PScheD
Political Scheduling on the CRAY T3E

Richard N. Lagerstrom*

Cray Research

Abstract

Large parallel processing environments present seri-
ous administrative challenges if high utilization of the
avatlable resources is a goal. In many cases there s
also the need to support critical or time-dependent ap-
plications at the same time as development and rou-
tine production work is going on.

This paper describes the components that help real-
1ze the Political Scheduling goals of the CRAY T3E
system. The meaning of Political Scheduling is de-
fined, we present a general overview of the Cray T3E
hardware and operating system and describe the cur-
rent implementation of the Political Scheduling fea-
ture of Unicos/mk.

1 Introduction

What do we mean by the term Political Scheduling?
In a presentation one of us stated that it was “irra-
tional” scheduling as opposed to “technical” schedul-
ing. What we mean is that there are scheduling goals
not easily described in terms of machine utilization
or performance, but rather by organizational or eco-
nomic requirements. This sort of requirement often
cannot be well handled by classical scheduling mech-
anisms, especially if they try to support a very wide
class of users and a complex environment at the same
time.

*E-mail rnl@cray.com, Fax 612.683.5599

tE-mail skg@cray.com, Fax 612.683.5599

tA Silicon Graphics Company, 655 Lone Oak Drive,
Fagan MN 55121. crayinfo@cray.com, URL
http://www.cray.com

E-mail

Stephan K. Gipp'
Cray Research?

Application

Command

N
N
N

Figure 1: A Small CRAY T3E

A brief description of the CRAY T3E hardware and
operating system will be followed by a discussion of
the features of the Political Scheduler, configuration,
and operational characteristics.

1.1 The CRAY T3E Hardware

Figure 1 shows a CRAY T3E with application, com-
mand and operating system processing elements.
CRAY T3E scalable parallel systems use the DEC-
chip 21164 (DEC Alpha EV5) from Digital Equip-
ment Corporation. This reduced instruction set com-
puting (RISC) microprocessor is cache-based, has
pipelined functional units, issues multiple instruc-
tions per cycle, and supports IEEE standard 32-bit
and 64-bit floating-point arithmetic. CRAY T3E
processing elements (PEs) include the DEC Al-
pha microprocessor, local memory, and performance-
accelerating control logic.

Each PE has its own local DRAM memory with a
capacity from 64 Mbytes to 2 Gbytes. A shared, high
performance memory subsystem makes these memo-
ries accessible to every PE in a CRAY T3E system.
PEs are connected by a bidirectional 3-D torus in-
terconnect network. I/O channels are integrated into
the 3-D torus and increase in number with system
size.

CRAY T3E systems are available with from 16 to
2048 user! PEs. Air cooled models range in size from
16 to 128 user PEs, while liquid cooled models have
64 to 2048 user PEs.

1.2 The Unicos/mk Operating Sys-
tem

Unicos/mk is a scalable version of the CRAY UNI-
COS operating system and is distributed among the
PEs, not replicated on each. Despite having the oper-
ating system distributed among the PEs, Unicos/mk
provides a global view of the computing environment
— a single-system image — that allows system admin-
istrators to manage a system wide suite of resources
as a single entity.

Figure 2 shows the general organization of the op-
erating system in each PE.

A number of servers provide the functionality
needed to support the system. In this paper we will
discuss only the Global Resource Manager (GRM),
the operating system server that allocates applica-
tions to PEs and manages global resources such as
barrier context register assignment, barrier network
routing and Global Memory Segment register alloca-
tion. Features of the Political Scheduler work with
GRM to accomplish the scheduling goals set by the
administrator.

1.3 The Global Resource Manager

All user PEs have the capability of running single-
PE processes, named commands, or multiple-PE en-
tities, named applications. Command PEs run shells,

1 Additional PEs may be present to support operating sys-
tem needs.

daemons and other familiar Unix processes. All sys-
tems must have some number of Command and Op-
erating System PEs ? configured as the Command
and OS regions while the remaining PEs are config-
ured into one or more application regions in which
applications execute.

Figure 3 shows a configuration with large and small
application regions, a command region and some OS
PEs. (Typically a recommend maximum of one or
two application regions will be configured although
special circumstances could make more regions use-
ful.) Regions are made up of a number of PEs with
consecutive logical PE numbers. These numbers (in-
tegers in the range 0 - - - machinesize — 1) are assigned
when the machine is booted and are mapped to PE
torus coordinates in a way to provide good physi-
cal proximity within the machine. Not every PE can
be “next” to every other, so mapping is a compro-
mise between the physical relationship of the PEs and
their logical numbering. Each application must be
assigned to a range of PEs having consecutive logical
PE numbers.

In the command region GRM assigns each process
to a PE having attributes compatible with those of
the user® while at the same time attempting a degree
of load balancing. A command will execute to com-
pletion in the same PE unless it is moved through a
process known as migration®.

Application regions may be configured to accept
applications with only certain attributes. Some of
the region attributes are User 1D, Group ID, Account
ID, Service Provider Type®, size of the application,
and some others.

It is the responsibility of GRM to match the at-
tributes of an application requesting service with re-
gions which will both allow it to run and have free
resources with which to run it. GRM is not capa-
ble of very sophisticated scheduling since it is aware
only of the running load and the immediate launch

2The number is determined by the size of the machine and
the type of workload.

3(enerally, the
attributes.

4Migration is managed by the political scheduler.

5Batch and interactive job initiators, for example, have dif-
ferent service provider types.

command region has mno restrictive

User space
@ O Unicos/mk servers O O
A
\ Microkernel

L

The GRM server

Figure 2: Unicos/mk

o P

S J

Figure 3: An Example CRAY T3E GRM Configuration

request backlog. Such information as batch queue
backlog and the relative priorities of jobs waiting in
the backlog are invisible to it. The Political Sched-
uler, however, does have access to that information
and will direct GRM to do the “right” thing or take
action to “fix” PE allocation problems as they arise.

The final major task of GRM is to manage the Bar-
rier Context Registers, construct barrier routing trees
and initialize the barrier routing registers when appli-
cations are started and manage the Global Memory
Descriptors each application uses.

2 An Introduction to Political
Scheduling

The term feature is used in this paper to generically
include all of the different decision making compo-
nents. Most features will be described separately.

High-level scheduling as defined in this paper
is based on the concept of scheduling domains.
Each scheduling domain represents a portion of the
CRAY T3E that is managed by a common set of
scheduling rules. Scheduling domains will be more
fully described later in Section 2.2.

The Political Scheduler (PS) is implemented as a
daemon which runs on one of the command PEs.
There are a few special low-level system “hooks” to
control such things as time slice width and to send
special commands to GRM, but the remainder of the
operating system interfaces are normal to Unicos/mk.
An information server exists in the kernel for general
use and this capability is heavily used by the various
features of PS to collect system-wide information. As
seen in Figure 4 PS is organized into the following
major modules:

Object Manager Provides an information reposi-
tory for configuration objects and other data.
Communication among the components and
with the outside world is centered here. Data
objects consist of fundamental types such as in-
tegers and strings as well as more complex ob-
jects defined as needed. A hierarchical naming
convention similar to names of directories and
files in a file system 1s used. For example, an

object used to specify the name of the global log
file could be named /PScheD/logFile. Thisis a
string object containing the name of the log file.

Command Interface This component implements
an RPC interface used by administrative com-
mands through which configuration, viewing and
manipulation of the data controlled by the Ob-
ject Manager. Other uses by various service dae-
mons is also supported.

Feature Manager Each component registers itself
so 1ts bind, verify, action and exception functions
are known to the feature manager. The meaning
of these functions will be discussed below.

The remaining items are the features of PS that
implement Political Scheduling.

Gang Scheduler Application CPU and memory
residency control is provided by this feature.

Load Balancer Measurements of how well pro-
cesses and applications are being serviced in each
scheduling domain are made and acted upon by
this feature. Moving commands and applications
among eligible PEs in each domain is managed
here.

MUSE A fair-share like capability is implemented
by the Multilayered User-fair Scheduling Envi-
ronment.

Resource Manager This 1s somewhat misnamed
for historical reasons, but is the place where in-
formation about resource usage within the ma-
chine is collected, analyzed and formed for both
internal and external uses. The Object Manager
i1s used to make this information available in a
uniform way to service providers such as NQS

or NQE.

Unfortunately, the deadline makes a detailed de-
scription of this feature impossible.

Site Supplied Scheduling Features Each feature
has an RPC interface allowing connection to a
site-written program that can change the deci-
sions made by the standard feature. To connect

Site supplied

-< - _ | Loadbdlancer |

-<- _ | Gangsthed. |]

<—> psmgr
3 command

ebeue N 198O

Odd puewiwod

<--» MUE |

<€ - - | Resoucenyr. |«

Feature Mgr.

Figure 4: The PScheD Daemon

a feature to an external assistant, the RPC ad-
dress of the assistant is made known to the fea-
ture through the configuration interface.

2.1 Scaling and Feature Design

The design of almost every feature of PScheD must
deal with the scaling issue in some way. The same
software is expected to run on machines of all sizes
since special software configurations based on ma-
chine size will become a testing, maintenance and
development nightmare if they are allowed to prolif-
erate unchecked.

Another painfully discovered truth is that it is dif-
ficult to precisely control this class of machine with
global controlling software. All of the features of
PScheD are designed to guide the micro kernel toward
delivering a desired global machine utilization goal.
Since each micro kernel has a unique environment,
the global managers must expect neither immediate
nor full compliance with their requests in every case.
This means that all management software must con-
stantly analyze system information and adjust con-
trolling parameters accordingly. Another issue arises
since events at the PE level happen at much faster
rates than the global controllers can monitor®. Of-
ten by the time information has traveled to a global
manager and it takes some action, events have moved
on and conditions are different.

All of these issues taught us that traditional kernel
designs which expect to control every aspect of every
event in a central place will not generally succeed.
A different way of approaching these control require-
ments is needed, and some time must be spent simply
to understand the environment and become comfort-
able with the range of control that it 1s reasonable to
be able to maintain. A fairly strict expectation that
the controllers will not consume a significant amount
of network bandwidth and CPU resources is implicit.

2.2 Scheduling Domains

In earlier CRAY Parallel-Vector Processor (PVP)
systems a high-level scheduler named the Unified Re-

6 An early attempt to globally manage memory dramatically
clarified this issue.

Small application domain

77
2.

N B
N E

Cdmmand domain

Large application domain

Figure 5: Domains

source Manager (URM) analyzed system load infor-
mation and resource usage. An interface to major
service providers such as the Network Queuing Sys-
tem (NQS) existed to make the work backlog visi-
ble. Knowing the work backlog and with informa-
tion about current machine activity acquired from
the system, URM would compile recommendation
lists from the backlog to suggest the order in which
jobs should be initiated and send these lists to the
registered service providers. The service providers
perform the task of job initiation. Early design ap-
proaches to Unicos/mk recommended simply moving
URM to Unicos/mk.

Deeper consideration of the implications of this rec-
ommendation led to the conclusion that the schedul-
ing issues raised by the nature of the CRAY T3E
were not similar enough to those of the PVP ma-
chines for URM to be useful. The fundamental flaw
in the design of URM if simply made to work on the
CRAY T3E is the idea that the machine is a uniform
provider of computing resources. The CRAY T3E
intrinsically divides into two very different domains.
The command region can be looked upon as a num-

ber of separate single-CPU machines which must be
managed so their workloads are fairly equal. The
greater part” of the CRAY T3E is used to run multi-
PE applications. The scheduling issues in this region
involve making sure applications reside in memory
and are given CPU resources at the same time, espe-
cially if they have fine-grain synchronization. It turns
out that the URM on UNICOS can be considered a
special, simplified case of Political Scheduling.

From a machine utilization point of view, the goals
are to minimize fragmentation of PE allocation while
reducing swapping and migration to a minimum.
Even rough estimates result in very discouraging pro-
jected utilization levels if hundreds of large pieces of
application memory must be transferred to and from
swap space on a context switch.

Two regions® are present by default but user re-
quirements often cause the administrator to divide
the application region into two parts (see Figure 5),
splitting 1t into a work region and a smaller region
intended for development and testing. In the devel-
opment region, test applications need few PEs and
normally execute for short periods of time. Develop-
ers also may be using debugging tools so they want
their applications to execute often, even if they are
being gang scheduled. This behavior is different from
that desired when running production work where
long time slices improve system utilization.

To make these different scheduling approaches pos-
sible, the Political Scheduler is configured to have an
instantiation of its scheduling features for each re-
gion. Each instantiation is independent of the others
so time slices and PE loading can be tailored to the
demands of each region. From the point of view of
the administrator, the Political Scheduler behaves as
though a number of separate schedulers were present.
Appropriate scheduling rules are created, each with
a separate domain name. The domains are bound to
the scheduling features with a bind directive. Fig-
ure 4 shows a single instance of each feature, but
imagine that there is a “depth” dimension to each
feature where different instantiations can exist. Of
course, some features may need no more than a global

"The design assumption is that the machine is to be used
more for multi-PE applications than single-PE work.
8 A command region and a single application region.

view of the entire machine. In these cases the depth
is one.

2.2.1 So why name them Domains?

Each feature has some sanity-checking capability to
help assure a reasonable relationship between the
scheduling domains and the regions known to GRM.
Early releases will not automatically keep the Po-
litical Scheduler and GRM synchronized, but future
configuration tools are planned to integrate the con-
figuration of both subsystems.

A PS domain and a GRM region must now, and
probably always will, agree in size and location. Dur-
ing the design of PS it was thought important to rec-
ognize the difference between the GRM configuration
and that of PS. In retrospect, it seems that having
the two names results in more confusion than clarity.
Save us from our cleverness!

3 The Feature Manager

The Feature Manager implements the internal exe-
cution control functions of the daemon. The daemon
is single-threaded since at the time it was developed,
multi-threading support for user-level processes was
not available in Unicos/mk.

When execution begins, each feature registers its
bind function with the Feature Manager. This func-
tion is called when a bind directive is received at the
Command Interface. Binding associates a node in the
Object Tree with the feature also named on the bind
directive. The portion of the Object Tree below the
named node typically contains the configuration pa-
rameters for this instance of the feature. The range
of PEs making up the domain is generally a part of
configuring a feature.

The specific binding function in the named feature
instantiates an instance of the feature for this domain
and will register an action function. The Feature
Manager saves the pointer to the action function and
an associated parameter pointer in a list of registered
actions for the feature. An optional exception func-
tion may also be registered at this time. The same
parameter pointer as that for the associated action

function is assumed.

A wverify function may also be registered. Verify is
called by the feature manager when a verify directive
is received. Verify is usually used by the adminis-
trator to make sure a changed or new configuration
instance is acceptable to the feature.

On each cycle of the Feature Manager each of the
registered action functions for each feature will be
called with the indicated parameter pointer. The pa-
rameter is typically a this pointer to an instance of
the feature class and establishes the environment of
the feature for this specific domain. The cycle of calls
to the action functions continues while the daemon is
active.

Some features must perform cleanup or other tran-
sition activity when the daemon is terminated. The
exception functions will be called when the daemon
receives a shutdown directive or catches one of a set
of registered signals. The daemon executes all of the
exception functions before it terminates.

4 The Gang Scheduler

On the CRAY T3E Gang Scheduling is used to assure
that in each PE assigned to an application, the ex-
ecution thread of that application runs at the same
time. Applications with fine-grain synchronization
using the hardware barrier network require this ser-
vice if they are to have reasonable performance. The
Gang Scheduling feature of the Political Scheduler
is designed to deliver the required scheduling behav-
ior without imposing a high synchronization overhead
cost. Achieving low overhead meant that methods re-
quiring the CPU schedulers in each PE to have knowl-
edge of each other were unacceptable.

Gang scheduling works in the CRAY T3E with a
small amount of kernel support while the major part
of the feature resides in the PScheD daemon. Kernel
support consists of setting aside a range of priorities
named gang priorities, making the thread scheduler
and memory manager in each kernel aware of these
priorities and enhancing an existing system call® to
allow the Gang Scheduling feature of PScheD to com-
municate with the kernel. Briefly, the daemon picks

®The policy() system call.

an application and consequently the thread which
will become the gang thread in each PE of its domain
and broadcasts that information to the appropriate
kernels. The kernels adjust their thread priorities as
directed and schedule the threads as those priorities
dictate. Since gang priorities are higher than any
other user priority, the selected application executes
as though it were dedicated.

The memory manager also knows the gang prior-
ities so it takes the necessary action to make sure
the memory segments belonging to that application
remain resident in memory. When it becomes neces-
sary to swap out memory belonging to an application,
all of the PEs on which that application resides are
informed to stop remote memory accesses from be-
ing issued. All remote memory accesses that are in
progress at the time a memory swap begins will be
completed.

A practical side-effect of this design is that, if the
application which has gang priority for some rea-
son gives up the CPU, the kernel will allow another
thread to execute providing it can find one to run.
When multiple applications are competing for the
same CPU, the Gang Scheduler rotates them through
the gang priorities on a configured time slice. Appli-
cations which have less than maximum gang priority
still enjoy an enhanced priority so they will execute
in priority order if the CPU becomes free.

In Figure 6 four applications share a domain of
12 PEs. The slots are intervals of time specified by
the configuration of the domain. In Slot 1 Applica-
tion A occupying PEs 0-5 and Application B occupy-
ing PEs 6-11 run, in Slot 2 Application C occupying
PEs 3-8 runs and in Slot 3 Application A and Ap-
plication D occupying PEs 6-11 run. Application A
runs twice in three slot periods while the other appli-
cations run once.

Application placement greatly influences how often
each application runs, so the Gang Scheduler and the
Application Load Balancer (see Section 5.2 and Fig-
ure 9) cooperate to reduce the depth of the gangs.
A smaller depth means each application runs more
often.

Each domain of Gang Scheduling is configured sep-
arately making i1t possible to provide long slot peri-
ods for domains running large batch applications and

012 3 405

PE Numbers
6 7 8 9 1011

Slot 1
Application A Application B
[T T T 1
Slot 2 [T T T T T T
Application C
Slot 3 SESESESEERSEERS
Application D

Figure 6: A Domain With Four Applications

short slot periods for domains running smaller inter-
active applications. Thus, the amount of overhead
needed to manage the gangs and their time slices can
be controlled by the administrator to suite the needs
of the users. Domains which are configured to allow
only one application to be assigned to a PE at once
have no need for supervision by the Gang Scheduler.
In these domains the Gang Scheduler feature is sim-
ply not bound and so does not execute.

4.1 Controlling a Gang Scheduling

Domain

Each domain has these configuration attributes.

Heartbeat: The gang time slice center point in sec-
onds.

Partial: If true, applications not currently assigned
to the prime gang will execute; if false, non-
prime gangs will not consume CPU time even
if the prime gang is idle.

Variation: A floating point number n, n > 1.0, that
Heartbeat is multiplied or divided by to effect
the MUSE factor when MUSE is active in the
domain.

5 The Load Balancer

Load balancing is done in order to maximize overall
system utilization. The three steps to load balancing
are:

e Filter the processes into eligible and ineligible
groups,

e classify the eligible processes, and
e balance the processes by migrating them.

The balancing process is identical for both appli-
cation and command domains, but the details of how
candidates are picked and the evaluation of the cost
of migration are different. Command balancing will
be described first to lay the basis for the additional
work needed to properly balance the application do-
main.

5.1 Load Balancing a Command Do-
main
The classification stage involves comparing the can-

didates'? in the domain. This is done by generat-
ing a Classification Score, (', of each candidate, p.

108ee Section 5.1.1

Score

R 7)

L [1 [1T T T
P3 =TI 1 1T T T]

P4

\HHHY
arrrrooT

PE1
Best balance

PE2

N e A HHHE
o

PE1
Actual balance

PE2

| mamaE=maE
e HHHY

PE1
Lowest cost
PE2

Figure 7: Load Balancing the Command Region

10

In order to properly compare resource consumption
levels among the candidates, each is assigned a nor-
malized entitlement!!, (E'), memory, (M), and CPU,
(U), classification score component. The administra-
tor will have configured each domain with the desired
evaluation weights for these factors. The factors are
entitlement weight, W,, memory weight, W,,, and
usage weight, W,,. The W factors are assigned'? by
the administrator through the configuration interface
and the values are assumed to range between zero and
one. The classification score of each candidate, Cj,
is determined by evaluating

Cp =W E, + Wy, M, + W, U, (1)

The list of candidates is ordered by decreasing nu-
merical value of C), as shown in the top portion of
Figure 7, P1 ... P5. This list is then used to create
an ideal balance given the weights and the number
of PEs available. This is shown in the same Figure
labeled Best balance. If the cost of migrating the can-
didates was not a consideration, this would be the end
of the evaluation process. In reality, though, the ideal
balance is usually a poor choice since many of the can-
didates would have to be moved and the overhead to
do this could be unacceptably high. As a compromise
to lower migration cost, only candidates which would
most effectively improve overall load balance will be
moved. This is shown in Figure 7 next to the label
Lowest cost.

In this example, candidate P4 was the only one mi-
grated while the ideal balance would have migrated
both P3 and P4. Of course, in actual systems, the
number of candidates would be much greater and the
number of choices increase dramatically. Poor choices
can result in high overhead cost, perhaps without
much improvement in utilization.

There are many other considerations with impor-
tant consequences to an effective solution to domain
load balancing. Constraints must be established to
prevent trying continually to “fine tune” the load.
Undesired fine tuning occurs when an evaluation cy-
cle decides the results of a prior cycle were not “best”

118¢e MUSE, Section 6
12The three factors are quite different so typically only one
of them has a dominant weight.

and so proceeds to rearrange candidates. A way to
deal with this potential instability is to keep track of
the time a candidate was migrated and leave it alone
until a configured time period elapses. In some cases
this will allow the candidate to terminate and so re-
move itself and 1ts load from the system. Another
strategy is to set the evaluation frequency with the
heartbeat rate to a value suitable to the type of work
being done in the domain. It is not productive to
deal with short-lived processes. It is more efficient
to allow them to finish where they are. Filtering un-
desired candidates from consideration is described in
Section 5.1.1.

If many migration actions were initiated in a short
time period, a nasty problem involving the order in
which candidates are migrated could arise. It is pos-
sible to induce a cascade of ultimately useless swap
activity as PEs try to accommodate what to them is
temporarily increased memory usage when a process
is migrated to a PE while some candidate, present but
destined to be migrated elsewhere, still consumes lo-
cal resources 3. There is no way to completely elim-
inate this side-effect of migration but care in choos-
ing migration order could mitigate it. Such analy-
sis would be complex, constantly controversial and a
configuration headache so the load balancer avoids it
by migrating no more than one candidate per cycle.

The command domain load balancer has the con-
figuration controls listed below. Recall that an in-
stance of the load balancer sees only its own domain.

e Minimum candidate CPU usage

e Minimum time before a migrated candidate will
be reconsidered

e Frequency of evaluation
e Minimum candidate memory size

e Lower bound of candidate User IDs (This can be
used to exempt system or maintenance processes
from consideration.)

e Entitlement weight

13 This could have devastating consequences with large multi-
PE applications

o CPU usage weight
e Memory usage weight

It is possible that other controls will be necessary
as experience with the actual environments in which
the evaluator must be effective grows.

5.1.1 Filtering Evaluation Candidates

The measurement of consumption rates, especially in
the command region, can be very noisy since short-
lived processes and the uneven resource consumption
of many processes can lead to misleading evaluation
scores. The filters are configured with the minimum
CPU usage and minimum memory size to help mod-
erate the effects of short-term process behavior on the
evaluation of migration candidates. The minimum
UID factor is intended to exempt system processes
and other special users from consideration.

5.2 Load Balancing an Application
Domain

Balancing an application domain is a somewhat more
complex issue than that of a command domain. The
objectives of application load balancing are to

e minimize swapping,

e minimize migration cost,

do expensive migrations only when needed,
minimize the number of gangs, and

e maximize contiguously allocated PEs per gang.

Unicos/mk imposes the requirement that all PEs
allocated to an application have contiguous logical
PE numbers. The location of an application is speci-
fied by its base PE number and its size (in number of
PEs). This can lead to situations where occupied PEs
are scattered throughout a region in such a way that
no application waiting to be allocated can be fit into
any contiguous span of available PEs. Fragmentation
of this kind lowers the utilization of the machine by
leaving portions of 1t effectively unavailable.

12

In Figure 8 a fragmented domain of PEs has de-
veloped. The load balancer will have recognized this,
but will take no action unless the fragmentation is
causing some application to wait for initiation. Fur-
ther, the load balancer must be able to make space
available in sufficient quantity to allow at least one of
the waiting applications to be accommodated before
it will initiate migration.

Assuming that the cost considerations have been
satisfied, migration will increase the size of contigu-
ous free space by pushing applications right or left in
the domain to squeeze out allocation holes, starting
with the lowest cost migration that increases the span
of available PEs. As with command balancing, this
is done one application at a time. Figure 8 shows
the migration steps (Step 1 and Step 2) as the ap-
plications are moved into contiguous ranges. At the
same time this is going on, GRM will be reevaluating
its waiting applications. As soon as space becomes
available, GRM will initiate whatever it can. Because
of this competition between GRM and the Load Bal-
ancer, 1t 1s necessary to completely reevaluate the
domain on every cycle.

The gang balancing goals apply only when a do-
main is configured to allow more than one application
to be assigned at once to the PEs. This decision is
made by the administrator based on typical applica-
tion sizes and behavior and the performance demands
of the computing environment. From the standpoint
of throughput of an application, sharing PEs simply
means 1t will take longer for each application to com-
plete. Gangs are more fully described in Section 4.

Two of the load balancing goals deal with the num-
ber of gangs in a domain. This refers to how many
applications share the same PEs in a domain. Re-
ducing this number improves the performance of each
application and makes better use of the resources of
each PE. Figure 9 shows the steps needed to fully
utilize a domain and reduce the number of gangs.

6 MUSE

The Multi layered User-fair Scheduling Environment
(MUSE) feature implements a scheduling strategy
similar to the well known Fair-Share Scheduler as im-

A

Y

Step 1

Step 2

A

Figure 8: Migrating Parallel Applications

)
o
3
Q.
S
Y

Step 1

Step 2

Figure 9: Balancing Gangs of Applications

13

plemented on systems such as UNICOS. In contrast
to those implementations, MUSE and its integration
with the concept of scheduling domains allows for
better scaling to large CRAY T3E environments. The
CRAY T3E presents many challenges to a useful im-
plementation of fair-share scheduling strategies. The
first challenge is of scaling, the second of determin-
ing exactly what an entitlement means under these
circumstances.

6.1 MUSE Entitlement

Every user or account is assigned an entitlement by
the administrator. A user’s entitlement is the propor-
tion of the machine resource (in this implementation,
CPU time) that user should be given in competition
with other active users. MUSE determines, based on
the load and usage history, what priority each user
should be given in order to reach the entitlement goal.

6.2 An Outline of MUSE

As in UNICOS, a global representation of the entitle-
ment tree is maintained in the User Database (UDB).
Because of this, a global instantiation of MUSE ex-
ists to collect resource consumption information de-
livered by each of the MUSE domains into the global
domain, the UDB. The administrator’s view is that
of a single-system image even though there may be
many domains controlling resources being consumed
at vastly differing rates.

When the MUSE UDB domain is bound, a global
entitlement representation is created as the source
of the information needed by the controlling MUSE
domains. The UDB domain neither adjusts PE pa-
rameters nor collects usage information from the PEs.
The controlling domains do that work. Usage infor-
mation filters up to the global UDB domain from the
controlling domains and from there is generally dis-
tributed.

In the typical minimum case two controlling do-
mains are bound. The first domain is that of the com-
mand PEs which run ordinary Unicos/mk processes,
while the second domain is responsible for multi-PE
applications. FEach controlling domain maintains a

virtual entitlement tree private to the domain, hav-
ing the same structure as that of the global tree. The
virtual tree, however, includes only the resource con-
sumers that populate that domain. Domain usage is
propagated to the global domain at a configured rate,
and the global domain distributes new consumption
information to interested controlling domains.

Every PE has a Process Manager (PM) responsible
for handling work assigned to the PE. When a pro-
cess is assigned to a PE, the responsible controlling
domain creates a controlling node within the PM for
the user'. PM uses the nodes to adjust local priori-
ties based on effective entitlement and collects usage
information in the nodes for harvesting by the con-
trolling domain for global dissemination.

A PM has no global view of a user’s activity, work-
ing only with resources locally consumed. The con-
trolling domain periodically assesses both global us-
age and overall domain usage and, when necessary,
adjusts PE entitlements.

6.3 MUSE Domain Configuration

The configuration parameters provide a good view
of the MUSE feature. Each domain (including the
global domain) has its own set of configuration pa-
rameters. A certain degree of configuration consis-
tency among the domains must be assumed since each
domain should be working toward more or less uni-
form goals. Certain domains may intentionally be ex-
cluded from some of the general rules to provide for
dedicated applications or other special needs. Sanity
checking software examines individual domain con-
figurations and reports unexpected or contradictory
rules. Such mistakes as configuring more than one
domain to include the same PE are strictly prohib-
ited, but many seemingly inconsistent rules may be
intentional and necessary. The administrator must
act, based on this analysis and the established per-
formance goals, to make any needed configuration ad-
justments.

Heartbeat: How often (in seconds) the MUSE
scheduling feature is executed for the domain.

14 Either share-by-UID or share-by-account may be selected.
Share-by-UID is assumed here.

14

Decay: The decay rate (in seconds) of accumulated
usage. This discards historical usage over time.

IdleThreshold: The percentage of entitled usage
below which a resource consumer is considered
idle. Being considered idle means

e the priority of the associated process is set
to the non-MUSE priority of 100 and

e the entitlement and usage of the resource
consumer are no longer considered in any
global calculation. Thus, the scheduler be-
haves as if the idle resource consumer is not
active in this domain. This effectively con-
trols redistribution of usage.

ShareByACID: If true, the domain is controlled by
the user’s account ID; if false, the domain is con-
trolled by the user’s UID.

NodeDecay: How long (in seconds) resource con-
sumer usage information is kept on the same
levels of the system as information about active
resource CONSuMers.

UdbHeartbeat: How often (in seconds) the domain
synchronizes its usage information with the
global UDB domain. This makes usage informa-
tion visible to other domains and controls how
often usage accumulated in other domains be-
comes visible to this domain.

OsHeartbeat: The frequency (in seconds) that the
operating system should accumulate usage and
adjust the priorities of running processes or ap-
plications.

OsActive: If true, the system actively enforces as-
signed entitlements by adjusting priorities; if
false, the system accumulates usage but does not
adjust priorities.

6.4 The MUSE Factor

Service providers such as NQS/NQE need informa-
tion from a system to help order the backlog and
initiate jobs which are most likely to run. It is harm-
ful to system performance when many jobs belonging

to users with little effective entitlement are brought
into the system and compete for resources with users
of high entitlement. These jobs generally end up
swapped after some small initial activity and stay in-
active until system workload drops to a point where
the job is eligible for system resources. Users and
administrators would also like to have a simple way
to determine how well a given user might have jobs
serviced at a certain time.

In UNICOS systems, NQS had an elaborate en-
titlement analysis capability that mimicked that of
the fair-share component in the kernel. The result of
this analysis was a rank that had meaning when com-
pared with the ranks of other users. This helped NQS
decide which jobs to initiate. Although this analysis
worked well, it was complex and required tinkering as
the underlying operating system evolved. The influ-
ence of small analysis errors can be subtle and not at
all apparent in every environment. Thus, it was not
always obvious whether the entitlement assessment
conformed with that of the host system.

When PScheD was in its early design stages, the
NQS/NQE developers lobbied strenuously for an in-
terface to the system which would provide an exter-
nally useful entitlement assessment upon request. It
was becoming clear that writing an external analyzer
similar to that used with UNICOS would be a difficult
job for Unicos/mk because of its much more complex
organization and non-uniform service regions. The
MUSE factor was created to fill this need.

The MUSE factor is a machine-independent mea-
sure of a user’s effective entitlement. This means a
service provider can compare the MUSE factors of
competing users and decide how to rank them for a
single machine as well as determine which of a num-
ber of machines able to process the job would offer
the best service'®.

Figure 10 demonstrates the MUSE factor for a par-
ticular user and hows how it represents a user’s ef-
fective entitlement. A MUSE factor of 1.0 means the
user could consume all the resources of the machine
for some period. A MUSE factor of 0.0 means the
user has consumed at least all the entitled resources

15Not necessarily fastest turn-around, though, since the
MUSE factor does not indicate the performance capability of
a machine.

15

and the system will give other users with non-zero
MUSE factors a higher priority. The numeric value
of a MUSE factor is meaningful with respect to the
MUSE factors of other users on either the same or
different machines.

In Figure 10 the line labeled Usage shows the
cumulative resources consumed by fictitious user r.
This is shown only to describe the way the user con-
sumed resources over time. The line labeled De-
cayed usage is calculated by MUSE and is the effec-
tive usage, modified by the decay factor, that char-
acterizes this user with respect to the user’s enti-
tlement. The MUSE factor M for user r (labeled
MUSE factor in Figure 10) is

2
_ &

M, (2)

=
where e, 1s the user’s normalized entitlement and wu,
is the user’s normalized decayed usage. The MUSE
factor 1s clipped at 1.0 since values higher than that
decay very rapidly with small amounts of usage.

An interface is provided to PScheD which takes as
input a list of one or more UIDs (or ACIDs if running
share-by-account) and returns the associated muse
factors. For example, if a service provider wanted to
know the current MUSE factors for IDs 111, 2345 and
6789 1t would compose a MUSE factor request with
the string “111 2345 6789” and the system could
respond “111=0.0022 2345=0.1577 6789=0.0399”.
The values change over time so the service provider
must refresh its notion of the MUSE factors of active
IDs from time to time.

Other features also acquire the MUSE factors to
order gang scheduling and load balancing candidates
in cases where entitlement is a factor in their decision.

7 Does Migration Improve Per-
formance?

The requirement that applications occupy consecu-
tive logical PEs has often been mentioned as a factor
which could limit the utilization of the CRAY T3E.
This 1s certainly intuitive and has been seen to occur,
especially on small machines, with some frequency.

16

The Load Balancer attempts to reduce fragmenta-
tion by removing unoccupied gaps between applica-
tions. The result of this process is to make larger
contiguous spaces in which to allocate new work. To
test whether migration was an effective way to im-
prove PE utilization in the CRAY T3E, we devel-
oped a workload for a machine with 128 application
PEs that we could run both on the Load Balancing
Simulator and the hardware. The results reported
below are from the Load Balancing simulator. The
configuration was set to run one application per PE.

A workload consisting of an unlimited source of
applications is introduce into the system. About 100
of them are either active or queued for initiation at
one time. We wanted a large backlog in order to give
GRM sufficient choice in its ability to fill the machine.
The parameters of each application are taken in turn
from a list of seven sizes ranging from 25 to 128 PEs
and another list of 19 execution times ranging from
180 to 1260 seconds. The test is run until the average
PE utilization value stabilizes.

Figure 11 shows that with this workload, the av-
erage PE utilization with migration active stabilizes
at about 122 PEs while without migration the sta-
ble level of utilization is about 115 PEs. This means
that migration delivered about seven more PEs to the
users or about five percent more machine power. Fig-
ure 12 shows PE usage at each measurement interval.
This graph is quite busy but it does show that with-
out migration the number of PEs in use varies over
the range 90 to 122 while with migration utilization
varies only between 115 and 123. In both figures the
time scale 1s the percentage of the run period.

8 Summary

PScheD has been conceived to support solutions for
the general administrative needs of large CRAY T3E
systems and future machines. As of this writing, the
feature is powerful enough to support the require-
ments of system scheduling. Special system enhance-
ments to support political scheduling are minimal.
This was a primary goal since we did not want to re-
quire complex kernel assistance as this makes future
system development more difficult to design, imple-

1.0

0.8

0.6

Normalized
scale

04 Usage - - - —
: . Decayed usage - -- -
MUSE factor —

02F X -

0.0 1 | | et
0 5 10 15 20 25

Time (arbitrary units)

Figure 10: The MUSE Factor

123 \ |

g% B Migration On — _|

. Migration Off « - - |
Number %%8 _ igration

116 — - sorrem e R —]
115 | : | | |
0 20 40 60 80 100

Time

Figure 11: Average PE Utilization

125
1200 2\ f
15 F e T D s L
Number 110 . . _
of PEs 105 - i - - - i - - -
100 - Migratipn Onl — = \ : : " : _
95 - Migration Offf - - - -« " _
% o o P : : 3 :
0 20 40 60 80 100

Time

Figure 12: PE Utilization

17

ment and test. Unicos/mk will run without PScheD,
but not with the same degree of hardware utilization
and administrative control as when it is present.

It has not been feasible to describe all of the fea-
tures of PScheD in detail, especially those capabili-
ties intended to provide insight into what decisions
are being made, within the scope of this paper, but
we trust enough detail has been provided to commu-
nicate the flavor of our design.

PScheD is an evolving tool intended to support
current as well as anticipated future hardware and
system advances. The flexibility of feature manage-
ment and configuration means additional capabilities
can be added without the need to rewrite the ex-
isting features. It is also easy to remove unwanted
feature bindings when PScheD is configured so only
the features needed to handle the present needs of
an installation are active. For example, if only Gang
Scheduling is needed, other features such as MUSE
or Load Balancing can remain unbound and inactive.
Features which are initially unbound may at any time
be bound if their configuration information has been
set up.

CRAY T3E and UNICOS are trademarks of Cray
Research. DECchip is a trademark of Digital
Equipment Corporation.

We wish to acknowledge the many people who helped
to review and critique this work. Comments from
the referees were very helpful. Even with the best
scrutiny, errors will creep into any work. The authors
assume responsibility for all misleading or incorrect
content.

18

