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Abstract

An important challenge in understanding climate
change is to uncover the dependency relationships be-
tween various climate observations and forcing factors.
Graphical lasso, a recently proposed �1 penalty based
structure learning algorithm, has been proven success-
ful for learning underlying dependency structures for
the data drawn from a multivariate Gaussian distribu-
tion. However, climatological data often turn out to be
non-Gaussian, e.g. cloud cover, precipitation, etc. In
this paper, we examine nonparametric learning meth-
ods to address this challenge. In particular, we develop
a methodology to learn dynamic graph structures from
spatial-temporal data so that the graph structures at ad-
jacent time or locations are similar. Experimental re-
sults demonstrate that our method not only recovers the
underlying graph well but also captures the smooth vari-
ation properties on both synthetic data and climate data.

Introduction

Climate change poses many critical socio-technological is-
sues in the new century (IPCC 2007). An important chal-
lenge in understanding climate change is to uncover the de-
pendency relationships between the various climate obser-
vations and forcing factors, which can be of either natural or
anthropogenic (human) origin, e.g. to assess which parame-
ters are mostly responsible for climate change.

Graph is one of the most natural representations of depen-
dency relationships among multiple variables. There have
been extensive studies on learning graph structures that are
invariant over time. In particular, �1 penalty based learn-
ing algorithms, such as graphical lasso, establish themselves
as one of the most promising techniques for structure learn-
ing, especially for data with inherent sparse graph structures
(Meinshausen and Bühlmann 2006; Yuan and Lin 2007) and
have been successfully applied in diverse areas, such as gene
regulatory network discovery (Friedman 2004), social net-
work analysis (Goldenberg and Moore 2005) and so on.
Very recently, several methods have been proposed to model
time-evolving graphs with applications from gene regula-
tory network analysis (Song, Kolar, and Xing 2009), finan-
cial data analysis (Xuan and Murphy 2007) to oil-production
monitoring system (Liu, Kalagnanam, and Johnsen 2009).
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Most of the existing methods assume that the data are drawn
from a multivariate Gaussian distribution at each time stamp
and then estimate the graphs on a chain of time.

Compared with the existing approaches for graph struc-
ture learning, there are two major challenges associated with
climate data: one is that meteorological or climatological
data often turn out to be non-Gaussian, e.g. precipitation,
cloud cover, and relative humidity, which belong to bounded
or skewed distributions (Boucharel et al. 2009); the other is
the smooth variation property, i.e. the graph structures may
vary over temporal and/or spatial scales, but the graphs at
adjacent time or locations should be similar.

In this paper, we present a nonparametric approach with
kernel weighting techniques to address these two challenges
for spatial-temporal data in climate applications. Specifi-
cally, for a fixed time t and location s, we propose to adopt a
two-stage procedure: (1) instead of blindly assuming that the
data follow Gaussian or any other parametric distributions,
we learn a set of marginal functions which can transform
the original data into a space where they are normally dis-
tributed; (2) we construct the covariance matrix for t and s
via a kernel weighted combination of all the data at different
time and locations. Then the state-of-the-art graph structure
learning algorithm, “graphical lasso” (Yuan and Lin 2007;
Friedman, Hastie, and Tibshirani 2008), can be applied to
uncover the underlying graph structure. It is worthwhile
noting that our kernel weighting techniques are very flexi-
ble, i.e. they can account for smooth variation in many types
(e.g. altitude) besides time and space. To the best of our
knowledge, it is the first practical method for learning non-
stationary graph structures without assuming any parametric
underlying distributions.

Preliminary

We concern ourselves with the problem in learning graph
structures which vary in both temporal and spatial domains.
At each time t and location s, we take n i.i.d. observa-
tions on p random variables which are denoted as {Xts

i }n
i=1,

where each Xts
i := (Xts

i1 , . . . Xts
ip)T ∈ R

p is a p dimen-
sional vector. Taking the climate data for example, we may
independently measure several factors (variables), such as
temperature, precipitation, carbon-dioxide (CO2), at each
location spreading at different time in a year. Our goal is to
explore the dependency relationships among these variables
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over time and locations.
Markov Random Fields (MRFs) have been widely

adopted for modeling dependency relationships (Kinder-
man and Snell 1980). For a fixed time and location, de-
note each observation as a p-dimensional random vector
X = (X1, . . . Xp). We encode the structure of X with
an undirected graph G = (V,E), where each node u in
the vertex set V = {v1, . . . vp} corresponds to a compo-
nent of X. The edge set encodes conditional independen-
cies among components of X. More precisely, the edge
between (u, v) is excluded from E if and only if Xu is
conditionally independent of Xv given the rest of variables
V\u,v ≡ {Xi, 1 ≤ i ≤ p, i �= u, v}:

(u, v) �∈ E ⇔ Xu ⊥⊥ Xv |V\u,v (1)

A large body of literature assumes that X follows a multi-
variate Gaussian distribution, N(μ,Σ), with the mean vector
μ and the covariance matrix Σ. Let Ω = Σ−1 be the inverse
of the covariance matrix (a.k.a. the precision matrix). One
good property of multivariate Gaussian distributions is that
Xu ⊥⊥ Xv |V\u,v if and only if Ωuv = 0 (Lauritzen 1996).
Under the Gaussian assumption, we may deduce conditional
independencies by estimating the inverse covariance matrix.
In real world applications, many variables are conditionally
independent given others. Therefore, only a few essential
edges should appear in the estimated graph. In other words,
the estimated inverse covariance matrix Ω̂ should be sparse
with many zero elements.

Inspired by the success of “lasso” for linear models,
Yuan and Lin proposed “graphical lasso” to obtain a sparse
Ω̂ by minimizing the negative log-likelihood with �1 pe-
nalization on Ω̂ (Yuan and Lin 2007). More precisely,
let {X1,X2, . . .Xn} be n random samples from N(μ,Σ),
where each Xi ∈ R

p and let Σ̂ be the estimated covariance
matrix using maximum likelihood:

Σ̂ =
1
n

n∑
i=1

(Xi − X)(Xi − X)T ,

where X is the sample mean. The estimator Ω̂ is obtained
by minimizing:

−�(μ,Ω) + λ
∑
j<k

|Ωjk|, (2)

where

�(μ,Ω) =
1
2

(
log |Ω| − tr(ΩΣ̂) − p log(2π)

)
, (3)

is the log-likelihood and λ is the tuning parameter that con-
trols the sparsity of Ω̂. The minimization can be done ef-
ficiently using the algorithm in (Friedman, Hastie, and Tib-
shirani 2008), which is a block coordinate descent algorithm
that updates a single row and column of Ω at each iteration.
It has been proven that, under certain conditions, Ω̂ can re-
cover the edge set of the underlying true graph with high
probability (Ravikumar et al. 2008).

Figure 1: Density plot (left) and Q-Q plot (right) of raw CO2

data

Nonparanormal
As discussed in the previous section, graphical lasso can
estimate an inverse covariance matrix with good statistical
properties as long as the data are drawn from a multivariate
Gaussian distribution. However, this is not the case in many
applications. Take our climate data for example, we have
39 measurements of CO2 at a location on California coast
in the first quarter over 13 years (1990 ∼ 2002). The den-
sity and Q-Q plot are presented in Figure 1. The p-value of
Anderson-Darling normality test is 0.0133 < 0.05, which
rejects the null hypothesis and hence indicates that samples
are not normally distributed.

However, in many cases, it is possible to find a set of
marginal functions to transform the original data into an-
other space so that they are normally distributed. More pre-
cisely, if there exists a set of univariate functions {fj}p

j=1

such that f(X) ≡ (f1(X1), . . . , fp(Xp)) ∼ N(μ,Σ), we
say that X follows a nonparanormal (NPN) distribution
(Liu, Lafferty, and Wasserman 2009) and denote it as:

X ∼ NPN(μ,Σ, f). (4)

Given n p-dimensional samples, {X1,X2, . . .Xn},
drawn from NPN(μ,Σ, f), we adopt the method in (Liu,
Lafferty, and Wasserman 2009) to find a set of good estima-
tors of {fj}p

j=1.
We constrain each fj to be monotone and differentiable.

Moreover, we demand that fj preserves the mean and vari-
ance for the identifiability consideration:

μj = E (fj(Xj)) = E(Xj),

σ2
j = Σjj = Var (fj(Xj)) = Var (Xj) .

To find a good estimator of fj , we start by writing down
the cumulative distribution function (CDF) of fj under our
basic assumption fj(Xj) ∼ N(μ,Σ):

P (fj(Xj) ≤ fj(x)) = Φ
(

fj(x) − μj

σj

)
, (5)

where Φ(·) is the CDF of a standard Gaussian distribution.
Let Fj(x) = P(Xj ≤ x) denote the CDF of Xj , the mono-
tone property of fj implies that

Fj(x) = P(Xj ≤ x) = P (fj(Xj) ≤ fj(x)) . (6)

Connecting (6) and (5), we obtain

Fj(x) = Φ
(

fj(x) − μj

σj

)
, (7)
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Figure 2: Inverse of the CDF of a standard Gaussian dis-
tribution (left). The truncated empirical CDF with red lines
representing the truncations (right).

which implies that

fj(x) = μj + σjΦ−1 (Fj(x)) . (8)

By substituting μj , σj and Fj(x) in (8) with the sample
mean μ̂j , the sample standard deviation σ̂j and the empirical
CDF F̂j(x) defined as below, we obtain an estimator of fj .

μ̂j =
1
n

n∑
i=1

Xij , σ̂j =
1√
n

√√√√ n∑
i=1

(Xij − μ̂j)
2

F̂j(x) ≡ 1
n

n∑
i=1

1{Xij≤x}

However, the transformation function (8) is not well de-
fined since Φ−1(x) approaches negative or positive infinity
when x approaches to 0 or 1 as shown in the left panel of
Figure 2. To tackle this problem, we use the approach in
(Liu, Lafferty, and Wasserman 2009) to truncate the empiri-
cal CDF F̂j(x) in the following manner so that our new CDF
estimator F̃j(x) is bounded away from 0 and 1:

F̃j(x) =

⎧⎪⎨
⎪⎩

δ if F̂j(x) < δ

F̂j(x) if δ ≤ F̂j(x) ≤ 1 − δ

(1 − δ) if F̂j(x) > 1 − δ,

(9)

where δ is a truncation parameter. The truncated empirical
CDF for our motivating example is presented in the right
panel of Figure 2. We set the truncation parameter δ to
be 1/(4n1/4

√
π log n) as in (Liu, Lafferty, and Wasserman

2009), which leads to OP (log(n)/n1/4) rate of convergence
of Ω̂.

By plugging F̃j(x), μ̂j and σ̂j back into (8), we obtain
our estimator of fj :

f̃j(x) ≡ μ̂j + σ̂jΦ−1
(
F̃j(x)

)
, (10)

After taking the transformations in (10), the data are
mapped into {f̃(X1), f̃(X2), . . . f̃(Xn)}. The maximum
likelihood estimator of the mean and the covariance matrix

Figure 3: Density plot (left) and Q-Q plot (right) of the trans-
formed CO2 data

takes the following form:

μ̃ ≡ 1
n

n∑
i=1

f̃(Xi),

Σ̃ ≡ 1
n

n∑
i=1

(
f̃(Xi) − μ̃

) (
f̃(Xi) − μ̃

)T

. (11)

Back to our motivating example at the beginning of the
section, we present the density and Q-Q plot of the trans-
formed data in Figure 3. The p-value of Anderson-Darling
normality test is 0.9995 which strongly indicates that trans-
formed data are normally distributed.

Kernel Weighted Covariance Matrix
For a fixed time t and location s, we have n measure-
ments {Xts

i }n
i=1, where Xts

i ∈ R
p. Assuming Xts ∼

NPN(μts, Σts, f ts), we estimate f ts by f̃ ts in (10) and ob-
tain the covariance matrix Σ̃ts in (11). By substituting Σ̂ in
(3) with Σ̃ts and minimizing (2), we obtain the estimated
inverse covariance matrix for a single time and location.

However, this simple approach does not take into account
the rich information on temporal and spatial constraints, i.e.
the graph structures of two adjacent locations (e.g. New
York and New Jersey) should be more similar than those
of two faraway locations (e.g. New York and San Fran-
cisco). Similarly, the difference between graphs in winter
and spring should be smaller than that between graphs in
winter and summer. To capture this smooth variation prop-
erty, we use all the data at different time and locations to
construct a weighted covariance matrix Ŝts as an estimator
for the covariance matrix at t and s:

Ŝts =
∑
t′

∑
s′

wtt′ss′Σ̃t′s′
, (12)

where wtt′ss′ is the weighting of the difference between time
location pairs (t, s) and (t′, s′). The idea behind the kernel
weighting technique is that all the data should contribute to
the estimated covariance matrix at t and s. The smooth vari-
ation property requires that when t′ is close to t and/or s′ is
adjacent to s, wtt′ss′ should be large since the data from t′

and s′ are more important for constructing Ŝts.
A natural way to define wtt′ss′ is to utilize the product

kernel:

wtt′ss′ =
Kht(|t − t′|)Khs (‖s − s′‖2)∑

t′′
∑

s′′ Kht
(|t − t′′|)Khs

(‖s − s′′‖2)
, (13)
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Figure 4: Density plot for the normally distributed data (left)
and transformed data (right) by the Gaussian CDF transfor-
mation

where Kh(·) = 1
hK

( ·
h

)
is a symmetric nonnegative ker-

nel function and ht, hs are the kernel bandwidths for time
and space. For example, one of the most widely adopted
kernel functions is Gaussian RBF kernel where Kh(t) =

1√
2πh

exp(− t2

2h2 ).
In this paper, each time stamp is represented by a sin-

gle discrete number. The absolute value of the difference
between two time stamps is adopted to measure their dis-
tance. Each location is represented as a two dimensional
vector composed of its longitude and latitude. And the dis-
tance between two locations is defined by their Euclidean
distance, i.e. their vector 2 norm.

Note that this kernel weighting technique is very flexible.
For example, if we have more continuity constraints besides
time and space, we can easily extend the product kernel to
include all these conditions to enforce the smooth variation
effect.

With the weighting technique above, the estimated covari-
ance matrices, Ŝts, are “smooth” in time and space, i.e. es-
timated covariance matrices of two adjacent time stamps or
places should not differ too much. Then we plug Ŝts into
(3) to replace Σ̂ and obtain the estimated sparse inverse co-
variance matrix Ω̂ts.

Experiments
In our experiment, we compare four different methods on
both synthetic data and our motivating climate dataset:

1. Kernel Weighted Nonparanormal: taking the transforma-
tion in (10) and using the kernel weighted estimator of the
covariance matrix in (12).

2. Kernel Weighted Normal: using the kernel weighted esti-
mator of the covariance matrix based on the raw data.

3. Nonparanormal: taking the transformation in (10) but
without the kernel weighting step.

4. Normal: directly computing the sample covariance at
each time and location.

Synthetic Data

For the synthetic data experiment, we only consider time-
varying graphs for ease of illustration. In fact, we can adapt
our method to time-varying graphs simply by replacing the
product kernel in (13) with a kernel only involving time:
Kht

(|t− t′|). We set the number of nodes p = 20, the num-
ber of edges e = 15, the number of time stamps T = 20, the

sample size for each time stamp n = 50 and the maximum
node degree to be 4. The observation sequence for synthetic
Markov Random Fields are generated as follows:

1. Generate an Erdös-Rényi random graph G1 = (V 1, E1).
Then from t = 2 to T , we construct the graph Gt =
(V t, Et) by randomly adding one edge and removing one
edge from Gt−1 and taking care that the maximum node
degree is still 4.

2. For each graph Gt, generate the inverse covariance matrix
Ωt as in (Meinshausen and Bühlmann 2006):

Ωt(i, j) =

⎧⎨
⎩

1 if i = j,

0.245 if (i, j) ∈ Et,

0 otherwise,

where 0.245 guarantees the positive definiteness of Ωt

when the maximum node degree is 4.
3. For each t, we sample n data points from a multivariate

Gaussian distribution with mean μ = (1.5, . . . 1.5) and
covariance matrix Σt = (Ωt)−1:

Yt
1, . . . ,Y

t
n ∼ N(μ,Σt),

where each Yt
i ∈ R

p.
4. For each Yt

i , we take the Gaussian CDF transformation
{gj(·)}p

j=1 on each dimension and generate the corre-
sponding Xt

i:

Xt
i =

(
Xt

i1, . . . , X
t
ip

)
=

(
g1(Y t

i1), . . . , gp(Y t
ip)

)
.

The Gaussian CDF transformation function g(x) takes the
basic form of Φ(x−μg

σg
) and is scaled to preserve mean and

variance. In general, it transforms a standard Gaussian data
into a bi-modal distribution as shown in Figure 4. Here we
omit the rigorous definition due to space limitations; inter-
ested readers may refer to (Liu, Lafferty, and Wasserman
2009).

We run four methods with the bandwidth ht = T · 5.848
N1/3 =

11.7, where N = n · T = 1000 is the total number of
data points and 5.848

N1/3 is a widely adopted plug-in bandwidth
for nonparametric learning. We independently simulate the
above procedure for 50 times and evaluate different methods
based on F1-Score which is the harmonic mean of precision
and recall in retrieving the true graph edges. The result is
presented in the left panel of Figure 5. As we can see, at all
20 time stamps, Kernel Weighted Nonparanormal achieves
significantly higher F1-Score as compared to other methods.
Moreover, we plot the ROC curve at t = 1 for randomly se-
lected simulation on the right of Figure 5. Kernel Weighted
Nonparanormal is still superior to other methods. For other
time, the ROC curves exhibit similar patterns.

Climate Data

We run our proposed method on a climate dataset (Lozano
et al. 2009), which contains monthly data of 18 different
climatological factors from 1999 to 2002. The observations
span 125 locations in the U.S. on an equally spaced grid
with the range of latitude from 30.475 to 47.975 and the
range of longitude from -119.75 to -82.25. Each location
s is denoted by (s1, s2) where s1 is the latitude and s2 is
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Figure 5: F1-Score (left) and ROC Curve (right)

the longitude. The 18 climatological factors measured for
each month include CO2, CH4, H2, CO, average temperature
(TMP), diurnal temperature range (DTR), minimum tem-
perate (TMN), maximum temperature (TMX), precipitation
(PRE), vapor (VAP), cloud cover (CLD), wet days (WET),
frost days (FRS), global solar radiation (GLO), direct solar
radiation (DIR), extraterrestrial radiation (ETR), extraterres-
trial normal radiation (ETRN) and UV aerosol index (UV).
(for more details, see (Lozano et al. 2009)).

At a specific location, we divide a year into 4 quarters
and treat the data in the same quarter of all years as separate
i.i.d. observations from a nonparanormal distribution. We
set the tuning parameter λ = 0.15 to enforce a moderate
sparsity of graphs. We use Gaussian RBF kernel with the
bandwidth ht = 4 · 5.848

n1/3 = 0.87 where 4 is the number
of quarters in a year and n = 19500 is the total number
of observations. Similarly, the bandwidth hs is set to be
max
s,s′

(‖s − s′‖2) · 5.848
n1/3 = 9.

As a typical example, we show in Figure 6 the estimated
graphs for 4 quarters at the location (30.475 , -114.75) which
is a place in CA south of San Diego. We see that the graph
structures are quite “smooth” between every two adjacent
quarters except for quarter 3 and 4. It indicates that the cli-
mate may change more significantly between 3rd and 4th
quarter. Another interesting observation is that some factors
are clustered on the graph, such as {CO2, CH4, H2}, {DIR,
UV, GLO}, etc. It indicates that these factors are highly cor-
related and should be studied together by meteorologists. In
fact, it is quite possible that, due to the greenhouse effect,
{CO2, CH4, H2} are highly correlated.

We show some examples to illustrate the spatial smooth-
ness. For an adjacent location (32.975, -117.250) (in CA
between San Diego and Los Angeles) and a faraway loca-
tion (42.975, -84.75) (in Michigan) from the one in Figure
6, the estimated graphs for 4 quarters are shown in Figure 7
and Figure 8 respectively. As we can see, there are at most 2
different edges for each quarter between Figure 6 and 7. But
Figure 6 and 8 are very different.

Moreover, by varying the tuning parameter λ in (2) from
a large value to a small one, we obtain the full regulariza-
tion path which could be useful to identify the influence of
other factors on a specific factor of interest, e.g. CO2. More
precisely, the order in which the edges appear on the regular-
ization path indicates their degree of influence on a partic-
ular factor. As an illustration, Figure 9 shows the changing
of the edges connecting CO2 in the first quarter at location

Quarter 1 Quarter 2 Quarter 3 Quarter 4

Figure 6: Estimated graphs at location (30.475 , -114.75).
The common ones between time (t mod 4) and (t + 1 mod
4) are colored as green.

Quarter 1 Quarter 2 Quarter 3 Quarter 4

Figure 7: Estimated graphs at location (32.975, -117.250).
The edges in common with the corresponding quarter at
(30.475 , -114.75) ( Figure 6 ) are colored as red

Quarter 1 Quarter 2 Quarter 3 Quarter 4

Figure 8: Estimated graphs at location (42.975, -84.75). The
edges in common with the corresponding quarter at (30.475
, -114.75) ( Figure 6 ) are colored as red

(30.475 , -114.75). From the plots, we see that the edge be-
tween CO2 and CH4 appears first, followed by H2 and then
DIR. It indicates that the amount of CH4 is the most crucial
factor to estimate CO2, and the second is H2, the third is
DIR, etc. The result is quite interpretable in meteorology. In
fact, CO2 is mainly produced by burning fossil fuels which
primarily consists of CH4. In addition, the generating ca-
pacity of fossil fuel, formed by organic matters mixed with
mud, is directly determined by solar radiation (Chapter 7 in
IPCC 2007). These domain facts seem to suggest that the
graph structures we learned are quite reasonable. Further-
more, they might be able to provide additional insights to
help meteorologists better understand the dependency rela-
tionships among these factors.

Finally, we run the full regularization path of Kernel
Weighted Normal method and find the graph having the
smallest symmetric difference compared to the first quar-
ter of Figure 6. The symmetric difference is plotted in the
left of Figure 10, where we see that several factors, such as
UV, involve several edges in the symmetric difference graph.
It indicates that our marginal transformations on these fac-
tors change them substantially. To see this, we select two
representative factors, UV and CO and plot their marginal
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λ = 0.500 λ = 0.250 λ = 0.100

λ = 0.050 λ = 0.025 λ = 0.010
Figure 9: Estimated graphs using different λs in the first
quarter at (30.475 , -114.75)

Figure 10: Symmetric difference graph (left) for the first
quarter at (30.475 , -114.75). The red edges are those ap-
pear in the graph with transformations and the black edges
are those appear in the graph without transformations. Esti-
mated transformation for UV (middle) and CO (right). The
black dashed lines plot identity map and the red lines indi-
cate the transformations on the data.

transformations in the middle and right of Figure 10. As we
can see, for UV, the transformation does change the original
data. In contrast, for CO, there is no associated edge in the
symmetric difference graph which suggests that the trans-
formation might have no effect. This could be verified by
the right panel of Figure 10 where the transformation and
identity map on the data nearly coincide.

Conclusion

Motivated by the task of analyzing climate data, we de-
velop a two-stage procedure to learn dynamic graph struc-
tures when the underlying distributions are non-Gaussian.
In the first stage, we learn a set of marginal functions that
transform the data to be normally distributed. In the second
stage we use the kernel weighting technique to construct an
estimated covariance matrix and then adopt graphical lasso
to uncover the underlying graph structure. Empirical results
show that our method not only better recovers each single
graph structure when the distributions are highly skewed,
but also captures the smooth variation property in both spa-
tial and temporal domains.

This paper is a preliminary work aiming at modeling the
dependency relationships among different climate factors
with powerful structure learning tools. The next step is

to collaborate with meteorologists and incorporate domain
knowledge constraints to find more interesting structures.
Our hope is that the structures we learned could help mete-
orologists better understand the climatological phenomena
and lead to new discoveries in the field of climatological
analysis.
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