
On the Bene�ts and Limitations of DynamicPartitioning in Parallel Computer SystemsMark S. SquillanteIBM T. J. Watson Research Center, Yorktown Heights NY 10598, USAAbstract. In this paper we analyze the bene�ts and limitations of dy-namic partitioning across a wide range of parallel system environments.We formulate a general model of dynamic partitioning that can be �t-ted to measurement data to obtain a su�ciently accurate quantitativeanalysis of real parallel systems executing real scienti�c and/or commer-cial workloads. An exact solution of the model is obtained by employingmatrix-geometric techniques. We then use this framework to explore theparallel system design space over which dynamic partitioning outper-forms other space-sharing policies for a diverse set of application work-loads, quantifying the signi�cant performance improvements within theseregions. Our results show that these regions and the performance ben-e�ts of dynamic partitioning are heavily dependent upon its associatedcosts, the system load, and the workload characteristics. We also identifythe regions of the design space over which dynamic partitioning performspoorly, quantifying the performance degradation and illustrating formsof unstable thrashing.1 IntroductionThe scheduling of processors among parallel jobs submitted for execution is afundamental aspect of multiprocessor computer systems. A number of schedulingstrategies have been proposed for such parallel environments, each di�ering inthe way processors are shared among the jobs. One important class of policiesshares the processors by rotating them among a set of jobs in time, and thusare referred to as time-sharing strategies. Another particularly important class ofscheduling policies is based on space sharing where the processors are partitionedamong di�erent parallel jobs.Several approaches have been considered in each of these scheduling classes.Within the space-sharing class, the static partitioning of the processors into a�xed number of disjoint sets, each of which are allocated to individual jobs, is ascheduling strategy that has often been employed in a number of commercial sys-tems. This is due in part to its low system overhead and its simplicity from boththe system and application viewpoints. The static scheduling approach, however,can lead to relatively low system throughputs and resource utilizations undernonuniform workloads [34, 21, 22, 25, 35], as is common in scienti�c/engineeringcomputing environments [6]. Adaptive partitioning policies, where the number ofprocessors allocated to a job is determined when jobs arrive and depart basedon the current system state, have also been considered in a number of research

studies [14, 42, 8, 21, 22, 33, 3, 25]. This approach tends to outperform its staticcounterparts by adapting partition sizes to the current load. However, the per-formance bene�ts of adaptive partitioning can be limited due to its inability toadjust scheduling decisions in response to subsequent workload changes. Thesepotential problems are alleviated under dynamic partitioning, where the size ofthe partition allocated to a job can be modi�ed during its execution, at theexpense of increased overhead [40, 4, 14, 42, 9, 16, 21, 22, 35].The runtime costs of a dynamic partitioning policy are heavily dependentupon the parallel architecture and application workload under consideration. Inuniform-access, shared-memory (UMA) systems, these overheads tend to be rela-tively small and thus the bene�ts of dynamic partitioning outweigh its associatedcosts. Several research studies have made this quite clear, showing that dynamicpartitioning outperforms all other space-sharing strategies in many UMA en-vironments [40, 14, 42, 9, 16]. In more distributed parallel environments (e.g.,non-uniform-access, shared-memory and distributed-memory systems), however,the overheads of a dynamic partitioning policy can be signi�cant due to factorssuch as data/job migration, processor preemption/coordination and, in somecases, recon�guration of the application [4, 21, 22, 30]. Even with continuing re-ductions in the latency of interprocessor communication [41, 39], there are otherfactors that can cause the cost of repartitioning to be signi�cant for importantclasses of scienti�c/engineering applications (e.g., the need to recon�gure theapplication) [19, 20, 18].Our objective in this paper is to evaluate the bene�ts and limitations of dy-namic partitioning with respect to other space-sharing strategies across a widerange of parallel system environments, as re
ected by the overhead associatedwith repartitioning and by the e�ciency with which the workload utilizes proces-sor allocations. We formulate a general model of dynamic partitioning in parallelcomputer systems that can be �tted to measurement data to obtain a su�cientlyaccurate quantitative analysis of real parallel systems executing real scienti�cand/or commercial workloads. An exact solution of the model is obtained byemploying matrix-geometric techniques [24]. In this paper we provide a less for-mal and rigorous description of our mathematical analysis, and we refer theinterested reader to [37, 38] for additional technical details. It is important tonote that the computational e�ciency of our approach allows us to examine thelarge design space of diverse parallel environments.We use this modeling framework to consider the fundamental question: howexpensive must the costs of recon�guration be before it is not bene�cial to em-ploy a dynamic partitioning policy? As previously noted, dynamic partitioninghas been often shown to outperform other types of space sharing when theseoverheads are relatively small, such as in UMA environments. In this study weattempt to identify the conditions under which it becomes detrimental to employdynamic space sharing with respect to other space-sharing policies, the e�ciencyof the workload, and the costs of repartitioning. Our results provide key insightsabout these conditions across a diverse set of workloads, showing that the ben-e�ts of dynamic partitioning depend heavily upon the application workload as

well as the recon�guration overhead. We also show that dynamic partitioningprovides signi�cant improvements in performance over other forms of space shar-ing under most workloads when the costs of repartitioning are relatively small,and our results quantify these considerable performance gains. For su�cientlylarge recon�guration overheads, however, the costs associated with dynamic par-titioning tend to outweigh its bene�ts, particularly at moderate to heavy systemloads, and the degradation in system performance can be quite signi�cant. Ouranalysis also demonstrates the potential for unstable behavior under dynamicpartitioning in these cases, where the system spends a considerable amount oftime repartitioning the processors among jobs.The remainder of the paper is organized as follows. In Section 2 we formulateour model of dynamic space sharing in parallel systems. Section 3 summarizesan exact mathematical analysis of the model, and in Section 4 we provide someof the results of our quantitative analysis. Our concluding remarks are presentedin Section 5.2 Dynamic Partitioning ModelWe consider a system consisting of P identical processors that are scheduled ac-cording to a dynamic partitioning policy as follows. Let M denote the minimumnumber of processors allocated to any job, and therefore the maximum numberof processor partitions is given by N = P=M . If an arrival occurs when i � 1jobs are being executed, 1 � i � N , then the processors are repartitioned amongthe i jobs such that each job is allocated (on average) P=i processors. An arrivalthat �nds i � N jobs in the system is placed in a �rst-come �rst-served (FCFS)system queue to wait until a processor partition becomes available. When oneof the i + 1 jobs in execution departs, 1 � i < N , the system recon�gures theprocessor allocations so that each job receives (on average) P=i processors. Adeparture when i > N simply causes the job at the head of the system queueto be allocated the available partition, and no repartitioning is performed. Theexact details of the processor allocation decisions made by the scheduler in eachcase, as well as the overheads of making these decisions and of recon�guring theapplications involved, are re
ected in the parameter distributions and the statespace of the corresponding stochastic process (see Section 3).Jobs arrive to the system when it contains i jobs according to a phase-typeprobability distribution Ai(�) with mean rate �i, i � 0, AN+k(�) � AN (�), k � 0.When the system is executing i jobs, the service times of each of these jobs areassumed to be independent and identically distributed according to a phase-typedistribution Bi(�) with mean service time eSi, 1 � i � N . The times required torepartition the processors among the i jobs being executed (either due to adeparture when the system contains i + 1 jobs or an arrival when the systemcontains i � 1 jobs) are assumed to be independent and identically distributedfollowing a phase-type distribution Ci(�) with mean recon�guration overhead eRi,1 � i � N . Multiple job arrivals, multiple job departures, and both an arrivaland a departure within a small time interval are all assumed to occur with

negligible probability, leading to a quasi-birth-death process [24] (although ouranalysis is easily extended to handle batch arrivals and/or departures as long asthe batch sizes are bounded; see [38]).The use of phase-type distributions [24] for the parameters of our model ismotivated in part by their important mathematical properties, which can beexploited to obtain a tractable analytic model while capturing the fundamentalaspects of dynamic partitioning. Just as important, however, is the fact that anyreal distribution can in principle be represented arbitrarily close by a phase-typedistribution. Furthermore, a considerable body of research has examined the�tting of phase-type distributions to empirical data, and a number of algorithmshave been developed for doing so [1, 5, 12, 13]. It is also well known that somesteady-state measures (e.g., mean waiting time) often depend only upon the�rst few moments of the parameter distributions (as opposed to their detailedforms) in an important and general class of probability models [26, 27, 28]. Wetherefore have a general formulation that can be used to provide a su�cientlyrealistic model and analysis of dynamic partitioning in parallel systems.3 Mathematical AnalysisThe dynamic partitioning model presented in the previous section is representedby a continuous-time Markov chain de�ned over an in�nite, multi-dimensionalstate space. This Markov chain has a particular structure that we exploit, usingmatrix-geometric techniques [24], to obtain an exact model solution in an ex-tremely e�cient manner. In this section we provide a less formal and rigorousmathematical analysis of the model, and we refer the interested reader to [37, 38]for additional technical details. A closed-form solution for the speci�c case wherethe model parameters all have exponential distributions, and an analysis of op-timal static partitioning under assumptions corresponding to those in Section 2are also provided in [37].The states of the Markov chain are denoted by (i; vi;z) where the value ofi, i � 0, re
ects the total number of parallel jobs in the system, and the valueof the vector vi;z, 1 � z � Di, re
ects the states of the phase variables forthe model distributions (Ai, Bi, Ci) as well as any other aspects of the systemrecorded in the state space. The (in�nitesimal) rates at which the system movesfrom one state to another state are de�ned by the elements of the transitionrate matrix for the Markov chain, denoted by Q. We refer to the set of statesf(i; vi;1); : : : ; (i; vi;Di)g as level i, and Di denotes the number of states on leveli. The states of the chain are ordered lexicographically, i.e., (0; v0;1), : : :, (0; v0;D0),(1; v1;1), : : :, (1; v1;D1), (2; v2;1), (2; v2;2), : : :. Using this ordering, we de�ne�i � (�(i; vi;1); �(i; vi;2); : : : ; �(i; vi;Di)); i � 0; (1)and � � (�0; �1; �2; : : :): (2)

We also de�ne D �PN�1i=0 Di. The vector � is the steady-state probability vectorfor the Markov chain, and the value of each of its components �(i; vi;z), i � 0,1 � z � Di, represents the proportion of time the system spends in state (i; vi;z)over the long run operation of the system. It is well known that the steady-stateprobability vector � can be obtained by solving the global balance equations�Q = 0; (3)together with the constraint that the sum of these components must be 1 [10].We arrange the transition rate matrix Q of the Markov chain in the sameorder as the elements of the steady-state probability vector �, and we block-partition the matrix according to the state space levels. The Q matrix then hasa structure given by Q = 2666664B00 B01 0 0 0 : : :B10 B11 A0 0 0 : : :0 A2 A1 A0 0 : : :0 0 A2 A1 A0 : : :...3777775 ; (4)where B00, B01, B10, B11 and Ak, 0 � k � 2, are �nite matrices of dimensionsD�D, D�DN , DN �D, DN �DN and DN �DN , respectively. The key to thematrix-geometric solution method is the repetitive structure beyond a certainpoint in the matrix Q, which in our case occurs beyond level N .The block of matrices corresponding to levels 0 through N of the state space,i.e., �B00 B01B10 B11 � ;has the form 2666664	 (0) �(0) 0 0 � � � 0 0�(1) 	 (1) �(1) 0 � � �0 �(2) 	 (2) �(2) � � � � � � � � �...0 0 0 0 � � � �(N) 	 (N)3777775 ;where �(i), 	 (i) and �(i) have dimensions Di �Di�1, Di �Di and Di �Di+1,respectively. Intuitively, the matrix �(i) de�nes the transitions from states inlevel i to states in level i� 1, 1 � i � N , 	 (i) describes the transitions betweenstates within level i, 0 � i � N , and �(i) de�nes the transitions from statesin level i to states in level i + 1, 0 � i � N � 1. These matrices (which aredependent upon the number of jobs in the system, as recorded by i) de�ne theexact allocation behavior of the dynamic partitioning policy being modeled, thearrival, service and recon�guration processes of the workload being modeled, andthe various interactions of each of these aspects of the system. The A matricesprovide the same functionality for the repeating (homogeneous) portion of thestate space, where A2 (resp., A0) describes the transitions from states in level i

to states in level i�1 (resp., i+1) and A1 de�nes the transitions between stateswithin level i, i � N + 1.Given the form in equation (4) for the transition rate matrix of the Markovchain, the solution of the global balance equations in (3) and the normalizationconstraint can be obtained exactly via matrix-geometric techniques [24]. In par-ticular, the geometric portion of the probability vector, representing when thesystem has more than N parallel jobs, can be solved as�N+k = �NRk; k � 0; (5)where R is the minimal non-negative matrix that satis�esR2A2 + RA1 + A0 = 0: (6)The remaining components of the vector � can be found by solving the balanceequations for levels 0 through N , which can be written in matrix notation as(�0;�1; : : : ;�N) �B00 B01B10 B11 +RA2 � = 0; (7)together with the normalization constraint(�0;�1; : : : ;�N�1)e + �N (I � R)�1e = 1; (8)where we have made use of equation (5) and e is the column vector of all ones.The performance measures of interest can be directly obtained from thesteady-state probability vector �. In particular, the mean number of jobs inthe system, the mean job response time, and the percentage of time spent repar-titioning processor allocations in steady state are calculated asNDP = N�1Xk=1 k�ke + N�N (I �R)�1e + �N (I � R)�2Re; (9)TDP = PN�1k=1 k�ke + N�N (I �R)�1e + �N (I � R)�2Re� ; (10)and pr = (�0;�1; : : : ;�N�1)�b + 1Xk=0�N+k�r; (11)respectively, where the binary vectors �b and �r are used to exclude the stateprobabilities of states corresponding to when the system is not recon�guring itsprocessor partitions. The solution of the matrix R, the steady-state probabilityvector �, and equations (9) { (11) are all e�ciently computed by the routinesprovided by the MAGUS performance modeling tool [23, 36].

4 ResultsOur dynamic partitioning model can be �tted to measurement data to obtain asu�ciently accurate quantitative analysis of dynamic partitioning in real paral-lel systems executing real scienti�c and/or commercial workloads. We hope thatour model and (exact) analysis, together with such system and workload mea-surement data, will serve as a basis for further research of dynamic partitioningacross di�erent parallel environments.In the absence of such measurement data, we consider here the performancecharacteristics of dynamic partitioning under assumptions based on data and re-sults that have appeared in the research literature. Our objective is to quantita-tively evaluate the bene�ts and limitations of dynamic partitioning with respectto other space-sharing strategies as a function of its associated costs and theworkload e�ciency, and to therefore determine how expensive recon�gurationoverheads must be before it is not bene�cial to employ a dynamic partitioningpolicy.We �rst provide some technical preliminaries that support the analysis of thissection, including our assumptions based upon previous research. Our results, aportion of which are subsequently presented, were obtained with the MAGUSperformance modeling tool [23, 36]. We assume throughout that M = 1, andthus N = P .4.1 PreliminariesThe execution time of many parallel applications on a �xed number of processorsfor a given problem size is either constant or bounded between relatively tightupper and lower bounds. It is therefore most appropriate to model the execu-tion time of such an application by a probability distribution with a coe�cientof variation1 close (or equal) to 0. On the other hand, current and expectedworkloads for large-scale parallel computing environments consist of a mixtureof such jobs with very di�erent resource requirements, often resulting in a highlyvariable workload [29, 21, 22, 6]. We thus use model parameter distributionsthat re
ect this variability in the resource requirements of the system workload.Speci�cally, we consider the service time distributions Bi to be exponential withmean service times eSi and we consider the recon�guration overhead distribu-tions Ci to be exponential with mean recon�guration overheads eRi, 1 � i � N ,which are dependent upon the number of jobs i in the system. This service timeassumption matches various instances of a workload based on measurement dataof computational
uid dynamics applications [21, 22].21 The coe�cient of variation is the ratio of the standard deviation to the mean [10].A deterministic distribution has a coe�cient of variation equal to 0.2 There exists evidence suggesting that the coe�cient of variation for the workload,in many cases, is larger than 1 [21, 22, 6]. We are currently working on results forthe case of hyperexponential service time and recon�guration overhead distributionsto address such workloads, noting that the hyperexponential distribution is a verysimple instance of a phase-type distribution.

Another important aspect of the parallel jobs comprising the system workloadis the e�ciency with which these jobs utilize the processors allocated to them.The e�ciency of the workload as a whole can be re
ected in the service rates�i � 1=eSi of the model, 1 � i � N , where the model parameter �i represents therate at which the system services a workload of i parallel jobs \each" executedon P=i processors.3 These workload service rates can be represented by�i = i 1� (P=i) = i S(P=i)� (1) ; 1 � i � N; (12)where S(�) is the workload speedup function and � (P=i) is the mean servicetime of a generic job when the system is servicing a workload of i jobs. Letting1=� � eS � � (1), we have�i = iS(P=i)�; 1 � i � N: (13)To isolate the key recon�guration overhead parameter of our analysis, we con-sider eRi = eR, 1 � i � N . Throughout this section we let eS � � (1) = 1000.The workload speedup function can be written as [7, 32]S(n) = n1 + fO(n) ; n � 1; (14)where fO(�) is used here to re
ect the various types of overhead that can reducethe workload speedup function from being linear. For a large class of parallel ap-plications, the factor fO(�) is dominated by issues related to communication [7].It therefore can be approximated within the context of our model byfO(n) = F n1=d; n � 1; (15)where F is a constant that depends upon the system architecture and the appli-cation workload, and d is the system dimension. In the results that follow, weconsider the values F 2 f0:025; 0:175;1:225g and d 2 f2; 3g which cover a rangeof parameters provided in [7]. We also consider the overheads fO(n) 2 f0; n�1g,which represent the extremes of linear and constant workload speedup functions.Our sole purpose in using this workload formulation is to consider a reasonablerange of parallel processing overheads, thus allowing us to examine the e�ectsof di�erent types of parallel workloads in our analysis of dynamic partitioning.The times at which jobs arrive to the system are de�ned by the distributionsAi, 0 � i � N , which are dependent upon the number of jobs i in the system.These arrival times are most often modeled by a Poisson distribution in theresearch literature [4, 42, 21, 22, 33, 17, 32, 25]. We thus assume that jobs come3 The details of exactly how the dynamic partitioning policy allocates processors tojobs when i does not evenly divide P , as well as the service rates for each of thesecases, are easily incorporated in our model (see Sections 2 and 3, and [37, 38]). Herewe make the simplifying assumption that the workload speedup function reasonablyapproximates this information.

to the system according to a Poisson distribution with mean rate �i = �, 0 �i � N .4The mean job response time under dynamic partitioning (TDP) is obtainedvia the analysis of Section 3. To support our comparison in the next section, weobtain performance measures for other space-sharing policies as follows. Considera system in which the processors are statically divided into K partitions each ofsize P=K, where only values ofK that evenly divide P are examined. We refer tothis system as SP(K). Under the above model parameter assumptions (see [37]for a more general analysis), this system is equivalent to an M/M/K queue witharrival rate � and service rate S(P=K)�. Hence, the mean job response time inthe SP(K) system, denoted by T SP(K), is obtained from the well-known solutionof the M/M/K queueing system [10]. The mean response time under the optimalstatic partitioning policy, for a given arrival rate, is therefore given byTOpt-SP(�) = min1�K�PfT SP(K)(�) g: (16)Our decision to consider equal-sized processor partitions is motivated by theresults of recent studies [25, 15] showing that adaptive/static strategies in whichthe system is divided into equal-sized partitions outperform other adaptive/staticpolicies when job service time requirements are not used in scheduling decisions.Several recent research studies, under di�erent workload assumptions, have alsoshown that adaptive partitioning yields steady-state performance comparable tothat of the optimal static partitioning policy for a given value of � [21, 22, 33].Hence, when this relation holds, the mean job response time under adaptive par-titioning is accurately approximated by equation (16) and the results of the nextsection are also representative of a comparison between adaptive and dynamicpartitioning policies.Each of the various application workloads considered in our study cause thesystem to saturate (i.e., the response times become unbounded) at di�erent jobarrival rates. The parallel system under a workload with perfect linear speedup isthe last to saturate with increasing o�ered load, as this is the most e�cient caseconsidered. We therefore use the measure of system utilization under the linearworkload as the basis for all of our performance comparisons. More speci�cally,we use (o�ered) system load to refer to the ratio �=��, where �� denotes thesaturation point for the linear workload. The results that follow for each systemare all plotted as functions of system load over the interval (0; 1).4.2 Comparison of Space-Sharing PoliciesOur �rst set of results identi�es the recon�guration costs for which dynamicpartitioning and optimal static partitioning provide identical steady-state per-formance, as a function of the o�ered load. In particular, we use a binary search4 There exists evidence suggesting that the interarrival times of jobs, in some cases, ismore variable than the exponential assumption considered here [6]. We are currentlyworking on results for the case of hyperexponential interarrival times to address suchworkloads.

on the recon�guration overhead and iteratively solve our dynamic partitioningmodel until we �nd the value of eR that yields the same mean response time asthat obtained from equation (16) for a given system load. We note that the so-lution of our model is computed in an extremely e�cient manner, and thus this�xed-point iteration converges very rapidly. To simplify our subsequent discus-sions, we use eR� to denote the value of eR obtained from this �xed-point iteration.This value is representative of the repartitioning overhead for which both typesof space-sharing yield the same performance. Thus, recon�guration overheadsless than eR� de�ne the regions over which dynamic partitioning outperforms theoptimal static policy, whereas dynamic partitioning provides worse performancewhen the recon�guration overhead is greater than eR�. Figure 1 plots these re-sponse time contours as a function of system load for the di�erent workloadsconsidered and P = 16. The y-axis is plotted on a particular log scale. The cor-responding results for P = 32, P = 64 and P = 128 are provided in Figures 2, 3and 4, respectively.
0.6

1.5

3.0

5.3

9

15

24

39

62

99

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

M
ea

n
R

ec
on

fi
gu

ra
tio

n
O

ve
rh

ea
d

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225

Fig. 1. Response Time Contours (log scale) with respect to Dynamic and OptimalStatic Partitioning, for P = 16We �rst observe that all of the results for the linear workload are equal tozero. This is due to the fact that the SP(1) system is optimal in this case. Theoptimality of SP(1) for the linear workload follows directly from a result dueto Brumelle [2], where it is shown that the mean response time in a GI=GI=kqueue with interarrival and service time distribution functions A(t) and B(t),respectively, is greater than or equal to the mean response time in the GI=GI=1queue with the same interarrival time distribution and service time distributionB(kt), provided that the coe�cient of variation of B(�) is less than or equal

0.6

1.5

3.0

5.3

9

15

24

39

62

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

M
ea

n
R

ec
on

fi
gu

ra
tio

n
O

ve
rh

ea
d

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225

Fig. 2. Response Time Contours (log scale) with respect to Dynamic and OptimalStatic Partitioning, for P = 32
0.6

1.5

3.0

5.3

9

15

24

39

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

M
ea

n
R

ec
on

fi
gu

ra
tio

n
O

ve
rh

ea
d

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225

Fig. 3. Response Time Contours (log scale) with respect to Dynamic and OptimalStatic Partitioning, for P = 64to 1. Given the optimality of shortest-job-�rst in uniprocessor systems [11], ourresults for linear workloads suggest that time sharing all of the processors amongthe jobs (in a su�ciently coarse manner to outweigh the overhead of contextswitching) may provide the best steady-state performance when the workload

0.6

1.5

3.0

5.3

9

15

24

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

M
ea

n
R

ec
on

fi
gu

ra
tio

n
O

ve
rh

ea
d

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225

Fig. 4. Response Time Contours (log scale) with respect to Dynamic and OptimalStatic Partitioning, for P = 128makes extremely e�cient use of the processors. We also note that the bene�ts ofusing time sharing together with a static partitioning policy have been observedfor a di�erent region of the parallel system design space [31].We observe that the values of eR� are also equal to zero for the constantworkload. The optimality of the SP(P) system when the workload has a con-stant speedup function is easily explained by noting that all space-sharing poli-cies besides SP(P) e�ectively leave processors idle. Thus, we �nd that dynamicpartitioning is a sub-optimal space-sharing strategy at both extremes of thespectrum of parallel workloads.Turning our attention to the remaining workloads, which are probably morerepresentative of those often found in practice, we observe that the performanceof the dynamic partitioning policy is as good as or better than optimal staticpartitioning even with a relatively large recon�guration overhead. In particular,the mean cost to repartition the processors can be as large as 78, 55, 37 and 26on a system with 16, 32, 64 and 128 processors, respectively, and it still maybe bene�cial to employ a dynamic partitioning policy under light system loads.Note that these overheads are relative to the mean service time of a generic jobwhen executed on a single processor, which has a value of � (1) = 1000. Notefurther that larger values of F and smaller values of d imply system workloadswith poorer speedup functions (see equations (14) and (15)).As the system load increases, the general drift for the eR� values decreasesbecause the large recon�guration costs that can be tolerated at lighter loads tendto outweigh the bene�ts of dynamic partitioning at heavier loads. In the limit asthe system approaches saturation, the probability that the system repartitions

the processors tends toward 0, i.e., the frequency of recon�gurations decreasesto 0 as the Markov chain spends essentially all of its time at or above level N(see [37] for the technical details). It therefore follows that the dynamic parti-tioning system converges toward SP(P) in the limit as the system approachessaturation.The scalloped shape of the response time contours for these workloads inFigures 1 { 4 are representative of the response time behavior of the optimalstatic partitioning policy. Speci�cally, each of the points where the value of eR�increases (within a particular region of system load) is due to a change in thevalue of K employed under the optimal static policy. This in turn causes theresponse time under dynamic partitioning to be compared with a di�erent sta-tic partitioning response time curve, which is further from saturation than theresponse time curve for the previous measure of load. As previously noted, thedi�erent systems (consisting of the various workloads and policies under con-sideration) saturate at di�erent job arrival rates. This explains why the variousresponse time contours span di�erent intervals of o�ered load.Our next set of results quanti�es the performance bene�ts of dynamic par-titioning with respect to optimal static partitioning. Comparing the value ofTOpt-SP with TDP, we obtain the percentage of improvement, or degradation,in mean response time under dynamic partitioning as a function of the sys-tem load and the recon�guration overhead. The results for P = 64 and eR =0:01; 0:1;1; 5; 10; 20 are plotted in Figures 5, 6, 7, 8, 9 and 10, respectively. We�rst observe that dynamic partitioning provides no performance bene�ts underworkloads with linear or constant speedup functions. In fact, the mean job re-sponse time under dynamic partitioning can be signi�cantly worse than thatof optimal static partitioning, particularly for heavy tra�c intensities and largevalues of eR. This follows directly from our above discussions for the linear andconstant workloads.With respect to the other workloads considered, we observe that dynamicpartitioning can provide signi�cant improvements in performance for relativelysmall recon�guration overheads. By adjusting scheduling decisions in responseto workload changes, the dynamic partitioning policy provides the most e�cientutilization of the processors among the various space-sharing strategies when eRis small. These performance bene�ts tend to increase as the system load rises,since workload changes are more frequent and dynamic partitioning adjusts itsprocessor allocations accordingly to achieve the best steady-state performance.Our results for small recon�guration costs con�rm and help to further explainthose previously reported for dynamic partitioning policies in UMA environ-ments.When the value of eR becomes su�ciently large, however, the overhead ofrepartitioning the processors tends to outweigh the bene�ts of dynamic par-titioning, particularly at moderate to heavy system loads. Our results clearlyshow the signi�cant degradation in system performance (with respect to opti-mal static partitioning) that is possible under large recon�guration overheads.This is due in part to an unstable characteristic of the dynamic partitioning pol-

0

20

40

60

80

100

120

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Pe
rc

en
ta

ge
 o

f
Pe

rf
or

m
an

ce
 I

m
pr

ov
em

en
t/D

eg
ra

da
tio

n

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225

Fig. 5. Response Time Improvements, or Degradations, under Dynamic Partitioning,for P = 64 and eR = 0:01
-20

0

20

40

60

80

100

120

140

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Pe
rc

en
ta

ge
 o

f
Pe

rf
or

m
an

ce
 I

m
pr

ov
em

en
t/D

eg
ra

da
tio

n

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225

Fig. 6. Response Time Improvements, or Degradations, under Dynamic Partitioning,for P = 64 and eR = 0:1icy where the system spends a considerable amount of time repartitioning theprocessors among jobs. To illustrate this, we plot in Figure 11 the percentageof time that the system spends recon�guring its processor allocations in steadystate as a function of the system load for P = 64 and eR = 20. The potential for

-80

-60

-40

-20

0

20

40

60

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Pe
rc

en
ta

ge
 o

f
Pe

rf
or

m
an

ce
 I

m
pr

ov
em

en
t/D

eg
ra

da
tio

n

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225Fig. 7. Response Time Improvements, or Degradations, under Dynamic Partitioning,for P = 64 and eR = 1

-80

-60

-40

-20

0

20

40

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Pe
rc

en
ta

ge
 o

f
Pe

rf
or

m
an

ce
 I

m
pr

ov
em

en
t/D

eg
ra

da
tio

n

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225Fig. 8. Response Time Improvements, or Degradations, under Dynamic Partitioning,for P = 64 and eR = 5instability under dynamic partitioning is exhibited by the two di�erent phasesof the percentage curves, where we observe a sharp increase in the system's re-con�guration of processors toward the end of the �rst phase, while this factorcontinually decreases (often linearly) through the second phase. In fact, for all

-80

-60

-40

-20

0

20

40

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Pe
rc

en
ta

ge
 o

f
Pe

rf
or

m
an

ce
 I

m
pr

ov
em

en
t/D

eg
ra

da
tio

n

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225

Fig. 9. Response Time Improvements, or Degradations, under Dynamic Partitioning,for P = 64 and eR = 10
-80

-60

-40

-20

0

20

40

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Pe
rc

en
ta

ge
 o

f
Pe

rf
or

m
an

ce
 I

m
pr

ov
em

en
t/D

eg
ra

da
tio

n

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225

Fig. 10. Response Time Improvements, or Degradations, under Dynamic Partitioning,for P = 64 and eR = 20workloads except those with F = 1:225, there are intervals of o�ered load overwhich the system spends the majority of its time (more than 60%) repartitioningthe processors among jobs. This form of recon�guration thrashing clearly mustbe avoided.

0

10

20

30

40

50

60

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Pe
rc

en
ta

ge
 o

f
T

im
e

E
xe

cu
tin

g
R

ec
on

fi
gu

ra
tio

ns

System Load

Linear Speedup
No Speedup

Cube Root Overhead, F=0.025
Cube Root Overhead, F=0.175
Cube Root Overhead, F=1.225

Square Root Overhead, F=0.025
Square Root Overhead, F=0.175
Square Root Overhead, F=1.225

Fig. 11. Percentage of Time Spent Repartitioning the Processors under the DynamicPolicy in Steady State, for P = 64 and eR = 20As noted above, the system under dynamic partitioning converges towardSP(P) in the limit as it approaches saturation, i.e., the percentage of time spentrepartitioning the processors tends toward 0 in this limit (see Figure 11). Sim-ilarly, the scalloped shape of the response time improvement percentage curvesare caused by the exact behavior cited above for the response time contours.5 ConclusionsIn this paper we examined the bene�ts and limitations of dynamic partitioningwith respect to other space-sharing strategies across a wide range of parallel sys-tem environments. We formulated a general model of dynamic partitioning thatcan be �tted to measurement data to obtain a su�ciently accurate quantita-tive analysis of real parallel systems executing real scienti�c and/or commercialworkloads. An exact solution of the model was then obtained by employingmatrix-geometric techniques, the computational e�ciency of which allowed usto explore the large parallel system design space. We hope that the model andanalysis presented in this paper, together with real measurement data on paral-lel system and workload characteristics, will serve as a basis for further researchof dynamic partitioning across di�erent system architectures and applicationworkloads.Our results show that the performance bene�ts of dynamic partitioning areheavily dependent upon its associated costs, the system load and the workloadcharacteristics. When the recon�guration overhead is relatively small, the per-formance bene�ts of dynamic partitioning can be quite signi�cant for most of the

workloads considered. In these cases, the dynamic partitioning policy providesthe most e�cient utilization of the processors among the various space-sharingstrategies by adjusting scheduling decisions in response to workload changes.These performance bene�ts tend to increase with rising tra�c intensities, sinceworkload changes are more frequent and dynamic partitioning adjusts its proces-sor allocations accordingly to achieve the best steady-state, space-sharing per-formance.When the recon�guration costs are su�ciently large, however, this overheadtends to outweigh the bene�ts of dynamic partitioning, particularly at moderateto heavy system loads, and the degradation in system performance (with respectto the other forms of space sharing) can be quite signi�cant. This is caused inpart by a form of recon�guration thrashing where the system spends a consid-erable amount of time repartitioning the processors among jobs. In such cases,dynamic partitioning must be employed more selectively. An interruptible list,containing those jobs in execution that are eligible for recon�guration, can beused to prevent thrashing by removing a job from the list (making it ineligiblefor repartitioning) for some period of time after it has been recon�gured [21, 22].Since the costs of recon�guration often depend upon the problem size [21, 22, 30],having the user provide such information can facilitate even better repartition-ing decisions by the scheduling policy. Finally, we believe it will be bene�cialto combine dynamic partitioning together with some form of time sharing (in asu�ciently coarse manner to outweigh the costs of context switching) when therecon�guration overhead is su�ciently large.Acknowledgements.We thank the anonymous reviewers for several helpfulcomments that improved the presentation.References1. S. Asmussen, O. Nerman, and M. Olsson. Fitting phase type distributions via theEM algorithm. Tech. Rep. 1994:23, Dept. Math., Chalmers Univ. Tech., 1994.2. S. L. Brumelle. Some inequalities for parallel-server queues. Op. Res., 19:402{413,1971.3. S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of application charac-teristics and limited preemption for run-to-completion parallel processor schedulingpolicies. In Proc. ACM SIGMETRICS Conf., 33{44, 1994.4. K. Dussa, B. Carlson, L. Dowdy, and K.-H. Park. Dynamic partitioning in trans-puter environments. In Proc. ACM SIGMETRICS Conf., 203{213, 1990.5. M. J. Faddy. Fitting structured phase-type distributions. Tech. Rep., Dept. Math.,Univ. Queensland, Australia, 1994. To appear, Appl. Stoch. Mod. Data Anal..6. D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel sci-enti�c workload on the NASA Ames iPSC/860. In Job Scheduling Strategies forParallel Processing, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, 1995.Lecture Notes in Computer Science Vol. 949.7. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.Walker. Solving Problems on Concurrent Processors Volume I: General Techniquesand Regular Problems. Prentice Hall, 1988.

8. D. Ghosal, G. Serazzi, and S. K. Tripathi. The processor working set and its usein scheduling multiprocessor systems. IEEE Trans. Soft. Eng., 17:443{453, 1991.9. A. Gupta, A. Tucker, and S. Urushibara. The impact of operating system sched-uling policies and synchronization methods on the performance of parallel appli-cations. In Proc. ACM SIGMETRICS Conf., 1991.10. L. Kleinrock. Queueing Systems Volume I: Theory. John Wiley and Sons, 1975.11. L. Kleinrock. Queueing Systems Volume II: Computer Applications. John Wileyand Sons, 1976.12. A. Lang. Parameter estimation for phase-type distributions, part I: Fundamentalsand existing methods. Tech. Rep. 159, Dept. Stats., Oregon State Univ., 1994.13. A. Lang and J. L. Arthur. Parameter estimation for phase-type distributions, partII: Computational evaluation. Tech. Rep. 160, Dept. Stats., Oregon State Univ.,1994.14. S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed multi-processor scheduling policies. In Proc. ACM SIGMETRICS Conf., 226{236, 1990.15. R. K. Mansharamani and M. K. Vernon. Properties of the EQS parallel processorallocation policy. Tech. Rep. 1192, Univ. Wisconsin, Comp. Sci. Dept., 1993.16. C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policyfor multiprogrammed shared-memory multiprocessors. ACM Trans. Comp. Syst.,11(2):146{178, 1993.17. C. McCann and J. Zahorjan. Processor allocation policies for message-passingparallel computers. In Proc. ACM SIGMETRICS Conf., 19{32, 1994.18. N. H. Naik, V. K. Naik, and M. Nicoules. Parallelization of a class of implicit �nitedi�erence schemes in computational
uid dynamics. Intl. J. High-Speed Comp., 5,1993.19. V. K. Naik. Performance e�ects of load imbalance in parallel CFD applications.In Proc. SIAM Conf. Par. Proc., 1992.20. V. K. Naik. Scalability issues for a class of CFD applications. In Proc. Scal. HighPerf. Comp. Conf., 268{275, 1992.21. V. K. Naik, S. K. Setia, and M. S. Squillante. Performance analysis of job sched-uling policies in parallel supercomputing environments. In Proc. Supercomputing'93, 824{833, 1993.22. V. K. Naik, S. K. Setia, and M. S. Squillante. Scheduling of large scienti�c appli-cations on distributed memory multiprocessor systems. In Proc. SIAM Conf. Par.Proc. Sci. Comp., 913{922, 1993.23. R. D. Nelson and M. S. Squillante. The MAtrix-Geometric qUeueing model Solu-tion package (MAGUS) user manual. Tech. Rep. RC, IBM Res. Div., 1994.24. M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: An AlgorithmicApproach. The Johns Hopkins Univ. Press, 1981.25. E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M. Carlson. Robust parti-tioning policies of multiprocessor systems. Perf. Eval., 19:141{165, 1994.26. R. Schassberger. Insensitivity of steady-state distributions of generalized semi-Markov processes, part I. Ann. Prob., 5(1):87{99, 1977.27. R. Schassberger. Insensitivity of steady-state distributions of generalized semi-Markov processes, part II. Ann. Prob., 6(1):85{93, 1978.28. R. Schassberger. Insensitivity of steady-state distributions of generalized semi-Markov process with speeds. Advs. Appl. Prob., 10:836{851, 1978.29. R. Schreiber and H. D. Simon. Towards the tera
ops capability for CFD. InH. D. Simon, editor, Parallel CFD - Implementations and Results Using ParallelComputers. MIT Press, 1992.

30. S. K. Setia. Scheduling on Multiprogrammed, Distributed Memory Parallel Com-puters. PhD thesis, Dept. Comp. Sci., Univ. Maryland, College Park, MD, 1993.31. S. K. Setia, M. S. Squillante, and S. K. Tripathi. Processor scheduling on multipro-grammed, distributed memory parallel computers. In Proc. ACM SIGMETRICSConf., 158{170, 1993.32. S. K. Setia, M. S. Squillante, and S. K. Tripathi. Analysis of processor allocation inmultiprogrammed, distributed-memory parallel processing systems. IEEE Trans.Par. Dist. Syst., 5(4):401{420, 1994.33. S. K. Setia and S. K. Tripathi. A comparative analysis of static processor parti-tioning policies for parallel computers. In Proc. MASCOTS '93, 1993.34. K. C. Sevcik. Characterizations of parallelism in applications and their use inscheduling. In Proc. ACM SIGMETRICS Conf., 171{180, 1989.35. K. C. Sevcik. Application scheduling and processor allocation in multiprogrammedparallel processing systems. Perf. Eval., 19:107{140, 1994.36. M. S. Squillante. MAGIC: A computer performance modeling tool based onmatrix-geometric techniques. In Proc. Intl. Conf. Mod. Tech. Tools Comp. Perf.Eval., 411{425, 1991.37. M. S. Squillante. Analysis of dynamic partitioning in parallel systems. Tech. Rep.RC 19950, IBM Res. Div., 1995.38. M. S. Squillante. On the bene�ts and limitations of dynamic partitioning in parallelcomputer systems. Tech. Rep. RC 19951, IBM Res. Div., 1995.39. C. A. Thekkath and H. M. Levy. Limits to low-latency communication on high-speed networks. ACM Trans. Comp. Syst., 11(2):179{203, 1993.40. A. Tucker and A. Gupta. Process control and scheduling issues for multipro-grammed shared-memory multiprocessors. In Proc. ACM Symp. Op. Syst. Prin.,159{166, 1989.41. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:A mechanism for integrated communication and computation. In Proc. Intl. Symp.Comp. Arch., 256{266, 1992.42. J. Zahorjan and C. McCann. Processor scheduling in shared memory multiproces-sors. In Proc. ACM SIGMETRICS Conf., 214{225, 1990.

