndiGolog high-level agent program to be executed

with it. From now on, let Υ = 〈Π,B,A, Γ 〉 be the BDI agent to program in IndiGolog.

3.1 The BDI Basic Action Theory

We start by showing how to obtain an action theory DΥ for our agent Υ . We assume

that Υ is stated over a first-order language LBDI containing finitely many belief and

event atomic relations, namely, b1(x1), . . . , bn(xn) and e1(x1), . . . , em(xn).
Let us then define what the fluents and actions available in the situation calculus

language LsitCalc are. First, for every belief atomic predicate b(x) in LBDI , the lan-

guage LsitCalc includes a relational fluent b(x, s) together with two primitive actions

addb(x) and delb(x) which are meant to change the fluent’s truth value. Second, for

each achievement event type e(x) in the domain, there is a corresponding action term

ache(x) in LsitCalc. Finally, for every action atom A(x) in LBDI , there is a corre-

sponding action function A(x) in LsitCalc.
In addition, the language LsitCalc shall include one auxiliary distinguished fluent

and two actions to model external event handling. Fluent PendingEv(s) stands for the

multi-set of events that are “pending” and need to be handled, either belief update or

achievement events. This fluent is affected by two actions. Whereas action post(e) in-

dicates the external posting of event e; action serve(e) indicates that (pending) event e

has been selected and is being handled. In both actions, argument e is of sort action.

Let us now construct the basic action theory DΥ corresponding to a BDI agent

Υ = 〈Π,B, Γ 〉, as follows:

1. The initial description in DΥ is defined in the following way:

DΥS0 =
⋃n

i=1
{∀x.bi(x, S0) ≡ x = t1i ∨ . . . ∨ x = t

ki
i } ∪

{∀a.Exog(a) ≡ (∃a′)a = post(a′)},

where for every i ∈ {1, . . . , n}, B |= bi(x) ≡ [x = t1i ∨ . . . ∨ x = t
ki
i ], for some

ki ≥ 0—bi(t
1

i ), . . . , bi(t
ki
i ) are all the true belief atoms in B with respect to belief

relation bi (each t
j
i is a vector of ground terms).

2. The following precondition axioms, for every fluent b(x) and action A(x):

Poss(serve(a), s) ≡ (a ∈ PendingEv(s)) Poss(A(x), s) ≡ True

Poss(addb(x), s) ≡ Poss(delb(x), s) ≡ True Poss(post(a), s) ≡ True

3. For every domain fluent b(x, s), DΥ includes the following successor state axiom:

b(x, do(a, s)) ≡
a = addb(x) ∨ a = post(addb(x)) ∨ b(x, s) ∧ (a .= delb(x) ∧ a .= post(delb(x)).

That is, the truth-value of fluent b is affected only by actions addb and delb, either

internally executed or externally sensed from the environment.
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More importantly, action theory DΥ includes a successor state axiom for fluent

PendingEv(do(a, s)) specifying how the multi-set of pending events changes:

PendingEv(do(a, s)) = v ≡ [γ(a, v, s) ∨ PendingEv(s) = v ∧ ¬∃v′.γ(a, v′, s)];

where:

γ(a, v, s)
def

=
(
∨n

i=1
[γ+i (a, v, s) ∨ γ−

i (a, v, s)] ∨
∨m

i=1
[γei (a, v, s)] ∨

∃a′.a = serve(a′) ∧ v = PendingEv(s) \ {a′}
)

;

γ+i (a, v, s)
def

=
∃x. a ∈ {addbi(x), post(addbi(x))} ∧ ¬bi(x) ∧ v = PendingEv(s) ⊎ {addbi(x)};

γ−
i (a, v, s)

def

=
∃x. a ∈ {delbi(x), post(delbi(x))} ∧ bi(x) ∧ v = PendingEv(s) ⊎ {delbi(x)};

γei (a, v, s)
def

= ∃x. a = post(achei(x)) ∧ v = PendingEv(s) ⊎ {achei(x)}.

That is, an actual change in the belief of an atom, either due to the execution of

some intention or an external event, automatically produces a corresponding pend-

ing belief update event. Moreover, an external achievement event ache(x) becomes

pending when sensed. On the other hand, an event e ceases to be pending when

action serve(e) is executed.

4. Theory DΥ includes unique name axioms for all actions in LsitCalc, as well as the

standard domain-independent foundational axioms for the situation calculus ([23]).

This concludes the construction of the BDI basic action theory DΥ .

3.2 The BDI Agent Program

Let us now construct the IndiGolog BDI agent program δΥ that is meant to execute

relative to the BDI action theoryDΥ . We start by showing how to inductively transform

a BDI plan-body program P into an IndiGolog program δP , namely (remember that

plan-bodies programs are used to build BDI plans in the plan library):

δP =































































P if P = act | nil

φ? if P =?φ
addb(t) if P = +b(t)
delb(t) if P = −b(t)

handle(ache(t)) if P =!e(t)
(δP1 ; δP2) if P = (P1;P2)

δP1 if P = P1  P2
achievee(t) if P =  ∆!, for some event e(t)
(δP1 ; δP2) if P = (P1;P2)
(δP1 ; δP2) if P = (P1;P2)

Notice that achievement events !e occurring in a plan are handled via simple plan invo-

cation, by invoking procedure handle; a new top-level intention is not created.

Next, we describe how to transform the BDI plans in the agent’s plan library. To that

end, suppose that e(x) is an event in the BDI language LBDI such with the following

n ≥ 0 plans in Π (vt denotes all the distinct free variables in the terms t):

e(ti) : ψi(vti ,yi)← Pi(vti ,yi, zi), where i ∈ {1, . . . , n}.
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Then, we build the following high-level Golog procedure with n non-deterministic

choices (i.e., as many as plan-rules for the event):

proc achievee(x)
|i∈{1,...,n} [(πvti ,yi,zi).(x = ti ∧ ψi(vti ,yi))?; δPi

(vti ,yi,zi)]
endProc

Roughly speaking, executing achievee(x) involves nondeterministically choosing among

the n available options in the plan library for event e. See that the first test statement

in each option amounts to checking the relevance and applicability of the option. Thus,

the execution of achievee(x) is bound to block if no option is relevant or applicable. In

particular, the procedure will always block if the agent Υ has no plan to handle the event

in question—that is, if n = 0, the corresponding Golog procedure is simply ?(False).
Let ∆Π denote the set of Golog procedures as above, one per event in the BDI

language, together with the following procedure:

proc handle(a)
|ni=1 [(∃xi.a = addbi(xi))?; achieveb+

i

(xi)] |

|ni=1 [(∃xi.a = delbi(xi))?; achieveb−
i

(xi)] |

|mi=1 [(∃xi.a = achei(xi))?; achieveei(xi)]
endProc

That is, when a is a legal event (belief update or achievement goal), procedure handle(a)
calls the appropriate procedure that is meant to resolve the event. Observe that this pro-

gram contains two nondeterministic programs per belief atom in the domain (one to

handle its addition and one to handle its deletion from the belief base), plus one nonde-

terministic program per achievement event in the domain.

Finally, we define the top-level IndiGolog BDI agent program as follows:

δΥ
def

=∆Π ; [δenv‖ (δΓ ‖ δBDI)]; (¬∃e PendingEv(e))?, (1)

where (assuming that Γ = {P1, . . . , Pn}):

δΓ
def

= δP1‖ · · · ‖ δPn
; δenv

def

= (πa.Exog(a)?; a)∗. δBDI
def

= [πa.serve(a); handle(a)]‖;

The set of programs ∆Π provides the environment encoding the BDI plan library.

Program δΓ accounts for all current intentions in Υ ; if Γ = ∅, then δΓ = nil. In

turn, program δenv models the external environment, which can perform zero, one,

or more actions of the form post(a), representing an external achievement event goal

(a = ache(t)) or a belief update event (a = addb(t) or a = delb(t)).
The most interesting part of δΥ is indeed the ConGolog program δBDI , which im-

plements (part of) the BDI execution cycle. More concretely, δBDI is responsible for

selecting an external event and spawning a new “intention” concurrent thread for han-

dling it. To that end, δBDI picks an event a (e.g., addAt(23, 32) or achievemoveTo(0, 0))
to be served and executes action serve(a). Observe that an event can be served only if

it is currently pending (see action precondition for action serve(a) in Subsection 3.1).

After the action serve(a) has been successfully executed, the selected event a is actually
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handled, by calling procedure handle(a) defined in ∆Π . More importantly, this is done

in a “new” concurrent thread, so that program δBDI is still able to serve and handle

other pending events. The use of concurrent iteration to spawn a new intention from the

“main BDI thread” is inspired from the server example application in [6].

Note that ∆Π and δΓ are domain dependent, i.e., they are built relative to a partic-

ular BDI agent Υ , whereas programs δBDI and δenv are independent of the BDI agent

being encoded. Observe also that the whole high-level program δΥ may terminate only

when no more events are pending.

From now on, let GΥ = 〈DΥ , δΥ ,A〉 denote the IndiGolog agent for BDI agent Υ .

3.3 LC-Online Executions

Once we have a BDI IndiGolog program GΥ on hand, we should be able to execute it

and obtain the same behavior and outputs as with the original BDI agent. Unfortunately,

we cannot execute GΥ online, as defined in [7], as such executions may commit too

early to free variables in a program—online executions are sequences of ground online

configurations. What we need, instead, is an account of execution that commits to free

variables only when necessary. To that end, we generalize the online execution notion

from [7] to what we call least-committed online executions. We first define two meta-

theoretic versions of relations Trans and Final as follows:

mTrans(δ(x,y), σ, δ′(x,z), σ′)
def

=
Axioms[D, σ] |= ∃y∀x, z.Trans(δ(x,y), end[σ], δ′(x,z), end[σ′]);

mFinal(δ(x,y), σ)
def

= Axioms[D, σ] |= ∃x.Final(δ(x), end[σ]).

(Here, in δ(x) the vector of variables x contains all the free variables mentioned in

the program, and different variables vectors are assumed disjoint; end[σ] denotes the

situation term corresponding to the history σ; and Axioms[D, σ] denotes the complete

set of axioms in the IndiGolog theory, which includes the action theoryD for the domain

and all the axioms for Trans and Final. )

We can then define least-committed executions as follows.

Definition 2 (LC-Online Execution). A least-committed online (lc-online) execution

of an IndiGolog program δ starting from a history σ is a, possibly infinite, sequence of

configurations (δ0 = δ, σ0 = σ), (δ1, σ1), . . . such that for every i ≥ 0:

1. mTrans(δi, σi, δi+1, σi+1) holds; and

2. for all δ′ such that mTrans(δi, σi, δ
′, σi+1) and δi+1 = δ′θ for some substitution

θ, there exists θ′ such that δ′ = δi+1θ
′.

A finite lc-online execution (δ0, σ0), . . . , (δn, σn) is terminating iffmFinal(δn, σn)
or for all δ′, σ′

mTrans(δn, σn, δ
′, σ′) does not hold.

We notice that, as expected, it can be shown that an lc-online execution stands for

all its ground online instances as defined in [7]. However, by executing programs in

a least committed way, we avoid premature binding of variables and eliminate some

executions where the program is bound to fail.
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3.4 BDI/IndiGolog Bisimulation

We are now ready to provide the main results of the paper. Namely, we show that given

any BDI execution of an agent, there exists a matching execution of the corresponding

IndiGolog agent, and vice-versa. In addition, the correspondence in the internal structure

of the agents is always maintained throughout the executions.

We start by characterizing when a BDI agent and an IndiGolog agent configuration

“match.” To that end, we shall use relation Υ ≈ G, which, intuitively, holds if a BDI

agent Υ and an IndiGolog agent G represent the same (BDI) agent system. Formally,

relation 〈Π,B,A, Γ 〉 ≈ 〈D, δ, σ〉 holds iff

1. δ = ∆Π ; [δenv‖ (δΓ ′ ‖ δBDI)]; ?(¬∃e PendingEv(e)), for some Γ ′ ⊆ Γ such that

Γ = Γ ′ ⊎ {a | Axioms[D, σ] |= a ∈ PendingEv(end[σ])};
2. A and σ contain the same sequence of domain actions;

3. for every ground belief atom b: B |= b iff Axioms[D, σ] |= b[end[σ]];
4. D = DΥ

′

, for some Υ ′ = 〈Π,B′,A, Γ 〉.

The first condition states that the IndiGolog program is of the form shown in equation

(1) above (see Section 3.2), but where some active intentions may still be “pending.”

In other words, some intentions in Γ that have not yet started execution may not show

up yet as concurrent processes in δ, but they are implicitly represented as “pending” in

fluent PendingEv(s). The second requirement states that both agents have performed

the same sequence of domain primitive actions, that is, actions other than the internal

ones serve(a), post(a), addb(x), and delb(x). The third condition requires both agents

to coincide on what they believe. Finally, the IndiGolog agent executes relative to a basic

action theory whose dynamics are as described in Section 3.1. Observe that the initial

beliefs of the IndiGolog do not necessarily need to coincide with those of the BDI agent,

as long as the current beliefs do (that is, the beliefs hold after history σ).

First of all, it is possible to show that the encoding of initial BDI agents, that is

agents that have not yet performed any action, into IndiGolog agents described above is

in the ≈ relation with the original BDI agent.

Theorem 1. Let Υ be an initial BDI agent (that is, A = ǫ). Then, Υ ≈ 〈DΥ , δΥ ,A〉.

The importance of a BDI agent and an IndiGolog agent being in the ≈ relation is

that their respective transitions can then always be simulated by the other type of agent

To demonstrate that, we first show that any BDI transition can be replicated by the

corresponding IndiGolog agent. Observe that IndiGolog may need several transitions to

replicate the BDI transition when it comes to assimilating external events; whereas BDI

agents incorporate sets of external events in a single transition, the IndiGolog agent in-

corporates one event per transition. Also, IndiGolog agents ought to execute the special

action serve(a) to start handling external achievement events.

Theorem 2. Let Υ be a BDI agent and 〈D, δ, σ〉 an IndiGolog agent such that Υ ≈
〈D, δ, σ〉. If Υ =⇒ Υ ′, then there exists a program δ′ and a history σ′ such that

mTrans
∗(δ, σ, δ′, σ′) holds relative to action theory D, and Υ ′ ≈ 〈D, δ′, σ′〉.

Furthermore, in the other direction, any step in a BDI IndiGolog execution can al-

ways be “mimicked” by the corresponding BDI agent.
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Theorem 3. Let Υ and 〈D, δ, σ〉 be a BDI and an IndiGolog agents, respectively, such

that Υ ≈ 〈D, δ, σ〉. Suppose that mTrans(δ, σ, δ′, σ′) holds relative to action theory

D, for some IndiGolog program δ′ and history σ′. Then, either Υ ≈ 〈D, δ′, σ′〉 or there

exists a BDI agent Υ ′ such that Υ =⇒ Υ ′ and Υ ′ ≈ 〈D, δ′, σ′〉.

So, when the IndiGolog agent performs a transition it remains “equivalent” to the BDI

agent or to some evolution of the BDI agent. The former case applies only when the

transition in question involved the execution of a serve(a) action to translate a pending

event into a concurrent process.

Putting both theorems together, our encoding allows IndiGolog to bisimulate BDI

agents.

4 BDI Failure Handling

Since BDI systems are meant to operate in dynamic settings, plans that were supposed

to work may fail due to changes in the environment. Indeed, a plan may fail because a

test condition ?φ is not believed true, an action cannot be executed, or a sub-goal event

does not have any applicable plans. The BDI language we have discussed so far has no

strategy towards failed plans or intentions, once an intention cannot evolve, it simply

remains in the intention base blocked. In this section, we discuss how BDI programming

languages typically address plan/intention failure and show how the above IndiGolog

encoding can be extended accordingly. In particular, we show how agents can abandon

failed intentions and recover from problematic plans by trying alternative options.

Before getting into technical details, we shall first introduce a new construct into the

IndiGolog language. In “Golog-like” languages, a program that is blocked may not be

dropped for the sake of another program. To overcome this, we introduce the construct

δ1  δ2 with the intending meaning that δ1 should be executed, falling back to δ2 if δ1
becomes blocked:4

Trans(δ1  δ2, s, δ
′, s′) ≡ (∃γ.Trans(δ1, s, γ, s

′) ∧ δ′ = γ  δ2) ∨
¬∃γ, s′′.Trans(δ1, s, γ, s

′′) ∧ Trans(δ2, s, δ
′, s′);

Final(δ1  δ2, s, δ
′, s′) ≡ Final(δ1, s) ∨ ¬∃γ, s

′′.Trans(δ1, s, γ, s
′′) ∧ Final(δ2, s).

4.1 Dropping Impossible Intentions

It is generally accepted that intentions that cannot execute further may simply be dropped

by the agent — rational agents should not pursue intentions/goals that are deemed im-

possible [21, 5]. This is indeed the behavior of AgentSpeak agents.5

The BDI language of Section 2.1 can be easily extended to provide such an intention-

dropping facility, by just adding the following agent-level operational rule:

P ∈ Γ 〈Π,B,A, P 〉 .−→

〈Π,B,A, Γ 〉 =⇒ 〈Π,B,A, Γ \ {P}〉
Aclean

4 One could easily extend these definitions to only allow dropping a blocked δ1 under given

conditions; this could be used to implement “time outs” or allow blocking for synchronization.
5 There has been work on more sophisticated treatments of plan failure in AgentSpeak [2].
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That is, an agent may choose to just drop an intention from its intention base if it cannot

execute further in the current mental state. To mimic this behavior in our BDI IndiGolog

formalization, we slightly modify the domain-independent program δBDI as follows:

δBDI
def

= [πa.serve(a); (handle(a) (True)?)]‖.

Here, a pending event is handled within the scope of a  , which basically allows the

intention thread to simply terminate if it becomes blocked. Notice that, as with BDI

languages, for procedure handle(a) to be blocked, every sub-goal event triggered by the

handling of a (represented in the IndiGolog program as simple procedure calls) ought to

be blocked. Observe also that in this approach, only the main program corresponding

to a top-level event may be dropped, not lower-level instrumental subgoals.

4.2 BDI Goal Failure Recovery

Merely dropping a whole intention when it becomes blocked provides a rather weak

level of commitment to goals. The failure of a plan should not be equated to the failure

of its parent goal, as there could be alternative ways to achieve the latter. For example,

suppose an agent has the goal to quench her thirst, and in the service of this goal, she

adopts the subgoal of buying a can of soda [25]. However, upon arrival at the store, she

realizes that all the cans of soda are sold out. Fortunately though, the shop has bottles of

water. In this situation, it is irrational for the agent to drop the whole goal of quenching

her thirst just because soda is not available. An AgentSpeak agent may do so. Similarly,

we do not expect the agent to fanatically insist on her subgoal and just wait indefinitely

for soda to be delivered. What we expect is the agent to merely drop her commitment

to buy soda and adopt the alternative (sub)goal of buying a bottle of water, thereby

achieving the main goal.

As a matter of fact, one of the typical features of implemented BDI languages is

that of plan-goal failure recovery: if a plan happens to fail for a goal, usually due to

unexpected changes in the environment, another plan is tried to achieve the goal. If

no alternative strategy is available, then the goal is deemed failed and failure is prop-

agated to higher-level motivating goals, and so on. This mechanism thus provides a

stronger level of commitment to goals, by decoupling plan failure from goal failure. To

accommodate failure handling, we further extend the BDI language of Section 2.1, by

providing the following additional derivation rule for construct  :

〈Π,B,A, P1〉 .−→ 〈Π,B′,A′, P ′
2〉 −→ 〈Π,B′,A′, P ′

2〉

〈Π,B,A, P1  P2〉 −→ 〈Π,B′,A′, P ′
2〉

 f

That is, if the current strategy P1 is blocked but the alternative backup program P2
is able to evolve, then it is legal to drop P1 and switch to P2. Observe that due to

derivation rules Ev and Sel, P2 =  ∆! will encode the set of relevant plans that have

not yet been tried for the event being addressed. From now on, let the CAN language

refer to our extended BDI language, with both new derivation rules Aclean and  f for

failure included.

Hence, due to the interaction between derivation rules Ev, Sel and  f , a CAN BDI

agent executes a program P1   ∆! in order to resolve an goal event !e. When the
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current strategy P1 being pursued is not able to make a step, the agent may check the

set of alternatives  ∆! in the hope of finding another option P2 for addressing e. If one

is found, the agent may opt to abandon its strategy P1 and continue with P2. (Details

can be found in [27, 25].)

Let us now describe how to replicate this failure recovery behavior within our

IndiGolog framework of Section 3. For simplicity, we shall assume that, as with ac-

tions, only ground posting of subgoal events are allowed in the BDI language. This

means that all variables x in an event posting !e(x) are considered inputs to the event.

If an event is meant to return data, it must do so by using of the belief base. To sup-

port failure recovery, we slightly modify how plans in the plan library Π are converted

into ConGolog procedures. Specifically, for each event e(x), we define the following

procedure (and make procedure achievee(x) simply call achieve′
e(x, [1, . . . , 1]):

proc achieve′
e(x,w) // w is an n-long vector

|i∈{1,...,n} [(πvti ,yi, zi).(x = t ∧ ψi(vt,y) ∧ w = 1)?; δPi
(vti ,yi,zi) Φi(x,w)]

endProc

where Φi(x,w)
def

= achieve′
e(x, [w1, . . . , wi−1, 0, wi+1, . . . , wn]).

Vector w has one component per plan rule in the library for the event in question; its i-

th component wi states whether the i-th plan in Π is available for selection. Condition

(x = t ∧ ψi(vt,y) ∧ w = 1) checks whether event e(x) is relevant, applicable, and

available. Program Φi determines the recovery strategy, in this case, recursively calling

the procedure to achieve the event, but removing the current plan from consideration

(by setting its component in w to 0). Due to the semantics of  , recovery would only

be triggered if procedure achieve′
e(x,w) may execute one step, which implies that

there is indeed an available plan that is relevant and applicable for the event.

It turns out that these are the only modifications to the encoding of Section 3 re-

quired to mimic the behavior of CAN agents with failure handling in the IndiGolog

high-level language.

Theorem 4. Theorems 2 and 3 hold for CAN agents under the extended translation to

IndiGolog agents.

More interestingly, the proposed translation can be adapted to accommodate several

alternative accounts of execution and failure-recovery. For example, goal failure recov-

ery can be disallowed for an event by just takingΦi(x,w)
def

= ?(False) above. Similarly,

a framework under which any plan may be (re)tried for achieving a goal event, regard-

less of previous (failed) executions, is obtained by taking Φi(x,w)
def

= achievee(x). In

this case, the event is “fully” re-posted within the intention.

The key point here is that, due to the fact that the BDI execution and recovery model

is represented in our BDI IndiGolog at the object level, one can even go further and

design more sophisticated accounts of execution and failure recovery for BDI agents.

It is straightforward, for instance, to model the kind of goal failure recovery originally

proposed for AgentSpeak, in which the system would automatically post a distinguished

failure goal (denoted !−g); the programmer may then choose to provide plans to handle

such failure events. A failure handling plan could, for example, carry out some clean-

up tasks and even re-post the failed event [20, 2]. This type of behavior can be easily

130



achieved by taking Φi(x,w)
def

= achfail e(x); ?(False), and allowing the programmer

to provide plan rules in the library for handling the special event fail e(x). Notice that

the event is posted so it would eventually create a new intention all-together; the current

plan would then immediately be blocked/failed.

5 Discussion

In this paper, we have shown how one can effectively program BDI-style agent sys-

tems in the situation calculus-based IndiGolog high-level programming language. The

benefits of this are many. First, we gain a better understanding of the common fea-

tures of BDI agent programming languages and “Golog-like” high-level programming

languages, as well as of what is specific to each type of language, and what is re-

quired to reproduce BDI languages in the latter. We also get a new classical-logic sit-

uation calculus-based semantics for BDI agent programming languages. This opens

many avenues for enhancing the BDI programming paradigm with reasoning capabili-

ties, for instance, model-based belief update capabilities, lookahead planning capabil-

ities, plan/goal achievement monitoring capabilities, etc. Our account also shows how

one can essentially compile the BDI execution engine of a BDI agent into an object-

level IndiGolog program, about which we can reason in the situation calculus. From

the perspective of situation calculus-based high-level programming languages, we have

enhanced IndiGolog with a more general semantic account of program execution, i.e.

least-committed online executions, and we have also introduced a novel language con-

struct that is useful for failure handling. Moreover, our work opens up new perspectives

for developing logic-based agent programming languages with BDI features.

There has only been limited work on relating “Golog-like” and BDI programming

languages. Hindriks et al. [13] show that ConGolog can be bisimulated by the agent lan-

guage 3APL under some conditions, which include the agent having complete knowl-

edge. In [12], it is also shown that AgentSpeak can be encoded into 3APL. Our results

are complementary, in showing the inverse relationship. Note also that 3APL is a rather

atypical BDI-style programming language, which for instance, does not use events. So

it is interesting to have a direct comparison with classical BDI programming languages

in the AgentSpeak tradition.

Also related is the work of Gabaldon [10] on encoding Hierarchical Task Network

(HTN) libraries in ConGolog. There are similarities between our work and his in the

way procedural knowledge is encoded in ConGolog. This is is not surprising, as HTN

planning systems and BDI agents have many similarities [9]. But note that in HTNs, and

hence in Gabaldon’s translation, the objective is planning and not reactive execution.

We on the other hand, focus on capturing the typical execution regime of BDI agent

systems, rather than on performing lookahead planning to synthesize a solution. As a

result, we address issues such as external events and plan failure that do not arise in

HTN planning.
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Abstract. In this paper, we introduce a method to apply agent-oriented
programming (AOP) to computer games. We distinguish between two
different views: (1) single-agent and (2) multi-agent. While (1) consists
of path planning (based on A∗) and potential fields (for obstacle avoid-
ance), (2) is based on ad-hoc networks. They facilitate the communica-
tion between agents that are close to each other. Finally, we show how
AOP can be used to implement agents based on the two views.

1 Introduction

Multi-agent systems programming is a promising software engineering paradigm.
It is especially suited for the development of systems that have to operate in dy-
namic environments[7]. Examples for AOP[2, 7] languages are the BDI-based
Jason[3] and 2APL[6]. Jason is an implementation of an AgentSpeak(L) ex-
tension and 2APL realizes an effective implementation of both declarative and
imperative programming.

This paper contains a method to apply AOP as a means to implement arti-
ficial intelligence for entities in real-time computer games. We have the strong
feeling that AOP languages are suitable to function as the high-level control of
entities in games. Especially in the case of games in which the number of entities
is massive.

Why are we interested in computer games as platforms for the application
of AOP? First of all computer games are a challenging compromise between toy
examples and real world applications. Furthermore computer graphics cease to
be the main drive of the industry and it is highly probable that the focus will
shift to the AI. Additionally many computer games make the cooperation of
entities (optionally with a human player) desirable.

One goal of AOP is to control robots. The fact that robots are embodied
agents and thus are situated in the real world, implies at least two requirements:
the agent needs (1) sensors for perceiving its environment and (2) actuators
for acting in the environment. Of course, both requirements can be challenges
for researchers. Computer games – especially those of the newest generation
– have complex game worlds and sophisticated physics, that make them quite
realistic. It is straightforward to create sensors and actuators for agents that
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are situated in a game world. Sensors can be used to query the game state and
actuators can be used to update it. But how to perceive? There seem to be
two extremes: (1) agents have direct access to the game-state and (2) agents
perceive exactly the same data as the human player. The first extreme leads
to (undesired) omniscience of the agents – they know for example about the
positions of all the entities in the game world, whereas a human player might
only be aware of the visible entities. That is something that is not desired in
computer games, because it can quickly give rise to frustration on the side of
the human player. The second extreme would require the application of (visual)
recognition systems. Both extremes make it desirable to create virtual sensors,
that simulate visibility (and audibility et cetera) for the agents.

In our paper we propose

– a single-agent view based on using A∗ for high-level pathfinding and potential
fields for low-level obstacle avoidance,

– a multi-agent view based on ad-hoc nets that facilitate the communication
of agents respecting spatial information, and

– an implementation based on the AOP language 2APL.

In the second section we will motivate AI for computer games. The third
section explains our approach. We then elaborate on our implementation. Finally
we discuss similar work and conclude with future work.

2 Computer Games

In a typical computer game architecture, three integral components can be dis-
tinguished (see Fig. 1):

– the game world simulator that manages the game-state,
– the visual/accoustic renderer that renders the current game-state, and
– the controllers that allow to manipulate the entities in the game world.

The core of a computer game is usually the game world simulator. The game
world simulator contains the game state, which consists of the game’s entities
(player, obstacles, items, opponents et cetera) and the environment in which the
objects are situated, and the game state transformer which lets the game state
evolve over time. A typical example for an integral component of a game state
transformer is a physics engine which moves the entities in accordance to given
laws of physics and deals with collision detection.

Another important component is the visual/accoustic renderer, which is re-
sponsible for the optical and aural representation of the game state for the human
player.

Finally a set of controllers manipulates the entities in the game world. Con-
trollers can be employed both by the human player and the computer player.

All three components constitute the axes of game-development. The bulk of
game history was characterized by advances in computer graphics. The renderer
has been the main focus of attention for decades. Now, at the dawn of realistic
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Fig. 1. The typical game architecture, with the tree components visual renderer (com-
puter graphics), the game world simulator (physics) and the controlers (artificial intel-
ligence).

and hyperrealistic graphics, it is probable that the focus will shift to artificial
intelligence, which has been quite neglected in the past.

Also, it is an observable trend that game AI is more and more applied to
creating teams of entities. Entities cooperate and coordinate their actions in
order to beat the human player and entities form teams to support the human
player as well. This is where the social component of agents come in handy. Here
cooperation is necessary if the summation of the agents capabilities lead to the
success of the whole team.

The state-of-the art of game AI is the combination of finite state machines
and pathfinding [17]. A state machine represents the state of an entity and dis-
tinguishes between different behaviors.

3 Our Approach to Real-Time Strategy Games

Although our approach is aimed at a general class of computer games – in which
the game world is populated by many entities that are controlled by some kind
of AI – we will focus on real-time strategy (RTS) games in this paper. Real-time
strategy games are not turn-based and usually incorporate some of the following
concepts:

– exploration: the map is usually unknown territory at the beginning of each
mission.

– resource-gathering and -management: resources are located in the en-
vironment and have to be gathered, usually in order to gain credits.

– base building: in order to establish and defend one’s position in the terri-
tory and to produce armed units, a base has to be set up.
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– combat-oriented action: usually the main goal is to overpower an oppo-
nent that is situated in the environment as well.

– abstract unit control: armed units are not controlled directly. Instead
they are given orders that they act out.

– technological development: technological advances support performing
the previous concepts.

The main focus of the RTS gameplay lies in base building and combat, usually
in that sequence. Mission goals can be the following:

– complete destruction of the forces of the enemy,
– selective destruction of the opponent’s structures,
– special operations, and
– object defense.

RTS games are usually quite complex. They feature a plethora of different
armed units with different and task-dependent features, as well as a multitude
of buildings with different functions. We omit, for our purposes, many of the
features that increase the fun and excitement for the player but hinder the
analysis from the AI perspective, and concentrate on the most interesting aspects
instead. In this paper we will only focus on navigation and interaction.

We will use agents programmed in an AOP language to control entities in
a game world. We will employ A∗ for navigation, potential fields for collision
avoidance and ad-hoc networks for communication Two views will be discussed:

– the single-agent view deals with the single agent and its interaction with the
environment, and

– the multi-agent view deals with the coordination between several agents.

3.1 Single-Agent View

The core of this section is a navigational approach that steers entities through a
game world. Agents distinguish two views of navigation: a global view and local
view. The global view is the application of the A∗ algorithm for finding shortest
paths. The local view uses potential fields for collision avoidance. The global
view dictates which location to go next, the local view takes into account all the
visible obstacles in order to avoid bumping into them on the way to the goal.

A very good analogy to potential fields is the idea of an electron moving
through an electromagnetic field of non-uniform structure. The moving electron
would interact with the sources of the field by being diverted through forces
of attraction and repellence. This idea can be applied to navigating entities in
a game as well. Imagine an entity having a certain goal to reach. Above that
the entity should not bump into obstacles. It is easy to model the goal as an
attractive and all obstacles as a repelling field each. The combination of all the
fields would then steer the entity to the goal on an obstacle avoiding path.

A potential field is a function f ∈ R × RR×R that maps a two-dimensional
vector to another one. Usually the input-vector represents a position on the
Euclidean plane and the output vector a force that is effective at that position.
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Example 1 (potential fields). Any function

fgauss : [x, y] "→
[x− x0, y − y0]

|| [x− x0, y − y0] ||
· a · exp

(

−
|| [x− x0, y − y0] ||

2

2s2

)

is called a Gaussian repeller potential field. The constant vector [x0, y0] rep-
resents the center, and the constants a and s represent the amplitude and the
spread of the field respectively.

The repelling force is strongest at the center and steeply falls off, converging
to 0. An entity approaching a Gaussian repeller will be affected once it gets close
to that force. The amplitude a determines the maximum strength of the force.
The spread s determines the width of the Gaussian bell and thereby the range
of influence of the field.

Another potential field is the sink attractor:

fsink : [x, y]  →
[x− x0, y − y0]

|| [x− x0, y − y0] ||
· gsink(x, y)

with

gsink : [x, y]  → a · exp

(

−
|| [x− x0, y − y0] ||2

2s2

)

− g · || [x− x0, y − y0] || − a

The constant vector [x0, y0] represents the center. The constants a and s repre-

sent the amplitude and the spread respectively. The constant g represents the

grade. In the sink attractor the attractive force is stronger the farther away the

target is. It is the combination of a conical potential field and a Gaussian one.

Fig. 2 shows the two potential fields as vector fields in the Euclidian plane.

So, how do we combine multiple potential fields in order to come up with an

overall potential field for each agent? The overall potential field of an agent ag

is a set Fag := {fag,1, . . . , fag,n} of potential fields. The overall force at a given

position is Fag(x, y) :=

∑

fag,i∈Fag
fag,i(x, y), which is just the sum of all forces

that have an effect at that position. An agent would firstly come up with the set

of all fields that affect him and then follow the calculated force vector.

How can we use the two exemplary potential fields? If the agent has the

goal of being at a given position, obstacles (static ones and enemy units) could

be associated with a repeller each, and the goal position could be represented

by an attractor. The sum of all potential fields that affect the agent is the

overall force field. The agent affected by that force-field would move away from

obstacles towards the goal position. If on the other hand the agent should show

the behavior of engaging a target unit, the target unit would be associated with

an attractor as well.

We apply the A
∗

algorithm on top of the potential fields. The main problem

of the potential fields method is that it easily gets stuck in local optima, never

reaching the goal. The A
∗

algorithm is an informed search algorithm for finding

shortest paths in graphs[16]. The algorithm it is quite common in computer

games development. How do A
∗

and potential fields combine? First of all the
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Fig. 2. Two potential fields shown as vector fields. The left one shows the Gaussian
repeller. The upper right one shows the sink attractor.

agent computes a shortest path using the A
∗

algorithm. Then it associates an

attractive field with the first node in the path. The agent then follows its overall

potential field. Once the node is reached it is removed from the path and the

agent continues with the next one until the goal is reached.

The following algorithm implements the proposed navigational method:

Algorithm 1 Simple Navigation Algorithm

P := calculatePath(); //invoke A∗

while P  = ∅ do
p := removeF irst(P ); //get and remove the first element
f := toF ield(p); //convert to field
F := F ∪ {f}; //add to overall field
moveTo(p, F ) //move to p following F
F := F/{p}; //remove from overall field

end while

3.2 Multi-Agent View

In this section we will focus on the multi-agent view of our approach. It is in its

essence the communication between agents, based on ad-hoc nets. Ad-hoc nets

are communication networks, whose topology is highly dynamic. The network

structure changes over time, the nodes do not rely on a given (hierarchical)

topology. Usually the topology of an ad-hoc net is determined by the nodes’

position in space and their communication ranges. Nodes only communicate
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with their nearest neighbors. If data has to be transmitted farther, it is forwarded

through the net. Each node itself functions as a router that forwards unrelated

messages.

A common type of ad-hoc nets are MANets, short for Mobile Ad-hoc Net-
works. They are self-configuing networks, consisting of mobile routers connected

by wireless links. The topology is arbitrary and the nodes are allowed to move

and arrange themselves arbitrarily. A specialization are VANets, short for Vehic-
ular Ad-hoc Networks. Here nodes are either vehicles or nearby traffic equipment.

The goal of VANets is to provide safety and comfort for passengers by providing

communication between vehicles and equipment. This can be used for collision

warnings and traffic monitoring. In VANets vehicles usually move in an orga-

nized fashion. Mobile Sensor Networks are wireless networks that are composed

of autonomous sensors. They were originally motivated by military applications

and are now used in civilian areas of application.

So, why would we use ad-hoc networks? Reasons are to cut down commu-

nication load and exploiting spatial information. Agents that are close to each

other would be better suited to share information than agents that are far away.

Using ad-hoc nets for communication nevertheless does not stop an agent from

communicating with an other one that is far away. The first agent would just

send a message using a flooding algorithm. We belief that this is a good compro-

mise for our application to computer games: cooperation of agents is facilitated

by spatial proximity.

We have decided to use triangulations for the network-structures. A triangu-

lation is a graph that is planar and has the maximum number of edges. Trian-

gulations cut down the complexity of the structure immensely.

In our approach each single agent is able to generate its own local ad-hoc

net, taking into account all the other agents in the communication range. These

agents are associated with nodes in the network. A graph is generated employing

a simple triangulation algorithm that firstly generates a complete graph and then

removes all long edges that intersect with others, which will finally result in a

triangulation. Fig. 3 shows a possible triangulation of a set of agents that have

arbitrary positions.

4 Implementation

Our implementation is based on the 2APL platform[6], that has kindly been

made available to us by the developers in Utrecht. 2APL agents are cognitive

agents and consist of beliefs, goals, actions, plans and rules. Beliefs model the

information the agent has about its world, goals denote the state the agent wants

to achieve, actions are the agent’s means to manipulate the world, and rules –

if applied – instantiate plans based on the agent’s current goals and beliefs.

We have extended the 2APL platform a bit to serve our needs. One thing that

we did was the introduction of two special actions that allow the addition and

the removal of agents during runtime. In its current implementation the 2APL

platform only allows for multi-agent systems that are static in that respect. This
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Fig. 3. A triangulation between of set of agents. Agents only communicate directly
with direct neighbors. Other agents can be reached by flooding the network.

extension deemed to be necessary after the analysis that many computer games

are highly dynamic in respect to the number of entities. An agent is now able

to create one or several agents by loading the specification from a file. Also each

agent is able to terminate itself.

Our scenario’s game world (the physical model) is an extension of the stan-

dard 2APL environment. Agents are capable of interacting with the environment

via two ways: external actions and external events. External actions allow the

agents to contribute to the state-change of the environment and events are issued

by the environment to inform the agent.

The 2APL platform is extremely flexible when it comes to the execution
model of the agents. In its standard implementation the multi-agent system is

executed in a multi-threaded way, each agent is executed in its own thread. In

computer games development the tradition has been established to implement

the whole project in a single thread[17]. Using a single thread makes it easy

to keep the frame-rate (number of scenes rendered per second) on an adequate

level that does not ruin the player’s user-experience. We have refrained from

following that approach. Instead we have two threads: the game world thread

and the artificial intelligence thread. The first thread implements the evolution

of the game world, it moves objects in real time, manages collisions, implements

the game’s logics and renders the scene. The second thread evolves the agents,

each agent is allow to deliberate by one step in each cycle of the thread.
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4.1 Scripting Language

In our approach 2APL can be considered a kind of ”scripting language” for

agents on top of a custom API. Fig. 4 shows the architecture. The agent layer

represents top-level beliefs, goals and plans. The data layer contains the potential

field and the ad-hoc net. The physical layer represents the agent’s embodiment

in the environment, including sensors and actuators.

Agent

Actuators

Sensors

Body

Nets

Fields
Goals

Beliefs

Plans

Agent

Layer

Data

Layer

Physical

Layer

Fig. 4. A closer look at the relationships between agents, entities and the game world.
An entitiy is a kind of vessel for sensors/actuators, potential fields and ad-hoc nets.

Table 1 shows some exemplary external actions, that can be used to act and

perceive in the game world and to manipulate the potential field and the ad-hoc

net. Based on that API, different behaviors can be implemented. We will now

have a look at an example for navigating through the environment.

Example 2 (path-finding and -following). Consider this code fragment:

PG−rules :
beAt (X,Y) ← true | {

@env( getPath (X,Y) , P) ; // invoke A∗

fo l lowPath (P) // f o l l ow the path
}

PC−rules :
fo l lowPath (Path ) ← true | {

B(Path = [ pos (GX,GY) |R] ) ; // get the next goa l p o s i t i o n
@env( addAttractor (GX,GY) , ) ; // add a t t r a c t o r
@env( f o l l owPo t en t i a lF i e l d ( ) , ) ; // be a f f e c t e d by the f i e l d
B( i sAt (GX,GY) ) ; // wait f o r goa l to be reached
@env( removeAttractor (GX,GY) , ) ; // remove the a t t r a c t o r
i f B( not (R = [ ] ) ) then // cont inue with next goa l p o s i t i o n
{

fo l lowPath (R)
}

}
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External Action Description

getPath(X,Y) invokes A∗ and returns a shortest path

senseMovingObstacles() returns a list of moving obstacles that are visible
senseStaticObstacles() return a list of static obstacles that are visible

addAttractor(X,Y,R) adds an attractor to the potential field
addRepeller(X,Y,R) adds a repeller to the potential field
removeAttractor(X,Y) removes an attractor from the potential field
removeRepeller(X,Y) remove a repeller from the potential field
getField() returns the overall potential field
getAttractors() returns all attractors in the potential field
getRepellers() returns all repellers in the potential field
followPotentialField() moves the entity along the potential field

getNet() calculates and returns an ad-hoc net
getNearestNeighbors() returns the nearest neighbors

Table 1. Some external actions.

Rules in 2APL are used to instantiate plans in respect to beliefs, goals and

events. Here we have two rules. The first rule is a PG-rule. It instantiates the

plan if the agent has the goal to be at a certain position (beAt(X,Y)). The plan

consists of two statements. At first a path to the goal is calculated by invoking

the external action getPath. Then the path is followed by raising the procedural

event followPath. The second rule is a PC-rule. The plan is instantiated once an

event followPath(P) has been raised. The first statement of the plan separates

the path into its first element pos(GX,GY) and the rest R. The coordinates of that

first element are then used to add an attractor to the potential field by invoking

the external action addAttractor. The agent then follows the potential field

executing followPotentialField. Once the first element of the current path is

reached (once the agent believes being at the desired position) the attractor is

removed via removeAttractor and the rest of the list is processed recursively.

This example shows a very simple navigational routine. A path is calculated

and then followed by adding and removing attractors to and from the potential

field. An agent executing that behavior does not take obstacles into account and

thus would bump into them. Such a stubborn behavior might be desired in a

computer game for the user experience. Nevertheless we improve the example a

bit.

Example 3 (obstacle avoidance). Consider the following code:

PG−rules :
avoid ( ob s t a c l e s ) ← true | {

@env( senseMovingObstacles ( ) , M) ; // sense ob s t a c l e s
addRepe l l entF ie ld s (M) // add f i e l d s r e c u r s i v e l y

}
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PC−rules :
addRepe l l entF i e ld s ( Units ) ← true | {

B( Units = [ ob s t a c l e (X,Y) |R] ) ; // get the f i r s t ob s t a c l e
@env( addRepe l l e r (X,Y) , ) ; // add a r e p e l l e n t f o r c e
i f B( not (R = [ ] ) ) then // add the r e s t i f r e s t not empty
{

addRepe l l entF ie ld s (R) // proceed r e c u r s i v e l y
}

}

The first rule implements the following: if the agent has the goal of avoiding

the visible obstacles the respective plan is instantiated. Firstly the moving ob-

stacles are sensed and secondly they are added as repellers to the potential field.

The second rule implements the addition of the repellers in a recursive fashion.

The first element is determined and added as a a repeller. After that the rest of

the list is processed until the list is empty.

What is the benefit from our approach of layering AOP in top of entities? We

preserve the agents’ autonomy. This way agents can reason about the potential

fields and ad-hoc nets and decide their behavior according to the results. Agents

could for example decide to omit certain repellers or add attractors. They could

for example decide to only take friendly entities into account as obstacles. This

would lead to a behavior of avoiding friendly entities and bumping into enemies.

Furthermore agents can decide when to update the data-structures. An agent

might chose to not update its potential field if it is busy doing something more

important. An agent could also manipulate the representation of the potential

field. For example if it comes to the conclusion that an obstacle is extremely

threatening, its repelling force could be increased. Our approach allows to easily

implement and combine different behaviors to enhance the user experience.

To conclude this section we will elaborate on an other issue that has been

left undiscussed until now: human-agent interaction. How does the human player

interact with the entities under his command? The environment allows the se-

lection of one or several entities. The commands traditional to RTS games (”go

there”, ”attack this”, ”guard that”) are interpreted and sent to the agents as

messages. To that end we use to the message-passing facilities underlying 2APL.

You can see a screenshot of our prototype in Fig. 5.

4.2 Entity Association Extension

We have shown how a 2APL agent can be implemented to control an entity in a

game-world. We have associated one agent with one entity. Now we will extend

that by associating one agent with several entities.
Why would it make sense to associate on agent with several entities? In our

opinion it would be beneficial to do so when dealing with groups of entities. If a

group should be used to fulfill a specific goal, a single agent could be employed

to steer and coordinate the entities. For example if a group should engage a

single target, the entities would have similar plans to reach that goal. It would

make sense to have a single agent manage the execution of such a plan that is

shared by the entities. This approach would be the basis for an AOP-control of
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Fig. 5. A screenshot of our prototype. The arrows indicate the potential field in sensor
range. The blue lines denote the triangulation.

a massive number of entities, in the sense of having few agents control many

entities.

How do we realize that idea? To associate one agent with several entities we

have to do two things: 1) extending the physical layer of our architecture (see

Fig. 4) to respect several bodies/sensors/actuators, and 2) extending the API

with new actions that the agent can execute to control the associated entities.

An agent would still have a potential field and an ad-hoc net, but now several

entities. Table 2 shows a second set of exemplary actions, most of them are re-

lated to the actions in Table 1. To make the agent aware of its associated entities

the action getEntities can be used. The actions senseMovingObstacles and

senseStaticObstacles return the obstacles that are visible to the given set

E of entities. The action followField(E) on the other hand lets the specified

entities E follow the potential field of the agent. It is important to have most of

the function parametrized in respect of the entities in order to allow the agent

to decide which of the associated entities to take into account.

Finally, we elaborate how associations are created and modified. We define

the initial association to consist of one agent, the default agent, and all entities.

This allows us to define standard behaviors for (idle) entities that are imple-

mented by the default agent. Once a group of agents is created the association

between the entities and the default agent is transferred to an other agent that

is supposed to control the group. Therefore the action transferEntities(E,A)

is used.
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External Action Description

getEntities() returns a list of associated entities
senseMovingObstacles(E) returns a list of moving obstacles that are visible

to the entities E
senseStaticObstacles(E) return a list of static obstacles that are visible to

the entities E
followField(E) lets the entities E follow the potential field
transferEntities(E,A) transfers the entities E to the agent A

Table 2. Some external actions for case that one agent is associated with several
entities.

5 Related Work

The potential fields methology was depeloped by Krogh[12] and Khatib[11] for

obstacle avoidance control. Krogh borrowed the terminology from analytical me-

chanics. He determined a collision free path to transfer a system to a work-space.

Khatib concentrated on a real-time obstacle avoidance approach for manip-

ulators and mobile robots. Arkin in his book[1] describes the potential fields

methodology as a functional mapping from stimuli to motor-responses, in order

to encode a continuous navigational space through the sensed world. Massari et

al. in their paper[14] use potential fields to steer planetary rovers. All of the men-

tioned authors intended their research to be applied to real-world applications.

Furthermore all of them did not take the multi-agent perspective into account.

Hagelbäck and Johansson in their very good papers[10, 9] illustrate an ap-

plication of potential fields on the research platform ORTS[4]. The main differ-

ence between their approach and ours is that they rely on complete information,

whereas we work with incomplete information. They have full access to the state

of the world and we rely on the (limited) local view of the agents. The difference

is the reason why they can afford to calculate a discretized potential field for

the complete map and we are forced to use local ones. Our approach is suited

to deal with group of agents with different goals. The main aim of Hagelbäck

and Johansson seems to be AI that wins, we are more interested in the user

experience. They have no high-level path planning, we employ A
∗
. Also, we use

ad-hoc nets as the basis for coordinating agents. Finally we resort to AOP for

the high-level control of the entities.

Conceicao et al. introduce in their paper[5] a realistic mobile connectivity

model for vehicular sensor networks in urban environments. They focus on the

evolution of the average node degree in the graph and provide a characterization

of the connectivity of a vehicular sensor network operating in an urban envi-

ronment. Muhammad[15] presented a fully distributed algorithm to compute a

planar graph and a geometric routing algorithm. His results are based on ideal-

ized unit disk graph model, that assumes that the communication range is the

same for all the nodes. We do not share that assumption. The algorithm that we
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use to generate planar graphs is a simple one. Muhammad, on the other hand,

generates Delaunay triangulations.

Davies and Mehdi present a prototype application[8] that implements a BDI

agent system (Jadex) within the first person shooter Unreal Tournament, based

on the GameBots and JavaBots technology. Their agents are capable of creating

an internal representation of the three-dimensional world, navigate in it and

show some basic behaviors. Our approach differs in two ways: we concentrate on

a completely different world model and we are interested in a massive number

of agents/entities.

In his book[17] Schwab summarizes the state of the art of computer games

AI that he rightly distinguishes from academic AI that has been applied in the

industry.

6 Conclusion and Future Work

In this paper we have explained an approach to AI in computer games that fea-

ture a lot of entities. To that end we have used the RTS scenario. RTS games

usually contain a lot of entities that are controlled by issuing orders. AOP serves

as a high-level control of the entities. The entities navigate using the A
∗

algo-

rithm for path planning and potential fields for obstacle avoidance. Furthermore

we use ad-hoc networks as a means for communication and cooperation.

We are interested mostly in the two extremes of using agents to control

entities in computer games. One extreme is our approach. We associate one

agent with exactly one entity in the game world. The other extreme is to have

one agent that steers all entities. We would like to investigate the ”in between”

and find out, when does it make sense to associate one agent with several entities.

In our approach this would make sense especially if the agents have a common

(pathfinding) goal. We plan to associate one agent with one potential field, one

ad-hoc net and several entities and take a look at how many entities should be

associated.

Furthermore we would like to examine deeper how ad-hocs net can be used.

How can they be used to coordinate strategies and tactics? Would it make sense

to use them to negotiate collision avoidance maneuvers? How can they help to

facilitate team-work in the planning sense?

Finally we think it would be fruitful to apply our approach to other games

that feature a massive number of entities. God games, in which entities are

steered indirectly by influencing the environment, come to mind immediately.
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Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technol-
ogy). John Wiley & Sons, 2007.

4. Michael Buro. ORTS: A hack-free RTS game environment. In Computers and
Games, pages 280–291, 2002.
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Abstract. Existing architectures for multiagent systems emphasize low-level

messaging-related considerations. As a result, the programming abstractions they

provide are also low level. In recent years, commitments have been applied to sup-

port flexible interactions among autonomous agents. We present a layered mul-

tiagent system architecture based on commitments. In this architecture, agents

are the components, and the interconnections between the agents are specified in

terms of commitments, thus abstracting away from low level details. A crucial

layer in this architecture is a commitment-based middleware that plays a vital

role in ensuring interoperation and provides commitment-related abstractions to

the application programmer. Interoperation itself is defined in terms of commit-

ment alignment. This paper details various aspects of this architecture, and shows

how a programmer would write applications to such an architecture.

1 Introduction

An architecture is an abstract description of a system. The fundamental idea of an archi-

tecture is that it identifies components and their interconnections. An open architecture

is one that emphasizes the interconnections, leaving the components unspecified ex-

cept to the extent of their interconnections. In this manner, an open architecture yields

systems whose components can be readily substituted by other components.

When we understand multiagent systems from the standpoint of architecture, it is

clear that the components are agents (or, rather, abstractly roles). Traditionally, the inter-

connections have been modeled in operational terms derived from an understanding of

distributed systems. Consequently, the multiagent systems that result are over-specified

and behave in an inflexible manner. With such systems, it is difficult to accommodate a

richer variety of situations.

For concreteness, we consider cross-organizational business processes as an appli-

cation of multiagent systems that provide the happy mix of significance and complexity

to demonstrate the payoff of using the proposed approach. The last few years have de-

veloped compelling accounts of the fundamental autonomy and heterogeneity of busi-

ness partners, and the concomitant need to model these partners’ interest. The related

studies of interaction protocols hint at how we might engineer multiagent systems in

such settings [1–3]. However, the relationship of protocols with architectures has not

yet been adequately worked out.
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We make a fresh start on multiagent systems via an architecture. Once we realize

that we would only consider the components as agents understood flexibly, the associ-

ated interconnections must inevitably be the business relationships between the agents.

One can imagine that some notional business value flows across such relationships,

just as data flows over the traditional connectors of distributed computing. Thinking of

the business relationships as interconnections yields an architecture for what we term

service engagements [4].

The above architecture is conceptual in nature. Two natural questions arise: what

programming abstractions does the architecture support, and how may we operational-

ize it over existing infrastructure, which is no different from that underlying traditional

approaches. Answering the above questions is the main contribution of this paper.

1.1 Middleware: Programming Abstractions

From a top-down perspective, an important layer of any architecture is middleware.

Middleware supports programming abstractions for the architecture in a way that en-

sures interoperability between components in the architecture. A relatively simple mid-

dleware is one that provides reliable message queuing services, freeing the program-

mer from the burden of, for example, implementing persistent storage and checking for

acknowledgments. These days, reliable message queuing is just one of many abstrac-

tions supported in enterprise middleware. In cross-organizational business processes,

the common middleware is centered on the abstractions of messaging. The resulting

architectural style is termed the Enterprise Service Bus (ESB). ESBs emphasize mes-

saging abstractions and patterns—for example, Apache Camel supports the enterprise

integration patterns in [5]. Further, ESBs support an event-driven architecture so as to

promote loose coupling between business applications. ESBs provide various kinds of

translation services, routing, and security, among other things, thus saving the applica-

tion programmer a good deal of repetitive effort. Some ESB implementations, such as

provided by Oracle, also support business protocols such as RosettaNet [6].

Ideally, middleware should offer abstractions that follow closely the vocabulary of

the domain. ESBs purport to support business applications; however, they lack business-

level abstractions. The abstractions they support, e.g., for RosettaNet, involve message

occurrence and ordering but without regard to the meanings of the messages. Thus

RosettaNet can be thought of as a protocol grammar. Other protocols, e.g., Global Data

SynchronizationNetwork (GDSN) [7], would correspond to alternative grammars. Each

grammar is arbitrary and its correctness or otherwise is not up for consideration.

Figure 1 shows the conceptual arrangement of a service-oriented architecture based

on such ESBs. Programmers design business processes (for example, in BPEL) based

on a public interface specification (for example, in WS-CDL or based on a protocol

such as RosettaNet). Messaging-based middleware, such as described above, hides the

details of the infrastructure from process programmers.

1.2 Overview of Approach

We assume a conventional infrastructure based on messaging, such as is already made

available by middleware such as the Java Messaging Service and specified in the emerg-
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Fig. 1. Current enterprise middleware, conceptually

ing standard known as the Advanced Message Queuing Protocol (AMQP) [8]. This

infrastructure supports point-to-point messaging over channels that preserve pairwise

message order and guarantee eventual delivery. It is important to emphasize that such

infrastructure is commonly available in existing implementations.

Fig. 2. Commitment middleware, conceptually

The essential idea underlying our approach is that we can thus view system archi-

tecture at two levels of abstraction: business and infrastructure. The business level deals

with meaning whereas the infrastructure provides the operationalization. Accordingly,

we view the function of middleware to bridge this conceptual gap. Figure 2 shows that

our middleware lies in the middle between meaning and messaging. In our approach,

business meaning is expressed in terms of commitments. Commitments arise in virtu-

ally all cross-organizational business applications. Thus, reasoning about commitments

would be applicable to all of them. Commitments underlie two correctness criteria:

compliance and alignment. Agents are compliant as long as they discharge their com-

mitments; such a notion of compliance naturally takes into account agents’ autonomy.

Agents are aligned as long they agree on whatever commitments as may result from

their communications. Alignment is, in fact, a key form of business interoperability [9,

10].

The proposed middleware provides commitment-based abstractions. The middle-

ware supports not only the basic commitment operations [11], but also high-level pat-

terns that build on the commitment operations. The middleware ensures that if applica-
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tions are determined interoperable at the level of business meaning, then infrastructural-

level concerns such as asynchrony do not break the interoperability.

The rest of this paper is organized as follows. Section 2 describes commitments

formally, what alignment means, and why misalignments occur. Some misalignments

can be detected at the level of business meanings by a static analysis of the interfaces,

whereas others that occur due to the nature of distributed systems must be prevented

by careful design of the middleware. Section 3 describes an architecture based on com-

mitments. It describes the components and the interconnections and the layers in the

architecture. Section 4 describes a sample set of useful patterns that the middleware

supports. Section 5 discusses the relevant literature.

2 Commitment Alignment

Interoperability among participants means that each participant fulfills the expectations

made by the others. To understand an architecture, it is important to understand what

interoperability in the architecture means. In our approach, an agent represents each

participant, and the expectations of an agent take the form of commitments. Existing

work on service interoperability treats expectations solely at the level of messages [12–

14].

Let us explain how commitments yield expectations. A commitment is of the form

C(debtor , creditor , antecedent , consequent), where debtor and creditor are agents,

and antecedent and consequent are propositions. This means that the debtor commits

(to the creditor) to bringing about the consequent if the antecedent holds. For example,

C(EBook ,Alice, $12,BNW )means that EBook commits to Alice that if she pays $12,
then EBook will send her the book Brave New World. Agents interact by sending each

other messages. The messages have meanings in terms of how they affect the agents’

commitments toward each other. For example, an offer message from EBook to Alice

may bring about the aforementioned commitment.

Now imagine that at some point in their interaction, Alice infers that EBook is com-

mitted to sending her the book she paid for, but EBook infers no such commitment.

Their interaction would break down at the level of business meaning. In other words,

Alice and EBook would not be interoperable. In general, a key requirement for inter-

operability is that the interacting agents remain aligned with respect to their commit-

ments. Commitment alignment is a key form of business-level interoperability. Agents

are aligned if whenever one agent (as creditor) infers a commitment from a second

agent, the second agent (as debtor) also infers that commitment. If we can guarantee a

priori that agents never—at no point during any possible interaction—get misaligned,

only then the agents are interoperable.

In general, agents may get misaligned because of their heterogeneity, autonomy,

and distribution.

Heterogeneity Agents may assign incompatible meanings to the messages they are

exchanging. To be able to successfully interact, the agents must agree on what their

communications count as. Heterogeneity is the cause of misalignment in Exam-

ple 1.
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Example 1. For Alice, an Offer message from EBook counts as a commitment

from EBook to ship a book in return for payment. Whereas for EBook, Offer

does not count as any such commitment; but an explicit Accept from Alice does.

Thus, when EBook sends Alice an Offer message, Alice infers the commitment,

but EBook does not—a misalignment.

Heterogeneity is addressed by statically analyzing if the interfaces of agents are

compatible [9].

Autonomy Agent autonomy must be accommodated; however, accommodating au-

tonomy is nontrivial. The reason is that autonomy operationally means that they

are free to send messages. In turn, this means that communication between agents

is asynchronous. Thus, in general, agents will observe messages in different orders.

Since messages are understood in terms of their effects on commitments, the agents

involved may become misaligned. This is the cause of misalignment in Example 2.

Example 2. EBook sends an Offer to Alice, where the offer means a commitment

that if Alice pays, then EBook will send the book. Alice sends the payment (mes-

sage) for the book. Concurrently, EBook cancels the offer by sending CancelOffer.

Alice observes EBook’s cancellation after sending the payment; so she regards it as

spurious. EBook observes Alice’s payment after sending its cancellation, so EBook

considers the payment late. As a result, Alice infers that EBook is committed to

sending her the book, but EBook does not infer that commitment. Thus, EBook

and Alice are misaligned.

An ideal approach to addressing the challenge of autonomy should work without

curbing autonomy. In contrast, existing approaches to reasoning about commit-

ments in distributed systems typically rely on some kind of synchronization proto-

col; synchronization, however, inhibits autonomy. Chopra and Singh [10] formalize

the inferences made upon observing commitment-related messages in such a way

that, in spite of autonomy, agents remain aligned.

Distribution In a distributed system, some agents may have more information about

relevant events than others. This is the cause of misalignment in Example 3.

Example 3. Alice commits to Bob that if the sky is clear at 5PM, then she will meet

him at the lake. At 5PM, Bob observes (a message from the environment) that the

sky is clear, and therefore infers that Alice is unconditionally committed to meeting

him at the lake. However, Alice does not know that the sky is clear, and therefore

does not infer the unconditional commitment. Bob and Alice are thus misaligned.

Chopra and Singh [10] state integrity constraints, which are constraints upon agent

behavior necessary to handle distribution. Their constraints are of two kinds: (1)

a debtor must inform the creditor about the discharge of a commitment, and (2) a

creditor must inform the debtor about the detach of a commitment. One should not

consider alignment until such information has been propagated.
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2.1 Characterizing Alignment

A set of agents is aligned if in all executions, at appropriate points during their exe-

cution, if a creditor infers a commitment from its observations, the debtor also infers

the commitment from its own observations [10]. An “appropriate” point in the execu-

tion of a multiagent system is given by consistent observations of the various agents

where two additional properties hold. One, alignment may only be considered at those

points where no message is in transit. Such points are termed quiescent. Two, alignment

may only be considered at those points that are integral with respect to the stated infor-

mation propagation constraints. The motivation behind the above properties is simply

that it would surprise no one if two agents failed to infer matching commitments when

they had made differing observations: either because some message was in transit that

only its sender knew about or because some message was not sent, and some agent had

withheld material facts from another.

2.2 Background on Commitments

A commitment is of the form C(x, y, r, u) where x and y are agents, and r and u are

propositions. If r holds, thenC(x, y, r, u) is detached, and the commitmentC(x, y,⊤, u)
holds. If u holds, then the commitment is discharged and doesn’t hold any longer. All

commitments are conditional; an unconditional commitment is merely a special case

where the antecedent equals ⊤. Singh [15] presents key reasoning postulates for com-

mitments.

The commitment operations are reproduced below (from [11]). CREATE, CANCEL,

and RELEASE are two-party operations, whereas DELEGATE and ASSIGN are three-party

operations.

– CREATE(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to hold.
– CANCEL(x, y, r, u) is performed by x, and it causes C(x, y, r, u) to not hold.
– RELEASE(x, y, r, u) is performed by y, and it causes C(x, y, r, u) to not hold.
– DELEGATE(x, y, z, r, u) is performed by x, and it causes C(z, y, r, u) to hold.
– ASSIGN(x, y, z, r, u) is performed by y, and it causes C(x, z, r, u) to hold.

Let us define the set of messages that correspond to the basic commitment opera-

tions. Let Φ be a set of atomic propositions. In the commitment operations, r is a DNF

formula over Φ (for example, (φ0 ∧ φ1) ∨ (φ3 ∧ φ4)), and u is a CNF formula over Φ

(for example, (φ0∨φ1)∧(φ3∨φ4)) . Create(x, y, r, u) andCancel (x, y, r, u) are mes-
sages from x to y; Release(x, y, r, u) from y to x; Delegate(x, y, z, r, u) from x to z;

andAssign(x, y, z, r, u) from y to x. Suppose c = C(x, y, r, u). ThenCreate(c) stands
for Create(x, y, r, u). We similarly define Delegate(c, z), Assign(c, z), Release(c, y),
and Cancel(c, x). Inform(x, y, p) is a message from x to y, where p is conjunction

over Φ. Observing an Inform(p) causes p to hold, which may lead to the discharge or
detach of a commitment.

Below, let cB = C(EBook,Alice, $12,BNW ); cG = C(EBook,Alice, $12,GoW );
c0 = C(EBook,Alice, $12,BNW ∧ GoW ). (BNW stands for the book Brave New

World; GoW stands for the book Grapes of Wrath).
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3 Multiagent System Architecture

Fig. 3. Understanding Commitment-Based Architecture

Figure 3 shows our proposal for a multiagent system architecture. At the level of

business meaning, the components are the agents in the system representing the in-

teracting business partners. As pertains to programming using our architecture, at the

top, we have agents and at the bottom the communication layer; the middleware sits in

between. This layered architecture is characterized by three kinds of interfaces.

– At the business level, the interface is between agents and is expressed via meanings.

The business analyst and the software developer who programs using commitments

would think at this level (of business relationships), and would be unaware of any

lower layer.

– At the implementation level, the interface is between our middleware and the com-

munication infrastructure and is based on traditional messaging services. In a tra-

ditional distributed system, a software developer would need to think at this level.

In our approach, only the implementor of our middleware thinks at this level.

– Between the agent and the middleware, the interface is largely in terms of instruc-

tions from the agent to the middleware: when an agent tells the middleware to apply

a commitment operation or one of the additional patterns based on commitments

such as Escalate (patterns described later).

Two nice features of our approach are that (1) the instructions use the same vocabulary

as the business meanings and (2) we specify middleware that guarantees alignment as

long as the instructions are limited to the commitment operations or patterns. Below, we

describe each components (agents), interconnections (interfaces), and layers in detail.
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3.1 Agents

Agents represent business partners. They provide and consume real-world services by

participating in service engagements. The principal elements of interest in an agent are

its interface and its reasoning engine.

Interface An agent’s interface describes the messages it expects to exchangewith other

agents, along with the business meanings of such messages. Table 1 show a sample in-

terface for Alice. The axioms in the interface are of the formMessagemeansMeaning,

where meaning is expressed as one of a small vocabulary of messages involving unit

and composite operations on commitments. This vocabulary has a precise meaning in

terms of their effects on the participants’ commitments. For example, observing an offer

from a merchant means observing a create message for the commitment corresponding

to the offer.

Table 1. An example interface for Alice

Offer(EBook ,Alice, $12 ,BNW )means Create(EBook ,Alice, $12 ,BNW )
Accept(Alice,EBook , $12 ,BNW )means Create(Alice,EBook ,BNW , $12 )
Reject(Alice,EBook , $12 ,BNW )meansRelease(EBook ,Alice, $12 ,BNW )
Deliver(EBook ,Alice,BNW )means Inform(EBook ,Alice,BNW )
Pay(Alice,EBook , $12 )means Inform(Alice,EBook , $12 )

Notice that the interface does not contain some of the procedural constructs com-

monly found in interface description languages or protocols, such as sequence, choice,

and so on. For example, it does not say, that upon observing an offer Alice has a choice

between accepting or rejecting the offer—there is simply no need to say so. A re-

jection sent after Alice accepts the offer and EBook sends the book should have no

effect—Alice should remain committed to pay. The formalization of commitments in

[10] captures such intuitions, and makes the statement of procedural constructs in inter-

faces largely unnecessary. A second reason such constructs are introduced is to simply

make the interaction synchronous. However, such constructs are rendered superfluous

by the approach for reasoning about commitments in asynchronous settings [10]. Fi-

nally, threading constructions such as fork and join are clearly implementation details,

and have no place in an interface. Of course, if an application demands a procedural

construct, it could be introduced. For example, Alice may not trust booksellers and her

interface might constrain delivery of books before payment. Alice will then be noninter-

operable at the messaging-level with booksellers who require payment first; however, it

would not affect alignment, that is, commitment-level interoperability.

As described earlier, misalignments arise when agents ascribe incompatible mean-

ings to messages. An application programmer would specify an interface and publish

it. Before interacting with other agents, the agent would presumably check for compat-

ibility with the other agents.
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Engine The engine drives the agent. It represents the private policies of the agent; these

govern when an agent should pass an instruction to the middleware, how instruction

parameters should be bound, how an agent should handle returned callbacks (described

below) and so on. In fact, the engine is the place for all the procedural details. For

example, Alice’s policy may enforce a choice between accept and reject upon receiving

an offer, or dictate that payment be sent only after receiving books.

Writing the engine is where the principal efforts of a programmer are spent. The

implementation of the engine could take many forms. It could be a BPEL, Jess, JADE,

or a BDI implementation such as Jason, for example. The details are irrelevant as long

as it is consistent with reasoning about commitments.

From the programming perspective, the engine is coded in terms of the meaning

of a message, not the message itself. In other words, the API that the programmer

uses to interface with the middleware is in terms of commitment operations and other

patterns built on top of the commitment operations. When the meaning concerns the

sending of the message, the meaningmay be thought of as an instruction (API) from the

agent’s engine to the middleware. The middleware, which is configured with the agent’s

interface, then sends the appropriate messages. Analogously, for an incoming message,

the engine registers a callback with the middleware that returns when the commitment

operation corresponding to the message has been executed. Thus, the programmer’s

API is a business-level one, one of the goals we set out to achieve.

3.2 Middleware

To relate meanings to messages, the middleware takes on the responsibility for repre-

senting and reasoning about commitments. The middleware consists of a commitment

reasoner, maintains a commitment store, and is configured with communication con-

straints needed for the commitment operations and the further patterns. The middleware

ensures that no misalignments arise because of autonomy and distribution.

Each agent’s copy of the middleware is configured with the agent’s interface (re-

lating the agent’s incoming and outgoing communications and their meanings, as in

Table 1) so that the middleware may appropriately process messages and compute com-

mitments. As described above, the middleware’s interface with the agent is instruction

and callback-based.

The commitment reasoner presents a query interface to the agent (specifically the

agent’s engine), which can be used to inquire about commitments in the store. The

engine can use such a information to decide on a course of action. For example, Alice’s

policy might be such that she sends Pay(Alice,EBook , $12 ) only if C(EBook ,Alice,
$12 ,BNW ) holds.

The middleware maintains a serial, point-to-point communication interface with

each other agent in the system through the communication layer. This means that an

agent’s middleware processes messages involving another particular agent—sent or

received—one at a time. This is necessary to ensure consistency of the commitment

store.
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3.3 Communication Layer

The role of the communication layer is to provide reliable, ordered, and noncreative

delivery of messages. Reliability implies that each sent message is eventually delivered;

ordered implies that any two messages sent by an agent to another will arrive in the

order in which they were sent, and noncreative means messages are not created by the

infrastructure. Such a communication layer can be readily implemented by available

reliable message queuing solutions.

3.4 Example Scenario

Going back to our purchase example, when Alice and EBook decide to participate in a

purchase transaction, they would configure their respective sections of the middleware

with the message meanings that they would entertain sending or receiving. Suppose

EBook wishes to sell BNW to Alice. EBook computes this on internal grounds, such as

excess inventory or the goal of making a profit. At the level of business meaning, EBook

sends an offer to Alice. At the computational level, this is effected by EBook instruct-

ing its middleware to create the corresponding commitment. EBook’s middleware then

sends Alice the offer message. At the computational level, Alice’s middleware receives

the message from the communication layer, computes the corresponding commitment,

and triggers Alice’s callback on the creation of that commitment to return, in effect re-

turning to the business level. Alice may reason on the commitment and may decide to

accept the offer, based on her private considerations such as goals. Alice responds by

accepting—by instructing her middleware to do so; and so on. In other examples, the

more complex communication constraints would also apply.

4 Abstractions Supported by the Middleware

As mentioned before, the middleware supports sending notifications to debtors and

creditors about detaches and discharges, respectively. The middleware also supports

other integrity constraints critical to alignment. The middleware supports all commit-

ment operations, including delegation and assignment, which are three-party operations,

and guarantees that even in asynchronous settings, the operations occur without giving

causing misalignments. Details are in [10]. Here, we discuss even high-level abstrac-

tions in the form of commitment patterns and additional forms of alignment that the

middleware could practically support.

4.1 Patterns

We sketch some of the patterns here; these derive from those presented by Singh et al.

[16]. Below, we describe a sample set of patterns that can readily be supported by the

middleware.

Figure 4 shows the pattern for updating a commitment. At the programming level,

this corresponds to the debtor sending an Update instruction to the middleware. At the

computational level, the debtor’s middleware sends two messages: one to cancel the

existing commitment, and another to create a new commitment in its place.
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Fig. 4. Update pattern

Fig. 5. Escalate pattern

Figure 5 shows the pattern for escalating a delegated commitment. The delegatee

may find itself unable to fulfill the commitment. Here, the delegatee sends an Esca-

late instruction to the middleware. The middleware then sends a message notifying

the delegator of the escalation of the commitment, and a Cancel message to the cred-

itor. (In the figures, a commitment with the name prefix d is the delegated version

of a commitment. Since cB = C(EBook,Alice, $12,BNW ), in Figure 5, d cB =
C(Charlie, Alice, $12,BNW ).)

Figure 6 shows the pattern for delegating a commitment without retaining respon-

sibility. Here, the debtor instructs the middleware to accomplish DelegationWithoutRe-

sponsibility. Along with the Delegate instruction to the delegatee, the middleware

sends a Cancel message to the creditor thus absolving the debtor of any further re-

sponsibility.

Figure 7 shows the pattern for withdrawing a delegated commitment. The dele-

gator sends a Withdraw instruction to the middleware. The middleware then sends a

Withdraw message to the delegatee. The delegatee’s middleware, upon receiving this

message, sends a Cancel to the creditor. The callback forWithdraw would return in the

delegatee.

Figure 8 shows the pattern for division of labor: different parts of the commitment

are delegated to different parties. Here, the delivery of BNW is delegated to Charlie

and that of GoW is delegated to Barnie.
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Fig. 6. Delegating without responsibility pattern

Fig. 7.Withdraw pattern

4.2 Other Forms of Alignment

Alignment as described in the previous sections and in [10] is essentially a creditor-

debtor relation. When a creditor-debtor misalignment arises, there is the possibility of

a violation of a commitment, and therefore, noncompliance. The following additional

forms of alignment may be supported as additional patterns in the middleware. These

forms of alignment may not necessarily result in noncompliance as it relates to commit-

ment violation; nonetheless, these forms are useful for maintaining coherence in virtual

organization settings, and are commonly effected in practice.

Debtor-debtor Alignment For example, suppose EBook delegates the commitment to

send Alice a book to another bookseller Charlie. Then, EBook might want to be notified

when Charlie discharges the commitment by sending the book, and vice versa.

Such alignment may be formalized in terms of debtor-debtor alignment: two agents

who are related by a delegation relation remain aligned with respect to the discharge of

the commitment. To effect such alignment would mean that the middleware would have

to be configured with the additional constraint that if a debtor delegates a commitment

to another agent, then whenever one of them discharges the commitment, it notifies the

other.
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Fig. 8. Division of labor pattern

Considering alignment in a debtor group could also be a useful notion. When two

or more agents are committed for the same thing (thus the group), then whenever one

discharges the commitment, it notifies the entire group.

Creditor-creditorAlignment In a similar vein, suppose Alice assigns the commitment

made to her by EBook to Bob. Alice may want to be notified when Bob sends the

payment, and vice versa.

This alignment is between creditors, and it is formalized and effected analogously

to debtor-debtor alignment.

Contextual Alignment Each commitment has a social or legal context. Although we

have omitted the context from the commitment so far, each commitment is in general a

relation between three agents, the debtor, the creditor, and the context, and is expressed

as C(debtor , creditor , context, antecedent , consequent). The context’s role is the en-
forcement of the commitment. If EBook and Alice are operating on eBay, then eBay

is the context of their interaction. Applications such as eBay, in which the context it-

self plays an active role, typically have the requirement that the context should also be

aligned with respect to the commitment.

Contextual alignment involves three parties; stronger guarantees, such as causal de-

livery [17] may be required from the communication layer.

5 Discussion: Conclusions and Future Work

In this paper, we have presented a multiagent system architecture based on interac-

tion and commitments. In particular, we have introduced a middleware that can com-

pute commitments and guarantee alignment between agents even in completely asyn-

chronous settings. The middleware provides high-level programming abstractions that

build on commitment operations.

Our architecture is unique in that commitments form the principal interconnections

between agents. We deemphasize the implementation of the agent’s engine. Agent pro-

gramming languages, for example 2APL [18], remain largely based on BDI and do

not support commitments. As mentioned before, such languages can be used to create
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an agent’s engine. Enhancing agent programming frameworks such as JADE with high-

level abstractions, for example, as illustrated in [19], is no doubt useful. However, when

one talks of multiagent systems, that invariably involves interaction and commitments.

Therefore, a programming language or a framework for multiagent systems should ide-

ally support reasoning about commitments, and have commitment-related abstractions.

Even when interactions protocols are supported in agent-oriented methodologies and

platforms, it is at the level of specific choreographies, and not of meaning (for exam-

ple, [20–23]). Winikoff supports commitments in SAAPL by providing mappings from

commitments to BDI-style plans, but the commitment reasoning supported is fairly lim-

ited [3].

The main priority for our research is the implementation of the proposed archi-

tecture. The language used here to give meanings to communications is sufficiently

expressive for our purposes. We are investigating more powerful languages, however,

for more subtle situations.
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Abstract. Communication is key in a multi-agent system for agents
to exchange information and coordinate their activities. For agents that
derive their choice of action from their beliefs and goals it is natural
to facilitate communication about both these attitudes in an agent pro-
gramming language. The traditional approach based on speech act the-
ory, however, does not provide the right tools to do so because of its
emphasis on mental conditions on the speaker. Here, we introduce an
alternative semantics based on the idea that a received message can be
used to (re)construct a mental model of the sender. As coordination is
particularly important, we introduce the concept of a conversation to
synchronize actions and communication in a multi-agent system. Con-
versations are resources at the multi-agent level with restricted access,
which provide a natural counterpart in multi-agent systems for classic
constructs from distributed programming such as semaphores.

1 Introduction

Communication is key in a multi-agent system for agents to exchange information
and coordinate their activities, and therefore needs to be addressed in agent
programming languages. Two main lines of research can be identified when it
comes to agent communication languages: research based on speech act theory
[1, 2] and research based on a social semantics for agent communication (social
commitments) [3, 4].
Speech act theory is a philosophical theory that is based on the idea that

uttering a sentence is an act which can be used to change the world like any
other act. The focus of speech act theory has been on specifying the conditions
that identify the particular act that is performed, thereby focussing most of the
theory on the sender instead of the receiver. Two of the most well-known agent
communication languages that are based on speech act theory are KQML [5] and
the FIPA Agent Communication Language (ACL) [6]. Both languages specify
the semantics of messages by means of their pre-condition, expressing conditions
on the mental states of the sender and receiver of the message that should hold
if the message is sent, and their effect, expressing the effect of the message on
the mental state of the sending and/or receiving agent.1 Both languages use per-
formative labels to specify message types. For example, the precondition for the

1 FIPA does not specify that there should be any effect on the sender [6].
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(simplified) FIPA inform(r, φ) message, where inform denotes the performative
label and φ the content of the message, includes that the sending agent believes
φ and the effect is that the receiver r believes φ.
These ACLs have been extensively criticized [7–9]. Here, we mention in par-

ticular their complexity due to the relatively high number of performative labels
and subtle semantical differences between them, and the lack of verifiability.
The latter means that, for example, an agent receiving a message that is sup-
posed to be an informative speech act with preconditions that require truth of
the content, cannot verify these conditions. An important alternative approach
that addresses these and other issues, is the semantics for agent communication
based on social commitments [3, 4]. This approach does not define communica-
tion by referring to the mental states of the involved agents, but focuses on the
social consequences of communication. The basic idea here is that a receiver can
always confront the sender again with a previous message, i.e., by saying some-
thing like: “You told/asked/requested me so”. The processing of the message by
the receiver, however, has moved to the background here.
We can thus see that communication based on speech act theory is prob-

lematic due to its complexity and verifiability. Moreover, the approach based
on social commitments does not say anything about how communication affects
the involved agents. This issue does need to be addressed when developing tech-
niques for communication in agent programming languages, which is what we are
interested in in this paper. The contribution of this paper is the introduction of
an alternative semantics based on the idea that a received message can be used
to (re)construct a mental model of the sender. Our semantics does not spec-
ify any preconditions on the mental states of the agents for sending a message.
Moreover, the effect on the receiver is only that it updates its mental model of
the sender, i.e., the mental state of the receiver itself is not directly updated. A
second contribution is the introduction of the concept of a conversation to facili-
tate the synchronization of actions and communication in a multi-agent system,
which is particularly important to organize agent coordination. Our proposal is
made concrete in the agent programming language Goal [10].

2 Communication in Agent Programming Languages

Communication within other agent programming languages than Goal has
taken a quite pragmatic turn to address the issue discussed above. For exam-
ple, in 2APL the semantics of communication is reduced to a simple “mailbox”
semantics: communicating a message only means that the message is added to
a mailbox and the programmer then needs to write rules to handle received
messages [11]. This reduces the meaning of communication to the bare mini-
mum. The developers of Jason have chosen a small set of primitives, based on
KQML, for which simple default semantics have been defined [8]. For example,
the tell message inserts the content of the message into the receiver’s belief base,
with a tag to identify the source of this information, and the achieve message
inserts the content of the message as a goal in the event base. A function is
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introduced to determine whether a message is “socially acceptable”, and only
socially acceptable messages are processed.
Although we take a definite engineering stance in this paper regarding the

design of a semantics for communication, our approach is intended to satisfy
a number of basic criteria. First, the communication primitives should have a
well-defined semantics. Preferably, this semantics provides a basis for verifying
multi-agent systems as well, where agents use these primitives to communicate.
Second, the distinction between beliefs and goals needs to be taken into account
when defining a communication semantics. As Goal agents derive their choice
of action from their beliefs and goals, it is important to be able to communi-
cate about these different reasons for acting as well as to be able to distinguish
between beliefs and goals communicated by other agents. Third, the communica-
tion primitives introduced should be useful for programming Goal agents. This
is a pragmatic criterion that requires minimization of complexity, in particular by
limiting the number of communication primitives and endowing these with easy
to grasp semantics. Fourth, and finally, various speech acts should be definable
using the communication primitives introduced. Ideally, it would be possible to
define or “program” various well-known speech acts such as promises, requests,
etc. in terms of the primitives introduced. It should be kept in mind, however,
that characterizing a particular communication event of a multi-agent system
may be possible only from a designer or observer’s point of view, e.g. by using
a logic to reason about the communication primitives. Initial work to meet this
last criterium, which sets our approach apart from others, is reported in [12].

3 Redesigning Agent Communication

Our proposal for redesigning agent communication in the context of the program-
ming language Goal focuses on the effects of communication on the receiver, a
perspective also taken in [13, 8] but which may be contrasted with social com-
mitment semantics. Doing so is not straightforward and requires that some rea-
sonable decisions are made with respect to defining a communication semantics.
We illustrate this using an example (see also [14]). Consider the utterance “The
house is white”. Its effect on the receiver may be one or more of the following,
ranging from a very strong to a very weak effect:

1. The receiver comes to believe that the house is white.
2. The receiver comes to believe that the sender believes that the house is white.
3. The receiver comes to believe that the sender had the intention to make the
receiver believe that the house is white.

4. The utterance has no effect on the receiver, i.e. its mental state is not changed
as a result of the utterance.

In choosing which of these effects should form the basis for our semantics, we
take a pragmatic engineering stance, and in addition want to avoid making too
strong assumptions. In particular, we consider effect 1 to be too strong in gen-
eral, as it makes the assumption that the sender always convinces the receiver.
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Effect 4 is too weak, and not very useful for programming communication among
agents since it would have no effect. Effect 3 would be rather indirect, as it is
no longer very clear what use the communication has, other than to conclude
such indirect statements about the sender’s mind. In practice, using this type
of semantics would be rather similar to effect 4, doing nothing with a message
received from another agent, as making good use of information about the inten-
tions of another agent would require rather involved reasoning patterns. Here,
we choose our semantics according to effect 2, which means that the receiver
makes the assumption that the speaker believes what it says. Obviously, this is
not always a safe assumption to make, as the sender may be lying. However, it
is also not overly presumptuous, as the receiver just takes the utterance of the
sender at face value.
In contrast with effect 1, effect 2 does not affect the mental state of the

receiver directly, but only the mental model that the receiver has of the sender:
as a result of the utterance, the receiver comes to believe something about the
sender, but the utterance does not directly influence the beliefs of the agent about
the environment. This is one of the main ideas of our approach: the direct effect
of communication is that the receiver updates its mental model of the sender.
Additional reasoning may then result in the receiver making updates also to its
own beliefs and goals. However, this is not part of our semantics. For example,
if the receiver knows by experience that the sender is quite reliable, the receiver
may also update its own beliefs accordingly, or use the beliefs of the mental
model of the sender to decide on action (as in the example program of Section
5). This is in contrast with Jason, in which reasoning about the acceptability of
the message is done upon receipt of the message (using the function to determine
the social acceptability), and if the message is acceptable, the mental state of
the agent itself is updated.
The second main idea behind our approach has to do with the types of mes-

sages that we distinguish. For this, we take inspiration from natural language, in
which one uses grammatical structure to differentiate between various types of
communication modes. In the communication framework we propose, we distin-
guish between three message types, derived from three grammatical distinctions
in natural language:

(i) declaratives, typically used to make factual statements about the environ-
ment (e.g., “The house is white.”). Syntactically, a declarative is represented
by •φ. Informally, a declarative message with content φ may be paraphrased
as: “It is the case that φ.” Semantically, the idea is that the receiver r takes
this at face value, and r concludes that sender s believes φ.

(ii) interrogatives, typically used to pose questions about a state of affairs (e.g.,
“Is the house white?”). Syntactically, an interrogative is represented by?φ.
Informally, an interrogative with content φ may be paraphrased as: “Is it the
case that φ?”. Taking this at face value, r concludes that s does not know
whether φ.

(iii) imperatives, typically used to express a desirable state of affairs (e.g., “See
to it that the house is white!”). Syntactically, an imperative is represented

166



by !φ. Informally, an imperative may be paraphrased as: “Someone, see to
it that φ.” Taking this at face value, r concludes that s has φ as a goal, and
does not believe φ.2

The semantics of interrogatives and imperatives have in common with that
of declaratives that they do not prescribe what the receiver should do in terms
of updating its own beliefs and goals. The semantics of interrogatives does not
define that the receiver should, e.g., adopt the goal to tell the sender about φ.
Similarly, the semantics of imperatives does not define that the receiver should
update its own goals with φ. Moreover, the semantics of imperatives does not
even define whether the uttered imperative should be interpreted as a request,
or simply as information about the goals of the sender. Adding these kinds of
interpretations and additional reasoning on whether to update the receiver’s
own beliefs and goals is left to the agent programmer. For example, in certain
applications imperatives might always be interpreted as requests, while in others
one might want to make a distinction between these and imperatives that express
the goals of the sender. However, we argue that in all of these cases, it makes
sense to update the mental model that the receiver has of the sender as informally
described above.

4 A Communication Semantics Based on Mental Models

In this section, we make the informal semantics discussed above precise in the
context of Goal.

4.1 Mental Models and Mental States

Mental models play an essential role in this semantics and are introduced first.
Goal agents maintain mental models that consists of declarative beliefs and
goals. An agent’s beliefs represent its environment whereas the goals represent
a state of the environment the agent wants. Beliefs and goals are specified using
some knowledge representation technology. In the specification of the operational
semantics we use a propositional logic L0 built from a set of propositional atoms
Atom and the usual boolean connectives. We use |= to denote the usual conse-
quence relation associated with L0, and assume a special symbol ⊥ ∈ L0 which
denotes the false proposition. In addition, the presence of an operator ⊕ for
adding φ to a belief base and an operator ⊖ for removing φ from a belief base
are assumed to be available.3 A mental model associated with a Goal agent
needs to satisfy a number of rationality constraints.

2 The latter part, that s does not believe φ is derived from a rationality constraint.
An agent should not have a goal to achieve something if it believes it has already
been achieved.

3 We assume that Σ ⊕ φ |= φ whenever φ is consistent, and that otherwise nothing
changes, and that Σ ⊖ φ %|= φ whenever φ is not a tautology, and that otherwise
nothing changes. Additional properties such as minimal change, etc. are usually
associated with these operators (see e.g. [15]) but not relevant in this context.
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Definition 1. (Mental Model)
A mental model is a pair 〈Σ,Γ 〉 with Σ,Γ ⊆ L0 such that:

• The beliefs are consistent: Σ *|= ⊥
• Individual goals are consistent: ∀γ ∈ Γ : γ *|= ⊥
• Goals are not yet (believed to be) achieved: ∀γ ∈ Γ : Σ *|= γ

In a multi-agent system it is useful for an agent to maintain mental models
of other agents. This allows an agent to keep track of the perspectives of other
agents on the environment and the goals they have adopted to change it. A
mental model maintained by an agent i about another agent j represents what
i thinks that j believes and which goals it has. Mental models of other agents
can also be used to take the beliefs and goals of these agents into account in its
own decision-making. An agent may construct a mental model of another agent
from the messages it receives from that agent or from observations of the actions
that that agent performs (e.g., using intention recognition techniques). Here we
focus on the former option.
We assume a multi-agent system that consists of a fixed number of agents.

To simplify the presentation further, we use {1, . . . , n} as names for these agents.
A mental state of an agent is then defined as a mapping from all agent names
to mental models.

Definition 2. (Mental State)
A mental state m is a total mapping from agent names to mental models, i.e.
m(i) = 〈Σi, Γi〉 for i ∈ {1, . . . , n}.

For an agent i, m(i) are its own beliefs and goals, which was called the agent’s
mental state in [10].
A Goal agent is able to inspect its mental state by means of mental state

conditions. The mental state conditions of Goal consist of atoms of the form
bel(i, φ) and goal(i, φ) and Boolean combinations of such atoms. bel(i, φ) where
i refers to the agent itself means that the agent itself believes φ, whereas bel(i, φ)
where i refers to another agent means that the agent believes that agent i believes
φ. Similarly, goal(i, φ) is used to check whether agent i has a goal φ.4

Definition 3. (Syntax of Mental State Conditions)
A mental state condition, denoted by ψ, is defined by the following rules:

i ::= any element from {1, . . . , n} | me | allother
φ ::= any element from L0

ψ ::= bel(i, φ) | goal(i, φ) | ψ ∧ ψ | ¬ψ

The meaning of a mental state condition is defined by means of the mental
state of an agent. An atom bel(i, φ) is true whenever φ follows from the belief

4 In a multi-agent setting it is useful to introduce additional labels instead of agent
names i, e.g. me to refer to the agent itself and allother to refer to all other agents,
but we will not discuss these here in any detail.
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base of the mental model for agent i. An atom goal(i, φ) is true whenever φ

follows from one of the goals of the mental model for agent i. This is in line
with the usual semantics for goals in Goal, which allows the goal base to be
inconsistent (see [10] for details). Note that we overload |=.

Definition 4. (Semantics of Mental State Conditions)
Let m be a mental state and m(i) = 〈Σi, Γi〉. Then the semantics of mental state
conditions is defined by:

m |= bel(i, φ) iff Σi |= φ

m |= goal(i, φ) iff ∃γ ∈ Γi such that γ |= φ

m |= ¬ψ iff m *|= ψ

m |= ψ ∧ ψ′ iff m |= ψ and m |= ψ′

4.2 Actions

Goal has a number of built-in actions and also allows programmers to introduce
user-specified actions by means of STRIPS-style action specifications. The pro-
gram discussed in Section 5 provides examples of various user-specified actions.
In the definition of the semantics we will abstract from action specifications
specified by programmers and assume that a fixed set of actions Act and a (par-
tial) transition function T is given. T specifies how actions from Act, performed
by agent i, update i’s mental state, i.e., T (i, a,m) = m′ for i an agent name,
a ∈ Act and m,m′ mental states. All actions except for communicative actions
are assumed to only affect the mental state of the agent performing the action.
The built-in actions available in Goal (adapted to distinguish between men-

tal models) that we need here include ins(i, φ), del(i, φ), adopt(i, φ), drop(i, φ)
and communicative actions of the form send(i,msg) where i is an agent name
and msg is a message of the form •φ, ?φ or !φ. The semantics of actions from
Act and built-in actions performed by agent i is formally captured by a mental
state transformer function M defined as follows:

M(i, a,m) =

{

T (i, a,m) if a ∈ Act and T (i, a,m) is defined
undefined otherwise

M(i, ins(j, φ),m) = m⊕j φ

M(i,del(j, φ),m) = m⊖j φ

M(i,adopt(j, φ),m) =

{

m ∪j φ if φ is consistent and m *|= bel(i, φ)
undefined otherwise

M(i,drop(j, φ),m) = m−j φ

M(i, send(j,msg),m) = m

where m×j φ means that operator × ∈ {⊕,⊖,∪,−} is applied to mental model
m(j), i.e. m ×j φ(i) = m(j) × φ and m ×j φ(k) = m(k) for k *= j. To define
the application of operators to mental models, we use Th(T ) to denote the
logical theory induced by T , i.e. the set of all logical consequences that can
be derived from T . Assuming that m(i) = 〈Σ,Γ 〉, we then define: m(i) ⊕ φ =
〈Σ ⊕ φ, Γ \ (Th(Σ ⊕ φ)〉, m(i)⊖ φ = 〈Σ ⊖ φ, Γ 〉, m(i) ∪ φ = 〈Σ,Γ ∪ {φ}〉, and

169



m(i) − φ = 〈Σ,Γ \ {γ ∈ Γ | γ |= φ}〉. Note that sending a message does not
have any effect on the sender. There is no need to incorporate any such effects in
the semantics of send since such effects may be programmed by using the other
built-in operators.
It is useful to be able to perform multiple actions simultaneously and we

introduce the + operator to do so. The idea here is that multiple mental actions
may be performed simultaneously, possibly in combination with the execution
of a single user-specified action (as such actions may have effects on the ex-
ternal environment it is not allowed to combine multiple user-specified actions
by the + operator). The meaning of a + a′ where a, a′ are actions, is defined
as follows: if M(i, a,m) and M(i, a′,m) are defined and M(i, a′,M(i, a,m)) =
M(i, a,M(i, a′,m)) is a mental state, thenM(i, a+a′,m) =M(i, a′,M(i, a,m));
otherwise, a+ a′ is undefined.
In order to select actions for execution, an agent uses action rules of the form

if ψ then a, where a is a user-specified action, a built-in action, or a combination
using the +-operator. An agent A is then a triple 〈i,m,Π〉 where i is the agent’s
name, m is the agent’s mental state, and Π is the agent’s program (a set of
action rules).

4.3 Operational Semantics: Basic Communication

We first introduce a single transition rule for an agent performing an action.
Transitions “at the agent level” are labelled with the performed action, since this
information is required “at the multi-agent level” in the case of communicative
actions.

Definition 5. (Actions)
Let A = 〈i,m,Π〉 be an agent, and if ψ then a ∈ Π be an action rule.

m |= ψ M(i, a,m) is defined

m
a

−→ M(i, a,m)

Using Plotkin-style operational semantics, the semantics at the multi-agent
level is provided by the rules below. A configuration of a multi-agent system
consists of the agents of the multi-agent system {A1, . . . ,An} and the environ-
ment E, which is used to store messages that have been sent and are waiting for
delivery.5 The environment is used to model asynchronous communication, i.e.,
no handshake is required between sender and receiver of a message. Transitions
at the multi-agent level are not labelled. Actions other than the send action
only change the agent that executes them, as specified below.

Definition 6. (Action Execution)
Let “a” be an action other than send(j,msg).

Ai
a
−→ A′

i

A1, . . . ,Ai, . . . ,An, E −→ A1, . . . ,A′
i, . . . ,An, E

5 Other aspects of the environment might also be modeled, but that is beyond the
scope of this paper.
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The following transition rule specifies the semantics of sending messages.

Definition 7. (Send)

Ai

send(j,msg)
−→ Ai

A1, . . . ,Ai, . . . ,An, E −→ A1, . . . ,Ai, . . . ,An, E ∪ {send(i, j,msg)}

The premise of the rule indicates that agent Ai sends a message to agent Aj .
To record this, send(i, j,msg) is added to the environment, including both the
sender i and the intended receiver j. Also note that a message that is sent more
than once has no effect as the environment is modeled as a set here (this is the
case until the message is received).6

Three rules for receiving a message are introduced below, corresponding to
each of the three message types. In each of these rules, the conclusion of the
rule indicates that the mental state of the receiving agent is changed. If agent
j receives a message from agent i that consists of a declarative sentence, it has
the effect that the mental model m(i) of the mental state of the receiver j is
modified by updating the belief base of m(i) with φ. In addition, any goals in the
goal base of m(i) that are implied by the updated belief base are removed from
the goal base to ensure that the rationality constraints associated with mental
models are satisfied.

Definition 8. (Receive: Declaratives)

send(i, j, •φ) ∈ E

A1, . . . , 〈j,m,Π〉, . . . ,An, E −→ A1, . . . , 〈j,m′, Π〉, . . . ,An, E \ {send(i, j, •φ)}

where:

– m′(i) = 〈Σ ⊕ φ, Γ \ Th(Σ ⊕ φ)〉 if m(i) = 〈Σ,Γ 〉, and
– m′(k) = m(k) for k ,= i.

The condition m′(k) = m(k) for k ,= i ensures that only the mental model
associated with the sender i is changed.

The rule below for interrogatives formalizes that if agent i communicates a
message ?ϕ of the interrogative type, then the receiver j will assume that i does
not know the truth value of φ. Accordingly, it removes φ using the ⊖ operator
from the belief base in its mental model of agent i to reflect this.

Definition 9. (Receive: Interrogatives)

send(i, j,?φ) ∈ E

A1, . . . , 〈j,m,Π〉, . . . ,An, E −→ A1, . . . , 〈j,m′, Π〉, . . . ,An, E \ {send(i, j,?φ)}

where:

– m′(i) = 〈(Σ ⊖ φ))⊖ ¬φ, Γ 〉 if m(i) = 〈Σ,Γ 〉, and
– m′(k) = m(k) for k ,= i.

6 The implicit quantifier allother may be used to define a broadcasting primitive:

broadcast(msg)
df
= send(allother,msg). In the rule above, in that case, for all

i  = j send(i, j,msg) should be added to E, but we do not provide the details here.
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Remark An alternative, more complex semantics would not just conclude that
agent i does not know φ but also that i wants to know the truth value of φ,
introducing a complex proposition Kiφ into the model of the goal base of that
agent. This would involve nesting of operators, or including Kiφ in the goal base.

The rule below for imperatives formalizes that if agent i communicates a
message !φ of the imperative type, then the receiver j will assume that i does
not believe that φ is the case, and also that φ is a goal of i. Accordingly, it
removes φ using the ⊖ operator and adds φ to its model of the goal base of
agent i.

Definition 10. (Receive: Imperatives)

send(i, j,?φ) ∈ E

A1, . . . , 〈j,m,Π〉, . . . ,An, E −→ A1, . . . , 〈j,m′, Π〉, . . . ,An, E \ {send(i, j,?φ)}

where:

– m′(i) = 〈Σ ⊖ φ, Γ ∪ {φ}〉 if φ ,|= ⊥ and m(i) = 〈Σ,Γ 〉;
otherwise, m′(i) = m(i).

– m′(k) = m(k) for k ,= i.

Note that this semantics does not refer to the actual mental state of the
sender, nor does it define when a sender should send a message or what a receiver
should do with the contents of a received message (other than simply record it
in its mental model of the sending agent).

4.4 Operational Semantics: Conversations

As is well-known, in concurrent systems one needs mechanisms to ensure that
processes cannot access a particular resource simultaneously. A similar need
arises in multi-agent systems, but this has received little attention in the agent
programming community so far. Emphasis has been put on the fact that agent
communication is asynchronous. However, in order to ensure that only one agent
has access to a particular resource at any time, agents need to be able to coor-
dinate their activities and synchronize their actions.7 Of course, asynchronous
communication allows to implement synchronization between agents. We argue,
however, that it is useful to have predefined primitives available in an agent pro-
gramming language that facilitate coordination and synchronization, as is usual
in concurrent programming [16]. We introduce a mechanism that fits elegantly
into the overall setup of communication primitives introduced above, using the
notion of a conversation.

The basic idea is that an agent can engage only in a limited number of
conversations at the same time. By viewing a conversation as a resource, the

7 Note that perfectly symmetrical solutions to problems in concurrent programming are

impossible because if every process executes exactly the same program, they can never

‘break ties’ [16]. To resolve this, solutions in concurrency theory contain asymmetries
in the form of process identifiers or a kernel maintaining a queue.
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limit on the number of conversations an agent can participate in simultaneously
thus introduces a limit on access to that resource. For our purposes, it will suffice
to assume that an agent can participate in at most one conversation at the same
time.

More specifically, a parameter representing a unique conversation identifier
can be added when sending a message, i.e., send(c : j,msg) specifies that the
message msg should be sent to agent j as part of the ongoing conversation c. We
also allow conversations with groups of more than two agents which is facilitated
by allowing groups of agent names {. . .} to be inserted into send(c : {. . .},msg).
A message that is sent as part of an ongoing conversation c is handled similarly
to a message that is not part of a specific conversation. Whenever a conversation
c has been closed (see below), sent messages that are intended to be part of that
conversation are “lost”, i.e. nothing happens. To initiate a conversation, the
term new can be used instead of the conversation identifier. That is, whenever
an agent i performs a send(new : g,msg) action where g is an agent or a
group of agents, agent i initiates a new conversation. Because agents can only
engage in a limited number of conversations at the time, it may be that an
initiated conversation is put on hold initially because one of the agents that
should participate already participates in another conversation.

Semantically, to be able to model that a conversation is ongoing, we split the
environment into a set A of active conversations, a queue Q of pending conver-
sations, and a set M of other pending messages. A message to initiate a new
conversation is added to the queue if at least one agent that should participate
is already present in the set A or the queue Q. The check on Q guarantees that
a conversation is not started when another conversation requiring the participa-
tion of one of the same agents is still on hold in the queue (“no overtaking takes
place”). Otherwise, the message is directly added to the set of active conversa-
tions.

Whenever a message send(c : i, g,msg) that initiated a conversation is part
of the set A, written c ∈ A, we will say that conversation c is ongoing, and
when such a message is part of the queue Q, written c ∈ Q, we will say that
conversation c is put on hold. Since the rules for receiving messages remain
essentially the same, we only provide the rules for sending a message at the
multi-agent level. The following rule specifies the semantics of sending a message
that is part of an ongoing conversation.

Definition 11. (Send: Ongoing Conversation)

Ai

send(c:j,msg)
−→ A′

i c ∈ A

A1, . . . ,Ai, . . . ,An, 〈A,Q,M〉 −→ A1, . . . ,A′
i, . . . ,An, 〈A,Q,M ′〉

where M ′ = M ∪ {send(c : i, j,msg)}.

The following transition rule specifies the semantics of messages that are used to
initiate conversations. We use + (e.g., Q+send(c : i, g,msg)) to add a message
to the tail of a queue. The set of active conversations A and the queue Q store
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information about participants in conversations, as this may be derived from
send(c : i, g,msg), where agents i and g are participants. We write agent(A,Q)
to denote the set of agents in A and Q.

Definition 12. (Send: Initiating a Conversation)
Let g be a set of agent names, and c a new conversation identifier not yet present

in A or Q.

Ai

send(new:g,msg)
−→ A′

i

A1, . . . ,Ai, . . . ,An, 〈A,Q,M〉 −→ A1, . . . ,A′
i, . . . ,An, 〈A′, Q′,M ′〉

where if ({i}∪g)∩agents(A,Q) = ∅ then A′ = A∪{send(c : i, g,msg)}, Q′ = Q

and M ′ =
⋃

k∈g send(c : i, k,msg), and otherwise A′ = A, Q′ = Q + send(c :
i, g,msg), and M ′ = M .

This semantics specifies that we cannot simply allow a conversation between two
agents to start when these agents are not part of an ongoing conversation, as
this may prevent a conversation between another group of agents involving the
same agents from ever taking place. The point is that it should be prevented
that “smaller” conversations always “overtake” a conversation between a larger
group of agents that is waiting in the queue.

As conversations are a resource shared at the multi-agent level, it must be
possible to free this resource again. To this end, we introduce a special action
close(c) which has the effect of removing an ongoing conversation from the
set A and potentially adding conversations on hold from the queue Q to A.
This is the only essentially new primitive needed to implement the conversation
synchronization mechanism.

We need an additional definition: we say that F is a maximal fifo-set of

messages derived from a queueQ relative to a set of agent names Agt if F consists
of all messages send(c : i, g,msg) from Q that satisfy the following constraints:
(i) ({i} ∪ g) ∩Agt = ∅, and (ii) there is no earlier message send(c′ : i′, g′,msg′)
in the queue Q such that ({i} ∪ g) ∩ g′ ,= ∅.

Definition 13. (Send: Closing a Conversation)

Ai

close(c)
−→ A′

i

A1, . . . ,Ai, . . . ,An, 〈A,Q,M〉 −→ A1, . . . ,A′
i, . . . ,An, 〈A′, Q′,M〉

where, assuming that F is the maximal fifo-set derived from Q relative to

agents(A), if send(c : i, g,msg) ∈ A then A′ = (A \ {send(c : i, g,msg)}) ∪ F

and Q′ = Q \ F , and otherwise A′ = A and Q′ = Q.

Note that the transition rule for closing a conversation only allows the initia-
tor of a conversation, i.e. agent Ai, to close the conversation again. (Otherwise
agents that want to start their own conversation immediately might try to get
it going by closing other conversations.) Finally, as it is important that the ini-
tiating agent as well as other participating agents are aware that a conversation
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has started or is ongoing, we assume a special predicate conversation(c, i) is
available, where c denotes a unique conversation identifier and i the initiating
agent, which can be used in the belief base of an agent to verify whether a con-
versation is ongoing or not. We do not provide the formal details here due to
space restrictions (see the next section for an example).

5 The Dining Philosophers

The dining philosophers is a classic problem in concurrency theory [16]. Below,
we show parts of a Goal program that implements a solution. The complete
program (for one philosopher agent) is listed in Appendix A. The currently im-
plemented version of Goal uses Prolog as a knowledge representation language,
which we also use here. We use numbers to refer to the action rules of the Goal
program. For convenience, when referring to the agent’s own mental model in
mental state conditions, we drop this parameter.

A number of philosophers are sitting at a round table where they each engage
in two activities: thinking and eating (1,2). Our philosophers only think when
they are not hungry and get hungry after thinking a while (see the action spec-
ifications). At the table an unlimited supply of spaghetti is available for eating.
A philosopher needs two forks, however, to be able to eat (3). Forks are available
as well, but the number of forks equals the number of philosophers sitting at the
table (one fork is between each two philosophers). It is thus is never possible for
all of the philosophers to eat at the same time and they have to coordinate. The
problem is how to ensure that each philosopher will eventually be able to eat.

Using our conversational metaphor for coordinating activities, the problem
of the dining philosophers can be solved elegantly at the knowledge level. In the
solution we present, the dining philosophers are assumed to be decent agents
that are always willing to listen to the needs of their fellow philosophers at the
table, and provide them with the forks when they indicate they require the forks
to eat. If a philosopher needs the forks to eat but they are not available, he will
initiate a conversation with his neighbors and indicate that he needs the forks
(4).8 If a philosopher i is eating and receives a request for forks from a fellow
philosopher X as part of a new conversation, i will finish eating and put down
the fork in between X and himself and notify X of this fact (8). A philosopher
i will put down a fork only upon being requested. As long as the conversation
is ongoing, i will not pick up the fork again. The philosopher that initiated the
conversation will pick up the fork after being informed by his neighbor that the
fork is on the table (6).9 The initiator of the conversation informs his neighbors
that he picked up the fork (6). Upon receiving a message from both neighbors

8 In the sent messages the direction of the forks (left, right) has been dropped as this
is just a matter of perspective, useful for keeping track of which fork has been picked
up or put down from a single philosopher’s perspective. From the point of view of
two philosophers, a fork is just “in between” them.

9 In fact, only when having initiated a conversation to require the forks, will a philoso-
pher pick up a fork in our solution.
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that they do not know whether the fork is on the table or not (reflected in the
mental models of the neighbors), the initiator closes the conversation (7), and
another conversation involving one of the philosophers may be started. Rules
5 and 9 are used to update the philosopher’s own beliefs on the basis of its
mental models of other philosophers (which are changed due to the sending of
messages).

% i is the name of this philosopher agent

beliefs{ hold(fork,left). } goals{ hold(fork,left), hold(fork,right). }
program{
1. if true then think.

2. if true then eat.
3. if bel(hungry) then adopt(hold(fork,left), hold(fork,right)).

4. if goal(hold(fork, )), bel(not(forksAvailable), neighbours(X,Y))
then send(new:{X,Y},!hold(fork)).

5. if bel(neighbour(X,D), not(hold(fork,D))), bel(X, on(fork,table))

then ins(on(fork,table,D)).
6. if bel(conversation(Id,i)) then pickUp(fork,D) + send(Id:X, .hold(fork)).

7. if bel(conversation(Id,i), hold(fork,left), hold(fork,right), neighbours(X,Y))
bel(X,not(on(fork,table))), bel(Y,not(on(fork,table)))

then close(Id).
8. if bel(conversation(Id,X)), goal(X, hold(fork))
then putDown(fork,D) + send(Id:X, .on(fork,table), not(hold(fork))).

9. if bel(conversation(Id,X), neighbour(X,D)), bel(X, hold(fork))
then del(on(fork,table,D)) + send(Id:X, ?on(fork,table)).

}
action-spec{

think{pre{not(hungry)}post{hungry}}
pickUp(fork,D){pre{on(fork,table,D)}post{hold(fork,D),not(on(fork,table,D))}}
eat{pre{hungry,hold(fork,left), hold(fork,right)}post{not(hungry)}}
putDown(fork, D){pre{hold(fork,D)}post{on(fork,table,D),not(hold(fork,D))}}

}
}

6 Conclusion

In this paper, we have introduced an alternative semantics for communication
in agent programming languages, based on the idea that a received message can
be used to (re)construct a mental model of the sender. We have made this idea
precise for the Goal agent programming language. Also, we have introduced
the concept of a conversation to synchronize actions and communication in a
multi-agent system. We have shown how these new constructs can be used to
program a solution for a classic problem in concurrency theory. We are currently
implementing these ideas to allow further experimentation and testing.
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A Goal program for the dining philosophers

main i { % i, a number between 1 and N, is the name of the philosopher agent

knowledge{
neighbour(X,left) :- i>1, X is i-1.

neighbour(X,left) :- i=1, X is N. % N is the number of philosophers.
neighbour(X,right) :- i<N, X is i+1.
neighbour(X,right) :- i=N, X is 1.

neighbours(X,Y) :- neighbour(X,left), neighbour(Y,right).
forkAvailable(D) :- hold(fork,D) ; on(fork,table,D).

forksAvailable :- forkAvailable(left), forkAvailable(right).
beliefs{ hold(fork,left). }
goals{ hold(fork,left), hold(fork,right). }

program{
if true then think. % can only think when not hungry (see action spec)
if true then eat. % can only eat when hungry and holding forks

if bel(hungry) then adopt(hold(fork,left), hold(fork,right)).

% Initiate conversation with neighbors if you want to eat but forks are not
% available by sending an imperative: See to it that I hold the fork.

if goal(hold(fork, )), bel(not(forksAvailable), neighbours(X,Y))
then send(new:{X,Y},!hold(fork)).

% Ongoing conversation initiated by philosopher itself.
% Only in this case the philosopher will pick up forks.

if bel(neighbour(X,D), not(hold(fork,D))), bel(X, on(fork,table))
then ins(on(fork,table,D)).

if bel(conversation(Id,i)) then pickUp(fork,D) + send(Id:X, .hold(fork)).
% Close the conversation if I hold both forks and neighours have noticed this.
if bel(conversation(Id,i), hold(fork,left), hold(fork,right), neighbours(X,Y))

bel(X,not(on(fork,table))), bel(Y,not(on(fork,table)))
then close(Id).

% Ongoing conversation initiated by a neighbouring philosopher

% Only in this case a philosopher will put down a fork.
if bel(conversation(Id,X)), goal(X, hold(fork))
then putDown(fork,D) + send(Id:X, .on(fork,table), not(hold(fork))).

if bel(conversation(Id,X), neighbour(X,D)), bel(X, hold(fork))
then del(on(fork,table,D)) + send(Id:X, ?on(fork,table)).

}
action-spec{

think{pre{not(hungry)}post{hungry}}
pickUp(fork,D){pre{on(fork,table,D)}post{hold(fork,D),not(on(fork,table,D))}}
eat{pre{hungry,hold(fork,left), hold(fork,right)}post{not(hungry)}}
putDown(fork, D){pre{hold(fork,D)}post{on(fork,table,D),not(hold(fork,D))}}

}
}

178



Introducing Relevance Awareness in BDI Agents

Emiliano Lorini1 and Michele Piunti2

1 Institut de Recherche en Informatique de Toulouse (IRIT), France
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Abstract. Artificial agents engaged in real world applications require accurate

allocation strategies in order to better balance the use of their bounded resources.

In particular, they should be capable to filter out all irrelevant information and

just to consider what is relevant for the current task that they are trying to solve.

The aim of this work is to propose a mechanism of relevance-based belief update

to be implemented in a BDI cognitive agent. This in order to improve the perfor-

mance of agents in information-rich environments. In the first part of the paper

we present the formal and abstract model of the mechanism. In the second part we

present its implementation in the Jason platform and we discuss its performance

in simulation trials.

1 Introduction

Realistic cognitive agents are by definition resource-bounded [4], hence they should

not waste time and energy in reasoning, fixing and reconsidering their knowledge on

the basis of every piece of information they get. For this reason, they require accurate

allocation strategies in order to better balance the use of their bounded computational

resources. In this paper we present a computational model of a mechanism of relevance-

based belief update. This mechanism is responsible for filtering out all non-relevant in-

formation and for considering only what is relevant for the current task that an agent is

trying to solve. We show how such a mechanism can be implemented in a BDI (Belief,

Desire, Intention) agent [19]. The BDI is a well-established framework which is aimed

at describing an agent’s mental process of deciding, moment by moment on the basis of

current beliefs, which action to perform in order to achieve some goals. The mechanism

we propose will accomplish the following general function in an agent reasoning pro-

cess: (i) to signal the inconsistency between the agent’s beliefs and an incoming input

which is relevant with respect to the agent’s current intentions and (ii) to trigger a pro-

cess of belief update in order to integrate such a relevant input in the agent’s belief base.

More generally, we suppose that at each moment an agent is focused and allocates his

attentive resources on a particular task that he is trying to fulfill and on a certain number

of intentions which represent the pragmatic solution selected by the agent to accomplish

the task [2]. In so doing, the agent ignores all incoming input which is not relevant with

respect to the current task on which he is focused and only considers those information

which are relevant. On the contrary, if a relevant input turns out to be incompatible with

respect to the pre-existent beliefs of the agent, the agent reconsiders them.

The model of a mechanism of relevance-based belief update proposed in this paper

is also intended to bridge the existing gap between formal and computational models of
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belief change and cognitive models of belief dynamics. Indeed, formal approaches to

belief change implicitly assume that when an agent perceives some fact such a percep-

tion is always a precursor of a process of belief change. On the contrary, we model

here these precursors of a process of belief change and, in agreement with cogni-

tive theories of bounded rationality (e.g. [16]), we show that implementing them in a

resource-bounded agent can improve his performance in information-rich environments

requiring massive perceptive activities. Moreover, this proposal is intended to provide

a novel understanding of the design and implementation of cognitive agents. Whereas

mainstream agent platforms provide sophisticated mechanisms to process messages and

Agent Communication Languages (ACLs), the perception of heterogeneous events and

information is often shaped on the basis of technical constructs which are defined in a

domain-dependent fashion and constrained with constructs at the language level. Main-

stream programming models are not sufficiently flexible to integrate alternative percep-

tive capabilities of agents, and to relate them with cognitive concepts such as the ones

of the BDI approach. On the contrary, we present in this paper a cognitive model in

which the relationship between perception and goal processing is clearly specified in

terms of the pivotal notion of relevance.

The paper is organized as follows. Section 2 provides the definition of an agent’s

abstract model. Section 3 applies the agent’s abstract model to the formalization of a

specific problem domain. In section 4 the cognitive architectures of two general typolo-

gies of BDI agents are formally defined —respectively implementing traditional BDI

interpreter and BDIrelwith relevance awareness abilities. Section 5 describes a pro-

gramming model for the BDIrelagent, discussing how it has been implemented with

the Jason platform [1]. Finally, section 6 compares the performance of agents engaged

in simulated experiment in the scenario previously described.

2 An agent’s abstract model

In this section a definition of an agent’s abstract model is given. This includes data ob-

tained by perceptions, static causal knowledge, volatile beliefs, desires and intentions,

desire-generating and planning rules, and a repertoire of basic actions.

Let VAR= {X1, . . . , Xn} be a non-empty set of random variables. We suppose

that each random variable Xi ∈ VAR takes values from a non-empty set of vari-

able assignments ValXi
. For each set ValXi

we denote by InstXi
the correspond-

ing set of all possible instantiations of random variable Xi. For example, suppose that

ValXi
= {x1, . . . , xr} then InstXi

= {Xi=x1, . . . , Xi=xr}. We denote by Inst the set

of all possible instantiations of all random variables, that is: Inst=
⋃

Xi∈VAR InstXi
.

Perceived data Γ ⊆ Inst is a set of perceived data which fixes the value of certain

variables that an agent perceives at a certain moment. For example, Γ= {Xi=x} means

“the agent perceives the event Xi=x”. We denote by

ΓV ar= {Xi ∈ VAR | ∃x ∈ ValXi
such that Xi=x ∈ Γ}

the subset of VAR which includes the variables that an agent observes at a certain mo-

ment. Here we suppose that for all Xi ∈ ΓV ar, InstXi
∩ Γ is a singleton, that is, we

suppose that an agent cannot perceive two different instantiations of the same vari-
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(a) (b)

Fig. 1. Environment grid in agent’s domain representation (a) and the running experiment (b).

able. We use the notation Γ(Xi) to denote this singleton for any Xi ∈ ΓV ar, that is,

Γ(Xi)=InstXi
∩ Γ.

Stable causal knowledge K is a Bayesian network which represents the joint probabil-

ity distribution over the set of random variables VAR. A Bayesian network is a directed

acyclic graph (DAG) whose nodes are labeled by the random variables in VAR and the

edges represent the causal influence between the random variables in VAR [14]. Given

an arbitrary random variable X (i.e. an arbitrary node) in the Bayesian network K we

denote by anc(X) the set of ancestors of X . Formally, Z is an ancestor of X in the

Bayesian network K if there is a directed path from Z to X inK.

Moreover, given an arbitrary random variable X in the Bayesian network K, we

denote by par(X) the set of parents of X in the Bayesian network. Formally, Z is a

parent ofX in the Bayesian networkK if Z is an ancestor ofX inK which is directly

connected to Z. Finally, we associate to each random variable X in K a conditional

probability distribution P (X | par(X)). The Bayesian network K encodes the agent’s

causal knowledge of the environment. Here we suppose that this part of the agent’s

knowledge is stable and can not be reconsidered.

Volatile beliefs An agent’s abstract model also includes beliefs that can change over

time, i.e. the agent’s volatile beliefs [3]. Given a random variableXi ∈ VAR, we denote

by
∑

Xi
the set of all possible probability distributions over the random variable Xi.

We denote by BEL the cartesian product of all
∑

Xi
, that is BEL=

∏
Xi∈VAR

∑
Xi

. BEL

includes all possible combinations of probability distributions over the random variables

in VAR. Elements in BEL are vectors B=〈B1, . . . ,Bn〉,B
′=〈B′

1
, . . . ,B′n〉, . . .. Every

vector B corresponds to a particular configuration of beliefs of the agent. In this sense,

BEL includes all potential configurations of beliefs of the agent.

Suppose that ValXi
= {x1, . . . , xr}. Then, every element Bi in a configuration of

beliefs B is just a set {(Xi=x1)=a1, . . . , (Xi=xr)=ar} of probability assignments

a1, . . . , ar ∈ [0, 1] to each possible instantiations of the variable Xi.

Given a specific configuration of beliefs B=〈B1, . . . ,Bn〉, we write B(Xi=x)=a
if and only if (Xi=x)=a ∈ Bi. For example, B(Xi=x)=0.4 means that given the

configuration of beliefs B=〈B1, . . . ,Bn〉 the agent assigns probability 0.4 to the fact

that variableXi takes value x. Moreover, we denote by B(Xi=x) the number a ∈ [0, 1]
such that B(Xi=x)=a.
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Intentions and desires We also model motivational attitudes by denoting with INT

the set of potential intentions of an agent. Here we suppose that every instantiation of

a variable in Inst is a potential intention of the agent. We denote by I, I′, . . . ∈ 2INT

specific sets of intentions of the agent. Given a specific set of intentions of the agent I,

we denote by IV ar the subset of VAR which includes all intended variables, that is, all

those variables which have (at least) one instantiation in I. Formally:

IV ar= {Xi ∈ VAR | ∃x ∈ ValXi
such that Xi=x ∈ I}.

We call intention supports all variables that are parents in the Bayesian network K of

some intended variable. The set of intention supports is formally defined as follows:

SUPPV ar= {Xi ∈ VAR | ∃Xj ∈ IV ar such that Xi ∈ par(Xj)}.

Note that the set of intention supports includes intention preconditions, that is, all con-

ditions on which the achievement of an intended result of the agent depends. DES is

the set of all potential desires of the agent. As for intentions, we suppose that every

instantiation of a variable in Inst is a potential desire of the agent, that is, DES=Inst .
We denote by D,D′, . . . ∈ 2DES specific sets of desires of the agent.

Desire-generating rules and planning rules We specify a set DG of desire-generating

rules and a set PL of planning rules. A desire-generating rule in DG is a desire-generation

rule in the style of [7] of the form:

ψ1, . . . , ψs | λ1, . . . , λj =⇒ ϕ1, . . . , ϕt.
Such a rule is responsible for generating t desires ϕ1, . . . , ϕt when the agent has s
beliefs ψ1, . . . , ψs and j intentions λ1, . . . , λj . The set of desire-generating rules DG

corresponds to a function options : BEL × 2INT '→ 2DES. This function returns a spe-

cific set D of desires, given a specific configuration B of beliefs and a specific set I of

intentions.

A planning rule in the set of planning rules PL is a plan-generating rule of the form:

ψ1, . . . , ψs | λ1, . . . , λj =⇒ α1, . . . , αt.
Such a rule is responsible for generating t plans α1, . . . , αt ∈ ACT, where ACT is the

repertoire of actions and plans of our agent, when the agent has s beliefs ψ1, . . . , ψs
and j intentions λ1, . . . , λj . The set of planning rules PL corresponds to a function

plan : BEL × 2INT '→ 2ACT. This function returns a set π of plans, given a specific set

B of beliefs and specific set I of intentions. To summarize, an agent’s abstract model

is defined as a tuple 〈Γ,K,B,D, I,DG,PL,ACT〉, where each element in the tuple is

defined as before.

3 Formalization of the experimental scenario

Our experimental scenario is represented by the 12 × 12 grid in Fig. 1(a). An agent

moves in the grid being driven by the goal of finding fruits of a certain color, accord-

ing to the ongoing season. Indeed, agents look for fruits of different colors in different

seasons of the year. We suppose that there are three different seasons and related colors

of fruits and trees: the red season, the blue season and the green season. Agents are

intrinsically motivated to look for and to eat red fruits during the red season, blue fruits

during the blue season and green fruits during the green season. Environmental dynam-

ics are characterized by periodic season cycles: after st rounds the season changes on
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BDIrelagent control loop

1. B:=B0;

2. I:=I0;

3. while (true) do

4. get new percept Γ;

5. if R(I, Γ,B) > ∆ then

6. B:=bu∗(Γ,B, I);
7. end-if

8. D:=options(B, I);
9. I:=filter(B,D, I);
10. π:=plan(B, I);
11. execute(π);
12. end-while

BDI agent control loop

1. B:=B0;

2. I:=I0;

3. while (true) do

4. get new percept Γ;

5. B:=bu(Γ,B);
6. D:=options(B, I);
7. I:=filter(B,D, I);
8. π:=plan(B, I);
9. execute(π);
10. end-while

Table 1. Abstract interpreter implemented by the two typologies of agents

the basis of a periodic function and the intrinsic motivation of an agent changes accord-

ingly. Fruits of any color occupy cells (i, j) (with 1 ≤ i ≤ 16 and 1 ≤ j ≤ 9), where

i indicates the number of the macro-area in the grid and j the number of the cell inside

the macro-area. Trees of any color occupy macro-areas i of size 3×3 (with 1 ≤ i ≤ 16)
in the grid depicted in Fig. 1(a). We suppose that at each moment for every color there

is exactly one fruit and tree of that color in the grid. Moreover, we suppose an objective

dependence between trees and fruits in the grid: a fruit of a certain color is a sign of

the presence of a fruit of the same color in the immediate neighborhood. Agents exploit

these signs during their search of fruits. We suppose that a tree of any color is randomly

placed in a macro-area i of size 3× 3. Given a tree of a certain color in a macro-area i
of size 3× 3, a fruit of the same color is randomly placed by the simulator in one of the

four cells inside the macro-area i. For example, if a red tree is in the macro-area 1 of the

grid then for each cell (1, i) with 1 ≤ i ≤ 9, there is 1
9 of probability that a red fruit is

located in that cell. Fruits and trees change periodically their positions. The dynamism

factor δ indicates how many seasons have to pass before a tree location changes.

We impose constraints on the perceptual capabilities of agents by supposing that an

agent sees only those fruits which are in the cells belonging to the same macro-area in

which the agent is. For example, if the agent is in cell (6, 1), he only sees those fruits

which are in the cells belonging to the macro-area 6. Moreover we suppose that an agent

sees only those trees which are situated in the same macro-area in which the agent is or

in the four neighboring macro-areas on the left, right up or down. For example, if the

agent is in cell (6, 1), he only sees those trees which are in macro-areas 2, 5, 7 or 10.

The knowledge of our agents is encoded by means of the following eight random

variables VAR= {SEAS, POS,RF,BF,GF,RT,BT,GT}. The variables RF , BF ,

GF , POS take values from the sets {(i, j) | 1 ≤ i ≤ 16, 1 ≤ j ≤ 9}, whilst the vari-

ables RT , BT , GT take values from the set {i | 1 ≤ i ≤ 16} . Finally, SEAS takes

value from the set {red, blue, green}. Variables RF , BF ,GF specify respectively the

position of a red/ blue/ green fruit in the grid depicted in Fig. 1 (a). Variables RT , BT ,

GT specify respectively the position of a red/blue/green tree in the grid. For example,

RT=13 means “there is a red tree in the macro-area 13”. Variable SEAS specifies the

current season. For example, SEAS=blue means “it is time to look for blue fruits!”.

Finally, Variable POS specifies the position of the agent in the grid.
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The variables in VAR are organized in the Bayesian network K as follows:

par(POS)= {∅}, par(SEAS)= {∅}, par(RT )= {∅}, par(BT )= {∅}, par(GT )= {∅},

par(RF )= {RT}, par(BF )= {BT}, par(GF )= {GT}. Since there are 144 possible

positions of a fruit and 16 possible positions of a tree in the grid, each conditional

probability table associated with P (RF | RT ), P (BF | BT ) and P (GF | GT ) has

144 × 16=2304 entries. We suppose that the knowledge an agent has about the de-

pendencies between trees and fruits perfectly maps the objective dependencies between

trees and fruits. Hence, we only specify for each tree of a certain color – and arbitrary

macro-area i ∈ {1, . . . , 16} in the grid in which a tree can appear – the 9 conditional

probabilities that a fruit of the same color appears in one cell in that macro-area. We sup-

pose for each of them the same probability value 1
9 . All other conditional probabilities

have value 0, that is, given a tree of a certain color which appears in an arbitrary macro-

area i ∈ {1, . . . , 16}, the probability that there is a fruit of the same color outside that

macro-area is zero. More precisely, we have that for all 1 ≤ i, j ≤ 16 and 1 ≤ z ≤ 9: (i)

if i=j then P (RF=(j, z) | RT=i)= 1
9 ; (ii) if i -= j then P (RF=(j, z) | RT=i)=0.

Desire-generating rules in DG are exploited by agents for solving the general task of

finding a fruit of a certain color in the grid. Agents are endowed with three general

classes of desire-generating rules. The first class includes desire-generating rules of

the following form. For i ∈ ValSEAS : (SEAS=i)=1 =⇒ SEAS=i. These desire-

generating rules are responsible for changing the intrinsic motivation of an agent, ac-

cording to the season change, that is: if an agent is certain that it is time to look for

fruits of kind i, then he should form the desire to look for fruits of kind i.

The second class includes desire-generating rules shown in Tab. 2 (DG Group 1).

These are responsible for orienting the search toward a certain macro-area, according

to the current season (i.e. an intention to find fruits of a certain color) and his beliefs

about the position of trees in the grid. For instance, if an agent is certain that there is a

red tree in the macro-area 3 of the grid (i.e. (RT=3)=1) and desires to find a red fruit

(i.e. SEAS=red), then he should form the intention to reach that position of a red tree

(i.e. RT=3). Finally, agents are endowed with desire-generating rules shown in Tab.

2 (DG Group 2). These desire-generating rules are responsible for orienting the search

of an agent toward a certain cell, according to the current season (i.e. an intention to

find fruits of a certain color) and his beliefs about the position of fruits in the grid. For

example, if an agent desires to find a blue fruit (i.e. SEAS=blue) and knows/ is certain

that there is a blue fruit in cell (10, 1) of the grid (i.e. (BF=(10, 1))=1), then he should

form the intention to move toward that position of the blue fruit (i.e. BF=(10, 1)).

We suppose that agents have four basic actionsMoveDown,MoveUp,MoveLeft
and MoveRight in repertoire. Indeed, at each round they can only move from one

cell to the next one. Planning rules encode approaching policies which depend on the

agent’s current intentions and his actual position in the grid. Agents have both planning

rules for reaching macro-areas in the grid (given their current positions) and planning

rules for reaching cells in the grid (given their current positions). The latter planning

rules are exploited for the local search of a fruit of a certain color inside a macro-

area. An example of these planning rule is the following: (POS=(15, 1))=1 | RT=3
=⇒ MoveUp. Thus, if an agent intends to reach position 3 of a red tree and is certain

to be in cell (15, 1) then he should form the plan to move one step up.
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DG Group 1
For 1 ≤ i ≤ 16:

(RT=i)=1 | SEAS=red =⇒ RT=i
(BT=i)=1 | SEAS=blue =⇒ BT=i
(RT=i)=1 | SEAS=green =⇒ GT=i

DG Group 2
For 1 ≤ i ≤ 16 and 1 ≤ j ≤ 9:

(RF=(i, j))=1 | SEAS=red =⇒ RF=(i, j)
(BF=(i, j))=1 | SEAS=blue =⇒ BF=(i, j)
(RF=(i, j))=1 | SEAS=green =⇒ GF=(i, j)

Table 2. Means End rules governing intention selection

4 Relevance and Belief Update

In this section we present two different architectures and corresponding typologies of

cognitive agents. The first type of agent corresponds to a standard BDI agent whose

control loop is described in the right column of Tab. 1. The second type of agent,

whose control loop is described in the left column of Tab. 1, is a BDI agent endowed

with a relevance-based mechanism of belief update. We call this second type of agent

BDIrelagent.

The formal description of the control loop of the standard BDI agent is similar to

[19]. In lines 1-2 the beliefs and intentions of the agent are initialized. The main control

loop is in lines 3-10. In lines 4-5 the agent perceives some new facts Γ and updates

his beliefs according to a function bu. In line 6 the agent generates new desires by

exploiting his desire-generating rules. In line 7 he deliberates over the new generated

desires and his current intentions according to the function filter.3 Finally, in lines 8-9

the agent generates a plan for achieving his intentions by exploiting his planning rules

and he executes an action of the current plan. The main difference between the standard

BDI agent and the BDIrelagent is the belief update part in the control loop. We suppose

that a process of belief update is triggered in the BDIrelagent only if the agent perceives

a fact and evaluates this as relevant with respect to what he intends to achieve (line 5

in the control loop of the BDIrelagent). In this sense, the BDIrelis endowed with a

cognitive mechanism of relevance-based belief update. In fact, this mechanism filters

out all perceived facts that are irrelevant with respect to the current intentions. Thus, the

BDIrelagent only updates his beliefs by inputs which are relevant with respect to his

current intentions. Differently, at each round the standard BDI agent updates his beliefs

indiscriminately: for any fact he perceives, he updates his beliefs whether the perceived

fact is relevant with respect to his intentions or not.
In order to design the mechanism of relevance-based belief update, we define a

notion of local relevance of an input Γ with respect to an intention Y=y ∈ I, given the
configuration of beliefs B. This is denoted by r(Y=y,Γ,B) and is defined as follows.

r(Y=y,Γ,B)=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

⇒ If Y ∈ ΓV ar :
1−B(Γ(Y ))

⇒ If par(Y ) ⊆ ΓV ar and Y /∈ ΓV ar :
‖B(Y=y)−P (Y=y | {Xi=x |
Xi ∈ par(Y ) and Xi=x ∈ Γ})‖

⇒ If par(Y ) *⊆ ΓV ar and Y /∈ ΓV ar :
0

(1)

3 Space restrictions prevent a formal description of the function filter here (see [19] for a de-

tailed analysis). Only notice that this function is responsible for updating the agent’s intentions

with his previous intentions and current beliefs and desires (i.e. filter : B× 2
I × 2

D !→ 2
I).
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The degree of local relevance of the percept Γ with respect to intended fact Y=y ∈ I

(given the agent’s configuration of beliefs B) is defined on the basis of three conditions.

According to the first condition, if the intended variable Y is also a perceived vari-

able in ΓV ar (i.e. there exists an instantiation of Y which is an element of Γ) then,

r(Y=y,Γ,B) is equal to the degree of unexpectedness of the percept Γ (i.e. 1−B(Γ(Y ))).
The degree of unexpectedness of the percept Γ is inversely proportional to the prior

probability assigned by the agent to the perceived instantiation of the intended variable

Y (see [11] for an analysis of the notion of unexpectedness).

According to the second condition, if the intended fact Y=y is not an instantiation

of a perceived variable in ΓV ar and the parents of Y in the Bayesian network K are

perceived variables in ΓV ar then, r(Y=y,Γ,B) is equal to the degree of discrepancy

between the intended fact Y=y and the percept Γ. The degree of discrepancy between

the intended fact Y=y and the percept Γ is given by the absolute value of the difference

between the probability assigned to Y=y (i.e. B(Y=y)) and the conditional probability

that Y=y is true given that the perceived instantiations of the parents of Y are true (i.e.

P (Y=y | {Xi=x | Xi ∈ par(Y ) and Xi=x ∈ Γ})).
According to the third condition, if the intended fact Y=y is not an instantiation

of a perceived variable in ΓV ar and there is some parent of Y in the Bayesian network

K that is not a perceived variable in ΓV ar then r(Y=y,Γ,B) is zero. This third condi-

tion corresponds to the irrelevance of the incoming input Γ with respect to the agent’s

intention Y=y. Under this third condition, the agent simply ignores the input.
Let us now define a notion of global relevance, noted R(I, Γ,B), as the maximum

value of local relevance for each intended fact Y=y ∈ I:

R(I, Γ,B)= max
Y=y∈I

r(Y=y,Γ,B) (2)

This notion of global relevance is used in the control loop of the BDIrelagent: if

the new percept Γ is responsible for generating a degree of global relevance higher than

∆ (with ∆ ∈ [0, 1]) then a process of belief update is triggered and the BDIrelagent

adjusts his beliefs with the perceived data Γ according to a function bu∗. The belief

update function bu∗ of the BDIrelagent takes in input the set of intentions I, the belief

configuration B and the percept Γ and returns an update belief configuration B′, that is:
bu∗ : 2Inst × BEL× 2INT -→ BEL.

More precisely, suppose that bu∗(Γ,B, I)=B′. The set B′ is defined according to the

following three conditions. For every Y ∈ VAR we have:

1. ⇒ If Y ∈ IV ar or Y ∈ SUPPV ar , and Y ∈ ΓV ar :

B
′(Γ(Y ))=1 and for every Y=x ∈ InstY \ Γ(Y ),B′(Y=x)=0.

2. ⇒ If Y ∈ IV ar or Y ∈ SUPPV ar , and par(Y ) ⊆ ΓV ar and Y /∈
ΓV ar :

for every Y=y ∈ InstY , B′(Y=y)=P (Y=y | {Xi=x | Xi ∈
par(Y ) and Xi=x ∈ Γ}).

3. ⇒ Otherwise:

for every Y=y ∈ InstY , B′(Y=y)=B(Y=y).

According to the previous formal characterization of the function bu∗, the BDIrelagent

only reconsiders the probability distributions over his intentions Y ∈ IV ar and over

his intention supports Y ∈ SUPPV ar. In fact, we suppose that the BDIrelagent only

reconsiders those beliefs which are directly related with his intentions or his intention

supports, since he allocates his attention on the current task he is trying to solve. More

precisely: if Y is either an intended random variable in IV ar or an intention support
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in SUPPV ar, and Y is a perceived variable in ΓV ar, then the updated probability dis-

tribution over Y assigns probability 1 to the perceived instantiation Γ(Y ) of variable

Y and probability 0 to all the other instantiations of variable Y (condition 1); if Y
is either an intended random variable in IV ar or an intention support in SUPPV ar, Y
is not a perceived variable in ΓV ar, but Y ’s parents in the Bayesian network are per-

ceived variables in ΓV ar, then the updated probability distribution over Y assigns to

each instantiations Y=y of variable Y a probability which is equal to the conditional

probability that Y=y is true given that the perceived instantiations of the parents of Y
are true (i.e. P (Y=y | {Xi=x | Xi ∈ par(Y ) and Xi=x ∈ Γ})) (condition 2). In all

other cases the probability distribution over Y is not updated.

Space restrictions prevent a formal description of the belief update function bu of

the standard BDI agent. Let us only say that function bu (differently from the function

bu∗ of the BDIrelagent) updates indiscriminately all beliefs of the agent, that is, at each

round the standard BDI agent reconsiders the probability distributions over all random

variables Y ∈ VAR.4

5 Programming Model

This section introduces the programming model implementing the mechanism of relevance-

based belief update described above. The experiment platform has been built on top of

CARTAGO, a framework for developing MAS environments based on the abstraction

of agents and artifacts [13]. Agents architectures have been implemented using Jason,

a programming platform for BDI agents based on AgentSpeak(L) [1].

Environment The rationale behind the adoption of the Agents and Artifacts (A&A)

meta-model for the design of the experimental platform resides in the particular inter-

action model provided by CARTAGO, where all the mechanisms related to agent’s

perception and action, are regulated by the framework at a system level. Agents –

independently from their internal model and technology– can play in CARTAGO en-

vironments by interacting with artifacts through operation of use which consists in ex-

ploiting the artifact’s usage interface. Besides, agent’s perceptive activities are defined

through the notions of observation which consists in retrieving the information that ar-

tifacts display, and perception, enabling agents to sense signals and events coming from

artifacts. In this perspective artifacts can be conceived as a target for agents’ overall ac-

tivity and thus exploited to provide information to agents in a machine-readable format.

Once an artifact observable property or a signal is perceived by an agent, it may become

a perceived datum (i.e. a percept). Following the basic idea provided in this work, only

if such a percept is relevant, it can used to update agent’s belief base. To implement

the scenario described in section 3, the environment has been instrumented with three

different artifacts.

– Timer provides agents with timing information and enables the automatic mecha-

nisms regulating the dynamism of the environment. Accordingly, it makes available

4 Function bu has the same conditions of function bu∗ specified above. The only difference is

that in bu the requirement ‘Y ∈ IV ar or Y ∈ SUPPV ar’ is not specified.
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two properties which are related to its internal state: ticktime (indicating the actual

value of simulated time) and season (indicating the value of the ongoing season).

– GridBoard provides pragmatic operations to be used as actions by agents (i.e.Move,
Eat) and feedback information about the effects of these actions in the environ-

ment. In addition, based on the temporal signals generated by the Timer and on the

actions performed by the agents, it provides the logic governing the topology and

the physical consistency of the overall environment.

– GridboardGUI based on the internal states of the previously described artifacts, it

provides the graphical user interface for the system.

Agents The overall goal for agents is to find and to eat fruit items. At any time step

(i.e., round) the score associated to a fruit depends on the ongoing season: a fruit of a

given color (e.g. blue) provides a reward of +1 only if the ongoing season has the same

color (e.g. the blue season). It is supposed that a tree changes its position at regular time

intervals due to the ongoing dynamism δ, hence agents need to govern their behavior

only with respect to the actual situation. In particular, an agent should maintain an up-

dated knowledge of the overall environment in order to avoid wasting resources when

looking for areas which are not profitable. In these conditions, an effective strategy is

to look for fruits by using trees as reference points. Once a tree which is related to the

ongoing season is encountered, the agent can perform epistemic actions aimed at up-

dating his beliefs about the presence of fruits in the macro-area in which the agent is

located. At an implementation level, a Bayesian belief base to include the special belief

set governing goal deliberation and intention selection has been realized. In particu-

lar, the jason.architecture.AgArch and jason.asSemantics.Agent, which are the kernel

units used by the Jason reasoning-engine to percept and update beliefs, have been ex-

tended introducing specialized data-types and methods allowing the dynamic query on

the probability distribution of domain entities. Thus, an agent uses a working memory

realized with a series of dynamic hash-maps. Each hash-map is related to a given sea-

son type and can be accessed by indicating the coordinates of a given cell. Once a tree

is perceived, the agent can control if any belief relating to that location is present and

possibly update it. When an agent updates his belief about the position of a certain tree,

he will also update the belief about the position of the fruit of the same color.

The adopted artifact-based environment promotes a principled design for agent per-

ceptive activities. Through the integration of an additional set of internal actions en-

abling A&A interactions, agents are capable to perceive –and possibly filter– the signals

coming from the scrutinized artifacts. Besides, events coming from artifacts can signal

to the agent situations which require special attention. These signals are automatically

sent back to the agent control system in order to be filtered and processed. Indeed, once

some particular signal is encountered, agents can exploit it for updating their beliefs,

or for reconsidering their intentions. Therefore, after becoming aware of some relevant

facts, agents can elicit belief update or an adaptive re-allocation of their computational

resources. Artifacts provide, in this case, two kinds of signals: signals for temporal syn-

chronization (agents rule their actions based on a clock signals perceived from the Timer)

and signals belonging to the set ΓV ar, which in turn contains the percepts correspond-

ing to visible entities. As shown in the following Jason cutout, once a clock signal is
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received from the focused Timer, an internal action gridworld.perceptRel interacts with

the GridBoard to retrieve the list of percepts indicating all the visible entities.

+tick_time(X)[source("percept"), artifact("timer"), workspace("Relevance")]

: actual_season(S)

<- -+time(X);

gridworld.perceptRel(S);

!deliberateTarget.

The gridworld.perceptRel perceptive action has two different implementations respec-

tively for the BDI agent and for the BDIrelagent. gridworld.perceptRel is supposed to

realize the belief update functions bu and bu∗. Percepts are inserted in the agent working

memory and then filtered by the belief update function. In the case of the BDIrelagent,

once these percepts are related to the current intention (i.e. actual season) they are stored

in the agent memory as permanent belief facts. In particular, the bu∗ is supposed to re-

trieve from the GridBoard the list of visible entities (these elements become percepts).

Moreover, for each retrieved fact, bu∗ deletes the beliefs actually referring to entities

which are not already present in the actual range of sight (trees and fruits can disap-

pear due to the environment dynamism) and adds a new fact to the belief base only if

the scrutinized percept in Γ matches the current intention. Notice that in the case of

the described scenario (where the agent’s intentions depend on the current season) the

threshold ∆ is set to 0. For discriminating relevant and not relevant percepts a simple

pattern matching is used. Hence, the function of local relevance r(Y=y,Γ,B) is greater

than zero when the current season matches the entity type, otherwise r = 0.
After the execution of the perceptRel, the BDI agent has a complete knowledge of

the actual state of its surroundings (i.e. the belief base is supposed to be consistent

with the actual state of the visible area). On the other side, BDIrelonly considers those

information which are relevant with respect to the current situation. Then, to achieve

their goals, both agents can adopt the following plans to decide the next course of action.

+!deliberateTarget

: actual_season(S) & food(S,X,Y)

<- -+targetLoc(X,Y);

!doAction.

+!deliberateTarget

: actual_season(S) & not food(S,_,_)

& tree(S,X,Y)

<- -+targetLoc(X,Y);

!doAction.

+!deliberateTarget <- !doAction.

It is worth nothing that, according to the Jason transition system, the desire-generating

rules described in Tab. 2 are here expressed by means of context-conditions, i.e. in form

of belief formulae. The belief targetLoc(X,Y) can refer to a given fruit location only if

the agent has already located a fruit and has stored a related fact in his belief base. If

in the belief base there are no facts concerning fruits or trees related to the ongoing

season, the agent will perform an epistemic action by exploring the grid in order to

discover some new relevant fact. Besides, once beliefs are canceled from the belief

base by the internal belief update activities –ruled respectively by bu for the standard

BDI agent and bu∗ for the BDIrelagent– the agent reconsiders his intentions and selects

a new target to be reached.

-food(T,X,Y) : targetLoc(X,Y)

<- !deliberateTarget.

-tree(T,X,Y) : targetLoc(X,Y)

<- !deliberateTarget.

In so doing, the BDI agent and the BDIrelagent update their belief base in two circum-

stances: (i) when the actual belief base is wrong (not consistent with the perceived state
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δ = 3 δ = 2 δ = 1

BDI BDIrel BDI BDIrel BDI BDIrel

Goal.eff 42.375 42.375 38.185 37.625 33.937 33.875

Cost.eff 92.125 78.437 101.437 85.312 143.125 107.875

cost.ratio 2.381 2.012 2.882 2.252 4.379 3.214

Table 3. Amount of achieved goals and performed belief updates measured at the end of the

experiment series for BDI and BDIrelagents in environment with dynamism δ ∈ {1, 2, 3}.

of the environment), and (ii) when the actual belief base is incomplete (due to a lack

of knowledge). Finally, by using the operations allowed by the GridBoard interface, and

taking into account the planning rules discussed in section 3, a !doAction realizes the

basic pragmatic actions (i.e., eat a fruit or move towards targetLoc(X,Y)).

6 Experiment

This section discusses a series of experiments comparing the performances for BDI vs.

BDIrel agents.

Experiment setting In our experimental setting we suppose for simplicity that agents

have always access to their current position in the grid, and that they are always notified

of season changes. Therefore, at the beginning of a new season, an agent knows that it

is time to look for fruits of a different color, and he adopts the goal to look for fruits of

a different color.

Agents’ performances have been evaluated according to metrics measuring two ba-

sic kinds of effectiveness. Goal effectiveness (Goal.eff ) represents the total amount of

achieved goals during a trial (i.e., eaten fruits), while cost effectiveness (Cost.eff ) is

the total amount of update operations performed by the agent on his belief base. Then

we define the cost.ratio of an agent in terms of the agent’s belief update cost divided

by the total amount of achieved goals (Cost.eff/Goal.eff ). This gives a quantitative

measure of how many units of cost the agent needs to spend for each achieved goal. In

other terms, a cost.ratio = 1 means that the agents performs a belief update operation

for every achieved goal. Besides, since only oneMove action is allowed for each time

step, the adopted metrics provide insights on how many pragmatic actions are needed

for agents to achieve their goals.

The length of experiments has been set to 900 rounds in order to be long enough for

the metrics to become stable. So far, the global performance of each agent is measured

by averaging cost.ratio of 16 trials in environments with different dynamism δ. Season

length st is set at 15 rounds, while we consider n=3 seasons (respectively red, blue and

green) with three associated types of tree and fruit. The initial placements of entities are

randomly selected, while a fruit of a given color is generated at the beginning of each

corresponding season. Finally, we assume that no more than one fruit for any given

color is present in the grid at the same time.

Discussion Fig. 1 (b) shows a snapshot of the running simulation. Experiments have

been conducted using three different variables of dynamism δ for the environment. The

first two columns in Tab.3 shows the cost.ratio respectively for the BDI agent and the

BDIrelagent operating in a static environment (δ = 3, a tree changes its location every

3 seasons, 45 rounds). Both agents attain an average of 43.375 eaten fruits on their
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Fig. 2. Cost ratio in environments characterized by different dynamism: δ=1 (a) and δ=2 (b).

trials. However they have to pay quite different costs of belief update (BDI performs an

average of 92.125 update operations, while BDIrel78.437). Considering the cost.ratio,

once agents have overcome their transitory phase they spend respectively 2.381 (BDI)

and 2.012 (BDIrel) costs for each eaten fruit.

The central columns show the performances of the two agents in environments with

medium dynamism (δ = 2, a tree changes its location every 2 seasons, 30 rounds).

Here, due to the frequent tree changes, both agents rely on a less accurate knowledge

model. In terms of eaten fruits the BDI agent attains a higher performances (38.185),

clearly outperforming the BDIrelagent (37.125). On the other hand, as far as costs

of belief update are concerned, BDIrelperforms better: in fact, under the same con-

ditions, BDIreldoes less belief update operations (85.312 vs. 101.437). As a conse-

quence, BDIrelconsiderably shows a better effectiveness with respect to the cost.ratio

(see Fig.2.b) whose value converges, at the end of the experiments, at an average of

2.252 belief update operations per achieved goal (vs. 2.882 for the BDI agent).

The last two columns shows the results in a highly dynamic environment (δ = 1, a tree

changes its location every season change, 15 rounds). Here, due to the massive epis-

temic activities, the standard BDI agent is able to maintain a more consistent and com-

plete knowledge of the environment. Therefore, he performs better than the BDIrelagent

in terms of achieved goals (with an average of 33.937 number of eaten fruits against

33.875). On the contrary, BDI agent has to pay higher costs related to his epistemic ac-

tivities, even beyond the initial transitory phase. In this case, the costs of belief update

are 143.125 for the BDI agent and 107.875 for the BDIrelagent. As depicted in Fig.2.a,

the cost.ratio reflects this difference by converging to a value of about 4.379 for the

BDI and of 3.214 for the BDIrel.

The experiments show a noticeable effect of the relevance-based filter of belief up-

date on the BDIrelperformance. By reflecting agent effectiveness both in terms of goal

achieved and in terms of costs for belief update, cost.ratio is, indeed, a good indica-

tor for analyzing the trade-off in agents performances (see Fig.2). On the one side the

BDI agent is always the best in terms of goal effectiveness. BDI agents are passively

affected by all incoming information, hence they obtain a precise knowledge of their

surroundings. Consequently, the more an agent spends his resources for belief change,

the more his beliefs will be correct and adequate with regard to the current state, and

the more the agent will find fruits in the grid. On the other side, BDIrelagents adopt

an active perception style and exploits their relevance-based filter: if the incoming in-
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put is not relevant, then the BDIrelagent simply ignores it. This allows the BDIrelagent

to avoid wasting computational resources for doing belief update, thus resulting in a

better global performance in terms of cost.ratio. Moreover, the results also show that

the higher is the dynamism of the environment, the higher are the computational costs

paid for belief update. In these conditions, BDIrelagents have a concrete advantage in

filtering noise and in considering only what is expected to be useful for achieving their

current goals.

7 Conclusion and Related Works

We have presented in this work a mechanism of relevance-based belief update and im-

plemented it in a BDI agent. Despite the simple scenario adopted, we think that our

model can be applied straightforwardly to more complex scenarios and that our experi-

mental results can be easily generalized. As the experimental results show, the costs for

belief update are effectively reduced by using the mechanism for filtering relevant data.

It is worth noting that the notion of relevance is not new in the literature, as it

has been extensively investigated in several domains like AI, philosophy and cognitive

sciences. Most authors have been interested in a kind of causal (or informational) rel-

evance based on various forms of conditional in/dependence. According to [9, 14], for

instance, the concept of relevance coincides with the probabilistic concept of condi-

tional dependence, in particular irrelevance is identified with conditional independence,

and relevance is identified with the negation of irrelevance. There are some computa-

tional systems in the literature, inspired by Information Theory [15], which conceive

relevance as a quantitative notion of informativeness. Low-level mechanisms have been

proposed to model adaptive perception (see [18] for instance) and to relate relevance

to action selection through classifier systems [17]. Moreover, few programming mod-

els exist explaining the relationship between perceptive processes and agent reasoning.

Among others, Pereira & Tettamanzi recently proposed a formal model of goal gen-

eration where both relevance and trustworthiness of information sources are involved

in rational goal selection [5], while few works face with agent models for appraising

incoming input on the basis of cognitive relevance [12, 8]

Differently from the previous works, which are mostly interested in a notion of in-

formational relevance, we have investigated in this work a practical notion of relevance.

Our notion of relevance is indeed closer to the concept of relevance discussed in the

psychological literature on motivation and emotion [10], where relevance is related to

the subjective appraisal of a certain event, situation, object with respect to an agent’s

goals and intentions. We can refer to it as pragmatic relevance (or goal relevance) in

order to distinguish it from causal (or informational) relevance (see also [6] for a discus-

sion on the distinction between causal relevance and pragmatic relevance). Pragmatic

relevance should be conceived in terms of perceived utility or beneficiality of an in-

formation with respect to an agent’s intentions and goals. We think that this notion of

pragmatic relevance is a crucial concept for the design of agent-based technologies that

have to perform in highly dynamic and information-rich environments (e.g., the Web).

Directions for future works are manifold. We are actually working on a general-

ization of our model of pragmatic relevance which consists in adding a quantitative
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dimension for intentions (i.e. the utility/importance of the intended outcome). In this

generalized model, the degree of relevance of a certain input with respect to an agent’s

intention will also depend on the utility/importance of the intended outcome. Besides,

we will consider in the future the relationships between our concept of relevance and

intention reconsideration. Since the persistence of an intention over time depends on

the persistence of those beliefs which support this intention (i.e. beliefs are reasons for

intending), we will study how the relevance-based filter of belief update discussed in

this paper may affect the persistence of intentions in an indirect way. Finally, we in-

tend to develop in the future a more advanced model extending an agent’s capability

to manage his belief base (i.e., salience maps, dynamic Bayesian networks, influence

diagrams, etc.).
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1. R. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Systems in AgentS-

peak Using Jason. John Wiley & Sons, Ltd, 2007.
2. M. Bratman. Intentions, plans, and practical reason. Harvard University Press, 1987.
3. R. Casati and E. Pasquinelli. How can you be surprised? the case for volatile expectations.

Phenomenology and the Cognitive Sciences, 6(1-2):171–183, 2006.
4. C. Cherniak. Minimal rationality. MIT Press, Cambridge, 1986.
5. C. da Costa Pereira and A. G. B. Tettamanzi. Goal generation with relevant and trusted be-

liefs. In Proc. of the Seventh International Conference on Autonomous agents and Multiagent

Systems (AAMAS’08), pages 397–404. ACM Press, 2008.
6. L. Floridi. Understanding epistemic relevance. Erkenntnis, 69:69–92, 2008.
7. L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded agents. In P. Maes,

editor, Designing autonomous agents, pages 35–48. MIT Press, Cambridge, 1990.
8. A. Koster, F. Koch, L. Sonenberg, and F. Dignum. Augmenting BDI with Relevance: Sup-

porting Agent-based, Pervasive Applications. In Mobile Interaction Devices (PERMID 2008)

Workshop at Pervasive 2008, Sydney., 2008.
9. G. Lakemeyer. Relevance from an epistemic perspective. Artificial Intelligence, 97(1-

2):137–167, 2004.
10. R. S. Lazarus. Emotion and adaptation. Oxford University Press, New York, 1991.
11. E. Lorini and C. Castelfranchi. The unexpected aspects of surprise. International Journal of

Pattern Recognition and Artificial Intelligence, 20(6):817–833, 2006.
12. E. Lorini and M. Piunti. The Benefits of Surprise in Dynamic Environments: From The-

ory to Practice. In Affective Computing Intelligent Interactions (ACII-07), LNCS Vol. 4738.

Springer., 2007.
13. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-agent sys-

tems. Autonomous Agents and Multi-Agent Systems, 17 (3), 2008.
14. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-

gan Kaufman, Cambridge, 1988.
15. C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal,

27:623–656, 1948.
16. H. Simon. Models of thought, volume 1. Yale University Press, 1979.
17. G. Weiß. Learning the goal relevance of actions in classifier systems. In Proc. of the Tenth

European Conference on Artificial intelligence (ECAI’92), pages 430–434, 1992.
18. D. Weyns, E. Steegmans, and T. Holvoet. Model for active perception in situated multi-agent

systems. Special Issue of Journal on Applied Artificial Intelligence, 18:200–4, 2003.
19. M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, Chichester,

2002.

193



Modularity and compositionality in Jason

Neil Madden and Brian Logan

School of Computer Science

University of Nottingham, UK.

{nem,bsl}@cs.nott.ac.uk

Abstract. In this paper, we present our experiences using the Jason agent-oriented

programming language to develop a complex multi-agent application. We high-

light a number of shortcomings in the current design of the language when build-

ing complex agents, and propose revisions to the language to allow the develop-

ment of modular programs that facilitate code reuse and independent develop-

ment. In particular, we propose a mechanism for modular construction of agents

from functionally encapsulated components, and discuss alterations to the belief

base language to enable more robust software engineering.

1 Introduction

Agent-oriented programming languages, such as Jason [1] and 2APL [2], have been

the subject of a great deal of research and development in recent years. Building on

the foundations of logic programming and theories of agency—in particular, the BDI

(belief-desire-intention) model—they aim to raise the level of abstraction used in con-

structing complex modern software applications. However, while they have been suc-

cessfully applied in a number of interesting problem domains, the literature contains

relatively few reports of attempts to apply such languages to large-scale software devel-

opment efforts.

In this paper we present our experiences of applying the agent-oriented program-

ming language Jason to the development of a large-scale multi-agent system consist-

ing of (relatively) complex witness narrator agents which report on events occurring

in online persistent game environments [3]. Witness-narrator agents are embodied in

a virtual environment and observe and narrate activities occuring within that environ-

ment. The deployed system consisted of a team of 100 agents which reported on events

in a medium-scale persistent virtual environment over a period of several weeks. The

agents had to handle a number of complex tasks during this period, including activity

recognition, multi-agent coordination, generation of prose stories describing activities,

and interaction with human participants. The system makes use of a range of technolo-

gies, including ontological reasoning, plan and activity recognition, and multi-agent

coordination and teamwork. The architecture of the agents is organised as a collection

of functionally encapsulated ‘capability’ modules to handle distinct tasks, such as low-

level activity recognition, editing of reports from multiple agents, and generation of

prose text for a particular output medium.

Our experiences with Jason indicate that it is a useful and flexible language which

provides a clean, high-level approach to defining complex agent logic. However, we
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also found the language to be lacking in some respects, particularly in relation to the

development of more complex agents. In this paper we describe the problems that we

encountered, and propose revisions to the language to allow the development of modu-

lar programs that facilitate code reuse and independent development. In particular, we

propose a mechanism for modular construction of agents from functionally encapsu-

lated components, and discuss alterations to the both the belief base language and plan

execution to enable more robust software engineering.

The remainder of the paper is organised as follows. In section 2 we first give a brief

introduction to the Jason programming language. We then discuss two related areas

where we experienced some problems with the current design of Jason, describing the

problems, possible solutions, and a concrete proposal for improvement. In section 4 we

look at the choice of Prolog for the default belief base language in Jason, discuss some

problems that this presents for modular agent construction, and describe an alternative

based on Datalog. In section 5 we then look at the requirements for general modu-

lar construction of agents, and propose a simple module system that addresses these

requirements. Lastly, we conclude with a look at related work (section 6) and some

general conclusions in section 7.

2 Jason

Jason [1] is a Java-based interpreter for an extended version of AgentSpeak(L). AgentS-

peak(L) is a high-level agent-oriented programming language [4] which incorporates

ideas from the BDI (belief-desire-intention) model of agency. The language is loosely

based on the logic programming paradigm, exemplified by Prolog, but with an opera-

tional semantics based on plan execution in response to events and beliefs rather than

SLD as in Prolog. Jason extends this base language with support for more complex

beliefs, default and strong negation, and arbitrary internal actions implemented in Java.

The belief base of AgentSpeak(L) consists simply of a set of ground literals, whereas

Jason supports a sizeable subset of Prolog for the belief base, including universally-

quantified rules (Horn clauses).

Agents in Jason, as in other agent-oriented environments, are autonomous encapsu-

lated processes that communicate with each other by sending messages (speech acts).

Figure 1 shows a simple example Jason agent program which implements a bank ac-

count agent. The current balance of the account is stored as a ground fact in the belief

base, along with a single Prolog-style rule for checking whether the account has suf-

ficient funds for a withdrawal. Deposit and withdrawal functionality is implemented

using three plans which inform the account holder whether a given withdrawal was

possible and update the account balance accordingly. The syntax of Jason plans essen-

tially consists of a single triggering event (such as a goal or belief addition or deletion,

or a percept), a belief context pattern, and then a sequence of actions to perform if the

plan is selected.1 During execution, Jason first processes any events and updates the be-

lief base. The interpreter then selects a single event to process and matches it against the

plan library to select one or more plans to handle the event. Of these plans, a single plan

1 In the interests of brevity, we have slightly simplified the presentation of Jason syntax and

semantics.
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/* Initial balance */

balance(0).

/* Check if withdrawal is permitted */

sufficient_funds(Amount,NewBalance) :-

balance(Balance) &

Balance >= Amount &

NewBalance = Balance - Amount.

@deposit[atomic]

+!deposit(Amount)[source(AccountHolder)] :

balance(Balance)

<-

.print("Deposit ",Amount," from ",AccountHolder);

-+balance(Balance + Amount).

@withdraw_overdrawn[atomic]

+!withdraw(Amount)[source(AccountHolder)] :

not sufficient_funds(Amount,_)

<-

.print("Attempt to go overdrawn from ",AccountHolder);

.send(AccountHolder,tell,overdrawn).

@withdraw_ok[atomic]

+!withdraw(Amount)[source(AccountHolder)] :

sufficient_funds(Amount,NewBalance)

<-

.print("Withdraw ",Amount," by ",AccountHolder);

-+balance(NewBalance);

.send(AccountHolder,tell,withdrawn(NewBalance)).

Fig. 1. Example Jason program implementing a simple bank account.

is then selected to become an intention. Finally, one of the currently active intentions is

selected and allowed to perform an action, before the cycle repeats. The complete cycle

is shown in Fig. 2, adapted from [1], Chap. 4. Marking a plan as atomic (as in Fig. 1)

ensures that all of its actions are run to completion before another intention is selected.

The process of constructing software using Jason proceeds at two levels. At a high-

level, the problem domain is broken down in terms of a society of autonomous and

cooperating (or competing) agents. In the BDI paradigm, programming in the large

thus involves decomposition of the system into entities (agents) to which belief and

other propositional attitudes can most naturally be ascribed. At a lower level, individual

agents are authored in terms of their beliefs and goals, and plans which specify how

to achieve the agent’s goals and how to react to events. The primary mechanism for
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1. Perceive the environment;

2. Update the belief base;

3. Receive communication from other agents;

4. Select socially acceptable messages;

5. Select an event;

6. Retrieve relevant plans;

7. Determine applicable plans;

8. Select one applicable plan;

9. Select an intention for execution;

10. Execute an action.

Fig. 2. Jason interpreter cycle.

structuring a Jason program in the small is therefore the plan.2 Issues arise when a

natural decomposition of the system into (intentional) agents results in entities with

large numbers of plans. In such cases, a modular approach to agent development is

often desirable.

3 Problems of Large-Scale Agent Programming

An agent-oriented approach to constructing large software has several advantages, such

as encouraging separation of concerns, so-called loose coupling between components,

and extending relatively naturally to a distributed environment in which messages are

sent over a network to other remote agents. Jason provides good support for construct-

ing multi-agent systems at this level, providing natural and easy to use speech-act based

communications, and abstracting away from many of the details of the underlying in-

frastructure. At the level of constructing an individual agent, the BDI model of Jason

and the sophisticated plan and belief base facilities it provides allow the developer to ex-

press complex logic in a concise and clear fashion. However, our experience with using

Jason to develop a large and complex application indicates that there is a gap between

these two levels that becomes more apparent as individual agents grow in complexity.

In particular, Jason lacks any mechanism for decomposing an individual agent into con-

stituent components or modules. Figure 3 shows the overall architecture of one of the

agents in the system we developed, known as a witness-narrator agent. The agents we

developed have a quite complex internal structure, consisting of a number of different

competences (‘capabilities’) that are conceptually independent of one another to a large

degree and communicate only through clearly defined interfaces. Each capability mod-

ule consists of a set of Jason plans, along with some beliefs and rules, that are used

to implement that particular competence. For instance, the reporting module contains

plans for detecting and recording activity occurring within an environment, while the

presenting module has plans and rules for formatting a report for a particular output

medium (HTML, Atom). A separate coordination module handles communication and

2 Although traditional Prolog-style rules in the belief base can also form a significant part of the

codebase.
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Focus Goals/Reports

PresentingMovement Participants

Embodied

Fig. 3. Architecture of witness-narrator agent.

interaction with other agents, such as team formation. The current implementation of

witness-narrator agents in Jason implements such modules simply as a set of files which

are included one at a time into a main agent program. There are a number of drawbacks

with this approach:

– there is the possibility of name clashes between belief and goal relations defined in

separate modules;

– it may be desirable for plans in different modules to react to the same triggering

event;

– the order in which modules are included can have surprising effects on the execu-

tion of the agent.

The first problem is one of namespace management, and can be addressed to a certain

degree by adopting coding guidelines to ensure that beliefs and goals in separate mod-

ules have different names, for instance using a simple unique prefix for each module.

However, this issue becomes more important when we consider third-party modules

that are developed independently by different organisations. While guidelines can be

adopted to try to ensure that unique prefixes are chosen (such as incorporating the insti-

tution name into the prefix), such approaches can be cumbersome to use. The possibil-

ity that agents may dynamically locate and acquire new modules at runtime (e.g., OWL

ontologies) also suggests that good namespace management should be built in to the

language itself. This could be achieved in a straightforward way by using a mechanism
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similar to that adopted for XML [5], in which components of an agent are associated

with an unique Uniform Resource Identifier (URI), and in which short string prefixes

can be assigned to these URIs within a source file. Such a scheme presents a good

combination of flexibility, safety, and ease of use.

The second and third drawbacks present more serious problems. The semantics of

plan execution in Jason require a single plan to be selected to respond to any particular

triggering event. This prevents multiple modules from responding to the same event in

different ways, and introduces a form of implicit coupling between modules that must

be explicitly resolved by the agent developer. For instance, in the development of the

witness-narrator agents, certain events were of interest to both the reporting and gen-

eral movement modules. If an agent is attacked, for example, this is both a cause for the

movement module to take action (to evade the attack), but also presents a potentially

interesting event that the reporting module may want to record. In the current imple-

mentation, this is achieved by having one module handle the event, and then to generate

a secondary event purely for the other module to be notified. This requires both explicit

cooperation between the modules (and corresponding effort from the developer), and

also introduces extra code whose purpose can be obscure to a reader of the program.

The third problem stems partly from the second, in that if two modules attempt to

react to the same triggering event (and the developer hasn’t noticed this), then which

plan gets to run depends on the plan selection function, which by default is based on

the order in which plans are defined. This can lead to some surprising and difficult to

understand behaviour as one plan appears not to be triggering correctly, and the actual

cause of this is another plan in an entirely unrelated module. The problem also occurs

if one module included earlier in the sequence includes a plan that effectively matches

many or all triggering events, for instance if an unbound variable is used for the trigger.

This then takes precedence over any subsequent plans introduced by later modules.

These problems can be seen as stemming from the overall problem of how to con-

struct an agent by composing independent functional components. Ideally, an agent

could be constructed by glueing together such independent reuseable modules. The

most important property that such a module system should address is that the behaviour

of an agent composed of separate modules should not depend on the order in which

those modules are composed. In other words, we would like composition of modules

to be both associative and commutative, so that the order and combination of mod-

ules does not effect the resulting behaviour. This property is particular important in an

event-driven architecture such as Jason, where plan execution in response to events can

sometimes be difficult to predict. Minimising effects caused by code refactoring helps

to reduce the opportunities for confusion when constructing sophisticated software.

The requirements for associative and commutative composition of modules have

implications for several areas in the design of Jason. Firstly, we must ensure that the

composition of beliefs from all included modules has the same meaning, and produces

the same runtime inference behaviour, no matter in what order those beliefs are added

to the belief base of the agent. This has an impact on the choice of belief representation

language and reasoning strategy employed in the belief base. Similar considerations

must be taken into account for goals. Secondly, in order to minimise conflicts between

modules, it is important to support encapsulation of beliefs, goals and plans that are
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internal implementation details of a module, while exposing those that form part of the

interface. This includes preventing simple name clashes, but also more important issues

of belief and goal scope and visibility.

4 Belief Base Compositionality

One of the enhancements of Jason over AgentSpeak(L) is the support for a substantial

subset of Prolog in the belief base language, including backward-chaining rules. This

considerably increases the power of the language, and allows for succinct descriptions

of some problems, while also allowing the Jason developer to take advantage of the

large number of resources available for existing Prolog developers. However, despite

these advantages, it is not clear whether Prolog is in fact the most appropriate choice

for a belief language.

– As already noted, the order in which clauses are added to the belief base has an

explicit effect on execution in Prolog (and hence Jason), with clauses defined ear-

lier in a program having precedence over later clauses. In some cases, reversing the

order of two clauses can lead to incorrect behaviour or even nontermination of a

previously correct definition. This clearly violates the requirements for composi-

tionality of beliefs.

– The backtracking execution strategy of Prolog may not be the most efficient way

of handling large numbers of beliefs, particular when these may be stored in a

relational database system, or other persistent store. For example, the agents used

in our software used a MySQL database for persistent beliefs (archives of generated

reports and previous activity), and over the several weeks the system was running,

acquired many thousands of ground facts.

– Prolog is a computationally complete language, capable of expressing nonterminat-

ing algorithms. This is an undesireable property for a belief language, the purpose

of which is largely to perform limited inferences to determine if a plan is currently

applicable. The possibility that such a belief context check may in fact not terminate

has consequences for the rest of the plan execution semantics, and indeed could en-

tirely halt the agent or even the entire MAS depending on the implementation and

infrastructure in use.

The sentivity to belief addition order is particularly important for agents in dynamic

environments, where the agents are continually acquiring (and possibly revising) their

beliefs over time. This is also a concern with regard to the modularity issues discussed

in the previous section: if two modules add facts or rules to the same belief relation,

we would like the order in which they are added to not affect the resulting behaviour.

For example, the witness-narrator agents combined default rules for classifying ob-

servations together with dynamically acquired knowledge regarding individuals. For

instance, an agent may have a default rule for determining whether an animal can fly,

perhaps by reasoning about its anatomy or species, but then can also record instances

where it has directly observed individuals flying. The default rule is likely to be defined

when the agent is created, whereas the specific instances are added to the belief base

as they are observed. In Jason this results in the observations being ordered after the
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default rule, and due to the execution strategy of Prolog, this will lead to the inefficient

and surprising behaviour that the agent will spend time trying to infer if a particular

individual is capable of flight when it already has an explicit fact recording this infor-

mation in its belief base. Another area where the use of Prolog caused some difficulties

was in the translation of ontological rules from an OWL ontology into equivalent belief

base rules. While a number of such translations have been described in the literature for

Prolog-like rule languages (in particular, Datalog), the details of the translation for Pro-

log itself are complicated by the sensitivity to ordering of rules, and naı̈ve translations

can easily result in rules that do not terminate on certain inputs.

In the implementation of the witness-narrator agents, we worked around these prob-

lems by providing a custom belief base implementation which implemented slightly

different semantics to that of Prolog, by always preferring ground facts to rules, regard-

less of the order in which they were added to the belief base. This was sufficient to

ensure correct operation of the software in a wide range of cases, but the possibility for

encountering a non-terminating query could not be entirely ruled out.

4.1 Datalog as a Belief Base Language

A better solution to the problem would be to replace Prolog with a more suitable knowl-

edge representation language. A number of languages seem applicable, including re-

stricted versions of Prolog designed for interfacing with relational databases, such as

Datalog, or a description logic based language [6], such as OWL. Current description

logic languages, however, are unable to express many interesting rules that are (easily)

expressible in Datalog. In addition, restricting the belief base language to unary and bi-

nary predicates (concepts and roles, respectively) makes some problems rather clumsy

to express, and can lead to difficulties keeping track of all the information associated

with an individual, e.g., when performing belief revision.

Datalog offers many of the advantages of Prolog (the entire belief base used in our

witness-narrator agent framework could have been expressed in Datalog with very few

changes) while affording more efficient implementation. In particular, the properties of

Datalog that make it suitable as a belief language include:

– the order of clauses in a Datalog program does not effect the semantics of query

answering;

– the limitations on the language allow all queries to be answerable in polynomial

time;3

– more efficient query answering, particularly for larger sets of beliefs.

As Datalog was designed to be a database query language, it should also provide better

support for large belief bases, such as those backed by a persistent relational database

management system. The non-recursive subset of Datalog has a natural translation into

the relational algebra, allowing for efficient and direct compilation of Datalog belief

rules into equivalent SQL queries or views. As a further benefit, there also exist transla-

tions from various description logics into Datalog. The use of Datalog as a belief base

language would therefore go some way towards supporting efficient ontological reason-

ing in Jason, in particular supporting efficient ABox queries over large ontologies.

3 Although this isn’t true for various extensions to support negation or disjunctive heads in rules.
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5 Encapsulating Beliefs, Goals and Plans

The problems described in section 3 indicate that some mechanism for modular decom-

position of individual agents is needed in Jason. Such a mechanism could take a number

of forms, ranging from a relatively simple module or namespace mechanism, up to a

complex object-oriented solution, complete with component instantiation, inheritance,

and encapsulation. It could be argued that the agent abstraction could also be used at

this level: an individual agent in a society being itself composed of a society of simpler

agents. Such an approach is intuitively appealing, but it is not clear whether the advan-

tages of agent-oriented programming in the large also hold for development of agents

themselves. In addition, the capabilities within our system do not naturally fit with the

usual notion of an ‘agent’, and it seems unnatural to try and shoe-horn the architecture

into layered societies of agents. In this section we examine the requirements and de-

sireable features of a modular approach to building agents, and tie these to the specific

agent-oriented programming language, Jason.

For Jason, the requirements for a module system are relatively modest, as the agent

level already provides many of the more sophisticated features, such as dynamic instan-

tiation of agents and communication interfaces. From our experience, the main require-

ments for a module system in Jason would be as follows:

1. to simplify the reuse of software components by allowing functional units of code,

including beliefs, goals, and plans, to be encapsulated into independent modules;

2. to provide a mechanism for avoiding name clashes between goals and beliefs from

separate modules;

3. to allow each module to respond independently to events;

4. to provide a mechanism for controlling which beliefs and events are visible to other

modules, and which are private to a particular module;

5. to ensure, as far as possible, that the order in which modules are included in an

agent has no effect on the resulting behaviour of the agent.

These requirements are sufficient to address the immediate problems that were expe-

rienced during construction of the witness-narrator agent system. We do not consider

more advanced functionality, such as parameterisation of modules, instantiation of mul-

tiple instances of a particular component, or customisation of plan selection or intention

execution functions.

5.1 A Module System for Jason

Based on the requirements outlined above, we sketch a proposal for a module system

for Jason. A Jason module consists of the following elements:

1. a local belief base, containing any beliefs that are private to the module;

2. a local goal base;

3. a plan library, implementing the functionality of the module;

4. a local event queue, for belief and goal update events that are local to the module;

5. a list of exported belief and goal predicates;

6. a list of imported modules;
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7. a unique identifier (URI) that acts as a prefix for all belief and goal symbols in the

module, based on XML namespaces;

8. a mapping from simple string prefixes to imported module URIs.

A module is therefore a subset of the functionality of an agent, encapsulated into a

functional unit, along with an URI for identification. An agent is then defined as a

composition of modules, together with an interpreter based on the original Jason BDI

interpreter. Composition of modules within an agent is a flat one-level hierarchy, with

the agent as the root. Nested sub-modules are not permitted in this scheme. This ap-

proach greatly simplifies the treatment of beliefs and events, while still addressing all

of the requirements that we have described. This implies that there is only a single copy

of each module within each agent, and references to that module are shared between all

other modules that import it.

We adopt the XML approach to namespaces, where each module is considered as

a separate namespace, identified by a URI. To ease the use of such a system, we also

adopt the XML mechanism of allowing each module to declare a set of simple string

prefixes that expand into the full URI reference for another module. Thus the belief

predicate symbol foo:fatherOf would expand by looking up the prefix ‘foo’ in the

current module’s prefix mapping and substituting it for the corresponding URI, e.g., into

http://example.com/foo#fatherOf. This mechanism could be layered on

top of Jason’s existing annotation mechanism, so that the belief actually expands into a

literal like fatherOf(...)[module("http://example.com/foo")]. Goal

symbols are also scoped in an identical fashion, such that a goal like !nwn:travel(

Destination) is expanded into !travel(Destination)[module("http:

//example.com/nwn")]. The URI used for a module, as well as the prefix map-

pings used by that module, could be defined in a Jason source file using simple direc-

tives, e.g.,:

{ module("family", "http://example.com/family.asl");

import("friend", "http://example.com/friend.asl");

export(["fatherOf/2","brotherOf/2","!birthday/1"]); }

This example syntax declares that the source file implements a module that is identified

by the URI http://example.com/family.asl, and which imports a ‘friend’

module with a similar URI. Both modules are given simple string names that can be

used within the source file in place of the full URIs (here, the strings ‘family’ and

‘friend’ are used respectively). Note that the string prefixes are just a convenience within

this source file, and only the URIs are significant outside of the module. The import

directive would also ensure that the specified module is loaded (once) into the agent,

if it has not already been loaded4. Finally, an export directive specifies which belief

and goal predicates should be exported from this module, as discussed below.

Each module is considered to contain its own independent belief base. By default,

any belief additions or revisions performed by a module are applied to its own local

belief base. A mechanism is provided to override this behaviour, by allowing some

beliefs (and goals) to be declared as exported. What this means is that these beliefs (and

4 We do not specify how module URIs are used to locate implementations.
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Fig. 4. Scoping of beliefs within modules with export.

goals) are not added to the module’s own belief base, but are instead delegated to the

belief base of the agent itself, as shown in Fig. 4. The same approach is used for goals,

in that each module has a private goal base, while exported goal symbols are added to

the main agent’s goals. This partitioning of beliefs and goals into module-private areas

also has implications for the generation and propagation of events arising from belief

and goal addition and deletion (so-called ‘internal events’). A belief or goal predicate

that is considered to be private to a module can be seen as an implementation detail of

that module, and so events relating to beliefs or goals matching that predicate should not

be visible outside of that module. Otherwise, other modules might become reliant on

these events, and therefore subject to errors if those implementation details are changed

in future updates to a module. However, it is clearly desireable for a module to be able

to respond to events arising from changes in its own internal state. We therefore also

include a mechanism for scoping of events on a per-module basis. Each module has a

private event queue. Events arising from changes to beliefs or goals in a per-module

belief or goal base are added only to that module’s event queue. Events arising from

changes to the agent’s main belief or goal base (i.e., from exported beliefs or goals) are

added to the agent’s main event queue, as in the current Jason implementation.

5.2 Interpreter Cycle Changes

The changes we have described to incorporate modules into Jason imply a number

of changes to the Jason BDI interpreter cycle, shown previously in Fig. 2. We here
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describe the changes to the interpreter cycle that are required for our proposal. Items

without comments are assumed to be identical to the current Jason implementation.

1. Perceive the environment.

2. Update the belief base. Belief updates must now take into account the scoping of

beliefs. This is achieved by examining a belief update for any URI prefix and using

this to determine which module’s belief base should be updated (taking into account

export lists). Any unqualified belief updates are performed using the agent’s main

belief base.

3. Receive communication from other agents.

4. Select socially acceptable messages.

5. Select an event. The set of events to choose from is taken as the union of all of the

pending event queues for each module and the agent’s main event queue.

6. Retrieve relevant plans. The set of potentially relevant plans depends on the scope

of the triggering event. For events that are local to a module, then only that module’s

plan library should be considered. For events scoped at the level of the overall agent,

the set of potentially relevant plans is the union of the plan libraries of all modules.

Determining whether a plan matches a triggering event is done by first expanding

any URI references in both into Jason annotations, as described previously, and

then performing matching as in the current implementation.

7. Determine applicable plans. As for relevant plans, determining applicable plans

(i.e., those whose belief context is satisfied), must also respect scoping of those

beliefs and expanding URI references.

8. Select one applicable plan. As described in Sec. 3, one of the motivating justifica-

tions for this work, and a key compositionality requirements, is that each module

should be able to respond independently to events. It therefore seems sensible to

extend this rule in the cycle so that up to one applicable plan is selected per mod-

ule. However, this approach is more complicated than it immediately appears. The

problem is that belief and goal events resulting from an existing intention cause

any responding plans to become part of that same intention structure. Clearly this

presents a problem if multiple plans are selected, as only one can become part of

the intention (without much more drastic changes to the structure of intentions).

We discuss how to tackle this problem below.

9. Select an intention for execution.

10. Execute an action.

As described, the problem of allowing multiple modules to respond to the same

event is more complex than it initially appears, due to interactions with the BDI model

of Jason. In determining a solution to this problem, it is worth considering the types of

events that can occur, and what an appropriate behaviour should be in each case. Jason

currently distinguishes between so-called ‘internal’ events, arising from changes to the

agent’s internal state (beliefs and goals) caused by executing intentions, and ‘external’

events, caused by the arrival of new percepts and messages from other agents. Exter-

nal events always cause a new intention structure to be created, whereas internal events

reuse the intention structure that generated the event. One solution, then, would be to

only allow multiple modules to react to external events (creating a new intention for

each module), and treat internal events as before, in which case only one module would
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get to respond. However, this seems overly restrictive, as it is reasonable for multiple

modules to respond to belief updates caused by an executing intention, whereas a goal

update should only result in one course of action being taken, to avoid conflicting or

incoherent behaviour. Belief change events, however, are largely incidental rather than

intentional, and therefore should not put such strong constraints on resulting behaviour.

For instance, an agent may want to perform various house-keeping tasks in response to a

belief change: inferring further conclusions (forward-chaining), informing other agents

of the change, and so on, but this is much less likely for goals. It therefore seems more

sensible to distinguish events not by an internal/external distinction, but rather by a be-

lief/goal distinction. We therefore propose that plans responding to belief update events

should always create new intention structures, allowing multiple modules to respond to

the same event, whereas as goal update events should follow the existing behaviour in

Jason: only a single plan can respond to the event and this plan becomes part of the

same intention that caused the event (if one exists). This addresses the compositionality

requirements for beliefs, but still requires some coordination between module authors

wishing to respond to the same goal event. In practice, this addresses all of the issues

that we encountered in the witness-narrator agent framework.

6 Related Work

Most popular current programming languages support some form of module system

allowing for decomposition of large programs into functionally encapsulated compo-

nents. Approaches range from simple namespace mechanisms, to sophisticated module

systems supporting parameterisation, instantiation, and complex nested module struc-

tures. Within the realm of agent-oriented programming languages and frameworks, a

number of proposals have been presented in the literature. The notion of modules as

‘capabilities’ was developed within the context of the JACK agent framework [7] and

has been extended in the JADEX framework [8]. A capability in this proposal is a

collection of plans, beliefs, and events together with some scoping rules to determine

which of these elements are visible outside of the module, and which are encapsu-

lated. Like the proposal described in the current paper, capabilities represent a middle

layer between that of an agent and the level of individual plans and beliefs. Capabilities

address the concerns of avoiding name clashes and hiding of implementation details,

while also supporting multiple instances of the same module to be created. The later

work with JADEX extends the concept to include a more flexible notion of scoping for

beliefs and events, as well as allowing capabilities to be parameterised and dynamically

instantiated. However, capabilities do not address the problems of plan selection and ex-

ecution that we have described, i.e., to allow plans from different modules to each have

a chance to react to an event. A proposal for incorporating a similar notion of modules

has been described for an extended version of the 2APL programming language [9].

As with capabilities, extended 2APL modules can be instantiated multiple times, or can

be declared as singleton modules, for which a single instance of the module is shared

within an agent. 2APL modules can contain any elements that an agent can contain, in-

cluding plans, beliefs, goals, and action specifications, and are similar to agents in many

respects. Each module can be executed by the module (or agent) that instantiated it, and
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can receive and generate belief updates, goal revisions, and other events. For Jason,

a simple module system has been developed as part of the work on integrating onto-

logical reasoning in the JASDL system [10]. However, this work concentrates only on

allowing per-module customisation of the various plan and intention selection functions

in Jason, and does not address the modularity concerns described in the current paper.

The changes described in Sec. 5.2 to the processing of events are based on the original

scheme used in the Procedural Reasoning System (PRS) [11] (Sec. 8.2), in which be-

lief change events cause new intentions to be created, whereas goal changes reuse the

current intention structure. Given AgentSpeak’s (and therefore Jason’s) historical basis

in the PRS architecture, it seems natural to revert to this scheme.

While many agent programming languages use Prolog as a belief base language,

e.g., Jason, 2APL, GOAL, there has been some work on alternative belief representa-

tion languages. The use of alternative knowledge representation languages for the belief

base of a Jason agent has been considered in the context of adding support for ontologi-

cal reasoning and OWL [12, 10]. However, this work has concentrated on extending the

Prolog facilities of Jason with support for ontological reasoning, rather than replacing

the existing belief base language. In [13] an approach to abstracting an agent language

from any particular knowledge representation format is presented. While the authors

note that Datalog and SQL meet their requirements for a Knowledge Representation

Technology, the focus of the paper is on translations between knowledge representa-

tion technologies rather than the practicalities of any specific technology. Most agent

programming frameworks (including the implementation of Jason) allow customising

or replacing the default belief base to a certain degree. While such customisation can

facilitate the integration of ‘legacy belief bases’, there remains a need for for a practical

knowledge representation formalism, even if only as a default, and we feel that that

Datalog is a more appropriate choice than Prolog for a default belief-base language.

7 Summary

In this paper we identified a number of problems with the Jason agent-oriented pro-

gramming language motivated by our experience of building a moderately large and

complex piece of software using Jason. While Jason provides a clean and elegant frame-

work for building sophisticated multi-agent systems, it provides less support for devel-

oping complex agents with diverse, interacting capabilties. We identified two key prob-

lems: a lack of support for modular software development, and an order-dependence

in the semantics of the belief representation language which makes it hard to compose

modules and to author plans within a module. To address these problems we proposed

revisions to the language to simplify the construction of agents from functionally en-

capsulated components, and changes to the belief base language and plan execution to

support more robust software engineering.

In future work, we plan to investigate further revisions to Jason suggested by our

experiences developing the witness narrator agents system, including changes to the

triggering conditions of plans and the semantic characterisation of percepts.
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Abstract. In this paper we provide a formalisation of the computational and program-

ming model behindCArtAgO, a platform/infrastructure for programming and executing

artifact-based computational environments in MAS. Such environments are realised as

set of workspaces where agents work together by instantiating, sharing, co-using ar-

tifacts, i.e. first-class entities of the agent world representing resources and tools that

agents can exploit so as to support their individual and collective activities. Besides rig-

orously describing the main features of the artifact abstraction and the interaction model

based on agent use and observation of artifacts, the formalisation aims at fostering the

integration of CArtAgO with existing agent programming languages, in particular with

those with a well-defined formal model and semantics.

1 Introduction

Environment programming in Multi-Agent Systems (MAS) accounts for considering the com-

putational environment where agents are situated as a first-class abstraction, to be suitably

designed and programmed so as to improve MAS engineering [13]. The background idea is

that the environment can be an effective place where to encapsulate functionalities for MAS,

in particular those that concern the management of agent interactions and coordination. This

turns out to be useful for defining and enacting into the environment strategies for MAS coor-

dination, organisation, and security—the interested reader can find in [16] a survey of works

endorsing this viewpoint1.

In this context, CArtAgO (Common Artifact infrastructure for Agent Open environ-

ment) [14] has been proposed as a general-purpose platform/infrastructure for building shared

computational worlds – referred to as work environments – that agents, possibly belonging

to heterogeneous agent platforms and written using different agent programming languages,

can exploit to work together inside the MAS. Being based on the A&A (Agents and Arti-

facts) meta-model [10], CArtAgO’s work environments are modelled as set of distributed

workspaces, containing dynamic sets of artifacts (see Fig. 1). From the agent viewpoint, arti-

facts are first-class entities of agents’ world, and represent resources and tools that agents can

dynamically instantiate, share and use to support individual and collective activities. From the

MAS designer viewpoint, artifacts are useful to uniformly design and program those abstrac-

tions inside a MAS that are not suitably modelled as agents, and that encapsulate functions to

1 This sums up the the results of three years of E4MAS (Environment for Multi-Agent Systems) work-

shop, held at AAMAS from 2004 to 2006
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Fig. 1. A&A meta-model expressed in the Unified Modelling Language (UML).

be exploited by individual agents or the overall MAS—for instance mediating and empow-

ering agent interaction and coordination, or wrapping external resources. So, if agents are

the basic bricks to design the autonomous and pro-active part of the MAS, artifacts are the

basic entities to organise the non-autonomous, function-oriented part of it—the latter being

exploited and controlled by the former to achieve the MAS goals. For this reason, instead of

being characterised in terms of goals, tasks or autonomous actions like in the case of agents,

artifacts are characterised by the set of functionalities (operations) that they provide to their

user, and a usage interface for agents to exploit such functionalities. Differently from the in-

teraction models introduced for inter-agent communication, typically based on some form of

high-level ACL and speech-act-like theories, the interaction model ruling agent-artifact inter-

action is based on use and observation: agents use artifacts by acting on their usage interface

so as to trigger and control the execution of the operations, and by perceiving observable

events generated by artifact and observable properties that constitute artifact observable state.

In this paper we provide a formalisation of CArtAgO computational model (Section 2),

that is – more generally – a formalisation of the notion of artifact and workspaces as defined

by the A&A conceptual model. The motivation and objective of the formal model is twofold:

(i) making the technical aspects of CArtAgO non-ambiguous, and avoiding underspecifica-

tion so as to enhance their understanding; (ii) fosters the integration of CArtAgOwith existing

agent programming languages, in particular with those with a well-defined formal model and

semantics.

To authors’ knowledge, this is the first formal model in MAS programming literature

providing a comprehensive and detailed account of concepts that typically are part of agent-

environment interaction models, such as the use-of and the observation-of the environment,

and related rich model for actions and perceptions. As a related work, we mention here the

model of situated MAS proposed by Ferber and Müller [6] – introducing a general theory

of actions for reactive agents situated in an environment with its own behaviour – and the
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one developed by Weyns and colleagues [15], which models the environment as a level in

a layered software architecture perspective of MAS, organised in functional blocks. Both

works have been inspiring for the formal model presented in the paper: differently from these

work, our approach is specifically targeted to define a general-purpose computational and

programming model, introducing in particular a formalisation of the basic abstraction (the

artifact abstraction, specifically) used to structure and modularise agent computational en-

vironments. Another related work to CArtAgO in general is GOLEM [2], which provides a

declarative model to specify environments for cognitive agents based on the KGP model of

agency [9], using the notion of objects and containers in a similar way w.r.t. artifacts and

workspaces.

After presenting the model, in Section 3 we conclude the paper with a brief discussion

pointing out some highlights about the model that we think are important for MAS program-

ming and agent programming languages.

2 A Formal Model for Artifacts and Workspaces

We adopt a formalisation style which is standard and mostly compatible with existing models

of agent programming languages (examples are AgentSpeak [12, 1], 3APL [7], 2APL [3]).

Namely, we describe the operational semantics of CArtAgO by a transition system, which

specifies how a multiagent system state – expressed in terms of a structured term – evolves

into another by a single computation step, modelling either agent or artifact internal com-

putations, or interactions between agents and artifacts. Furthermore, this formalisation style

straightforwardly leads to an executable specification in frameworks such as the MAUDE

term-rewriting language, which provide analysis tools like LTL model-checking [5].

We necessarily abstract away from some aspects that are orthogonal to CArtAgO: we

(i) assume a simple agent execution cycle that is compatible with most existing agent pro-

gramming platforms, (ii) accordingly abstract from details concerning agent mind structure

and inner (reasoning) processes, (iii) model execution of artifact steps in terms of abstract

automata, to foster exploitation of different concrete artifact languages as well. Also, for the

sake of space and understanding, our formalisation also neglects some aspects like timeouts

and linkability—however, the model has been conceived to be easily extended to include such

features.

2.1 Structure

We adopt the following conventions, some of which are standard in the formalisation of

programming languages and systems [8]. We introduce the following meta-variables2: g

ranges over agent state, a over artifact state, τ over artifact templates, b over agent bod-

ies, s over workspaces, and o over artifact triggered operations; furthermore, we introduce

meta-variables for the unique identifiers of these constructs, γ,α,τ,β ,σ ,ω , respectively. A

meta-variable plays the role of non-terminal symbol in syntactic definitions, while in oper-

ational semantics will be used along with their variations (x, x′, x0 and so on) to range over

elements of the corresponding syntax. Given meta-variable x, a set of elements of kind x is

2 They are called meta-variables to avoid confusion with variables of the language, like artifact vari-

ables
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mas ::= 〈g,s〉 multiagent system

s ::= 〈σ ,a,b〉 workspace

g ::= 〈γ,step,mstate,perstate,prog,σ〉 agent

step ::= Perc | UpdSt | ChAct | ExecAct cycle step

perstate ::= 〈prop,artevt,actevt〉 percept state

prop ::= 〈α,pname $→ pvalue〉 observable property

artevt ::= 〈α,evtvalue : evttype〉 artifact(-related) event

actevt ::= 〈action,res, feedback〉 action(-related) event

prog :: 〈nextf ,actf 〉 agent program

action ::= joinWsp(σ) | quitWsp(σ) | makeWsp(σ) workspace actions

| use(α,oname,opars,sid⊥, timeout) | sense(sid,filter, timeout) use/sense actions

| focus(α,sid perp) | stopFocus(α) | observeProp(α,pname) observation actions

a ::= 〈α,τ,aname,uic,prop, instate〉 artifact

uic ::= 〈[guard]oname〉 usage interface control

instate ::= 〈wstate,var,o〉 inner state

o ::= 〈ω,oname,ostate,ocxt〉 pending operation

t ::= 〈τ,opdef ,prop,var, init,manual〉 artifact template

opdef ::= 〈oname,ostate,onext,oguard〉 operation definition

b ::= 〈β ,γ,sns,artevt,actevt,action,otrig,aobs〉 agent body

sns ::= 〈sid,artevt〉 sensor

otrig ::= 〈ω,α,sid⊥〉 triggered operation

aobs ::= 〈α,sid⊥〉 observed artifacts

Fig. 2. Syntax of CArtAgO structures

ranged over by meta-variable x—note that x and x are hence different meta-variables. Con-

catenation symbol “;” is used for disjoint union of sets or elements, symbol “\” for set differ-

ence, and “ /0” is the empty set. Meta-variable x⊥ is used to range over all elements of kind x

plus ⊥—typically meaning “no element” as when a sensor is not specified since optional.

The syntax of the various constructs introduced in CArtAgO is shown in Figure 2; meta-

variables that have no definition (like var, mstate, or any identifier) correspond to constructs

whose structure is not prescribed by CArtAgO architectural specification—their details de-

pend on the actual integration of CArtAgO with existing languages to code agents (but also

artifacts).

MAS and workspaces A multiagent system is a composition of agents (g) with an environ-

ment of workspaces (s). An agent can join and work in multiple workspaces at a time: when

joining a workspace, an agent body is created as interface between the mind part – which de-

pends on the specific agent model/architecture adopted – and the environment, and that con-

tains sensors and effectors to enable interaction with artifacts belonging to that workspace.

The same agent can work simultaneously in multiple workspaces, having a different agent

body for each workspace. A workspace is hence formed by an identifier (σ ), a set of artifacts

(a) and of agent bodies (b). It is assumed that agent bodies and artifacts belong to a single

workspace—the case where workspaces are not disjoined is not handled in this formalisation

for the sake of simplicity.
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Fig. 3. (left) The stages of the agent cycle in the abstract model adopted in the formal model. (right)

Jason (AgentSpeak) reasoning cycle adapted from [1], abstracting from stages related to message han-

dling. The states are numbered so as to remark the relationships between the abstract model used in this

paper and this model.

Agents An agent has an identifier (γ), and its state provides a label denoting the next step of

the agent cycle to execute (step), a mind state (mstate), a percept state (perstate), a program

(prog), and finally the set of workspaces it joined (σ ).

Analogously to agent reasoning cycle in Jason [1] or in approaches defining a common

semantic basis for BDI languages [4], we structure agent behaviour in cyclic sequences of

steps (stages). We consider only four steps, abstracting from those that are necessary to model

aspects specifically related to the agent (cognitive) architecture: in Perc step, percepts and

observable events are retrieved from the environment, updating the percept state of the agent;

in UpdSt step, the mind state is updated according to the percept state of the agent; in ChAct

step, an action to be executed is chosen; and finally in ExecAct step the chosen action is

executed. The four stages are an abstraction over the steps found in concrete agent reasoning

cycles. as an example, Fig. 3 on the right shows Jason (AgentSpeak) agent reasoning cycle,

with states numbered so as to remark the relationships between the abstract model used in

this paper.

Mind state is not directly modelled here for its details depends on the specific agent

model/architecture. Typically, it would include a knowledge (beliefs) base, a goal base, a

plan library, intentions stacks, and so on.

The percept state keeps track of the observable properties and events perceived by the

agent, gathered in the Perc stage and fetched in the ChAct stage of each cycle. Percept state

includes: (i) updates of observed properties (prop), each specifying artifact identifier (α),

property name (pname), and property value (pvalue); (ii) observable events generated by

the artifacts that the agent is focussing, called artifact events (artevt), each specifying artifact

identifier (α), event value (evtvalue), and event type (evttype); and (iii) events related to agent

actions executed in the past, called action events (actevt), each specifying the executed action

(action), a succeeded/failed label for the result (res), and an outcome information (feedback).

The agent program is abstracted in terms of a couple of functions: one that computes

the next mind state from previous mind state and perceptions (nextf ), and one that produces
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the next action to execute (actf ), analogously to the abstract model of state-full (intelligent)

agents reported in [17] (chapter 2).

Actions This formalisation of CArtAgO handles a number of actions to be executed by

agents, which are briefly described as follows: joinWsp(σ) is used to join workspace

σ , quitWsp(σ) for leaving a workspace, and makeWsp(σ) to create and join a new

workspace; use(α,oname,opars,sid⊥, timeout) triggers on artifact α an operation with name

oname, fathering events in sensor sid⊥ and with timeout timeout); sense(sid,filter, timeout)
gets from sensor sid an event that matches filter function, and with timeout timeout);
focus(α,sid perp) is used to start observing an artifact α gathering events in sensor

sid perp; analogously stopFocus(α) stops focussing; and finally, observeProp(α,pname)
is issued to observe property pname in artifact α . It’s worth remarking that when focussing

an artifact, an agent automatically (and continuously) perceives as percepts from the envi-

ronment the value of artifact observable properties and every observable events generated by

artifact operation execution.

Other than standard success/failure semantics here actions use and sense can be sus-

pended because of the condition of the dynamic context, and the result of action execution

can be perceived by agent later in time: in the case of use when the artifact is working or the

specified usage interface control is not currently enabled, in the case of sense when no events

are currently found on the specified sensor.

To support environments with a dynamic and open structure, CArtAgO provides also

actions for dynamically instantiating, disposing and looking up artifacts. Such actions are not

part of the core model, since they are modelled as functionalities provided by special kind of

artifacts, the factory and the registry, which are included by default in each workspace.

For sake of space in the following we do not handle timeouts that appear in use and sense

actions: this feature can be modelled quite straightforwardly by introducing a local clock for

each agent and timeouts as action failure events.

Artifacts and artifact templates An artifact has an identifier (α), a template identifier (τ),

a logical name used for looking up (aname), a usage interface (uic), observable properties

(prop), and finally an inner state (instate). The usage interface includes a set of controls,

each providing the name of the operation it can trigger (oname) and a guard function over

observable properties that enables the control (guard). The inner state has a label wstate

denoting the execution mode (either idle or working), state variables (var) and finally a set

of pending operations (o). Each operation has an identifier (ω), a name (as described by its

usage interface control), a state label (ostate), and a context of local variables (octx).

An artifact is created out of a template; accordingly, in this model we assume the existing

of a library of templates t lib to which any template t belongs. A template has an identifier

(τ), a set of operation definitions (opdef ), a definition of observable properties and variables

(prop and var), and finally an initialization function and a manual. The definition of an oper-

ation basically provides a finite state automaton model, defining a set of state labels (ostate)

including start and completed, a transition function (onext), and a guard function for transi-

tions (oguard)—its details are described in next section.
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Agent bodies An agent body is described by an identifier (β ), the identifier (γ) of the agent

it belongs to, sensors (sns), pending artifact events for which no sensor was specified (artevt),

pending action events (actevt), suspended actions (action), and finally information on trig-

gered operations (otrig) and observed artifacts (aobs). Sensors include a sensor identifier

(sid) and a list of pending (artifact) events (artevt); triggered operations specify an opera-

tion identifier (ω), artifact identifier (α), and the identifier for the optional sensor gathering

events (sid⊥); finally observed artifacts specify an artifact identifier (α) and the identifier for

the optional sensor gathering events.

2.2 Dynamics

The dynamic aspects of CArtAgO are introduced through an operational semantics in

Plotkin’s style [11]. Namely, we provide a rule-based deduction system for formulas of the

kind mas −→ mas′, which describes a transition system for the state of multiagent systems.

We introduce some syntactic notation to make such rules more concise and readable.

Meta-variable “ ” is used that ranges over the set of all terms, and each use of this meta-

variable is unique—as in Prolog anonymous variables, two occurrences of “ ” in a rule are

to be considered as different meta-variables, i.e., their content can be different. We abuse the

notation “∈” to check whether the identifier of an abstraction has a corresponding declaration

into a set of declarations, e.g., α ∈ a would mean that a includes an artifact whose identifier

is α . A conditional operator ?[cond]x is used to mean singleton x if condition cond is true,

empty set /0 otherwise. As an example, ?[cond]x; ?[¬cond]y means x if cond is true, and means

y otherwise.

Some syntactic notation is also used for easily updating terms. Syntax x⊲ y means creat-

ing a clone of x with some changes as specified in y, and where a “ ” in y means “no change”.

In this notation, x, y and z = x⊲ y are terms with the same structure: if y is “ ” then z = x,

otherwise z= y; then, if x (and y) is a compound term, function ⊲ propagates recursively on

arguments. For instance, 〈a,b,c〉⊲ 〈a,b′, 〉 would be 〈a,b′,c〉, and x⊲ 〈 , ,a, , 〉 means a

term equals to x in all arguments but third one, which should become a.

Finally, syntax x x⊲⊲y is for multiple udpate in a set: it defines a set built from x by

substituting all occurrences of elements that match x with a corresponding term x⊲ y, for

instance a;a;b!a⊲⊲c = c;c;b. Further conditions over x and y can be expressed into an

optional “where” clause, for instance, term “a(1);a(2);a(3)!a(X)⊲⊲b(X) where {X < 2}”

is equal to b(1);a(2);a(3).

Agent cyclic behaviour Figure 4 reports three rules handling key aspects of agent cyclic

behaviour, namely perception, update and selection stages—actions execution is handled in

the execution stage as described in the following sections.

First rule defines transitions labelled as PERC, handling the perception stage in which

an agent g gathers all pertinent events from the environment. The bottom part states that a

MAS moves from 〈g;g,s〉 to 〈g′;g,s′〉, in that both the agent state g moves to new state g′,

and the workspace s move to s′ due to changes in agent bodies—the other agents, denoted

as g, remain unchanged. In the top part, side conditions describe in which case g can change

state, and what are the resulting g′ and s′. Let γ be the agent identifier, Perc its step, and σ the

workspaces it joined – other agent fields are useless here –, g′ is obtained from g by moving
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g= 〈γ,Perc, , , ,σ〉 g′ = g⊲ 〈 ,UpdSt, ,〈prop,artevt,actevt〉, , 〉
prop= {prop ∈ prop′|σ ∈ σ ,〈σ ,a,b〉 ∈ s,〈 ,γ, , , , , ,〈α, 〉; 〉 ∈ b,〈α, , , ,prop′, 〉 ∈ a}

artevt = {artevt ∈ artevt
′|σ ∈ σ ,〈σ ,a,b〉 ∈ s,〈 ,γ, ,artevt

′, , , , 〉 ∈ b}
actevt = {actevt ∈ actevt

′|σ ∈ σ ,〈σ ,a,b〉 ∈ s,〈 ,γ, , ,actevt
′, , , 〉 ∈ b}

s′ = s 〈 , ,b〉⊲⊲〈 , ,b
′
〉! where {b

′
= b 〈 ,γ, , , , , , 〉⊲⊲〈 , , , /0, /0, , , 〉!}

〈g;g,s〉
PERC
−−−→ 〈g′;g,s′〉

g= 〈γ,UpdSt,mstate,perstate,〈nextf , 〉, 〉 g′ = g⊲ 〈 ,ChAct,nextf (mstate,perstate),⊥, , 〉

〈g;g,s〉
UPDST
−−−−→ 〈g′;g,s〉

g= 〈γ,ChAct,mstate, ,〈 ,actf 〉, 〉 g′ = g⊲ 〈 ,ExecAct,actf (mstate), , , 〉

〈g;g,s〉
CHOOSEACT
−−−−−−−→ 〈g′;g,s〉

Fig. 4. Agent cyclic behaviour: perception rule, update rule, and selection rule

the step to UpdSt and by setting the percept state to 〈prop,artevt,actevt〉, where the three

arguments are defined as follows. Changes to observable properties are obtained by joining

all prop′ from artifacts focussed by the agent: these are obtained as those artifacts whose

identifier α occurs in the field “observed artifacts” of an agent body of γ—such agent bodies

are searched into the workspaces joined by the agent, namely σ . Both artifact and action

events are obtained instead by gathering all pending events collected in the agent bodies: for

the first case, for instance, we join all artevt
′

of the agent bodies in the environment that

specify γ as agent identifier—and similarly for actevt. Finally, the state of workspaces s is

moved to s′, by considering all bodies of agent γ and discharging their queues artevt and

actevt of pending events.

The second rule labels transition as UPDST , as it changes an agent state due to the pro-

cessing of perceptions. The step label moves from UpdSt to ChAct, and the mind state is

recomputed thanks to function nextf of the agent program, which takes the current mind state

mstate and the percept state perstate as computed by previous rule, and produces the new

mind state—also, the percept state is discharged, and moved to ⊥. No other changes to the

MAS are applied.

The third rule labels transition as CHOOSEACT , since it computes the selection of an

action to execute at next stage: this is simply achieved by changing mind state by program

function actf —namely, changing mind state as a scheduler would do. Also, the step label

moves from UpdSt to ChAct.

The last stage of the agent cycle is execution of action, moving the step label back to Perc,

which comes in different rules depending on the selected action, as shown in the following.

Actions for workspace management We now describe how the actions reported in Figure 2

are executed in CArtAgO, and start with actions for managing workspace as show by rules in

Figure 5.

First rule handles execution of action joinWsp(σ), by which an agent joins a workspace

σ . Let g be an agent in the MAS that is in step ExecAct, with joinWsp(σ) being provided by

the mind state as selected action—utility function selected action is used to this end that ex-

tracts the selected action from agent mind. Let γ be the agent identifier and σ the workspaces

it already joined. If σ is not already joined, the action succeeds, the agent step is moved back

to Perc and σ is added to σ ; moreover, a new agent body is created for γ , with a new identifier

β , and with empty sets for all fields (pending events, suspended actions, and so on). Such an
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g= 〈γ,ExecAct,mstate, , ,σ〉 selected action(mstate) = joinWsp(σ)
σ /∈ σ g′ = g⊲ 〈 ,Perc, , , ,σσ〉 fresh(β ) b= 〈β ,γ, /0, /0, /0, /0, /0, /0〉

〈g;g,〈σ ,a,b〉s〉
EXECACT
−−−−−→ 〈g′;g,〈σ ,a,b;b〉s〉

g= 〈γ,ExecAct,mstate, , ,σσ〉 selected action(mstate) = quitWsp(σ)
g′ = g⊲ 〈 ,Perc, , , ,σ〉 b= 〈 ,γ, , , , , , 〉

〈g;g,〈σ ,a,b;b〉s〉
EXECACT
−−−−−→ 〈g′;g,s〉

g= 〈γ,ExecAct,mstate, , ,σ〉 selected action(mstate) =makeWsp(σ) fresh(σ)
g′ = g⊲ 〈 ,Perc, , , ,σσ〉 fresh(β ) s= 〈σ ,aregistry;afactory;aconsole,〈β ,γ, /0, /0, /0, /0, /0, /0〉〉

〈g;g,s〉
EXECACT
−−−−−→ 〈g′;g,s;s〉

Fig. 5. Workspace management actions: join, quit and make workspace

agent body is added to the workspace σ as shown in the bottom part of the rule. If σ is already

present in σ , the action fails and an event is properly generated—which is not formalised for

the sake of simplicity and space: success and failure would be handled as shown for action

use as shown in the next rules.

The second rule similarly handles exit from a workspace. In this case, σ is dropped from

the workspaces joined by the agent, and moreover, the body of agent γ that occurs in σ is

dropped from the environment.

Analogously, third rule describes the creation of a new workspace σ , which the agent

joins. The new workspace s features three artifacts, namely a registry, a factory and a console3

– which are supposed to be artifacts created out of given templates –, and a new body for agent

γ , with a new identifier β and empty sets for all the others fields.

Use action Figure 6 shows four rules that handle use actions. First rule describes the seman-

tics of action use(α,oname,opars,sid⊥, timeout) executed by agent γ in the case of success,

namely, the artifact α that is target of the action: (i) is in idle state (as reported in the instate

field), and (ii) has a control for operation oname whose function guard (applied to observ-

able properties prop) is true. Let b be the body of agent γ into the workspace that hosts α ,

its sensors, action events, and triggered operations are updated as follows. First, if the action

specifies an existing sensor, or does not specify a sensor (i.e. events directly reach the agent

body), then sensors sns remain unchanged; otherwise a new sensor 〈sid⊥, /0〉 is created with

empty queue. Second, a new action event is added to actevt, specifying that the use action

succeeded and yielding feedback ω , namely a newly generated operation identifier. Third, a

new entry is added to triggered operations otrig, specifying operation ω , artifact α , and sen-

sor sid⊥. Finally, the artifact state is changed to a′, by moving its execution state to working

and by adding an operation execution construct for ω .

Second rule deals with the case where operation oname does not exist in the usage inter-

face. In this case, simply, a new action event is added to the agent body as in previous case;

however, here the event reports a failure and an invalid operation identifier.

In third case, the action gets suspended in the agent body instead, which happens if the

interface control exists but either the artifact is working or the guard is not positively eval-

uated. In this case, simply, the action is added to the “suspended actions” field of the agent

body, and the agent gets back to a new cycle by step Perc.

3 A console is a built-in artifact providing functionalities to write messages on standard output
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g= 〈γ,ExecAct,mstate, , ,σ ;σ〉 action= selected action(mstate) = use(α,oname,opars,sid⊥, )
g′ = g⊲ 〈 ,Perc, , , , 〉 a= 〈α, , ,〈[guard]oname〉; ,prop,〈idle, ,o〉〉 guard(prop) = true

b= 〈 ,γ,sns, ,actevt, ,otrig, 〉 b′ = b⊲ 〈 , ,sns′, ,actevt
′, ,otrig

′
, 〉 fresh(ω)

sns′ = sns; ?(sid⊥ *=⊥ and 〈sid⊥, 〉 /∈ sns)〈sid⊥, /0〉 actevt
′ = actevt;〈action,succeeded,ω〉

otrig
′
= otrig;〈ω,α,sid⊥〉 a′ = a⊲ 〈 , , , , ,〈working, ,〈ω,oname,start,opars〉;o〉〉

〈g;g,〈σ ,a;a,b;b〉s〉
EXECACT
−−−−−→ 〈g′;g,〈σ ,a′;a,b′;b〉s〉

g= 〈γ,ExecAct,mstate, , ,σ ;σ〉 action= selected action(mstate) = use(α,oname,opars,sid⊥, )
g′ = g⊲ 〈 ,Perc, , , , 〉 a= 〈α, , ,uic, , 〉 〈[ ]oname〉 /∈ uic

b= 〈 ,γ, , ,actevt, , , 〉 b′ = b⊲ 〈 , , , ,actevt
′, , , 〉 actevt

′ = actevt;〈action, failed,ω invalid〉

〈g;g,〈σ ,a;a,b;b〉;s〉
EXECACT
−−−−−→ 〈g′;g,〈σ ,a;a,b′;b〉;s〉〉

g= 〈γ,ExecAct,mstate, , ,σ ;σ〉 action= selected action(mstate) = use(α,oname,opars,sid⊥, )
a= 〈α, , ,〈[guard]oname〉uic,prop, instate〉 (instate= 〈working, , 〉 or guard(prop) = false)

g′ = g⊲ 〈 ,Perc, , , ,σ ;σ〉 b= 〈 ,γ, , , ,action, , 〉 b′ = b⊲ 〈 , , , , ,action;action, , 〉

〈g;g,〈σ ,a;a,b;b〉;s〉
EXECACT
−−−−−→ 〈g′;g,〈σ ,a′;a,b′;b〉;s〉

b= 〈 , ,sns, ,actevt,action;action,otrig, 〉 action= use(α,oname,opars,sid⊥, )
a= 〈α, , ,〈[guard]oname〉; ,prop,〈idle, ,o〉〉 guard(prop) = true

b′ = b⊲ 〈 , ,sns′, ,actevt
′,action,otrig

′
, 〉 fresh(ω)

sns′ = sns; ?(sid⊥ *=⊥ and 〈sid⊥, 〉 /∈ sns)〈sid⊥, /0〉 actevt
′ = actevt;〈action,succeeded,ω〉

otrig
′
= otrig;〈ω,α,sid⊥〉 a′ = a⊲ 〈 , , , , ,〈working, ,〈ω,oname,start,opars〉o〉〉

〈g,〈σ ,a;a,b;b〉;s〉
UNBLOCK
−−−−−−→ 〈g,〈σ ,a′;a,b′;b〉;s〉

Fig. 6. Rules for the use action: success, failure, suspension and unblock

g= 〈γ,ExecAct,mstate, , , 〉 action= selected action(mstate) = sense(sid,filter, )
b= 〈 ,γ,〈sid,artevt〉;sns, ,actevt, , , 〉 artevt = filter(artevt) *=⊥ g′ = g⊲ 〈 ,Perc, , , , 〉
b′ = b⊲ 〈 , ,〈 ,artevt \artevt〉;sns, ,actevt

′, , , 〉 actevt
′ = actevt;〈action,succeeded,artevt〉

〈g;g,〈σ ,a,b;b〉;s〉
EXECACT
−−−−−→ 〈g′;g,〈σ ,a,b′;b〉;s〉

g= 〈γ,ExecAct,mstate, , , 〉 action= selected action(mstate) = sense(sid,filter, )
b= 〈 ,γ,〈sid,artevt〉sns, , ,action, , 〉 filter(artevt) =⊥ g′ = g⊲ 〈 ,Perc, , , , 〉

b′ = b⊲ 〈 ,γ, , , ,action;action, , 〉

〈g;g,〈σ ,a,b;b〉;s〉
EXECACT
−−−−−→ 〈g′;g,〈σ ,a,b′;b〉;s〉

b= 〈 , ,〈sid,artevt〉sns, ,actevt,action;action, , 〉 action= sense(sid,filter, )
artevt = filter(artevt) *=⊥ b′ = b⊲ 〈 , ,〈sid,artevt \artevt〉sns, ,actevt

′,action, , 〉
actevt

′ = actevt;〈action,succeeded,artevt〉

〈g,〈σ ,a,b;b〉;s〉
UNBLOCK
−−−−−−→ 〈g,〈σ ,a,b′;b〉;s〉

Fig. 7. Rules for sense action: success, suspension, and unblock

The latter rule is executed when one such suspended action can finally be executed,

namely, when the guard is true and the artifact is idle. Accordingly, the artifact, as well as

sensors, action events, and triggered operations in the agent body are updated as in the case

of success (first rule).

Sense action As a use action is successfully executed, the artifact will eventually produce

observable events that are collected by the agent bodies: from then, the agent can perceive

such events through a sense action, whose semantics is shown in the three rules of Figure 7.

First rule handles successful execution of action sense(sid,filter, timeout). Let g be the

executing agent and action the executing action as usual, and let b be the body of g having a

sensor with identifier sid as specified in action. If the queue of events attached to the sensor

has an event artevt that matches function filter, then the action successfully executes, in which

218



g= 〈γ,ExecAct,mstate, , , 〉 action= selected action(mstate) = focus(α,sid⊥) α ∈ a

g′ = g⊲ 〈 ,Perc, , , , 〉 b= 〈 ,γ,sns, ,actevt, , ,aobs〉 b′ = b⊲ 〈 , ,sns′, ,actevt
′, , ,aobs

′
〉

sns′ = sns; ?(sid⊥ *=⊥ and 〈sid⊥, 〉 /∈ sns)〈sid⊥, /0〉 actevt
′ = actevt;〈action,succeeded,⊥〉

aobs
′
= aobs; ?(〈α, 〉 /∈ aobs)〈α,sid⊥〉

〈g;g,〈σ ,a,b;b〉;s〉
EXECACT
−−−−−→ 〈g′;g,〈σ ,a,b′;b〉;s〉

g= 〈γ,ExecAct,mstate, , , 〉 action= selected action(mstate) = stopFocus(α) α ∈ a

g′ = g⊲ 〈 ,Perc, , , , 〉 b= 〈 ,γ, ,actevs, , , ,aobs〉 b′ = b⊲ 〈 , , ,actevs
′, , , ,aobs

′
〉

actevs
′ = actevs;〈action,succeeded,⊥〉 aobs

′
= aobs\ 〈α, 〉

〈g;g,〈σ ,a,b;b〉;s〉
EXECACT
−−−−−→ 〈g′;g,〈σ ,a,b′;b〉;s〉

g= 〈γ,ExecAct,mstate, , , 〉 action= selected action(mstate) = observeProp(α,pname)
g′ = g⊲ 〈 ,Perc, , , , 〉 a= 〈α, , , ,prop, 〉 b= 〈 ,γ, ,actevt, , , , 〉

b′ = b⊲ 〈 , , ,actevt;actevt
′
;actevt

′′, , , , 〉
actevt

′ =?(〈 ,pname ,→ pvalue〉 ∈ prop)〈action,succeeded,pvalue〉
actevt

′′ =?(〈 ,pname ,→ 〉 /∈ prop)〈action, failed, invalid prop〉

〈g;g,〈σ ,a;a,b;b〉;s〉
EXECACT
−−−−−→ 〈g′;g,〈σ ,a;a,b′;b〉;s〉

Fig. 8. Focussing, stop focussing, and observe actions

case that event is dropped from the queue, and a new action event is generated in the body,

stating the successful execution of action and yielding event artevt as feeback.

The second rule similarly handles the case where no event matches the filter, in which

case simply the action is added to the “suspended actions” field of the agent body.

The third rule instead checks whether there is an agent body with a suspended sense

whose filter now actually finds a pending event. If this is the case, the body is updated as in

the case of a successful sense (first rule).

Focussing and observation actions Figure 8 reports rules providing operational semantics

to actions for focussing and observation.

First rule handles action focus(α,sid⊥), by which an agent γ can focus on artifact α ,

and receive all related events on sensor sid⊥. Let σ be the workspace where α is hosted, and

b the body of agent γ as occurring in σ , then the fields sns, actevt, and aobs of b are changed

as follows. In sns, a new sensor is generated if needed as in rule for action use; in actevt, a

new event stating that action succeeded is added; and finally in aobs, a new entry is added (if

not already there) to state that α is now focussed on sensor sid⊥.

Second rule handles the dual action stopFocus(α). In this case, other than adding to

actevt in b a new event stating that action succeeded, entry 〈α, 〉 is dropped from aobs.

Third rule handles action observeProp(α,pname), by which the agent wants to get in-

formation about the current value of property pname of artifact α . Let prop be the properties

of α , actevt of b is added with a new event that states success of action if prop include pname

– in which case the corresponding value is returned as feedback – or states failure otherwise.

These rules conclude the description of last step of agent cycle, completing semantics of

action execution.

Artifact management Figure 9 describes rules providing the operational semantics of ar-

tifacts. First rule makes a working artifact executing an internal computational step, which

changes internal state possibly generating observable events which are collected in agent

bodies, second rule then selects a new execution step.
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a= 〈α,τ, , ,prop, instate〉 instate= 〈working,var,o;〈ω,oname,ostate,ocxt〉〉
〈τ,opdef ;〈oname, ,onext,oguard〉, , , , 〉 ∈ tlib oguard(ostate,octx,prop,var) = true

onext(ostate,octx,prop,var) = 〈ostate′,octx′,prop′,var′,e〉 a′ = a⊲ 〈 , , , ,prop′, instate′〉
instate′ = 〈idle,var′,o; ?(ostate′ *= completed)〈ω,oname,ostate′,ocxt′〉〉

b= 〈 , ,sns,artevt, , ,otrig;〈ω,α,sid⊥〉, 〉 b′ = b⊲ 〈 , ,sns′,artevt
′, , ,otrig

′
, 〉

etoadd = e; ?(ostate′ = completed)〈α,ω : op exec completed〉
sns′ =?(sid⊥ =⊥)sns?(sid⊥ *=⊥)sns 〈sid⊥,e0〉⊲⊲〈sid⊥,e0;etoadd〉!

artevt
′ = artevt; ?(sid⊥ =⊥)etoadd otrig

′
= otrig; ?(ostate′ *= completed)〈ω,α,sid⊥〉

b
′
= b 〈 , ,sns0,artevt0, , , ,〈α, 〉; 〉⊲⊲〈 , ,sns1,artevt1, , , , 〉! where{

sns1 =?(sid⊥ =⊥)sns0; ?(sid⊥ *=⊥)sns0 〈sid⊥,e0〉⊲⊲〈sid⊥,e0;e〉!
artevt1 = artevt0; ?(sid⊥ *=⊥)e′

}

〈g,〈σ ,a;a,b;b〉;s〉
EXECSTEP
−−−−−−→ 〈g,〈σ ,a′;a,b′;b

′
〉;s〉

a= 〈α,τ, , ,prop, instate〉 instate= 〈idle,var,o;〈ω,oname,ostate,ocxt〉〉
〈τ,opdef ;〈oname, , ,oguard〉, , , , 〉 ∈ tlib oguard(ostate,octx,prop,var) = true

a′ = a⊲ 〈 , , , , , instate′〉 instate′ = instate⊲ 〈working, ,o;〈ω,oname,ostate,ocxt〉

〈g,〈σ ,a;a,b〉;s〉
SELSTEP
−−−−−→ 〈g,〈σ ,a′;a,b〉;s〉

Fig. 9. Artifact behaviour: step execution and selection

We start considering first rule—which is rather involved for it encapsulates most of arti-

fact behaviour. Let a be an artifact in working state, ω a pending operation with name oname,

guard its guard function and onext the update function of ω (modelling its computation) as

specified in the artifact template τ . Operation ω can be selected if the guard, applied to (i)

operation state, (ii) operation context, (iii) artifact properties and (iv) artifact inner variables,

yields true. In this case, function onext is applied to such 4 elements, yielding new values

for them as well as a set of artifact events to be fired that we denote as e. The artifact is then

updated: its state moves to idle, variables and properties are updated, and finally the operation

ω is either dropped (if its new state is completed) or its state and context are updated.

At this point, the body b of the agent that executed the use action should be updated in

the fields for sensors, artifact events, and triggered operations. We first let etoadd be the set

of artifact events to be added, which is the set of events e generated by onext, plus an event

of operation completion if the reached state is completed. Now, sensors are updated only if

the sensor was specified (sid⊥ *=⊥), in which case we simply add events etoadd to the sensor

sid⊥—note that the multiple update operator applies to one element only. If the sensor was

not specified instead, etoadd is added to the field artevt of b. Then, in the set of triggered

operations we keep ω only if the operation is not completed.

Other than updating the body of the agent that executed the use action, however, we

should also notify all bodies of those agents that focussed on the artifact. So, we take the set

of bodies b in current workspace, and (by a multiple update operator) change sensors and

artifact events of those bodies that focus on α . Such changes are much the same of those we

did for b, though here we do not add the operation completion event, hence we use e in place

of etoadd.

Finally, the second rule applies if the artifact state is idle and if at least one operation

ω is pending such that the oguard function is true. If this is the case we simply move the

artifact state to working, so that an execution step will be selected and executed as described

by previous rule.
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3 Discussion

In this section we focus on some features of the computational model that are put in evidence

in the formalisation and that we consider relevant for MAS programming in general.

3.1 Artifacts vs. Objects

The formalisation makes it possible to clarify the core aspects that characterise the artifact

abstraction and agent-arttifact interaction model, and then to remark the differences with

respect to existing abstractions adopted in programming languages: in particular here we

focus on the object abstraction, as defined in Object-Oriented Programming.

Similarly to objects, artifacts encapsulate a state and provides an interface for interacting

with them, as non-autonomous entities. Such an interface, however, in the case of artifacts is

not composed by methods that are invoked with control-coupling between the caller and the

callee, like in the case of objects, possibly returning a value. On the contrary, as described

by rules in 6 and 9, there is no control coupling between the agent action (use) triggering the

execution of an operation and operation execution. Also, there is no returning value: output

information generated by operation execution are made perceivable to agents as observable

events, and multiple events can be generated (vs. a single return value), distributed in time.

Then, the basic model of objects does not include any observable state: the only way to

interact with an object is by calling methods though its interface—the use of public fields

is considered bad programming, violating encapsulation and information hiding principles.

On the contrary, artifacts support as a fundamental feature the possibility to expose a set of

observable properties, which can change over the time and whose value can be perceived

by agents without acting upon the usage interface—this point will be deepened in Subsec-

tion 3.3.

Finally, the basic OO model does not include mechanisms for dealing with concurrency:

on the contrary, the computational model of artifacts has been conceived with concurrency in

mind – next subsection deepens this point – being multi-agent systems concurrent systems.

3.2 Concurrency and Control

Concurrency is a main issue to consider with for any model of environment in multi-agent

systems, both from a theoretical and practical point of view. On the one side, full concurrency

must be allow for actions of agents acting on independent parts of an environment; on the

other side, interactions must be effectively managed (avoided, in the case of interferences)

for actions of agents working on parts of an environment that have some kind of dependency.

The computational model presented in this paper allows for the concurrent access and

use of artifacts by multiple agents, without interferences. Multiple operations can be trig-

gered – and executed – on the same artifact concurrently; however, only one operation step

at a time is executed—following rules in Figure 9, a single operation step is first selected

(artifact in idle state) and then executed (artifact in working state). This makes it possible

to avoid a-priori interferences and race conditions due to simultaneous access of the artifact

state. Consequently, MAS programmers don’t have to think to these low-level problems when

designing agents/artifacts, since they are solved natively by the computational model.
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Then, distinct artifacts of the same work environment can be exploited by agents com-

pletely in parallel—formally, this is apparent from the fact that the rules for action execution

on distinct artifacts (e.g. use action) do not have dependencies, as well as those concern-

ing operation step selection and execution of artifacts themselves. So, under this perspective

artifacts can be exploited to encapsulate parallel tasks/processes of the environment, fully

controllable by agents through properly designed usage interfaces.

3.3 Properties of the Observation Mechanism

The observation mechanism, as main part of the interaction model, has some distinct fea-

tures compared to message-based communication based on ACL, making it particularly effec-

tive (and efficient) to support forms of knowledge sharing and coordination strategies based

knowledge sharing.

First, the observation by an agent of an observable property of an artifact by means of an

observeProp action has no effect on the state and processes inside the artifact, i.e. artifact’s

state is not changed and no actions on the artifact side are executed as a result of the action.

This is evident by looking at the third rule in Figure 8: the action is executed in spite of the

state of the artifact a and the transition does not change the state of the artifact. This implies

that – generally speaking – reading the value of an observable property by one or multiple

agents on an artifact is more efficient compared to the exchange of messages adopted in

solutions purely based on agents and direct communication. This because the processing of

a received message by an agent typically requires – at least in cognitive agents – the update

of the belief base (with the new message), the generation of a new event, the selection of a

prope r plan to manage the event, the access – by the plan execution – of the current value

of the belief storing the knowledge and finally the execution of a communicative action to

respond. So, by referring to the formal model, multiple steps of the agent (reasoning) cycle

are needed, each one carrying a specific cost. In the case of artifacts, no computational steps

are actually required.

The interested reader can find in Section A in the appendix a simple example which shows

this result in practice. The example is about sharing a certain piece of knowledge in f o – that

can change dynamically – among a set of agents. A classic solution in agent programming is

introducing a mediator agent, which makes the information available to interested agents by

means of a request-response communication protocol. A solution based on artifacts account

for introducing an artifact KB with a in f o observable property, a usage interface with an

operation to update it, and interested agents reading the property by means of observeProp.

We implemented and tested both the solutions using the Jason platform (i.e. AgentSpeak

language), in one case with only agents (former solution) and in one case exploiting the

integration with CArtAgO. The test shows that the solution based on the artifact is more

efficient compared the solution purely based on agents.

Then, analogous benefits can be devised when considering continuous observation of ar-

tifacts, realised by the focus mechanism (first rule in Figure 8). As an example, consider an

extension of previous example where there is not only knowledge sharing but also coordi-

nation strategies such as – for instance – publish/subscribe protocols, where agents must be

notified each time a certain knowledge changes. Without using artifacts, the mediator agent

must be extended to receive/manage the subscriptions and send the notifications as soon as the

knowledge changes. With artifacts, KB artifact keeps the same and the responsibility of the
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continuos observation is decentralised upon observing agents exploiting focus action. This is

supported automatically by the CArtAgOmachinery at two different levels: at the event level,

by dispatching observable events generated by a step execution to the bodies of the agents

focussing the artifact (first rule in Figure 9); at the percept level, by refreshing at each agent

cycle the percept state of the agent, including the current state of the observable properties

of (only) the artifact(s) observed by the agent (first rule in Figure 4). Note that this provides

an easy and high-level way to select – on the agent side – which part of the environment to

observe, i.e. the subset of percepts the agent is interested in, without necessarily specifying

filters.

3.4 Properties of the Use Mechanism

As a dual aspect of observation, use mechanism provides basic features which make it ef-

fective to synchronise agent actions with environmental resources and finally other agents’

activities. As described by the first rule in Figure 6, the execution of use action involves a

synchronisation between the user agent and the used artifact: if the action succeeds, the agent

can conclude that the operation started. The action is suspended if the usage interface control

is not enabled, until it eventually becomes enabled (or a timeout occurs). This basic semantics

can be exploited to realise effective higher-level synchronisation policy, without the need of

introducing complex ACL-based communication protocols.

As a simple yet effective and general example, consider a producer-consumer scenario,

where N agents produce repeatedly some kind of information items that must be processed

by any of M consumer agents. Producers and consumers agents can have different speeds

in doing their tasks: then, some mechanism/strategy must be introduced to coordinate the

overall work, and it must effective both for the performance (time) and the resource (e.g.

memory, network) consumed. The problem can be solved by introducing a kind of bounded

inventory (bounded buffer) to uncouple the interaction of producers and consumers and, at

the same time, to synchronise their activities, providing a locus of design (the size of the

inventory) for tuning the performance of the system. Thanks to the basic synchronisation

support provided by the computational model, the implementation of the bounded inventory

using CArtAgO, as well as the implementation of producers and consumers agents exploiting

it is straightforward (the interested reader can find the source codes of the artifacts and of the

agents implemented in Jason in Section B in the appendix). In particular, the usage interface

of the artifact would simply include two usage interface controls to respectively insert (put)

and consume (get) items, the former with a guard specifying that the control is enabled if

(when) the buffer is not full and the latter when the buffer is not empty.

4 Conclusion and Future Works

In this paper we introduced a formalisation for artifact-based environments, whose aim is to

both clarify the semantics of artifact computational and programming model, and to foster

the integration of CArtAgO with existing agent programming languages, in particular with

those with a well-defined formal model and semantics.

In future work, we aim at using the formal model to (a) provide a more complete and

formal account of the basic properties that the model has in general – informally discussed
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in Section 3; (b) set up an executable specification in frameworks such as the MAUDE term-

rewriting language, so as to investigate the verification of correctness properties of MAS

behaviour based on artifact-based environments, by exploiting analysis tools like LTL model-

checking.
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1. R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-Agent Systems in AgentSpeak

Using Jason. John Wiley & Sons, Ltd, 2007.

2. S. Bromuri and K. Stathis. Situating Cognitive Agents in GOLEM. In D. Weyns, S. Brueckner,

and Y. Demazeau, editors, Engineering Environment-Mediated Multiagent Systems (EEMMAS’07).

LNCS Springer, Oct 2007. to appear.

3. M. Dastani, D. Hobo, and J.-J. Meyer. Practical extensions in agent programming languages. In

In Proceedings of the Sixth International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS’07). ACM Press, 2007.

4. L. A. Dennis, B. Farwer, H. R. Bordini, M. Fisher, and M. Wooldridge. A common semantic

basis for bdi languages. In Programming Multi-Agent Systems, number 4908 in Lecture Notes in

Computer Science. Springer Berlin / Heidelberg, 2007.

5. S. Eker, J. Meseguer, and A. Sridharanarayanan. The maude ltl model checker. Electr. Notes Theor.

Comput. Sci., 71, 2002.

6. J. Ferber and J.-P. Müller. Influences and reaction: a model of situated multi-agent systems. In

Proc. of the 2nd International Conference on Multi-Agent Systems (ICMAS’96). AAAI, 1996.

7. K. V. Hindriks, F. S. De Boer, W. Van Der Hoek, and J.-J. Ch. Meyer. Agent programming in

3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

8. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and

GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, May 2001.

9. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of agency. In Proc. of

the 16th European Conference of Artificial Intelligence, pages 33–37, 2004.

10. A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-agent systems.

Autonomous Agents and Multi-Agent Systems, 17 (3), Dec. 2008.

11. G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program., 60-61:17–

139, 2004.

12. A. S. Rao. AgentSpeak(l): BDI agents speak out in a logical computable language. In MAAMAW

’96: Proceedings of the 7th European workshop on Modelling autonomous agents in a multi-agent

world : agents breaking away, pages 42–55, Secaucus, NJ, USA, 1996. Springer-Verlag New York.

13. A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment programming in CArtAgO. In R. H.

Bordini, M. Dastani, J. Dix, and A. El Fallah-Seghrouchni, editors, Multi-Agent Programming:

Languages, Platforms and Applications, Vol. 2. Springer Verlag, 2009. To appear.

14. A. Ricci, M. Viroli, and A. Omicini. The A&A programming model & technology for developing

agent environments in MAS. In M. Dastani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff,

editors, Post-proceedings of the 5th International Workshop “Programming Multi-Agent Systems”

(PROMAS 2007), volume 4908 of LNAI, pages 91–109. Springer, 2007.

15. D. Weyns and T. Holvoet. Formal model for situated multiagent systems. Fundamenta Informati-

cae, 63(2–3):125–158, 2004.

16. D. Weyns and H. V. D. Parunak, editors. Journal of Autonomous Agents and Multi-Agent Systems.

Special Issue: Environment for Multi-Agent Systems, volume 14(1). Springer Netherlands, 2007.

17. M. Wooldridge. An Introduction to Multi-Agent Systems. John Wiley & Sons, Ltd, 2002.

224



A Observation Test

The observation test is about sharing a certain piece of knowledge (that changes dynamically)

among a set of agents. The solutions are implemented on the Jason platform integrated with

CArtAgO. The source code as well as all the necessary information and technology to execute

the tests can be downloaded from the CArtAgO web site.

The first solution (Table 1) adopts only agents: N instances of requester agents – who

plays the roles of observers – continuously ask an info information to a mediator agent, who

is responsible to keep and manage the shared knowledge (which is updated by the mediator

100 times, an update each 100 ms). Requester agents go on asking the information until the

information read achieves the value 100 (which happens – given the behaviour of the mediator

agent – after a fixed amount of time, about 10 seconds). To evaluate the performance, we

counted the total number of reads successfully executed by the requesters: the higher the

number is, more efficient is the solution. We did six tests, with N ranging from 1 to 25 (1, 5,

10, 15, 20, 25), i.e. with an increasing number of requester agents concurrently accessing the

shared knowledge. Actually the solution comes in two variants, the one – shown in Table 1

– in which in the mediator agent a plan is specifically written to handle the request, and a

second one – not reported – in which we exploit the built-in capabilities of Jason agents to

automatically send the answer if a belief exactly corresponding to the content of askOne

performative is found. In the performance results reported in Fig. 10 the two variants are

labelled (a) and (b).

The second solution (reported in Table 2) uses a KB artifact instead of a mediator, with an

info observable property containing the shared value and a usage interface with the update

operation to update the value. An updater agent is used to create the artifact and periodically

update its value, analogously to the mediator agent. N instances of observer agents – with N

again ranging from 1 to 25 in 6 steps – continuously observe the info property of the artifact.

The tests have been executed using Jason version 1.2, CArtAgO version 1.3.5, on top

of a Java platform 1.5.0, running on a Apple MacBook Pro with an Intel Core 2 duo 2.33

Ghz and 2 GB of RAM. Fig. 10 shows the results we got, comparing the performance of the

solution with the artifact (the line with rhombuses), the first variant with only agents and an

explicit plan to handle requests (the line with square) and the second variant with only agents

// mediator agent
kbinfo(0).
!do_test.

+!do_test : true <- !update.
+!update : kbinfo(N) & N < 100

<- .wait(100);
-+kbinfo(N+1); !update.

+!update : myinfo(100)
<- .my_name(Me); .kill_agent(Me).

+!kqml_received(S, askOne, info, R) :
kbinfo(Info)
<- .send(S,tell,Info, R).

// requestor agent
ncount(0).
current_value(0).
!do_test.

+!do_test : true <- !request.
+!request : current_value(X) & X < 100

<- .send(mediator,askOne,info,Reply);
-ncount(N); +ncount(N+1);

-+current_value(Reply); !request.
+!request : current_value(100)

<- -ncount(N); .print(N);
.my_name(Me); .kill_agent(Me).

Table 1. Source code of the mediator and requester agent(s). The requester agents repeatedly ask the

mediator for the value of the shared information and, as soon as the value achieves 100, they print it

on standard output and terminate. The values printed on standard output – reported then in Fig. 10 –

represent the number of reads successfully executed.
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// KB artifact
public class KB extends Artifact {

void init(){ defineObsProperty("info",0); }
@OPERATION void update(int v){ updateObsProperty("info", v); }

}

// updater agent
ncount(0).
!do_test.

+!do_test : true
<- cartago.makeArtifact("kb","KB",KB);

!update.
+!update : ncount(N) & N < 100

<- cartago.use(kb,update(N));
.wait(100); -+ncount(N+1); !update.

+!update : ncount(100)
<- cartago.use(kb,update(100));

.my_name(Me); .kill_agent(Me).

// observer agent
ncount(0).
current_value(0).
!do_test.

+!do_test : true
<- cartago.lookupArtifact("kb",KB); !observe.

+!observe : current_value(X) & X < 100
<- cartago.observeProperty(kb,info(Value));

-ncount(N); +ncount(N+1); -+current_value(Value);
!observe.

+!observe : current_value(100)
<- -ncount(N); .print(N);

.my_name(Me); .kill_agent(Me).

Table 2. Source code of the KB artifact and of the updater and observer agent(s). The observer agents

repeatedly observe the observable property in the KB artifact and, as soon as the value achieves 100,

they print it on standard output and terminate.The values printed on standard output – reported then in

Fig. 10 – represent the number of reads successfully executed. .

and built-in Jason plan to manage incoming messages (the line with triangles). In all cases

the solution based on the artifact outperforms the solution purely based on agents—in both

variants: the performance improvement is particularly evident when the number of observers

(requesters) agents is greater than 20.

B Producers-Consumers Test

Fig. 11 shows the implementation of a bounded inventory artifact in CArtAgO, exploiting

guards in usage interface controls (put and get) to synchronise agent use of the inventory. A

sketch of the producer and consumer agents implemented in Jason follows:

!produce.
+!produce <-

?nextItemToProduce(Item);
cartago.use(store,put(Item));
!produce.

+?nextItemToProduce(Item) : true
<- ..

!consume.
+!consume: true <-

cartago.use(store,get,s0);
cartago.sense(s0,new_item(Item));
!consumeItem(Item);
!consume.

+!consumeItem(Item) : true
<- ...

Thanks to the basic synchronisation support provided by the use action, the agents need not

to use further mechanisms or protocols to coordinate their actions in using the inventory (so

as to avoid to insert elements if the inventory is full and retrieve elements if the inventory is

empty).
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Fig. 10. Results of the tests: the values on the Y axis represents the number of reads that observer

(requester) agents were able to complete.

OBSERVABLE PROPERTIES:

n_items: int+

max_items: int

Invariants:

n_items <= max_items

USAGE INTERFACE:

put(item:Item) / (n_items < max_items): 

  [ prop_updated(...), op_exec_completed(...) ] 

get / (n_items >= 0) : 

  [ prop_updated(...), new_item(item:Item), 

    op_exec_completed(...) ] 

put

n_items 0

max_items 100

get

import alice.cartago.*;

import java.util.*;

public class BoundedInventory extends Artifact {

  private LinkedList<Item> items;

  void init(int nmax){

    items = new LinkedList<Item>();

    defineObsProperty("max_items",nmax);

    defineObsProperty("n_items",0);

  }

  @OPERATION(guard="inventoryNotFull") void put(Item obj){

    items.add(obj);

    updateObsProperty("n_items",items.size()+1);

  }

  @OPERATION(guard="itemAvailable") void get(){

    Item item = items.removeFirst();

    updateObsProperty("n_items",items.size()-1);

    signal("new_item",item);

  }

  @GUARD boolean itemAvailable(){ return items.size() > 0; }

  @GUARD boolean inventoryNotFull(Item obj){

    int maxItems = getObsProperty("max_items").intValue();

    return items.size() < maxItems;

  }

}

Fig. 11. A simple bounded-inventory artifact, exploiting guards in usage interface controls to synchro-

nise agent use of the inventory.
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Abstract. The Multi Agent Systems (MAS) theory has methodical ap-
proaches to analyze, understand and debug the social level of agents. This
paper aims to explain that technologies used in the analysis of MAS can
be used for Multi-agent based simulation (MABS). In particular, foren-
sic analysis is proposed. It is explained the creation of an infrastructure
for forensic analysis to assist the analysis of any model independently of
its scope and framework of development . To achieve this genericity, the
proposal is based in the use of Aspect Oriented Programming (AOP).
In addition, it is given the key ideas to implement this infrastructure on
the MABS platform MASON, giving a great power of analysis to this
framework.

1 Introduction

Multi-agent based simulation, MABS, is used in more and more scientific do-
mains [7]: sociology, biology, physics, chemistry, ecology, economy, etc. where it
is progressively replacing previous simulation techniques. It is due to its ability
to model very different “individuals”, starting from simple entities to more com-
plex one. Its versatility makes MABS one of the most favorite and interesting
support for the simulation of complex systems [7].

Fishwick [8] defines computer simulation as the discipline of designing a
model of a system, executing the model on a computer, and analyzing the ex-
ecution output. We think that the testing of the social behavior of the agents
groups, in the analysis task, is one of the most interesting thing about these
simulations. This is to analyze the macro-social perspective. But, generally, re-
searchers are more interested in model design [7]. The model execution and the
execution analysis are viewed as a less scientific work. We consider necessary
the development of methodical proposals for the task of analyzing the MABS
because with a bad model execution or a bad execution analysis, even the best
of the models cannot provide reliable and useful results.

⋆⋆ This research work is supported by the Spanish Ministry of Education and Science
in the scope of the Research Project TIN-2005-08501-C03-02 and by the Project
“Análisis, Estudio y Desarrollo de Sistemas Inteligentes y Servicios Telemáticos”
through the Fundación Séneca within the Program “Generación del Conocimiento
Cient́ıfico de Excelencia”.
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As already mentioned, the scope of MABS is increasing. In addition to the
increasing of application domains of MABS, it have also proliferated lots of
MABS frameworks for their development. The web of the Open Agent Based
Modeling Consortium1 lists 17 of these frameworks, including: MASON [12],
Repast [3] and NetLogo [1]. Because of the analysis is an unavoidable task, all
platforms provide approaches to this task. In the section of related work are some
of these proposals. The first and obvious defect is that these proposals do not
offer compatibility between platforms. It is obvious that the more developers use
a technology to debug systems, the more benefit is going to get the developers
and the technology itself (which receives feedback from the first ones). Therefore,
genericity in technologies for analysis and debugging is an important factor to
consider. The next defect which make us look for new proposals is that even in
the early stages of analysis, data collection, is often required specific knowledge
about how the model under review has been programmed. These technical skills
in computer sciences are very different from the knowledge of the specific domain
of the model which usually is required for the responsible for the analysis. The
ideal is to have an infrastructure for the analysis of any model and abstracted
of the specific programming.

The immediate question is whether it is possible to automate or at least assist
the process of analyzing a MABS regardless of the specific application domain
and the way in which it was programmed. It seems difficult to find properties
in common, for example, inside a model about biology and one about economy.
Herbert Simon explains how patterns often appear between different complex
systems in his article The Architecture of Complexity [20]. For example, it ex-
plains how the complexity often takes the form of hierarchy in the sense that
the complex systems are composed by subsystems which are composed of sub-
systems and so on. Automating, or at least assisting, the process of discovering
these social structures in any model is a powerful tool. In the case of discovering
hierarchies, for example, results permit to scale the analysis of a complex system
in a “divide and conquer” approach. In the field of Multi Agent Systems have
been proposed methods to discover hierarchies in systems independently of the
specific application domain [19].

The field of Multi Agent Systems (MAS), a well-established branch of AI, is
complementary in several aspects to MABS [4]. The MAS theory has methodi-
cal approaches to analyze, understand and debug the social level of agents. This
paper aims to explain that technologies used in the analysis of MAS can be used
for MABS. In particular, forensic analysis is proposed. Forensic analysis is the
process of understanding, re-creating, and analyzing arbitrary events that have
occurred previously [15]. This technology has already been used successfully to
debug MAS in a social level [18]. This paper explains how to create an infras-
tructure for forensic analysis to assist the analysis of any model independently
of its scope and with the flexibility of choosing the MABS framework. This in-
frastructure also supports the use of representations that help to analyze and
understand the MABS in the same way as with the MAS.

1 OpenABM Consortium website: http://www.openabm.org/
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Next section treat related works and introduces the main approaches to ana-
lyze and debug systems in the fields of MABS and MAS. Then, section 3 explains
how to create an infrastructure for forensic analysis of MABS providing it with
flexibility over the model and platform. Section 4 details the key ideas in the
implementation of forensic analysis for MASON. Finally, conclusions and future
work are given.

2 Related works

To a greater or lesser extent, forensic analysis is present in any MABS plat-
forms because the analysis of the simulations is an essential task. MASON [12]
is criticized for providing limited facilities for such purposes [17]. It allows de-
velopers to save properties of an agent or model in a text file, but you cannot do
something as simple as saving the value of two properties in the same file. On
the other hand, MASON allows developers to save a whole execution as check-
points to relaunch simulations later. However, you cannot access to previous
states in the stored simulation. On the opposite side is NetLogo [1], praised for
its ability to record a great variety of events in simulations [17]. In particular,
NetLogo permits a special execution which logs the simulation in a xml file.
Details can be found in the Logging section of the NetLogo 4.0.4 User Man-
ual [1]. Specifically, there are 8 loggers available for different types of events:
globals (a global variable change), greens (elements of the interface chage), code
(NetLogo code is comiled), widgets (widgets added/removed from the interface),
buttons (...pressed or released), speed-slider (...changes), turtles (...die or are
born), links (...die or are born). Surprisingly, little information is given about
the agents (“turtles” on NetLogo), only when they are born or they die. It is also
surprising that the most revealing element of the NetLogo interface, plots, are
not stored as event using the logger greens. These shortcomings are compensated
by allowing the export of plots or the simulated world to spreadsheets. Having
different approaches to log events on the same platform is a little confusing. In
addition, these approaches are often too rigid and hardly allow configuration.
About Repast [3] is said that it is the most complete platform [17] and it is re-
ally the most powerful in the analysis task because it provides the best collecting
of events. Although Repast delegates several external tools for analysis, which
means all the tools have to be known, the data collecting is always performed
by “Datasets”. The datasets can be constructed as a series of values that are
obtained from calls to methods of the agents (or formulas composed of these
calls). The problem is that this proposal requires a deep knowledge about the
specific programming of the specific model because the user has to distinguish
between methods that make reference to relevant properties and methods that
are merely ancillary. That is a trivial task in simple models, but in complex
models may be impractical. As mentioned in the introduction, the problem of
these approaches is that in the first place they have not been concerned about
the compatibility between platforms, something very interesting to study the
task of analysis itself and independently of the platform in which the models
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are programmed. The other major problem, most pronounced in Repast, is that
the collection of data often requires specific knowledge of how the model was
programmed. This means that the researcher in charge of the analysis should
know the details of the model programming.

Simulations typically generates huge amounts of data, the analysis of simu-
lations is a very complex issue which deserves especial attention. In the MAS
theory, we can find literature that deals with the analysis of the agents. In this
way, Serrano et al. [18] details the creation of an infrastructure for the forensic
analysis which is flexible about the used MAS platform and which do not require
deep knowledge of the specific system programming. Forensic analysis is often
the basis of most proposals about debugging in MAS and it is often accompa-
nied by understandable data representations. There are works which analyze the
behavior of the agents groups with petri nets [5], AUML diagrams [16], exten-
sions of the propositional dynamic logic [14], statecharts [10], dooley graphs [13],
etc. In general, the more possibilities of automation in analysis is having by the
representations, the more complicated are these representations to be developed
and understood by humans. These papers illustrate different infrastructures for
forensic analysis in MAS which can be used in MABS. However, the objective
of the analysis in these work is the understanding of the agents in their group
level, not the social level which is interesting in MABS.

Beyond the group level, the field of MAS has researched the analysis of
the social level of agents, which is intimately related to the analysis of MABS.
Analyzing a MAS as a society refers to check if some properties are accomplished
during the life time of the society [9]. The scope of such properties is the whole
system, not individual or group components. The fundamental difference in the
social level of MAS with their group level is that emergent properties can appear
without being specified in the design. This is especially interesting for MABS
[4]. It has been of interest, for example, to detect emergent behaviors in agents
societies which were not included in the specification of a group of agents in the
MAS design [6]. There are works that combine forensic analysis, graphs theory,
and data mining to achieve simple representations of the agent society. In this
way, Serrano et al. [19] have detailed the creation of graphs that reflect the
collaborative cores of agents or similarity among members of the agent society.
These representations are obtained independently of the specific system, the
MAS platform and without requiring programming skills to be generated or
understood. This type of representation can help to analyze the behavior of the
system, understand it, debug it and even to identify emergent behaviors. The
basis of these representations is the basic forensic analysis infrastructure which
is presented in this paper to be used in MABS.

3 Debugging MABS from a MAS forensic analysis

3.1 Infrastructure for forensic analysis

The analysis of MAS in the agent level of is not very different from traditional
software debugging. However, most approaches to debug a MAS in its group level
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are based on the forensic analysis [15], simply because it is not as interesting the
analysis of a specific execution as the overall analysis of a significant group of
executions of the system. This is because the frequent presence of randomness
makes irrelevant the result of a concrete execution in isolation. A fundamental
reason for the use of forensic analysis appears in the analysis of the social level of
agents: detecting behaviors that have not previously been defined, as emergent
behaviors. Because of the possibility of these unpredictable behaviors which make
impossible define preconditions and post conditions to validate the system, most
conventional approaches for the analysis, testing and debugging are ineffective.
The resulting database of forensic analysis supports technologies for discovering
not explicit knowledge, such as exploratory data mining, which can assist the
analysis of MABS to find no predefined behaviors.

To a lesser or greater extent forensic analysis is present in any MABS plat-
forms. As seen in related work, the proposals are often aimed at a specific plat-
form, a specific model and they usually requires knowledge about the program-
ming of the model. Serrano et al. [18] details the creation of an infrastructure
for forensic analysis in MAS that can be reused for MABS. This proposal pro-
vides flexibility over the specific developed system and development platform.
Besides, users of the analyzer do not need to know the details of the system
implementation. The key idea is to capture interesting elements of a simulation
and store them in a relational database (RDB) to allow making consults and
getting simplified representations of the stored data. These representations and
consults assist the analysis process. Figure 1 shows the analyzer that records
data in a RDB and a developer consulting that RDB and studying representa-
tions to analyze MABS. To bring this forensic analysis from the MAS to MABS,
the immediate question is which elements are interesting to register in a MABS.

Fig. 1. Proposal of the paper

The related works section explains the approaches of some MABS platforms
to collect the execution data. The closest thing to a common element to regis-
ter for all MABS in these approaches was the creation of agents by the logger
“turtles” in Netlogo. In fact, it is not even required in all MABS that the agents
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are located in a simulated world after creating them. It is really difficult to
find common elements in the broad domain of application of MABS. There-
fore, platforms usually require the programmer of the models to collect relevant
information. However, the developer can use whatever framework and develop
whatever model, but he always is going to use the facilities that the framework
offers. In this way, elements that always appear are displays, for example, “in-
spectors” in MASON or “monitors” in NetLogo. These displays show certain
properties of the model in general or the agents in particular which the modeler
or programmer considered relevant. Hence, regarding what elements are interest-
ing to capture in a simulation for a forensic analysis, it can be said that all those
elements which were chosen by the developers to be monitored in the simulation
are clearly relevant. Any type of interesting event can also be stored, common
to any platform and model (such as creating agents) or not. The ideal is to store
these properties in an RDB, which is a powerful tool of querying and can assist
analysis of MABS permitting to make consultations and supporting exploratory
data mining. As seen above, this proposal allows each domain has its own taxon-
omy of events instead of imposing one. Therefore, it is the responsibility of the
modeler to determine events of interest in the model and the programmer must
simply use the facilities of the framework to show these events in the simulation.

3.2 Implementing the infrastructure

Regarding how to capture elements of the simulation, to capture an interesting
event first must be located the point in the code of the platform or model in
which the event occurs. Then, the event must be stored in this point. It could be
thought that it is trivial programming calls to RDB or model into the platform
to include the necessary code to store the events. This classic approach presents
a major problem; this code would serve only for the specific model or the specific
version of the platform. With the number of frameworks, and their continuous
changes, this implementation would have maintenance very costly. In addition,
the registration code would be dispersed throughout the model or platform code.
Therefore, every change in the code of forensic analysis would be very expensive
because it should be replicated in practically any platform or model. The solution
in this proposal is the use of Aspect oriented programming (AOP) [11]. AOP can
isolate the aspect of register a MABS execution in certain classes which are called
“aspects”. Then, the aspects can be programmed or modified separately and in
a modular manner. Aspects are programmed to capture interesting events in
models implemented in some platform. If the platform is upgraded, it only has to
be recompiled to include the aspects. If the strategy of forensic analysis changes,
then the only point to change is the aspects (without changing the model or the
platform code). The cost of maintenance is greatly reduced because the code of
the forensic analysis is centralized in a few aspects. The only restriction is the
requirement of the MABS platform source code for the compilation including the
aspects. Furthermore, although it is not necessary to change the points of interest
where events occur, the code of the platform should be understandable to locate
these points and to program aspects. Figure 1 shows how AOP is the layer that
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joins a MABS platform with the analyzer. Even the programming language of
the platform is not a limitation. AspectJ, which is used for Java codes, is the
most popular AOP language, but there are others like AspectC, AspectC++,
AspectC#... for C, C++ y C# respectively. With a code isolated in a few areas
and the freedom to choose the programming language, the goal of not being
limited to a particular MABS platform is satisfactorily achieved. Moreover, as
we have seen, the cost of maintaining the infrastructure for the forensic analysis
is reduced using AOP and this cost might be, as in any software, the most
expensive part of its life cycle.

As mentioned, an infrastructure for forensic analysis of MABS based in AOP
is not limited by the MABS framework chosen either the developed model. How-
ever, one interesting question is whether the infrastructure for a framework can
be reused for others. It is not difficult to find the equivalence of the elements
and concepts of a platform in others frameworks, a famous comparison of MABS
platforms [17] even published a table in that regard. Specifically, the “Graphical
display” concept is an inspector in MASON, a monitor in NetLogo and a probe
in Repast. Using this concept, it can be registered for the forensic analysis those
elements which the developers of the modelers considered relevant to the anal-
ysis. The forensic analysis can also be expanded with other concepts, such as
the “agent location” (field in MASON, world in NetLogo and space in Repast)
to analyze the positions of the agents at each timestep, although that concept
not necessarily is going to appear in all models. Besides, if the developers did
not add displays of the agent locations, it would indicates the irrelevance of
this concept in the analysis phase. With a clear equivalence of the fundamental
concepts of MABS platforms and a code of forensic analysis isolated in aspects,
reprogramming the aspects for other platforms is easy. In general and as noted
above, the only restriction is that the MABS frameworks have to be open source
software to use AOP. Figure 1 shows how the analyzer can be used on different
platforms. With the flexibility provided by this proposal, we hope this work will
be useful for the MABS community independently of the specific preferences for
programming.

3.3 MABS framework considerations

Forensic analysis is suitable for any MABS platform, as stated in section 3.2,
portability of forensic analysis between MABS platforms is an idea that always
has been in our research. However, there are platforms in which the implementa-
tion is more or less useful and more or less simple. MASON [12], Repast [3] and
NetLogo [1] were considered for the first implementations, although as noted in
the introduction, only in the web of the Open Agent Based Modeling Consor-
tium are listed 17 frameworks. There are several papers where MABS platforms
are compared. Steven F. Railsback et al. [17] do not dare to recommend one
platform over another, but they give conclusions on each of the frameworks. It
is indicated that NetLogo is the most usable, Mason is the fastest platform and
Repast is the most complete.
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NetLogo cannot implement the proposal of this paper because it do not give
the source code necessary for the inclusion of aspects, so it was quickly discarded
until this code is available. There are also a feature of NetLogo and Repast which
makes MASON a little more compatible with the forensic analysis, the faithful
reproduction of the experiments. NetLogo and Repast do not provide methods
to reproduce the order in which an action is executed on a list of agents. In a
forensic analysis, after detecting anomalies at certain points in certain simula-
tions, the researcher should be able to re-execute the simulations in these points
to find out what could happen. However, this iterative approach is less effective
if it is not ensured the same result in a repeated simulation than in a registered
simulation. For this reason, we chose Mason for the first implementation of foren-
sic analysis. Furthermore, the distribution of Repast software is confusing and
has not clearly separated the core from the domain-specific applications [17].
This property complicates the location of the points which the aspects have to
refer to. However, the solution is simply a deeper study of the Repast platform.
Other comparisons are more determined, Matthew Berryman [2] concludes that
the best platform is Repast. Repast, an open source framework with a large
community of developers, is undoubtedly the ideal candidate to implement the
infrastructure for forensic analysis after MASON.

4 SAM, social analyzer for MASON

As noted above, the analysis phase of MABS has been traditionally performed
in an exploratory and intuitive manner [7]. One of the weaknesses of MASON,
and MABS platforms in general, is that they offer few facilities to monitor and
debug the simulated models [17]. MASON offers the possibility of fix inspectors in
individual properties (of the model or of the agents) to be monitored / recorded
/ modified from the simulation. However, we miss many options as views and
records of the artificial society as a whole. On the other hand, the programmer
can make his own tests for a specific simulation, for example, a property of
the model can be an array with all that interesting properties of the agents or
the average of some properties. To improve this approach, which is poor and
rigid, is created SAM, social analyzer for MASON. This section introduces the
key ideas to implement SAM, an infrastructure for forensic analysis in MASON
using AOP.

Before discussing the code of specific aspects of forensic analysis is necessary
to explain what is an aspect. This information can be expanded in the on line
documentation for AspectJ 2. In very basic terms, the essential concepts to
understand the AOP are join point, pointcut, advice and aspect. A method
call join point encompasses the actions of an object receiving a method call. It
includes all the actions that comprise a method call, starting after all arguments
are evaluated up to and including return (either normally or by throwing an
exception). Pointcuts pick out certain join points in the program flow, but they
don’t do anything apart. Then, to actually implement a behavior, advices must

2 AspectJ website: http://www.eclipse.org/aspectj
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be used. An Advice brings together a pointcut (to pick out join points) and
a body of code (to run at each of those join points). The combination of the
pointcut and the advice is termed an aspect. Now, some MASON concepts have
to be explained to program useful aspects in this framework.

To program the aspects in MASON, the first step is to define the interesting
join points for the forensic analysis. As stated, we are interested in what the
developer of a simulation chose to be shown in the MASON simulation. This
is the concept of inspector in MASON and its location in the MASON code
is extremely clear. Any method that starts with “get” in the code of an agent
(implements the Steppable interface) or a model (implements SimState) returns
a property that is displayed when this agent or model respectively is being
inspecting. Now, aspects to add behavior to MASON must be programmed.

The following pointcuts pick out the join points where an inspector is called
to show a property.

pointcut modelInspector(SimState model):

target(model) && call(public get*());

pointcut agentInspector(Steppable agent):

target(agent) && call(public get*());

The “target” pointcut picks out each join point where the target object (the
object on which a method is called or a field is accessed) is an instance of
a particular type, SimState or Steppable in these cases. And ‘‘call(public

get*()’’ picks out all call join points to public methods where the method
name starts with the characters “get”.

In the same way, we can define pointcuts for the time of creating agents in the
model which, as seen in the previous section, is one of the few elements common
to all MABS.

pointcut newModel: call(SimState+.new());

pointcut newAgent: call(Steppable+.new());

These pointcuts picks out all constructor call join points where an instance
of any subtype of a SimState or Steppable, respectively, is constructed. Once
pointcuts are defined, we need now to specify the functionality for each; this is
what is called advices. Their structure would be like this

after (SimState model) returning (Object r):

modelInspector(model){

/*mySniffingCode...*/

}

after (Agent agent) returning (Object r):

agentInspector(agent){

/*mySniffingCode...*/

}
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in which we define an advice just after calling a model inspector and just
after calling a agent inspector, respectively.

In the body of code, calls to some RDB can be made to store information
about the object returned by the inspector (defined in aspect as the variable
‘‘r’’), about the model itself (defined as the variable ‘‘model’’) or on the
agent (defined as the variable ‘‘agent’’). Similarly, advices for the moments of
creating models or agents can be defined with the following structure.

after(): newModel{

/*mySniffingCode...*/

}

after(): newAgent{

/*mySniffingCode...*/

}

in which we define an advice just after creating a new model and just af-
ter creating a new agent, respectively. Notice that, due to the use of powerful
regular expressions allowed by the AOP, we can define pointcuts for any model
or framework with a few lines of code. To illustrate this flexibility by way of
example, we can define the following pointcuts

pointcut myMasonClasses():

within(SimState) || within(Steppable);

pointcut myMasonConstructor():

myMasonClasses() && execution(new(..));

pointcut myMasonMethod():

myMasonClasses() && execution(* *(..));

which pick out each method and constructor which is called by the classes
SimState and Steppable of MASON.

It can be seen as the code for forensic analysis is simple and flexible. Be-
sides all this code is in a only class aspect, isolated from the model or platform
code, facilitating its maintenance. Moreover, the dependence on the framework
is minimal, only a few lines of code shown in this section. Once this basic anal-
ysis has be covered, it can be captured anything of interest for forensic analysis.
In any case, having all properties inspected in an RDB gives a powerful capac-
ity of analysis to MASON, allowing to make consultations and operations using
SQL like averages, standard deviations, number of different values in a prop-
erty, etc. Besides the RDB supports intelligent data analysis technologies and
understandable representations which can be very useful to assists the analysis
of MABS.

5 Conclusions and future work

The paper introduces an infrastructure to assist the analysis, understanding and
debugging of aMulti-agent based simulation (MABS) extrapolated ofmulti-agent
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systems (MAS). The infrastructure consists of forensic analysis by aspect ori-
ented programming (AOP). The infrastructure is flexible about the used MABS
framework, the simulated model and how the model is programmed.

The paper starts explaining how researchers in the field of MABS have ne-
glected the analysis phase, despite the fact that the success of a research in this
field depends on it. All MABS platforms have approaches to the analysis, but
they depend on the platform, the specific model, and the specific programming
of the model. However, approaches to the analysis task which resolves these
problems has been given in the field of MAS. That is why this paper aims to
extrapolate the use of these approaches to MABS, specifically, a forensic analysis
based on AOP is proposed. The key idea is to capture interesting elements of a
simulation using AOP and store them in a relational database (RDB) to allow
consultations or to get simplified representations of the stored data. The pro-
posal directly delegates the developers to discover what elements are interesting
to register. Then, the developers must use the facilities of the MABS framework
to show these elements. The use of AOP can isolate all the analysis code in a few
classes called “aspects”. In this way, the analysis code is flexible about changes
in the chosen platform, the platform version, the model code, the analysis code,
etc. With the adaptation to these situations, the maintenance cost is greatly
reduced. The paper concludes giving the keys to the concrete implementation
of the infrastructure for the MASON platform, providing MASON with a great
power of analysis. The flexibility and genericity in the proposal is illustrated
with only a few lines of AOP.

Regarding future work, the immediate one is to migrate the forensic analysis
from MASON to Repast which has a large developer community. Another im-
portant work is to obtain, from the forensic analysis of MABS, representations
to simplify the data and to provide an analysis of certain aspects of the agent
society. Specifically, we want to use the graphs to reflect collaborative cores of
agents and similarity among members of society [19], mentioned in related works.
There is a great variety of representations in the field of MAS that can assist
the analysis of the MABS. We also intend to investigate the automation of the
analysis process (when it is possible). Once again, the field of MAS has many
approaches to model interactions between agents and then, they can be automat-
ically tested and validated. However, understandable representations are always
necessary to help humans to discover unexpected and not modeled elements as
emergent behaviors. In general, we are interested in integrating our work with
any technology that helps to analyze, understand and debug the social level of
agents in MABS.
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