
PScheDPolitical Scheduling on the CRAY T3ERichard N. Lagerstrom�Cray Research Stephan K. GippyCray ResearchzAbstractLarge parallel processing environments present seri-ous administrative challenges if high utilization of theavailable resources is a goal. In many cases there isalso the need to support critical or time-dependent ap-plications at the same time as development and rou-tine production work is going on.This paper describes the components that help real-ize the Political Scheduling goals of the CRAY T3Esystem. The meaning of Political Scheduling is de-�ned, we present a general overview of the Cray T3Ehardware and operating system and describe the cur-rent implementation of the Political Scheduling fea-ture of Unicos/mk.1 IntroductionWhat do we mean by the term Political Scheduling?In a presentation one of us stated that it was \irra-tional" scheduling as opposed to \technical" schedul-ing. What we mean is that there are scheduling goalsnot easily described in terms of machine utilizationor performance, but rather by organizational or eco-nomic requirements. This sort of requirement oftencannot be well handled by classical scheduling mech-anisms, especially if they try to support a very wideclass of users and a complex environment at the sametime.�E-mail rnl@cray.com, Fax 612.683.5599yE-mail skg@cray.com, Fax 612.683.5599zA Silicon Graphics Company, 655 Lone Oak Drive,Eagan MN 55121. E-mail crayinfo@cray.com, URLhttp://www.cray.com

Application

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

Command

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

OS

���
���
���

���
���
���

���
���
���

���
���
���Figure 1: A Small CRAY T3EA brief description of the CRAYT3E hardware andoperating system will be followed by a discussion ofthe features of the Political Scheduler, con�guration,and operational characteristics.1.1 The CRAY T3E HardwareFigure 1 shows a CRAY T3E with application, com-mand and operating system processing elements.CRAY T3E scalable parallel systems use the DEC-chip 21164 (DEC Alpha EV5) from Digital Equip-ment Corporation. This reduced instruction set com-puting (RISC) microprocessor is cache-based, haspipelined functional units, issues multiple instruc-tions per cycle, and supports IEEE standard 32-bitand 64-bit
oating-point arithmetic. CRAY T3Eprocessing elements (PEs) include the DEC Al-pha microprocessor, local memory, and performance-accelerating control logic.1

Each PE has its own local DRAM memory with acapacity from 64 Mbytes to 2 Gbytes. A shared, highperformance memory subsystem makes these memo-ries accessible to every PE in a CRAY T3E system.PEs are connected by a bidirectional 3-D torus in-terconnect network. I/O channels are integrated intothe 3-D torus and increase in number with systemsize.CRAY T3E systems are available with from 16 to2048 user1 PEs. Air cooled models range in size from16 to 128 user PEs, while liquid cooled models have64 to 2048 user PEs.1.2 The Unicos/mk Operating Sys-temUnicos/mk is a scalable version of the CRAY UNI-COS operating system and is distributed among thePEs, not replicated on each. Despite having the oper-ating system distributed among the PEs, Unicos/mkprovides a global view of the computing environment{ a single-system image { that allows system admin-istrators to manage a system wide suite of resourcesas a single entity.Figure 2 shows the general organization of the op-erating system in each PE.A number of servers provide the functionalityneeded to support the system. In this paper we willdiscuss only the Global Resource Manager (GRM),the operating system server that allocates applica-tions to PEs and manages global resources such asbarrier context register assignment, barrier networkrouting and Global Memory Segment register alloca-tion. Features of the Political Scheduler work withGRM to accomplish the scheduling goals set by theadministrator.1.3 The Global Resource ManagerAll user PEs have the capability of running single-PE processes, named commands, or multiple-PE en-tities, named applications. Command PEs run shells,1Additional PEs may be present to support operating sys-tem needs.

daemons and other familiar Unix processes. All sys-tems must have some number of Command and Op-erating System PEs 2 con�gured as the Commandand OS regions while the remaining PEs are con�g-ured into one or more application regions in whichapplications execute.Figure 3 shows a con�guration with large and smallapplication regions, a command region and some OSPEs. (Typically a recommend maximum of one ortwo application regions will be con�gured althoughspecial circumstances could make more regions use-ful.) Regions are made up of a number of PEs withconsecutive logical PE numbers. These numbers (in-tegers in the range 0 � � �machinesize�1) are assignedwhen the machine is booted and are mapped to PEtorus coordinates in a way to provide good physi-cal proximity within the machine. Not every PE canbe \next" to every other, so mapping is a compro-mise between the physical relationship of the PEs andtheir logical numbering. Each application must beassigned to a range of PEs having consecutive logicalPE numbers.In the command region GRM assigns each processto a PE having attributes compatible with those ofthe user3 while at the same time attempting a degreeof load balancing. A command will execute to com-pletion in the same PE unless it is moved through aprocess known as migration4.Application regions may be con�gured to acceptapplications with only certain attributes. Some ofthe region attributes are User ID, Group ID, AccountID, Service Provider Type5, size of the application,and some others.It is the responsibility of GRM to match the at-tributes of an application requesting service with re-gions which will both allow it to run and have freeresources with which to run it. GRM is not capa-ble of very sophisticated scheduling since it is awareonly of the running load and the immediate launch2The number is determined by the size of the machine andthe type of workload.3Generally, the command region has no restrictiveattributes.4Migration is managed by the political scheduler.5Batch and interactive job initiators, for example, have dif-ferent service provider types.2

����
����
����

����
����
����

The GRM server

Microkernel

User space

Unicos/mk serversFigure 2: Unicos/mk
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

Large Apps.

Small A
pps.

Command

OS

Figure 3: An Example CRAY T3E GRM Con�guration3

request backlog. Such information as batch queuebacklog and the relative priorities of jobs waiting inthe backlog are invisible to it. The Political Sched-uler, however, does have access to that informationand will direct GRM to do the \right" thing or takeaction to \�x" PE allocation problems as they arise.The �nal major task of GRM is to manage the Bar-rier Context Registers, construct barrier routing treesand initialize the barrier routing registers when appli-cations are started and manage the Global MemoryDescriptors each application uses.2 An Introduction to PoliticalSchedulingThe term feature is used in this paper to genericallyinclude all of the di�erent decision making compo-nents. Most features will be described separately.High-level scheduling as de�ned in this paperis based on the concept of scheduling domains.Each scheduling domain represents a portion of theCRAY T3E that is managed by a common set ofscheduling rules. Scheduling domains will be morefully described later in Section 2.2.The Political Scheduler (PS) is implemented as adaemon which runs on one of the command PEs.There are a few special low-level system \hooks" tocontrol such things as time slice width and to sendspecial commands to GRM, but the remainder of theoperating system interfaces are normal to Unicos/mk.An information server exists in the kernel for generaluse and this capability is heavily used by the variousfeatures of PS to collect system-wide information. Asseen in Figure 4 PS is organized into the followingmajor modules:Object Manager Provides an information reposi-tory for con�guration objects and other data.Communication among the components andwith the outside world is centered here. Dataobjects consist of fundamental types such as in-tegers and strings as well as more complex ob-jects de�ned as needed. A hierarchical namingconvention similar to names of directories and�les in a �le system is used. For example, an

object used to specify the name of the global log�le could be named /PScheD/logFile. This is astring object containing the name of the log �le.Command Interface This component implementsan RPC interface used by administrative com-mands through which con�guration, viewing andmanipulation of the data controlled by the Ob-ject Manager. Other uses by various service dae-mons is also supported.Feature Manager Each component registers itselfso its bind, verify, action and exception functionsare known to the feature manager. The meaningof these functions will be discussed below.The remaining items are the features of PS thatimplement Political Scheduling.Gang Scheduler Application CPU and memoryresidency control is provided by this feature.Load Balancer Measurements of how well pro-cesses and applications are being serviced in eachscheduling domain are made and acted upon bythis feature. Moving commands and applicationsamong eligible PEs in each domain is managedhere.MUSE A fair-share like capability is implementedby the Multilayered User-fair Scheduling Envi-ronment.Resource Manager This is somewhat misnamedfor historical reasons, but is the place where in-formation about resource usage within the ma-chine is collected, analyzed and formed for bothinternal and external uses. The Object Manageris used to make this information available in auniform way to service providers such as NQSor NQE.Unfortunately, the deadline makes a detailed de-scription of this feature impossible.Site Supplied Scheduling Features Each featurehas an RPC interface allowing connection to asite-written program that can change the deci-sions made by the standard feature. To connect4

Load balancer

Gang sched.

MUSE

Resource mgr.

O
b

je
c
t M

a
n

a
g

e
r

C
o

m
m

a
n

d
 R

P
C

psmgr
command

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

Site supplied

Feature Mgr.Figure 4: The PScheD Daemon
5

a feature to an external assistant, the RPC ad-dress of the assistant is made known to the fea-ture through the con�guration interface.2.1 Scaling and Feature DesignThe design of almost every feature of PScheD mustdeal with the scaling issue in some way. The samesoftware is expected to run on machines of all sizessince special software con�gurations based on ma-chine size will become a testing, maintenance anddevelopment nightmare if they are allowed to prolif-erate unchecked.Another painfully discovered truth is that it is dif-�cult to precisely control this class of machine withglobal controlling software. All of the features ofPScheD are designed to guide the micro kernel towarddelivering a desired global machine utilization goal.Since each micro kernel has a unique environment,the global managers must expect neither immediatenor full compliance with their requests in every case.This means that all management software must con-stantly analyze system information and adjust con-trolling parameters accordingly. Another issue arisessince events at the PE level happen at much fasterrates than the global controllers can monitor6. Of-ten by the time information has traveled to a globalmanager and it takes some action, events have movedon and conditions are di�erent.All of these issues taught us that traditional kerneldesigns which expect to control every aspect of everyevent in a central place will not generally succeed.A di�erent way of approaching these control require-ments is needed, and some time must be spent simplyto understand the environment and become comfort-able with the range of control that it is reasonable tobe able to maintain. A fairly strict expectation thatthe controllers will not consume a signi�cant amountof network bandwidth and CPU resources is implicit.2.2 Scheduling DomainsIn earlier CRAY Parallel-Vector Processor (PVP)systems a high-level scheduler named the Uni�ed Re-6An early attempt to globallymanagememory dramaticallyclari�ed this issue.

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Small application domain

Command domain

Large application domainFigure 5: Domainssource Manager (URM) analyzed system load infor-mation and resource usage. An interface to majorservice providers such as the Network Queuing Sys-tem (NQS) existed to make the work backlog visi-ble. Knowing the work backlog and with informa-tion about current machine activity acquired fromthe system, URM would compile recommendationlists from the backlog to suggest the order in whichjobs should be initiated and send these lists to theregistered service providers. The service providersperform the task of job initiation. Early design ap-proaches to Unicos/mk recommended simply movingURM to Unicos/mk.Deeper consideration of the implications of this rec-ommendation led to the conclusion that the schedul-ing issues raised by the nature of the CRAY T3Ewere not similar enough to those of the PVP ma-chines for URM to be useful. The fundamental
awin the design of URM if simply made to work on theCRAY T3E is the idea that the machine is a uniformprovider of computing resources. The CRAY T3Eintrinsically divides into two very di�erent domains.The command region can be looked upon as a num-6

ber of separate single-CPU machines which must bemanaged so their workloads are fairly equal. Thegreater part7 of the CRAY T3E is used to run multi-PE applications. The scheduling issues in this regioninvolve making sure applications reside in memoryand are given CPU resources at the same time, espe-cially if they have �ne-grain synchronization. It turnsout that the URM on UNICOS can be considered aspecial, simpli�ed case of Political Scheduling.From a machine utilization point of view, the goalsare to minimize fragmentation of PE allocation whilereducing swapping and migration to a minimum.Even rough estimates result in very discouraging pro-jected utilization levels if hundreds of large pieces ofapplication memory must be transferred to and fromswap space on a context switch.Two regions8 are present by default but user re-quirements often cause the administrator to dividethe application region into two parts (see Figure 5),splitting it into a work region and a smaller regionintended for development and testing. In the devel-opment region, test applications need few PEs andnormally execute for short periods of time. Develop-ers also may be using debugging tools so they wanttheir applications to execute often, even if they arebeing gang scheduled. This behavior is di�erent fromthat desired when running production work wherelong time slices improve system utilization.To make these di�erent scheduling approaches pos-sible, the Political Scheduler is con�gured to have aninstantiation of its scheduling features for each re-gion. Each instantiation is independent of the othersso time slices and PE loading can be tailored to thedemands of each region. From the point of view ofthe administrator, the Political Scheduler behaves asthough a number of separate schedulers were present.Appropriate scheduling rules are created, each witha separate domain name. The domains are bound tothe scheduling features with a bind directive. Fig-ure 4 shows a single instance of each feature, butimagine that there is a \depth" dimension to eachfeature where di�erent instantiations can exist. Ofcourse, some features may need no more than a global7The design assumption is that the machine is to be usedmore for multi-PE applications than single-PE work.8A command region and a single application region.

view of the entire machine. In these cases the depthis one.2.2.1 So why name them Domains?Each feature has some sanity-checking capability tohelp assure a reasonable relationship between thescheduling domains and the regions known to GRM.Early releases will not automatically keep the Po-litical Scheduler and GRM synchronized, but futurecon�guration tools are planned to integrate the con-�guration of both subsystems.A PS domain and a GRM region must now, andprobably always will, agree in size and location. Dur-ing the design of PS it was thought important to rec-ognize the di�erence between the GRM con�gurationand that of PS. In retrospect, it seems that havingthe two names results in more confusion than clarity.Save us from our cleverness!3 The Feature ManagerThe Feature Manager implements the internal exe-cution control functions of the daemon. The daemonis single-threaded since at the time it was developed,multi-threading support for user-level processes wasnot available in Unicos/mk.When execution begins, each feature registers itsbind function with the Feature Manager. This func-tion is called when a bind directive is received at theCommand Interface. Binding associates a node in theObject Tree with the feature also named on the binddirective. The portion of the Object Tree below thenamed node typically contains the con�guration pa-rameters for this instance of the feature. The rangeof PEs making up the domain is generally a part ofcon�guring a feature.The speci�c binding function in the named featureinstantiates an instance of the feature for this domainand will register an action function. The FeatureManager saves the pointer to the action function andan associated parameter pointer in a list of registeredactions for the feature. An optional exception func-tion may also be registered at this time. The sameparameter pointer as that for the associated action7

function is assumed.A verify function may also be registered. Verify iscalled by the feature manager when a verify directiveis received. Verify is usually used by the adminis-trator to make sure a changed or new con�gurationinstance is acceptable to the feature.On each cycle of the Feature Manager each of theregistered action functions for each feature will becalled with the indicated parameter pointer. The pa-rameter is typically a this pointer to an instance ofthe feature class and establishes the environment ofthe feature for this speci�c domain. The cycle of callsto the action functions continues while the daemon isactive.Some features must perform cleanup or other tran-sition activity when the daemon is terminated. Theexception functions will be called when the daemonreceives a shutdown directive or catches one of a setof registered signals. The daemon executes all of theexception functions before it terminates.4 The Gang SchedulerOn the CRAYT3E Gang Scheduling is used to assurethat in each PE assigned to an application, the ex-ecution thread of that application runs at the sametime. Applications with �ne-grain synchronizationusing the hardware barrier network require this ser-vice if they are to have reasonable performance. TheGang Scheduling feature of the Political Scheduleris designed to deliver the required scheduling behav-ior without imposing a high synchronization overheadcost. Achieving low overhead meant that methods re-quiring the CPU schedulers in each PE to have knowl-edge of each other were unacceptable.Gang scheduling works in the CRAY T3E with asmall amount of kernel support while the major partof the feature resides in the PScheD daemon. Kernelsupport consists of setting aside a range of prioritiesnamed gang priorities, making the thread schedulerand memory manager in each kernel aware of thesepriorities and enhancing an existing system call9 toallow the Gang Scheduling feature of PScheD to com-municate with the kernel. Brie
y, the daemon picks9The policy() system call.

an application and consequently the thread whichwill become the gang thread in each PE of its domainand broadcasts that information to the appropriatekernels. The kernels adjust their thread priorities asdirected and schedule the threads as those prioritiesdictate. Since gang priorities are higher than anyother user priority, the selected application executesas though it were dedicated.The memory manager also knows the gang prior-ities so it takes the necessary action to make surethe memory segments belonging to that applicationremain resident in memory. When it becomes neces-sary to swap out memory belonging to an application,all of the PEs on which that application resides areinformed to stop remote memory accesses from be-ing issued. All remote memory accesses that are inprogress at the time a memory swap begins will becompleted.A practical side-e�ect of this design is that, if theapplication which has gang priority for some rea-son gives up the CPU, the kernel will allow anotherthread to execute providing it can �nd one to run.When multiple applications are competing for thesame CPU, the Gang Scheduler rotates them throughthe gang priorities on a con�gured time slice. Appli-cations which have less than maximum gang prioritystill enjoy an enhanced priority so they will executein priority order if the CPU becomes free.In Figure 6 four applications share a domain of12 PEs. The slots are intervals of time speci�ed bythe con�guration of the domain. In Slot 1 Applica-tion A occupying PEs 0-5 and Application B occupy-ing PEs 6-11 run, in Slot 2 Application C occupyingPEs 3-8 runs and in Slot 3 Application A and Ap-plication D occupying PEs 6-11 run. Application Aruns twice in three slot periods while the other appli-cations run once.Application placement greatly in
uences how ofteneach application runs, so the Gang Scheduler and theApplication Load Balancer (see Section 5.2 and Fig-ure 9) cooperate to reduce the depth of the gangs.A smaller depth means each application runs moreoften.Each domain of Gang Scheduling is con�gured sep-arately making it possible to provide long slot peri-ods for domains running large batch applications and8

��������
��������
��������
��������

��������
��������
��������
��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������

���������
���������
���������

��������
��������
��������
��������

��������
��������
��������
��������

PE Numbers

0 1 2 3 4 5 6 7 8 9 10 11

Application A Application B

Application C

Application D

Slot 1

Slot 2

Slot 3 Figure 6: A Domain With Four Applicationsshort slot periods for domains running smaller inter-active applications. Thus, the amount of overheadneeded to manage the gangs and their time slices canbe controlled by the administrator to suite the needsof the users. Domains which are con�gured to allowonly one application to be assigned to a PE at oncehave no need for supervision by the Gang Scheduler.In these domains the Gang Scheduler feature is sim-ply not bound and so does not execute.4.1 Controlling a Gang SchedulingDomainEach domain has these con�guration attributes.Heartbeat: The gang time slice center point in sec-onds.Partial: If true, applications not currently assignedto the prime gang will execute; if false, non-prime gangs will not consume CPU time evenif the prime gang is idle.Variation: A
oating point number n, n � 1:0, thatHeartbeat is multiplied or divided by to e�ectthe MUSE factor when MUSE is active in thedomain.

5 The Load BalancerLoad balancing is done in order to maximize overallsystem utilization. The three steps to load balancingare:� Filter the processes into eligible and ineligiblegroups,� classify the eligible processes, and� balance the processes by migrating them.The balancing process is identical for both appli-cation and command domains, but the details of howcandidates are picked and the evaluation of the costof migration are di�erent. Command balancing willbe described �rst to lay the basis for the additionalwork needed to properly balance the application do-main.5.1 Load Balancing a Command Do-mainThe classi�cation stage involves comparing the can-didates10 in the domain. This is done by generat-ing a Classi�cation Score, C, of each candidate, p.10See Section 5.1.19

�������������
�������������
�������������

�������������
�������������
�������������

���������
���������
���������
���������

��������
��������
��������
��������

����
����
����

����
����
����

���
���
���

���
���
���

�������������
�������������
�������������
�������������

����
����
����
����

���
���
���

���
���
���

���������
���������
���������
���������

��������
��������
��������
��������

�������������
�������������
�������������
�������������

��������
��������
��������
��������

����
����
����
����

���������
���������
���������

���������
���������
���������

���
���
���
���

���
���
���
���

�������������
�������������
�������������

�������������
�������������
�������������

��������
��������
��������

��������
��������
��������

���������
���������
���������
���������

���
���
���

���
���
���

����
����
����
����

P1

P2

P3

P4

P5

Best balance

Actual balance

Lowest cost

PE1

PE2

PE1

PE2

PE1

PE2

Score

Figure 7: Load Balancing the Command Region
10

In order to properly compare resource consumptionlevels among the candidates, each is assigned a nor-malized entitlement11, (E), memory, (M), and CPU,(U), classi�cation score component. The administra-tor will have con�gured each domain with the desiredevaluation weights for these factors. The factors areentitlement weight, We, memory weight, Wm, andusage weight, Wu. The W factors are assigned12 bythe administrator through the con�guration interfaceand the values are assumed to range between zero andone. The classi�cation score of each candidate, Cp,is determined by evaluatingCp = WeEp +WmMp +WuUp (1)The list of candidates is ordered by decreasing nu-merical value of Cp as shown in the top portion ofFigure 7, P1 . . .P5. This list is then used to createan ideal balance given the weights and the numberof PEs available. This is shown in the same Figurelabeled Best balance. If the cost of migrating the can-didates was not a consideration, this would be the endof the evaluation process. In reality, though, the idealbalance is usually a poor choice since many of the can-didates would have to be moved and the overhead todo this could be unacceptably high. As a compromiseto lower migration cost, only candidates which wouldmost e�ectively improve overall load balance will bemoved. This is shown in Figure 7 next to the labelLowest cost.In this example, candidate P4 was the only one mi-grated while the ideal balance would have migratedboth P3 and P4. Of course, in actual systems, thenumber of candidates would be much greater and thenumber of choices increase dramatically. Poor choicescan result in high overhead cost, perhaps withoutmuch improvement in utilization.There are many other considerations with impor-tant consequences to an e�ective solution to domainload balancing. Constraints must be established toprevent trying continually to \�ne tune" the load.Undesired �ne tuning occurs when an evaluation cy-cle decides the results of a prior cycle were not \best"11See MUSE, Section 612The three factors are quite di�erent so typically only oneof them has a dominant weight.

and so proceeds to rearrange candidates. A way todeal with this potential instability is to keep track ofthe time a candidate was migrated and leave it aloneuntil a con�gured time period elapses. In some casesthis will allow the candidate to terminate and so re-move itself and its load from the system. Anotherstrategy is to set the evaluation frequency with theheartbeat rate to a value suitable to the type of workbeing done in the domain. It is not productive todeal with short-lived processes. It is more e�cientto allow them to �nish where they are. Filtering un-desired candidates from consideration is described inSection 5.1.1.If many migration actions were initiated in a shorttime period, a nasty problem involving the order inwhich candidates are migrated could arise. It is pos-sible to induce a cascade of ultimately useless swapactivity as PEs try to accommodate what to them istemporarily increased memory usage when a processis migrated to a PE while some candidate, present butdestined to be migrated elsewhere, still consumes lo-cal resources 13. There is no way to completely elim-inate this side-e�ect of migration but care in choos-ing migration order could mitigate it. Such analy-sis would be complex, constantly controversial and acon�guration headache so the load balancer avoids itby migrating no more than one candidate per cycle.The command domain load balancer has the con-�guration controls listed below. Recall that an in-stance of the load balancer sees only its own domain.� Minimum candidate CPU usage� Minimum time before a migrated candidate willbe reconsidered� Frequency of evaluation� Minimum candidate memory size� Lower bound of candidate User IDs (This can beused to exempt system or maintenance processesfrom consideration.)� Entitlement weight13This could have devastating consequenceswith large multi-PE applications11

� CPU usage weight� Memory usage weightIt is possible that other controls will be necessaryas experience with the actual environments in whichthe evaluator must be e�ective grows.5.1.1 Filtering Evaluation CandidatesThe measurement of consumption rates, especially inthe command region, can be very noisy since short-lived processes and the uneven resource consumptionof many processes can lead to misleading evaluationscores. The �lters are con�gured with the minimumCPU usage and minimummemory size to help mod-erate the e�ects of short-term process behavior on theevaluation of migration candidates. The minimumUID factor is intended to exempt system processesand other special users from consideration.5.2 Load Balancing an ApplicationDomainBalancing an application domain is a somewhat morecomplex issue than that of a command domain. Theobjectives of application load balancing are to� minimize swapping,� minimize migration cost,� do expensive migrations only when needed,� minimize the number of gangs, and� maximize contiguously allocated PEs per gang.Unicos/mk imposes the requirement that all PEsallocated to an application have contiguous logicalPE numbers. The location of an application is speci-�ed by its base PE number and its size (in number ofPEs). This can lead to situations where occupied PEsare scattered throughout a region in such a way thatno application waiting to be allocated can be �t intoany contiguous span of available PEs. Fragmentationof this kind lowers the utilization of the machine byleaving portions of it e�ectively unavailable.

In Figure 8 a fragmented domain of PEs has de-veloped. The load balancer will have recognized this,but will take no action unless the fragmentation iscausing some application to wait for initiation. Fur-ther, the load balancer must be able to make spaceavailable in su�cient quantity to allow at least one ofthe waiting applications to be accommodated beforeit will initiate migration.Assuming that the cost considerations have beensatis�ed, migration will increase the size of contigu-ous free space by pushing applications right or left inthe domain to squeeze out allocation holes, startingwith the lowest cost migration that increases the spanof available PEs. As with command balancing, thisis done one application at a time. Figure 8 showsthe migration steps (Step 1 and Step 2) as the ap-plications are moved into contiguous ranges. At thesame time this is going on, GRM will be reevaluatingits waiting applications. As soon as space becomesavailable, GRMwill initiate whatever it can. Becauseof this competition between GRM and the Load Bal-ancer, it is necessary to completely reevaluate thedomain on every cycle.The gang balancing goals apply only when a do-main is con�gured to allowmore than one applicationto be assigned at once to the PEs. This decision ismade by the administrator based on typical applica-tion sizes and behavior and the performance demandsof the computing environment. From the standpointof throughput of an application, sharing PEs simplymeans it will take longer for each application to com-plete. Gangs are more fully described in Section 4.Two of the load balancing goals deal with the num-ber of gangs in a domain. This refers to how manyapplications share the same PEs in a domain. Re-ducing this number improves the performance of eachapplication and makes better use of the resources ofeach PE. Figure 9 shows the steps needed to fullyutilize a domain and reduce the number of gangs.6 MUSEThe Multi layered User-fair Scheduling Environment(MUSE) feature implements a scheduling strategysimilar to the well known Fair-Share Scheduler as im-12

�����
�����
�����
�����

��
��
��
��

����
����
����
����

�����
�����
�����
�����

��
��
��
��

�����
�����
�����
�����

��
��
��
��

��������
��������
��������
��������

����
����
����
����

��������
��������
��������
��������

�
�
�
�

���
���
���
���
���

���
���
���
���
���

�������������������� ��������������������
 Domain

Step 1

Step 2 Figure 8: Migrating Parallel Applications
��

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������

���������
���������
���������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

 Domain

Step 1

Step 2 Figure 9: Balancing Gangs of Applications13

plemented on systems such as UNICOS. In contrastto those implementations, MUSE and its integrationwith the concept of scheduling domains allows forbetter scaling to large CRAYT3E environments. TheCRAY T3E presents many challenges to a useful im-plementation of fair-share scheduling strategies. The�rst challenge is of scaling, the second of determin-ing exactly what an entitlement means under thesecircumstances.6.1 MUSE EntitlementEvery user or account is assigned an entitlement bythe administrator. A user's entitlement is the propor-tion of the machine resource (in this implementation,CPU time) that user should be given in competitionwith other active users. MUSE determines, based onthe load and usage history, what priority each usershould be given in order to reach the entitlement goal.6.2 An Outline of MUSEAs in UNICOS, a global representation of the entitle-ment tree is maintained in the User Database (UDB).Because of this, a global instantiation of MUSE ex-ists to collect resource consumption information de-livered by each of the MUSE domains into the globaldomain, the UDB. The administrator's view is thatof a single-system image even though there may bemany domains controlling resources being consumedat vastly di�ering rates.When the MUSE UDB domain is bound, a globalentitlement representation is created as the sourceof the information needed by the controlling MUSEdomains. The UDB domain neither adjusts PE pa-rameters nor collects usage information from the PEs.The controlling domains do that work. Usage infor-mation �lters up to the global UDB domain from thecontrolling domains and from there is generally dis-tributed.In the typical minimum case two controlling do-mains are bound. The �rst domain is that of the com-mand PEs which run ordinary Unicos/mk processes,while the second domain is responsible for multi-PEapplications. Each controlling domain maintains a

virtual entitlement tree private to the domain, hav-ing the same structure as that of the global tree. Thevirtual tree, however, includes only the resource con-sumers that populate that domain. Domain usage ispropagated to the global domain at a con�gured rate,and the global domain distributes new consumptioninformation to interested controlling domains.Every PE has a Process Manager (PM) responsiblefor handling work assigned to the PE. When a pro-cess is assigned to a PE, the responsible controllingdomain creates a controlling node within the PM forthe user14. PM uses the nodes to adjust local priori-ties based on e�ective entitlement and collects usageinformation in the nodes for harvesting by the con-trolling domain for global dissemination.A PM has no global view of a user's activity, work-ing only with resources locally consumed. The con-trolling domain periodically assesses both global us-age and overall domain usage and, when necessary,adjusts PE entitlements.6.3 MUSE Domain Con�gurationThe con�guration parameters provide a good viewof the MUSE feature. Each domain (including theglobal domain) has its own set of con�guration pa-rameters. A certain degree of con�guration consis-tency among the domainsmust be assumed since eachdomain should be working toward more or less uni-form goals. Certain domainsmay intentionally be ex-cluded from some of the general rules to provide fordedicated applications or other special needs. Sanitychecking software examines individual domain con-�gurations and reports unexpected or contradictoryrules. Such mistakes as con�guring more than onedomain to include the same PE are strictly prohib-ited, but many seemingly inconsistent rules may beintentional and necessary. The administrator mustact, based on this analysis and the established per-formance goals, to make any needed con�guration ad-justments.Heartbeat: How often (in seconds) the MUSEscheduling feature is executed for the domain.14Either share-by-UID or share-by-account may be selected.Share-by-UID is assumed here.14

Decay: The decay rate (in seconds) of accumulatedusage. This discards historical usage over time.IdleThreshold: The percentage of entitled usagebelow which a resource consumer is consideredidle. Being considered idle means� the priority of the associated process is setto the non-MUSE priority of 100 and� the entitlement and usage of the resourceconsumer are no longer considered in anyglobal calculation. Thus, the scheduler be-haves as if the idle resource consumer is notactive in this domain. This e�ectively con-trols redistribution of usage.ShareByACID: If true, the domain is controlled bythe user's account ID; if false, the domain is con-trolled by the user's UID.NodeDecay: How long (in seconds) resource con-sumer usage information is kept on the samelevels of the system as information about activeresource consumers.UdbHeartbeat: How often (in seconds) the domainsynchronizes its usage information with theglobal UDB domain. This makes usage informa-tion visible to other domains and controls howoften usage accumulated in other domains be-comes visible to this domain.OsHeartbeat: The frequency (in seconds) that theoperating system should accumulate usage andadjust the priorities of running processes or ap-plications.OsActive: If true, the system actively enforces as-signed entitlements by adjusting priorities; iffalse, the system accumulates usage but does notadjust priorities.6.4 The MUSE FactorService providers such as NQS/NQE need informa-tion from a system to help order the backlog andinitiate jobs which are most likely to run. It is harm-ful to system performance when many jobs belonging

to users with little e�ective entitlement are broughtinto the system and compete for resources with usersof high entitlement. These jobs generally end upswapped after some small initial activity and stay in-active until system workload drops to a point wherethe job is eligible for system resources. Users andadministrators would also like to have a simple wayto determine how well a given user might have jobsserviced at a certain time.In UNICOS systems, NQS had an elaborate en-titlement analysis capability that mimicked that ofthe fair-share component in the kernel. The result ofthis analysis was a rank that had meaning when com-pared with the ranks of other users. This helped NQSdecide which jobs to initiate. Although this analysisworked well, it was complex and required tinkering asthe underlying operating system evolved. The in
u-ence of small analysis errors can be subtle and not atall apparent in every environment. Thus, it was notalways obvious whether the entitlement assessmentconformed with that of the host system.When PScheD was in its early design stages, theNQS/NQE developers lobbied strenuously for an in-terface to the system which would provide an exter-nally useful entitlement assessment upon request. Itwas becoming clear that writing an external analyzersimilar to that used with UNICOS would be a di�cultjob for Unicos/mk because of its much more complexorganization and non-uniform service regions. TheMUSE factor was created to �ll this need.The MUSE factor is a machine-independent mea-sure of a user's e�ective entitlement. This means aservice provider can compare the MUSE factors ofcompeting users and decide how to rank them for asingle machine as well as determine which of a num-ber of machines able to process the job would o�erthe best service15.Figure 10 demonstrates the MUSE factor for a par-ticular user and hows how it represents a user's ef-fective entitlement. A MUSE factor of 1.0 means theuser could consume all the resources of the machinefor some period. A MUSE factor of 0.0 means theuser has consumed at least all the entitled resources15Not necessarily fastest turn-around, though, since theMUSE factor does not indicate the performance capability ofa machine.15

and the system will give other users with non-zeroMUSE factors a higher priority. The numeric valueof a MUSE factor is meaningful with respect to theMUSE factors of other users on either the same ordi�erent machines.In Figure 10 the line labeled Usage shows thecumulative resources consumed by �ctitious user r.This is shown only to describe the way the user con-sumed resources over time. The line labeled De-cayed usage is calculated by MUSE and is the e�ec-tive usage, modi�ed by the decay factor, that char-acterizes this user with respect to the user's enti-tlement. The MUSE factor M for user r (labeledMUSE factor in Figure 10) isMr = e2rur (2)where er is the user's normalized entitlement and uris the user's normalized decayed usage. The MUSEfactor is clipped at 1.0 since values higher than thatdecay very rapidly with small amounts of usage.An interface is provided to PScheD which takes asinput a list of one or more UIDs (or ACIDs if runningshare-by-account) and returns the associated musefactors. For example, if a service provider wanted toknow the current MUSE factors for IDs 111, 2345 and6789 it would compose a MUSE factor request withthe string \111 2345 6789" and the system couldrespond \111=0.0022 2345=0.1577 6789=0.0399".The values change over time so the service providermust refresh its notion of the MUSE factors of activeIDs from time to time.Other features also acquire the MUSE factors toorder gang scheduling and load balancing candidatesin cases where entitlement is a factor in their decision.7 Does Migration Improve Per-formance?The requirement that applications occupy consecu-tive logical PEs has often been mentioned as a factorwhich could limit the utilization of the CRAY T3E.This is certainly intuitive and has been seen to occur,especially on small machines, with some frequency.

The Load Balancer attempts to reduce fragmenta-tion by removing unoccupied gaps between applica-tions. The result of this process is to make largercontiguous spaces in which to allocate new work. Totest whether migration was an e�ective way to im-prove PE utilization in the CRAY T3E, we devel-oped a workload for a machine with 128 applicationPEs that we could run both on the Load BalancingSimulator and the hardware. The results reportedbelow are from the Load Balancing simulator. Thecon�guration was set to run one application per PE.A workload consisting of an unlimited source ofapplications is introduce into the system. About 100of them are either active or queued for initiation atone time. We wanted a large backlog in order to giveGRM su�cient choice in its ability to �ll the machine.The parameters of each application are taken in turnfrom a list of seven sizes ranging from 25 to 128 PEsand another list of 19 execution times ranging from180 to 1260 seconds. The test is run until the averagePE utilization value stabilizes.Figure 11 shows that with this workload, the av-erage PE utilization with migration active stabilizesat about 122 PEs while without migration the sta-ble level of utilization is about 115 PEs. This meansthat migration delivered about seven more PEs to theusers or about �ve percent more machine power. Fig-ure 12 shows PE usage at each measurement interval.This graph is quite busy but it does show that with-out migration the number of PEs in use varies overthe range 90 to 122 while with migration utilizationvaries only between 115 and 123. In both �gures thetime scale is the percentage of the run period.8 SummaryPScheD has been conceived to support solutions forthe general administrative needs of large CRAY T3Esystems and future machines. As of this writing, thefeature is powerful enough to support the require-ments of system scheduling. Special system enhance-ments to support political scheduling are minimal.This was a primary goal since we did not want to re-quire complex kernel assistance as this makes futuresystem development more di�cult to design, imple-16

0:00:20:40:6
0:81:0

0 5 10 15 20 25Normalizedscale Time (arbitrary units) UsageDecayed usageMUSE factorFigure 10: The MUSE Factor115116117118119120121122123 0 20 40 60 80 100Numberof PEs Time Migration OnMigration O�Figure 11: Average PE Utilization9095100105110115120125 0 20 40 60 80 100Numberof PEs TimeMigration OnMigration O�Figure 12: PE Utilization17

ment and test. Unicos/mk will run without PScheD,but not with the same degree of hardware utilizationand administrative control as when it is present.It has not been feasible to describe all of the fea-tures of PScheD in detail, especially those capabili-ties intended to provide insight into what decisionsare being made, within the scope of this paper, butwe trust enough detail has been provided to commu-nicate the
avor of our design.PScheD is an evolving tool intended to supportcurrent as well as anticipated future hardware andsystem advances. The
exibility of feature manage-ment and con�guration means additional capabilitiescan be added without the need to rewrite the ex-isting features. It is also easy to remove unwantedfeature bindings when PScheD is con�gured so onlythe features needed to handle the present needs ofan installation are active. For example, if only GangScheduling is needed, other features such as MUSEor Load Balancing can remain unbound and inactive.Features which are initially unbound may at any timebe bound if their con�guration information has beenset up.
CRAY T3E and UNICOS are trademarks of CrayResearch. DECchip is a trademark of DigitalEquipment Corporation.We wish to acknowledge the many people who helpedto review and critique this work. Comments fromthe referees were very helpful. Even with the bestscrutiny, errors will creep into any work. The authorsassume responsibility for all misleading or incorrectcontent. 18

