On the Benefits and Limitations of Dynamic
Partitioning in Parallel Computer Systems

Mark S. Squillante

IBM T. J. Watson Research Center, Yorktown Heights NY 10598, USA

Abstract. In this paper we analyze the benefits and limitations of dy-
namic partitioning across a wide range of parallel system environments.
We formulate a general model of dynamic partitioning that can be fit-
ted to measurement data to obtain a sufficiently accurate quantitative
analysis of real parallel systems executing real scientific and/or commer-
cial workloads. An exact solution of the model is obtained by employing
matrix-geometric techniques. We then use this framework to explore the
parallel system design space over which dynamic partitioning outper-
forms other space-sharing policies for a diverse set of application work-
loads, quantifying the significant performance improvements within these
regions. Our results show that these regions and the performance ben-
efits of dynamic partitioning are heavily dependent upon its associated
costs, the system load, and the workload characteristics. We also identify
the regions of the design space over which dynamic partitioning performs
poorly, quantifying the performance degradation and illustrating forms
of unstable thrashing.

1 Introduction

The scheduling of processors among parallel jobs submitted for execution is a
fundamental aspect of multiprocessor computer systems. A number of scheduling
strategies have been proposed for such parallel environments, each differing in
the way processors are shared among the jobs. One important class of policies
shares the processors by rotating them among a set of jobs in time, and thus
are referred to as time-sharing strategies. Another particularly important class of
scheduling policies is based on space sharing where the processors are partitioned
among different parallel jobs.

Several approaches have been considered in each of these scheduling classes.
Within the space-sharing class, the static partitioning of the processors into a
fixed number of disjoint sets, each of which are allocated to individual jobs, is a
scheduling strategy that has often been employed in a number of commercial sys-
tems. This is due in part to its low system overhead and its simplicity from both
the system and application viewpoints. The static scheduling approach, however,
can lead to relatively low system throughputs and resource utilizations under
nonuniform workloads [34, 21, 22, 25, 35], as is common in scientific/engineering
computing environments [6]. Adaptive partitioning policies, where the number of
processors allocated to a job is determined when jobs arrive and depart based
on the current system state, have also been considered in a number of research

studies [14, 42, 8, 21, 22, 33, 3, 25]. This approach tends to outperform its static
counterparts by adapting partition sizes to the current load. However, the per-
formance benefits of adaptive partitioning can be limited due to its inability to
adjust scheduling decisions in response to subsequent workload changes. These
potential problems are alleviated under dynamic partitioning, where the size of
the partition allocated to a job can be modified during its execution, at the
expense of increased overhead [40, 4, 14, 42, 9, 16, 21, 22, 35].

The runtime costs of a dynamic partitioning policy are heavily dependent
upon the parallel architecture and application workload under consideration. In
uniform-access, shared-memory (UMA) systems, these overheads tend to be rela-
tively small and thus the benefits of dynamic partitioning outweigh its associated
costs. Several research studies have made this quite clear, showing that dynamic
partitioning outperforms all other space-sharing strategies in many UMA en-
vironments [40, 14, 42, 9, 16]. In more distributed parallel environments (e.g.,
non-uniform-access, shared-memory and distributed-memory systems), however,
the overheads of a dynamic partitioning policy can be significant due to factors
such as data/job migration, processor preemption/coordination and, in some
cases, reconfiguration of the application [4, 21, 22, 30]. Even with continuing re-
ductions in the latency of interprocessor communication [41, 39], there are other
factors that can cause the cost of repartitioning to be significant for important
classes of scientific/engineering applications (e.g., the need to reconfigure the
application) [19, 20, 18].

Our objective in this paper is to evaluate the benefits and limitations of dy-
namic partitioning with respect to other space-sharing strategies across a wide
range of parallel system environments, as reflected by the overhead associated
with repartitioning and by the efficiency with which the workload utilizes proces-
sor allocations. We formulate a general model of dynamic partitioning in parallel
computer systems that can be fitted to measurement data to obtain a sufficiently
accurate quantitative analysis of real parallel systems executing real scientific
and/or commercial workloads. An exact solution of the model is obtained by
employing matrix-geometric techniques [24]. In this paper we provide a less for-
mal and rigorous description of our mathematical analysis, and we refer the
interested reader to [37, 38] for additional technical details. It is important to
note that the computational efficiency of our approach allows us to examine the
large design space of diverse parallel environments.

We use this modeling framework to consider the fundamental question: how
expensive must the costs of reconfiguration be before it is not beneficial to em-
ploy a dynamic partitioning policy? As previously noted, dynamic partitioning
has been often shown to outperform other types of space sharing when these
overheads are relatively small, such as in UMA environments. In this study we
attempt to identify the conditions under which it becomes detrimental to employ
dynamic space sharing with respect to other space-sharing policies, the efficiency
of the workload, and the costs of repartitioning. Our results provide key insights
about these conditions across a diverse set of workloads, showing that the ben-
efits of dynamic partitioning depend heavily upon the application workload as

well as the reconfiguration overhead. We also show that dynamic partitioning
provides significant improvements in performance over other forms of space shar-
ing under most workloads when the costs of repartitioning are relatively small,
and our results quantify these considerable performance gains. For sufficiently
large reconfiguration overheads, however, the costs associated with dynamic par-
titioning tend to outweigh its benefits, particularly at moderate to heavy system
loads, and the degradation in system performance can be quite significant. Our
analysis also demonstrates the potential for unstable behavior under dynamic
partitioning in these cases, where the system spends a considerable amount of
time repartitioning the processors among jobs.

The remainder of the paper is organized as follows. In Section 2 we formulate
our model of dynamic space sharing in parallel systems. Section 3 summarizes
an exact mathematical analysis of the model, and in Section 4 we provide some
of the results of our quantitative analysis. Our concluding remarks are presented
in Section b.

2 Dynamic Partitioning Model

We consider a system consisting of P identical processors that are scheduled ac-
cording to a dynamic partitioning policy as follows. Let M denote the minimum
number of processors allocated to any job, and therefore the maximum number
of processor partitions is given by N = P/M. If an arrival occurs when ¢ — 1
jobs are being executed, 1 < ¢ < N, then the processors are repartitioned among
the 7 jobs such that each job is allocated (on average) P/i processors. An arrival
that finds ¢ > N jobs in the system is placed in a first-come first-served (FCFS)
system gqueue to walt until a processor partition becomes available. When one
of the ¢ + 1 jobs in execution departs, 1 < 7z < N, the system reconfigures the
processor allocations so that each job receives (on average) P/i processors. A
departure when ¢ > N simply causes the job at the head of the system queue
to be allocated the available partition, and no repartitioning is performed. The
exact details of the processor allocation decisions made by the scheduler in each
case, as well as the overheads of making these decisions and of reconfiguring the
applications involved, are reflected in the parameter distributions and the state
space of the corresponding stochastic process (see Section 3).

Jobs arrive to the system when it contains ¢ jobs according to a phase-type
probability distribution .A;(-) with mean rate A;, ¢ > 0, Ay4x(:) = An(-), & > 0.
When the system is executing ¢ jobs, the service times of each of these jobs are
assumed to be independent and identically distributed according to a phase-type
distribution B;(-) with mean service time S;, 1 < ¢ < N. The times required to
repartition the processors among the ¢ jobs being executed (either due to a
departure when the system contains ¢ + 1 jobs or an arrival when the system
contains ¢ — 1 jobs) are assumed to be independent and identically distributed
following a phase-type distribution C;(-) with mean reconfiguration overhead Ei,
1 < ¢ < N. Multiple job arrivals, multiple job departures, and both an arrival
and a departure within a small time interval are all assumed to occur with

negligible probability, leading to a quasi-birth-death process [24] (although our
analysis is easily extended to handle batch arrivals and/or departures as long as
the batch sizes are bounded; see [38]).

The use of phase-type distributions [24] for the parameters of our model is
motivated in part by their important mathematical properties, which can be
exploited to obtain a tractable analytic model while capturing the fundamental
aspects of dynamic partitioning. Just as important, however, is the fact that any
real distribution can in principle be represented arbitrarily close by a phase-type
distribution. Furthermore, a considerable body of research has examined the
fitting of phase-type distributions to empirical data, and a number of algorithms
have been developed for doing so [1, 5, 12, 13]. It is also well known that some
steady-state measures (e.g., mean waiting time) often depend only upon the
first few moments of the parameter distributions (as opposed to their detailed
forms) in an important and general class of probability models [26, 27, 28]. We
therefore have a general formulation that can be used to provide a sufficiently
realistic model and analysis of dynamic partitioning in parallel systems.

3 Mathematical Analysis

The dynamic partitioning model presented in the previous section is represented
by a continuous-time Markov chain defined over an infinite, multi-dimensional
state space. This Markov chain has a particular structure that we exploit, using
matrix-geometric techniques [24], to obtain an exact model solution in an ex-
tremely efficient manner. In this section we provide a less formal and rigorous
mathematical analysis of the model, and we refer the interested reader to [37, 38]
for additional technical details. A closed-form solution for the specific case where
the model parameters all have exponential distributions, and an analysis of op-
timal static partitioning under assumptions corresponding to those in Section 2
are also provided in [37].

The states of the Markov chain are denoted by (¢,7;) where the value of
i, ¢ > 0, reflects the total number of parallel jobs in the system, and the value
of the vector v;,, 1 < z < D;, reflects the states of the phase variables for
the model distributions (A;, B;, C;) as well as any other aspects of the system
recorded in the state space. The (infinitesimal) rates at which the system moves
from one state to another state are defined by the elements of the transition
rate matrix for the Markov chain, denoted by Q. We refer to the set of states
{(4,7i,1),.-.,(4,7;,p,)} as level 4, and D; denotes the number of states on level
i.

The states of the chain are ordered lexicographically, i.e., (0,7o,1), . . ., (0, Do, D,),
(L,71,1), -+« (1, 71,0,), (2,72,1), (2,72,2), Using this ordering, we define

T, = (W(i,ﬁi,l), W(i,ii,g), ceey W(i,ii’pl)), 1> 0, (1)

and

™ = (mwo, ™1, T2, ...). (2)

We also define D = Efy:gl D;. The vector 7 is the steady-state probability vector
for the Markov chain, and the value of each of its components 7(4,7;), 1 > 0,
1 < z < D;, represents the proportion of time the system spends in state (¢,7; ;)
over the long run operation of the system. It is well known that the steady-state
probability vector 7 can be obtained by solving the global balance equations

TQ = 0, (3)

together with the constraint that the sum of these components must be 1 [10].

We arrange the transition rate matrix Q of the Markov chain in the same
order as the elements of the steady-state probability vector 7, and we block-
partition the matrix according to the state space levels. The Q matrix then has
a structure given by

300301 0 0 O ...
BlOBllAO 0o 0 ...
— 0 A2 Ale 0 ... 4
Q 0 0 A, A Ao... | ()

where Boo, Bo1, Bio, B11 and Ay, 0 < k < 2, are finite matrices of dimensions
Dx D, Dx Dy, Dy xD, Dy x Dy and Dy X Dy, respectively. The key to the
matrix-geometric solution method is the repetitive structure beyond a certain
point in the matrix Q, which in our case occurs beyond level N.

The block of matrices corresponding to levels 0 through N of the state space,
ie.,

[Boo 301]

Byo By

has the form
w(0) A(0) 0 O 0 0
S(1)w(1) A1) 0

0 0 0 0 ---3N)¥(N)
where &(7), ¥(4) and A(%) have dimensions D; X D;_1, D; x D; and D; X D41,
respectively. Intuitively, the matrix &(¢) defines the transitions from states in
level i to states in level ¢ — 1, 1 < ¢ < N, ¥(7) describes the transitions between
states within level 4, 0 < ¢ < N, and A(¢) defines the transitions from states
in level ¢ to states in level ¢ 4+ 1, 0 < 4 < N — 1. These matrices (which are
dependent upon the number of jobs in the system, as recorded by ¢) define the
exact allocation behavior of the dynamic partitioning policy being modeled, the
arrival, service and reconfiguration processes of the workload being modeled, and
the various interactions of each of these aspects of the system. The A matrices
provide the same functionality for the repeating (homogeneous) portion of the
state space, where A, (resp., Ao) describes the transitions from states in level ¢

to states in level 1 — 1 (resp., 1+ 1) and A; defines the transitions between states
within level 2, 2 > N + 1.

Given the form in equation (4) for the transition rate matrix of the Markov
chain, the solution of the global balance equations in (3) and the normalization
constraint can be obtained exactly via matrix-geometric techniques [24]. In par-
ticular, the geometric portion of the probability vector, representing when the
system has more than N parallel jobs, can be solved as

TTN+E — WNRk, k Z 0, (5)
where R is the minimal non-negative matrix that satisfies
R?A; + RA; + Ao = 0. (6)

The remaining components of the vector w can be found by solving the balance
equations for levels 0 through N, which can be written in matrix notation as

Boo By .
(w0, 71y, TTN) [Blo Bll—I—RAz] =0, (7)

together with the normalization constraint
(7o, 7®1,...,"N-1)e + wn(I — R)_le =1, (8)

where we have made use of equation (5) and e is the column vector of all ones.

The performance measures of interest can be directly obtained from the
steady-state probability vector #r. In particular, the mean number of jobs in
the system, the mean job response time, and the percentage of time spent repar-
titioning processor allocations in steady state are calculated as

2

-1
WDP = kﬂke + NWN(I — R)_le + WN(I - R)_zRea (9)
1

ES
1l

i\r:_ll kmwpe + Noy(I — R)_le + wn(I— R)_zRe
op — by s (10)

N

and
o0

pr = (Wo,T1,..., TN_1)V} + ZWN+kVM (11)

k=0
respectively, where the binary vectors v, and v, are used to exclude the state
probabilities of states corresponding to when the system is not reconfiguring its
processor partitions. The solution of the matrix R, the steady-state probability

vector , and equations (9) — (11) are all efficiently computed by the routines
provided by the MAGUS performance modeling tool [23, 36].

4 Results

Our dynamic partitioning model can be fitted to measurement data to obtain a
sufficiently accurate quantitative analysis of dynamic partitioning in real paral-
lel systems executing real scientific and/or commercial workloads. We hope that
our model and (exact) analysis, together with such system and workload mea-
surement data, will serve as a basis for further research of dynamic partitioning
across different parallel environments.

In the absence of such measurement data, we consider here the performance
characteristics of dynamic partitioning under assumptions based on data and re-
sults that have appeared in the research literature. Our objective is to quantita-
tively evaluate the benefits and limitations of dynamic partitioning with respect
to other space-sharing strategies as a function of its associated costs and the
workload efficiency, and to therefore determine how expensive reconfiguration
overheads must be before it is not beneficial to employ a dynamic partitioning
policy.

We first provide some technical preliminaries that support the analysis of this
section, including our assumptions based upon previous research. Our results, a
portion of which are subsequently presented, were obtained with the MAGUS
performance modeling tool [23, 36]. We assume throughout that M = 1, and
thus N = P.

4.1 Preliminaries

The execution time of many parallel applications on a fixed number of processors
for a given problem size is either constant or bounded between relatively tight
upper and lower bounds. It is therefore most appropriate to model the execu-
tion time of such an application by a probability distribution with a coefficient
of variation! close (or equal) to 0. On the other hand, current and expected
workloads for large-scale parallel computing environments consist of a mixture
of such jobs with very different resource requirements, often resulting in a highly
variable workload [29, 21, 22, 6]. We thus use model parameter distributions
that reflect this variability in the resource requirements of the system workload.
Specifically, we consider the service time distributions B; to be exponential with
mean service times S; and we consider the reconfiguration overhead distribu-
tions C; to be exponential with mean reconfiguration overheads R;, 1 < i < N,
which are dependent upon the number of jobs 7 in the system. This service time
assumption matches various instances of a workload based on measurement data
of computational fluid dynamics applications [21, 22].2

! The coefficient of variation is the ratio of the standard deviation to the mean [10].
A deterministic distribution has a coeflicient of variation equal to 0.

2 There exists evidence suggesting that the coefficient of variation for the workload,
in many cases, is larger than 1 [21, 22, 6]. We are currently working on results for
the case of hyperexponential service time and reconfiguration overhead distributions
to address such workloads, noting that the hyperexponential distribution is a very
simple instance of a phase-type distribution.

Another important aspect of the parallel jobs comprising the system workload
is the efficiency with which these jobs utilize the processors allocated to them.
The efficiency of the workload as a whole can be reflected in the service rates
w; = 1/5; of the model, 1 < 7 < N, where the model parameter p; represents the
rate at which the system services a workload of ¢ parallel jobs “each” executed
on P/i processors.> These workload service rates can be represented by

1 _S(P/i)

i = iT(P/i) =iy 1<i<N, (12)

where S(-) is the workload speedup function and 7(P/7) is the mean service
time of a generic job when the system is servicing a workload of 7 jobs. Letting
1/ =8 =7(1), we have

pi = iS(P/i)p, 1<i<N. (13)

To isolate the key reconfiguration overhead parameter of our analysis, we con-
sider R; = R, 1 < i < N. Throughout this section we let S = 7(1) = 1000.
The workload speedup function can be written as [7, 32]

e n>1, (14)

W= TRy "

where fo(+) is used here to reflect the various types of overhead that can reduce
the workload speedup function from being linear. For a large class of parallel ap-
plications, the factor fo(-) is dominated by issues related to communication [7].
It therefore can be approximated within the context of our model by

fon) = Fnt/? n>1, (15)

where F is a constant that depends upon the system architecture and the appli-
cation workload, and d is the system dimension. In the results that follow, we
consider the values F' € {0.025,0.175,1.225} and d € {2, 3} which cover a range
of parameters provided in [7]. We also consider the overheads fo(n) € {0,n—1},
which represent the extremes of linear and constant workload speedup functions.
Our sole purpose in using this workload formulation is to consider a reasonable
range of parallel processing overheads, thus allowing us to examine the effects
of different types of parallel workloads in our analysis of dynamic partitioning.

The times at which jobs arrive to the system are defined by the distributions
A;, 0 < ¢ < N, which are dependent upon the number of jobs ¢ in the system.
These arrival times are most often modeled by a Poisson distribution in the
research literature [4, 42, 21, 22, 33, 17, 32, 25]. We thus assume that jobs come

% The details of exactly how the dynamic partitioning policy allocates processors to
jobs when ¢ does not evenly divide P, as well as the service rates for each of these
cases, are easily incorporated in our model (see Sections 2 and 3, and [37, 38]). Here
we make the simplifying assumption that the workload speedup function reasonably
approximates this information.

to the system according to a Poisson distribution with mean rate A; = A, 0 <
i< N*

The mean job response time under dynamic partitioning (T'ps) is obtained
via the analysis of Section 3. To support our comparison in the next section, we
obtain performance measures for other space-sharing policies as follows. Consider
a system in which the processors are statically divided into K partitions each of
size P/ K, where only values of K that evenly divide P are examined. We refer to
this system as SP(K). Under the above model parameter assumptions (see [37]
for a more general analysis), this system is equivalent to an M/M/K queue with
arrival rate A and service rate S(P/K)u. Hence, the mean job response time in
the SP(K) system, denoted by TSP(K), is obtained from the well-known solution
of the M/M/K queueing system [10]. The mean response time under the optimal
static partitioning policy, for a given arrival rate, is therefore given by

Topsr(d) = min {Tango (1)} (16)

Our decision to consider equal-sized processor partitions is motivated by the
results of recent studies [25, 15] showing that adaptive/static strategies in which
the system is divided into equal-sized partitions outperform other adaptive/static
policies when job service time requirements are not used in scheduling decisions.
Several recent research studies, under different workload assumptions, have also
shown that adaptive partitioning yields steady-state performance comparable to
that of the optimal static partitioning policy for a given value of A [21, 22, 33].
Hence, when this relation holds, the mean job response time under adaptive par-
titioning is accurately approximated by equation (16) and the results of the next
section are also representative of a comparison between adaptive and dynamic
partitioning policies.

Each of the various application workloads considered in our study cause the
system to saturate (i.e., the response times become unbounded) at different job
arrival rates. The parallel system under a workload with perfect linear speedup is
the last to saturate with increasing offered load, as this is the most efficient case
considered. We therefore use the measure of system utilization under the linear
workload as the basis for all of our performance comparisons. More specifically,
we use (offered) system load to refer to the ratio A/A*, where A* denotes the
saturation point for the linear workload. The results that follow for each system
are all plotted as functions of system load over the interval (0, 1).

4.2 Comparison of Space-Sharing Policies

Our first set of results identifies the reconfiguration costs for which dynamic
partitioning and optimal static partitioning provide identical steady-state per-
formance, as a function of the offered load. In particular, we use a binary search

* There exists evidence suggesting that the interarrival times of jobs, in some cases, is
more variable than the exponential assumption considered here [6]. We are currently
working on results for the case of hyperexponential interarrival times to address such
workloads.

on the reconfiguration overhead and iteratively solve our dynamic partitioning
model until we find the value of R that yields the same mean response time as
that obtained from equation (16) for a given system load. We note that the so-
lution of our model is computed in an extremely efficient manner, and thus this
fixed-point iteration converges very rapidly. To simplify our subsequent discus-
slons, we use R* to denote the value of R obtained from this fixed- point iteration.
This value is representative of the repartitioning overhead for which both types
of space-sharing yield the same performance. Thus, reconfiguration overheads
less than R* define the regions over which dynamic partitioning outperforms the
optimal static policy, whereas dynamic partitioning provides worse performance
when the reconfiguration overhead is greater than R*. Figure 1 plots these re-
sponse time contours as a function of system load for the different workloads
considered and P = 16. The y-axis is plotted on a particular log scale. The cor-
responding results for P = 32, P = 64 and P = 128 are provided in Figures 2, 3
and 4, respectively.

9 T T T T T T T
Linear Speedup <—
No Speedup —+--
Cube Root Overhead, F=0.025 -EF -
Cube Root Overhead, F=0.175 -

62

Cube Root Overhead, F=1.225 -2—
Square Root Overhead, F=0.025 -%--
Square Root Overhead, F=0.175 -¢--
Square Root Overhead, F=1.225 -+ --

39

24

15

o
ooy o
Jos Gw@@ ook K %%

00009 i

& ; *
o, S000P 00 5 % " e
ROOTETOG g s [

9 o

53 |- ROORNK
N

SOOOOUNN

30 | g -

y@%**’*?@%** l

E]EIE‘ .

Mean Reconfiguration Overhead

15 . K KHHKHK
*H%'%%%%H% HAHKHKHAKAK FKAAFKHHKK
aozaE =
0.6 mpEE EE}BEBEEE-BBDE‘EIBBEFEHEBBED j=[2.E|

-4 0—-0-D-D>-OL o000l D010 0-b-O—-D-D-O-d—D-D-D-D- DD

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
System Load

Fig. 1. Response Time Contours (log scale) with respect to Dynamic and Optimal
Static Partitioning, for P = 16

We first observe that all of the results for the linear workload are equal to
zero. This is due to the fact that the SP(1) system is optimal in this case. The
optimality of SP(1) for the linear workload follows directly from a result due
to Brumelle [2], where it is shown that the mean response time in a GI/GI/k
queue with interarrival and service time distribution functions A(¢) and B(¢),
respectively, is greater than or equal to the mean response time in the GI/GI/1
queue with the same interarrival time distribution and service time distribution
B(kt), provided that the coefficient of variation of B(:) is less than or equal

T T T T

Linear Speedup <—
No Speedup —+--

Cube Root Overhead, F=0.025 -G -
Cube Root Overhead, F=0.175 -
Cube Root Overhead, F=1.225 -2—
Sguare Root Overhead, F=0.025 -%-- -
Square Root Overhead, F=0.175 -¢--

g Square Root Overhead, F=1.225 -+ --
< —
8
c
R=l -
IS
=}
>
€ & E
§ %99
i3 5 SO, 3
8 5 xIOOE 00006 S0 o %
OO 00 e,

[eo000x XK, &

= s o0
15 XK
ek KRR Ny *
%HX%M%%%%%%**W**%%%% HH KKK kK

E CEEEEEEE |2l
o CREEEEEEEE oEEREEEEE8EE BEIEHZE!E}E!BBE] =

Fig. 2. Response Time Contours (log scale) with respect to Dynamic and Optimal
Static Partitioning, for P = 32

I T T T T T T T
L Linear Speedup <©—
+ No Speedup —--
24+ Cube Root Overhead, F=0.025 -CF-
+ Cube Root Overhead, F=0.175 -
4 Cube Root Overhead, F=1.225 2
kY Square Root Overhead, F=0.025 k- -
5 e Square Root Overhead, F=0.175 -¢--
3 + Square Root Overhead, F=1.225 -+ -
K=
2oof Y -
5
S
B &
S ©
ES 53 | 000@09 =
= 09® Koo
: T ey
’% 30 - 4 &%%%QGOQ -
s) Xxxxxx ><><><><><><®
S HHNK
15 poooocd S8 % .
X&ﬁ(}@ 3,
SRRy TERS T8 B
0.6 bR FHHHAHARHAAN ﬁ%*%* pull
. go8 *x
BEBGBBBGBBBBBGBEEBBGBBGBBGBEBGB R Ea aa]
e e s e e e ke by
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
System Load

Fig. 3. Response Time Contours (log scale) with respect to Dynamic and Optimal
Static Partitioning, for P = 64

to 1. Given the optimality of shortest-job-first in uniprocessor systems [11], our
results for linear workloads suggest that {eme sharing all of the processors among
the jobs (in a sufficiently coarse manner to outweigh the overhead of context
switching) may provide the best steady-state performance when the workload

+ T T T T T T T

24 if Linear Speedup <— |
) No Speedup —+--
LY Cube Root Overhead, F=0.025 -E3 -
15 | + Cube Root Overhead, F=0.175 > |
3 Cube Root Overhead, F=1.225 -A—
| Square Root Overhead, F=0.025 -k~ -
+ Square Root Overhead, F=0.175 -¢--
'§ 9 Sy Square Root Overhead, F=1.225 -+ -- |
5 E
g s e
3 . B
=}
5 4
= tald f +
1] P -8,
g 30 |© W i
SO
x %
8 : mr %%e@
= 15 - o ia o .
Nl SN VRS
P e YA R0,
X e | x%&g&z&
L 3 KKK e R i
0.6 %H*%H**%**%***%* Kk
S o e e B R

System Load

0 >-6-¢>

Fig. 4. Response Time Contours (log scale) with respect to Dynamic and Optimal
Static Partitioning, for P = 128

makes extremely efficient use of the processors. We also note that the benefits of
using time sharing together with a static partitioning policy have been observed
for a different region of the parallel system design space [31].

We observe that the values of R* are also equal to zero for the constant
workload. The optimality of the SP(P) system when the workload has a con-
stant speedup function is easily explained by noting that all space-sharing poli-
cies besides SP(P) effectively leave processors idle. Thus, we find that dynamic
partitioning is a sub-optimal space-sharing strategy at both extremes of the
spectrum of parallel workloads.

Turning our attention to the remaining workloads, which are probably more
representative of those often found in practice, we observe that the performance
of the dynamic partitioning policy is as good as or better than optimal static
partitioning even with a relatively large reconfiguration overhead. In particular,
the mean cost to repartition the processors can be as large as 78, bb, 37 and 26
on a system with 16, 32, 64 and 128 processors, respectively, and it still may
be beneficial to employ a dynamic partitioning policy under light system loads.
Note that these overheads are relative to the mean service time of a generic job
when executed on a single processor, which has a value of 7(1) = 1000. Note
further that larger values of F' and smaller values of d imply system workloads
with poorer speedup functions (see equations (14) and (15)).

As the system load increases, the general drift for the R* values decreases
because the large reconfiguration costs that can be tolerated at lighter loads tend
to outweigh the benefits of dynamic partitioning at heavier loads. In the limit as
the system approaches saturation, the probability that the system repartitions

the processors tends toward 0, i.e., the frequency of reconfigurations decreases
to 0 as the Markov chain spends essentially all of its time at or above level N
(see [37] for the technical details). It therefore follows that the dynamic parti-
tioning system converges toward SP(P) in the limit as the system approaches
saturation.

The scalloped shape of the response time contours for these workloads in
Figures 1 — 4 are representative of the response time behavior of the optimal
static partitioning policy. Specifically, each of the points where the value of R*
increases (within a particular region of system load) is due to a change in the
value of K employed under the optimal static policy. This in turn causes the
response time under dynamic partitioning to be compared with a different sta-
tic partitioning response time curve, which is further from saturation than the
response time curve for the previous measure of load. As previously noted, the
different systems (consisting of the various workloads and policies under con-
sideration) saturate at different job arrival rates. This explains why the various
response time contours span different intervals of offered load.

Our next set of results quantifies the performance benefits of dynamic par-
titioning with respect to optimal static partitioning. Comparing the value of
Topt_sp with Tpp, we obtain the percentage of improvement, or degradation,
in mean response time under dynamic partitioning as a function of the sys-
tem load and the reconfiguration overhead. The results for P = 64 and R =
0.01,0.1,1,5,10,20 are plotted in Figures b, 6, 7, 8, 9 and 10, respectively. We
first observe that dynamic partitioning provides no performance benefits under
workloads with linear or constant speedup functions. In fact, the mean job re-
sponse time under dynamic partitioning can be significantly worse than that
of optimal static partitioning, particularly for heavy traffic intensities and large
values of R. This follows directly from our above discussions for the linear and
constant workloads.

With respect to the other workloads considered, we observe that dynamic
partitioning can provide significant improvements in performance for relatively
small reconfiguration overheads. By adjusting scheduling decisions in response
to workload changes, the dynamic partitioning policy provides the most efficient
utilization of the processors among the various space-sharing strategies when R
is small. These performance benefits tend to increase as the system load rises,
since workload changes are more frequent and dynamic partitioning adjusts its
processor allocations accordingly to achieve the best steady-state performance.
Our results for small reconfiguration costs confirm and help to further explain
those previously reported for dynamic partitioning policies in UMA environ-
ments.

When the value of B becomes sufficiently large, however, the overhead of
repartitioning the processors tends to outweigh the benefits of dynamic par-
titioning, particularly at moderate to heavy system loads. Our results clearly
show the significant degradation in system performance (with respect to opti-
mal static partitioning) that is possible under large reconfiguration overheads.
This is due in part to an unstable characteristic of the dynamic partitioning pol-

T T T T T T T
Linear Speedup <—
No up —+--
c 120 - cubeRoot Overhead, F=0.025 &t - 7
2 Cube Root Overhead, F=0.175 -
3 Cube Root Overhead, F=1.225 -4-
= Square Root Overhead, F=0.025 - -
g’ 100 |- Square Root Overhead, F=0.175 -<--
g Square Root Overhead, F=1.225 -+ --
A
2w 52
g A A A 8
£ i A A ,‘4 Sl
7 Aty L0 A
é 60 - fzt%@ﬂf'# + iﬁtﬁéw&
3 o AR wg”
g +‘E;:VZ oy X Q: +
— 0+ L 4& {io@g + +>§><>2<
> s o007 KL o
g by Il Xy
g fdp 44
b3 0 4 OQ +H
TA 0 5 *,
PR o X SR KRE g8
.09 20000 e ,%%*%»BBEBE‘BE‘B
0 1 1 1 1
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

System Load

Fig. 5. Response_Time Improvements, or Degradations, under Dynamic Partitioning,

for P =64 and R = 0.01

140 T T T
Linear Speedup <—
No up —+--
120 + Cube Root Overhead, F=0.025 -t - -
Cube Root Overhead, F=0.175 -
Cube Root Overhead, F=1.225 -A—
Square Root Overhead, F=0.025 - -
Square Root Overhead, F=0.175 -¢-- T
Square Root Overhead, F=1.225 -+ --

8
T

80 & A
- I .
N 4\“ A ,®®
VS-S S
VS WGP
oY s 2{6@)%@0 8 X,]
TRy * kK K
N Y +<>:ék\+2§ < WX
: A Lo KAHKD

Percentage of Performance Improvement/Degradation
3
T

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
System Load

Fig. 6. Response Time Improvements, or Degradations, under Dynamic Partitioning,

for P=64 and R =10.1

icy where the system spends a considerable amount of time repartitioning the
processors among jobs. To illustrate this, we plot in Figure 11 the percentage
of time that the system spends reconfiguring its processor allocations in steady
state as a function of the system load for P = 64 and R = 20. The potential for

o 0
60 - AD AA 7
el a4 B
gg%gr’/ﬁL PR [‘FZ; @
of [ENY Wi, S :
& A Kop 0B 000 * Q
p 4 00850H Y3 RV
: P fary
20 4 < i >g<f<%<-><—><ﬂ><'>< X%, e
£ £ QO)X tf} Xo
(£ o0 500 o X 2
& 0 X kN Reto) %g&
0 HRAHHKAHHIHK S]
R s RN A . g

-20

Linear Speedup <—

No Speedup —+--

Cube Root Overhead, F=0.025 - -
Cube Root Overhead, F=0.175 -
Cube Root Overhead, F=1.225 -4~

Square Root Overhead, F=0.025 -X--
Square Root Overhead, F=0.175 -¢--

Square Root Overhead, F=1.225 -+ --

Percentage of Performance Improvement/Degradation

I

0.125 0.25 0.375 0.5

System Load

0.625

Fig. 7. Response Time Improvements, or Degradations,

for P=64and R=1

0.75 0.875 1

under Dynamic Partitioning,

40 F

20

A

Linear Speedup <— A

No Speedup —+--

Cube Root Overhead, F=0.025 - -

Cube Root Overhead, F=0.175 -

Cube Root Overhead, F=1.225 -A-

Square Root Overhead, F=0.025 -%--

Square Root Overhead, F=0.175 -¢--

Square Root Overhead, F=1.225 -+ --
1 1 1

Percentage of Performance Improvement/Degradation

i, o +
XXXQQ i

0.125 0.25 0.375 0.5

System Load

Fig. 8. Response Time Improvements, or Degradations,

for P=64and R=5

instability under dynamic partitioning is exhibited
of the percentage curves, where we observe a sharp

1

under Dynamic Partitioning,

by the two different phases
increase in the system’s re-

configuration of processors toward the end of the first phase, while this factor
continually decreases (often linearly) through the second phase. In fact, for all

40 T T T T T T T

Linear Speedup <—

No Speedup —+--

Cube Root Overhead, F=0.025 - -
Cube Root Overhead, F=0.175 -
Cube Root Overhead, F=1.225 -4~
y Square Root Overhead, F=0.025 - -
Square Root Overhead, F=0.175 -¢--

4 Square Root Overhead, F=1.225 -+ --

£
o A
o ol
Loy #ﬁﬁ QX T

et "

Percentage of Performance Improvement/Degradation

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
System Load

Fig. 9. Response Time Improvements, or Degradations, under Dynamic Partitioning,

for P =64 and R =10

40 T T T T T T T

Linear Speedup <—
No Speedup —+--

Cube Root Overhead, F=0.025 - -

Cube Root Overhead, F=0.175 -

j Cube Root Overhead, F=1.225 -4-
J tﬁ Square Root Overhead, F=0.025 - -
L + Square Root Overhead, F=0.175 -¢--
0 Square Root Overhead, F=1.225 -+ --

2

Percentage of Performance Improvement/Degradation

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
System Load

Fig. 10. Response Time Improvements, or Degradations, under Dynamic Partitioning,

for P =64 and R = 20

workloads except those with F' = 1.225, there are intervals of offered load over
which the system spends the majority of its time (more than 60%) repartitioning

the processors among jobs. This form of reconfiguration thrashing clearly must
be avoided.

T T T T T T T
Linear Speedup ©—
No Speedup —+--

60 - Cube Root Overhead, F=0.025 -&+- -
AR Cube Root Overhead, F=0.175 -
A ?&& Cube Root Overhead, F=1.225 -2
s % Square Root Overhead, F=0.025 -~

50 A % Square Root Overhead, F=0.175 -¢--
kS Square Root Overhead, F=1.225 -+ --

& ‘.
4P+ £ 5y T -

Percentage of Time Executing Reconfigurations

R 4 i
30 /{4 VRN i&i&
) %A% ®
HA TR 3 - R
20- s L 42% %z& 5 _
Jeh g X " %
L4 ES L ®
[44 OX 4 ® =
0 L4 oy 3 X &]
/489X A R ®
i & % =
+i e 4 & ®
0 1 1 1 * 1 1 1 # 1 L
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
System Load

Fig.11. Percentage of Time Spent Repartitioning the Processors under the Dynamic
Policy in Steady State, for P = 64 and R = 20

As noted above, the system under dynamic partitioning converges toward
SP(P) in the limit as it approaches saturation, i.e., the percentage of time spent
repartitioning the processors tends toward 0 in this limit (see Figure 11). Sim-
ilarly, the scalloped shape of the response time improvement percentage curves
are caused by the exact behavior cited above for the response time contours.

5 Conclusions

In this paper we examined the benefits and limitations of dynamic partitioning
with respect to other space-sharing strategies across a wide range of parallel sys-
tem environments. We formulated a general model of dynamic partitioning that
can be fitted to measurement data to obtain a sufficiently accurate quantita-
tive analysis of real parallel systems executing real scientific and/or commercial
workloads. An exact solution of the model was then obtained by employing
matrix-geometric techniques, the computational efficiency of which allowed us
to explore the large parallel system design space. We hope that the model and
analysis presented in this paper, together with real measurement data on paral-
lel system and workload characteristics, will serve as a basis for further research
of dynamic partitioning across different system architectures and application
workloads.

Our results show that the performance benefits of dynamic partitioning are
heavily dependent upon its associated costs, the system load and the workload
characteristics. When the reconfiguration overhead is relatively small, the per-
formance benefits of dynamic partitioning can be quite significant for most of the

workloads considered. In these cases, the dynamic partitioning policy provides
the most efficient utilization of the processors among the various space-sharing
strategies by adjusting scheduling decisions in response to workload changes.
These performance benefits tend to increase with rising traffic intensities, since
workload changes are more frequent and dynamic partitioning adjusts its proces-
sor allocations accordingly to achieve the best steady-state, space-sharing per-
formance.

When the reconfiguration costs are sufficiently large, however, this overhead
tends to outweigh the benefits of dynamic partitioning, particularly at moderate
to heavy system loads, and the degradation in system performance (with respect
to the other forms of space sharing) can be quite significant. This is caused in
part by a form of reconfiguration thrashing where the system spends a consid-
erable amount of time repartitioning the processors among jobs. In such cases,
dynamic partitioning must be employed more selectively. An interruptible list,
containing those jobs in execution that are eligible for reconfiguration, can be
used to prevent thrashing by removing a job from the list (making it ineligible
for repartitioning) for some period of time after it has been reconfigured [21, 22].
Since the costs of reconfiguration often depend upon the problem size [21, 22, 30],
having the user provide such information can facilitate even better repartition-
ing decisions by the scheduling policy. Finally, we believe it will be beneficial
to combine dynamic partitioning together with some form of time sharing (in a
sufficiently coarse manner to outweigh the costs of context switching) when the
reconfiguration overhead is sufficiently large.

Acknowledgements. We thank the anonymous reviewers for several helpful
comments that improved the presentation.

References

1. S. Asmussen, O. Nerman, and M. Olsson. Fitting phase type distributions via the
EM algorithm. Tech. Rep. 1994:23, Dept. Math., Chalmers Univ. Tech., 1994.

2. 8. L. Brumelle. Some inequalities for parallel-server queues. Op. Res., 19:402-413,
1971.

3. S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of application charac-
teristics and limited preemption for run-to-completion parallel processor scheduling
policies. In Proc. ACM SIGMETRICS Conf., 33-44, 1994.

4. K. Dussa, B. Carlson, L. Dowdy, and K.-H. Park. Dynamic partitioning in trans-
puter environments. In Proc. ACM SIGMETRICS Conf., 203-213, 1990.

5. M. J. Faddy. Fitting structured phase-type distributions. Tech. Rep., Dept. Math.,
Univ. Queensland, Australia, 1994. To appear, Appl. Stoch. Mod. Data Anal..

6. D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel sci-
entific workload on the NASA Ames iPSC/860. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, 1995.
Lecture Notes in Computer Science Vol. 949.

7. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.
Walker. Solving Problems on Concurrent Processors Volume I: General Techniques

and Regular Problems. Prentice Hall, 1988.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

. D. Ghosal, G. Serazzi, and S. K. Tripathi. The processor working set and its use

in scheduling multiprocessor systems. IEEE Trans. Soft. Eng., 17:443-453, 1991.

. A. Gupta, A. Tucker, and S. Urushibara. The impact of operating system sched-

uling policies and synchronization methods on the performance of parallel appli-
cations. In Proc. ACM SIGMETRICS Conf., 1991.

L. Kleinrock. Queueing Systems Volume I: Theory. John Wiley and Sons, 1975.
L. Kleinrock. Queueing Systems Volume II: Computer Applications. John Wiley
and Sons, 1976.

A. Lang. Parameter estimation for phase-type distributions, part I: Fundamentals
and existing methods. Tech. Rep. 159, Dept. Stats., Oregon State Univ., 1994.
A. Lang and J. L. Arthur. Parameter estimation for phase-type distributions, part
II: Computational evaluation. Tech. Rep. 160, Dept. Stats., Oregon State Univ.,
1994.

S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed multi-
processor scheduling policies. In Proc. ACM SIGMETRICS Conf., 226-236, 1990.
R. K. Mansharamani and M. K. Vernon. Properties of the EQS parallel processor
allocation policy. Tech. Rep. 1192, Univ. Wisconsin, Comp. Sci. Dept., 1993.

C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy
for multiprogrammed shared-memory multiprocessors. ACM Trans. Comp. Syst.,
11(2):146-178, 1993.

C. McCann and J. Zahorjan. Processor allocation policies for message-passing
parallel computers. In Proc. ACM SIGMETRICS Conf., 19-32, 1994.

N. H. Naik, V. K. Naik, and M. Nicoules. Parallelization of a class of implicit finite
difference schemes in computational fluid dynamics. Intl. J. High-Speed Comp., 5,
1993.

V. K. Naik. Performance effects of load imbalance in parallel CFD applications.
In Proc. SIAM Conf. Par. Proc., 1992.

V. K. Naik. Scalability issues for a class of CFD applications. In Proc. Scal. High
Perf. Comp. Conf., 268-275, 1992.

V. K. Naik, S. K. Setia, and M. S. Squillante. Performance analysis of job sched-
uling policies in parallel supercomputing environments. In Proc. Supercomputing
’93, 824-833, 1993.

V. K. Naik, S. K. Setia, and M. S. Squillante. Scheduling of large scientific appli-
cations on distributed memory multiprocessor systems. In Proc. STAM Conf. Par.
Proc. Sci. Comp., 913-922, 1993.

R. D. Nelson and M. S. Squillante. The MAtrix-Geometric qUeueing model Solu-
tion package (MAGUS) user manual. Tech. Rep. RC, IBM Res. Div., 1994.

M. F. Neuts. Matriz-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. The Johns Hopkins Univ. Press, 1981.

E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M. Carlson. Robust parti-
tioning policies of multiprocessor systems. Perf. Eval., 19:141-165, 1994.

R. Schassberger. Insensitivity of steady-state distributions of generalized semi-
Markov processes, part I. Ann. Prob., 5(1):87-99, 1977.

R. Schassberger. Insensitivity of steady-state distributions of generalized semi-
Markov processes, part II. Ann. Prob., 6(1):85-93, 1978.

R. Schassberger. Insensitivity of steady-state distributions of generalized semi-
Markov process with speeds. Advs. Appl. Prob., 10:836-851, 1978.

R. Schreiber and H. D. Simon. Towards the teraflops capability for CFD. In
H. D. Simon, editor, Parallel CFD - Implementations and Results Using Parallel
Computers. MIT Press, 1992.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

S. K. Setia. Scheduling on Multiprogrammed, Distributed Memory Parallel Com-
puters. PhD thesis, Dept. Comp. Sci., Univ. Maryland, College Park, MD, 1993.
S. K. Setia, M. S. Squillante, and S. K. Tripathi. Processor scheduling on multipro-
grammed, distributed memory parallel computers. In Proc. ACM SIGMETRICS
Conf., 158-170, 1993.

S. K. Setia, M. S. Squillante, and S. K. Tripathi. Analysis of processor allocation in
multiprogrammed, distributed-memory parallel processing systems. IEEE Trans.
Par. Dist. Syst., 5(4):401-420, 1994.

S. K. Setia and S. K. Tripathi. A comparative analysis of static processor parti-
tioning policies for parallel computers. In Proc. MASCOTS 98, 1993.

K. C. Sevcik. Characterizations of parallelism in applications and their use in
scheduling. In Proc. ACM SIGMETRICS Conf., 171-180, 1989.

K. C. Sevcik. Application scheduling and processor allocation in multiprogrammed
parallel processing systems. Perf. Eval., 19:107-140, 1994.

M. S. Squillante. MAGIC: A computer performance modeling tool based on
matrix-geometric techniques. In Proc. Intl. Conf. Mod. Tech. Tools Comp. Perf.
Eval., 411-425, 1991.

M. S. Squillante. Analysis of dynamic partitioning in parallel systems. Tech. Rep.
RC 19950, IBM Res. Div., 1995.

M. S. Squillante. On the benefits and limitations of dynamic partitioning in parallel
computer systems. Tech. Rep. RC 19951, IBM Res. Div., 1995.

C. A. Thekkath and H. M. Levy. Limits to low-latency communication on high-
speed networks. ACM Trans. Comp. Syst., 11(2):179-203, 1993.

A. Tucker and A. Gupta. Process control and scheduling issues for multipro-
grammed shared-memory multiprocessors. In Proc. ACM Symp. Op. Syst. Prin.,
159-166, 1989.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:
A mechanism for integrated communication and computation. In Proc. Intl. Symp.
Comp. Arch., 256-266, 1992.

J. Zahorjan and C. McCann. Processor scheduling in shared memory multiproces-

sors. In Proc. ACM SIGMETRICS Conf., 214-225, 1990.

