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Abstract. We discuss the components of a general approach to de-
sign algorithms for resource management in parallel processing systems.
Starting from the observation that in this area the average influence of
research publications on practical implementations is negligible, we ad-
dress the three main categories constraints, objectives, and evaluation.
For each category, we describe common approaches and restrictions and
give some general rules that should be followed when presenting a new
algorithm for resource management. As an example we present a resource
management method for the IaaS model of Cloud Computing that ex-
tends the spot instance approach of Amazon. For this example, we first
discuss technical, organizational, and usage constraints based on existing
concepts and research results. Then we briefly describe resource manage-
ment objectives from the viewpoint of a provider. After presenting our
algorithmic concept, we show that an evaluation with theoretical means
can also yield meaningful results in practice.

1 Introduction

The increasing demand to handle large amounts of digital data in many sci-
entific and commercial areas has led to growing importance of data centers as
these centers are supposed to provide better service at lower costs. But as Ka-
plan, Forrest, and Nadler [8] have already pointed out in 2008, ”data center
inefficiency is a widespread and growing concern”. Therefore, it is not surprising
that many conferences and workshops on high performance or high throughput
computing devote sessions to the topic resource management and scheduling.
But although there is a plethora of papers suggesting various new algorithms
for job scheduling on parallel processor systems only very few of them are used
in real machines. Many systems still apply methods that have been developed
in the 90s, like EASY backfilling, see Lifka [11]. There can be only two reasons
for this discrepancy: either there is a lack of communication between researchers
and system engineers preventing the use of suitable algorithms in practice or the
proposed algorithms are not applicable in real systems. Based on our experience
in organizing workshops addressing this area for a long time, we have got the
impression that practitioners follow workshops and conferences and are aware of
the research presented there. Therefore, the publications must do a better job
convincing these practitioners about the benefits of the approaches and research
work must better consider the constraints and objectives that are relevant in
practice.
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With this paper, we want address these challenges by presenting some rules
on constraints, objectives, and evaluation. We suggest that future papers on
resource management for computer systems consider them in order to point out
the applicability and the benefit of new scheduling algorithms. Some of these
rules may look rather simple but a review of many scheduling papers shows that
they are often ignored. The rules are supposed to be used for research work that
emphasizes relevance in practice while they do not necessarily apply to basic
research papers that only mention some vague reference to a potential future
applicability of the developed algorithms. As an example we show the application
of these rules when developing a method to manage computing resources used in
the Infrastructure-as-a-Service (IaaS) model of Cloud Computing. This method
is an alternative to Amazon’s use of spot instances.

The further outline of the paper is as follows. First, we distinguish three dif-
ferent types of constraints that occur in practical job scheduling problems and
show how we address them in our IaaS example, see Section 2. In Section 3,
we focus on the objectives of job scheduling problems and briefly discuss the
use of common theory objectives and the handling of multi-objective problems
with the help of our IaaS example. Then we introduce our new allocation algo-
rithm that can be considered as an alternative to Amazon’s spot instances. In
Section 5, we analyze the advantages and disadvantages of the three main eval-
uation approaches. We pick the theoretical approach for our example to show
that theoretical methods can be beneficial for practical problems.

2 Constraints

The operation of a data center is subject to several technical, organizational,
and usage constraints. These constraints define the solution space of a problem,
that is, a solution is only valid if all constraints are satisfied. As in other areas
of science, it is not always necessary to consider all constraints when developing
a new algorithm. Clearly, we can ignore constraints if their omission does not
change the solution space. Often we can also apply a simple model with different
and simpler constraints if this model leads to a small reduction of the solution
space. Such decisions must be clearly communicated in a paper. In particular,
we must show or at least state the influence of an omitted constraint on the
solution space. To determine the influence of a constraint, it may be beneficial
to address evaluation aspects already in an early stage. Also there may be some
commonly encountered constraints that can be relaxed and removed due to new
technical results or due to a proposed different organizational structure. Such
modification extends the solution space and may allow a better result.

In the remaining parts of this section, we discuss constraints in our IaaS
example. IaaS is a basic service model of Cloud Computing and constitutes
a market consisting of providers and customers. An IaaS provider owns IT-
infrastructure and offers it to his customers. An IaaS customer wants to lease
a computer infrastructure to avoid the effort and the expenses of handling his
own computer infrastructure. In general, the IaaS customer expects some service
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guarantee when paying for the infrastructure. IaaS customers may run their own
applications on the leased hardware or there may be a third partner who uses
the software of IaaS customers and the hardware of IaaS provider together with
his own input data.

2.1 Technical Constraints

In our example, we consider technical constraints regarding availability of appli-
cation information, sharing of the physical infrastructure, and power manage-
ment of the system.

Many scheduling algorithms for computer systems are clairvoyant, that is,
they require execution details of the application. Often the precise execution time
of an application is not known a priori. Then users may be required to provide
the estimated execution time of their applications. Some scheduling algorithms
consider these estimates to be exact although it has been shown that deviations
are often rather large, see Lee et al. [10]. Therefore, this information is of limited
benefit for resource management. In an IaaS scenario, there is little chance to
obtain reliable information since sometimes input data are not under control of
the IaaS customer.

IaaS providers presently favor space sharing over time sharing. Pure space
sharing may lead to potential inefficiencies as long running applications with
low priority must be terminated to free resources for new high priority customer
requests unless high priority jobs are rejected or there is a sufficient amount
of overprovisioning. Time sharing in a computer infrastructure is technically
achieved by context switching between different virtual machines, that is, the
execution of a virtual machine on a physical resource is preempted and later
resumed on a possibly different physical resource. To monitor compliance with
a service guarantee, appropriate tools must be installed by the IaaS provider.
Since these tools use the same physical resource as the application and require
the availability of the resource repeatedly for a brief period of time, time sharing
must be applied for these tool. Therefore, tools for system management consume
a share of the physical resources, the so called system overhead. This overhead
must be taken into account by any resource management algorithm. Although
the resource consumption of these tools is not constant it can be estimated
rather reliably. Therefore, we assume in this example that the provider knows
at least the distribution of the amount of computing power that is required
for system management tasks like service monitoring, context switching, and
book keeping. Then he can select the maximum amount of system overhead
that a resource management system must be able to tolerate in a time interval.
We consider this value to be a constant that reduces the available resources.
Therefore, we ignore the system overhead and simply assume a slower physical
resource without system overhead. In practice, an overestimation of the system
overhead has not negative impact on resource management as it is not explicitly
incorporated in technical components. It will only produce allocation completion
times that are earlier than the corresponding deadlines. But an unnecessary large
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margin for system overhead may reduce interest of potential customers and put
the provider in a disadvantageous position in comparison to his competitors.

Due to present processor architectures, we must distinguish between context
switching without core migration, context switching with migration to another
core on the same processor, and context switching with migration to another core
on a different processor since these alternatives have different context switching
penalties. Strong et al. [16] point out methods to support fast context switch-
ing such that context switching with migration is not only applicable to handle
processor failure but also to improve resource management. Similarly, Mars et
al. [13] have suggested the use of the so called Bubble-Up methodology to re-
duce context switching penalties and propose improving resource management
by allowing colocation of interactive and batch resources contrary to the current
policy in many large data centers. Therefore, we consider time sharing for some
applications.

Energy expenses are a significant part of the total expenses in a data center.
Idle but active resources consume power without yielding a direct benefit to the
provider. But the IaaS provider must accept some overprovisioning of resources
to meet the agreed quality of service in case of a machine failure. Since the total
resource demand of all customers is not constant particularly if most customers
are located in the same time zone, an IaaS provider may also accept additional
overprovisioning to handle peak demand without rejecting customer requests.
In a situation of low customer demand the provider can use two approaches to
reduce his energy expenses:

– Dynamic voltage and frequency scaling (DVFS)
– Shutting down of idle resources in combination with application migration

DVFS has not received much interest by IaaS providers as it strongly depends on
the individual application. A provider initiated change of the processing speed
may also lead to a violation of the service agreement. Moreover, simulations have
shown that local changes of power consumption may lead to thermal problems in
the system, see, for instance, Ibrahim et al. [7]. Therefore, we focus on migrating
applications such that some racks can be powered down while the load is balanced
for the active racks.

2.2 Usage Constraints

In an IaaS market the provider must consider the demand of his customers. To
this end, it is necessary to analyze the applications that are typically running
on an IaaS system. Although most Cloud providers do not publish utilization
data of their clusters, there are a few publications that provide some data and
analysis methodologies, like, for instance, some statistics on Cloud jobs based on
Google’s clusters, see, for instance, Mishra et al. [14]. For the IaaS scenario we
use a simplification of the responsiveness classification of web jobs by Cirne and
Frachtenberg [2] in our example. We will later show that this simplification is
sufficient for our purpose. In this paper, we distinguish three types of applications
that can be combined with any resource type of the IaaS provider:
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Interactive This application requires the system to be available for processing
within a very brief period of time. For instance, web front ends belong to this
type of application. In order to maintain a sufficiently high responsiveness
for resources with interactive applications, time sharing with migration of
such application is usually avoided and only performed in case of machine
failure.

User-facing This application does not require an immediate user interaction
but the user expects the result as soon as possible. Animoto’s1 rendering of
images is an example for such application.

Batch This application needs a significant amount of computing over an ex-
tended period of time but has no tight deadlines. Re-indexing a database
or other management jobs are examples for this type of application. Such
applications may be initiated by a customer or by the provider himself and
typically have a low priority.

In the following, we characterize a resource based on the application it is ex-
ecuting, that is, we speak of interactive, user-facing, and batch resources. For
interactive resources, we can distinguish two types:

– basic interactive resources must always be running to answer sporadic re-
quests,

– flexible interactive resources are leased and released on demand but may
incur some set-up penalty.

Typically, basic interactive resources are leased over an extended period of time
representing a simple form of outsourcing, that is, the customer shifts the task
of IT management to the provider and benefits from economy of scale effects.
Depending on the demand a basic interactive resource may be idle for some time.
Although such idleness may be a tempting target for resource management it
must be considered that the customer has leased the resource. The customer
is free to use an idle basic interactive resource for other applications but if the
IaaS provider wants to exploit the resource for another purpose, like improving
energy efficiency, the consent of the customer and the observance of the service
guarantee are required. Therefore, a basic interactive resource produces a static
constraint from the viewpoint of an IaaS resource management system in this
paper. Similar to flexible interactive resources, customers are interested in leasing
user-facing and batch resources on-demand to handle varying workloads. This
way the customer avoids overprovisioning of IT resources while the IaaS provider
may achieve an acceptable load balance by exploiting the different workload
demand patterns of his customers.

2.3 Organizational Constraints

In the IaaS market economy, provider and customer conclude a service contract
based on an offer of the provider. Due to the large number of customers, a

1 animoto.com
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typical IaaS customer has little power to negotiate his contract but must accept
one of the standard offers similar to a mobile phone customer. To be successful
in the market and to attract many customers, IaaS providers try to satisfy the
different demands of the customers when defining their offers. For a our problem,
we discuss whether it is possible to define IaaS offers such that they support an
efficient resource management in addition to serving the purpose of attracting
and satisfying customers. In this approach, the offer is not a fixed constraint
but an element of the solution space that is subject to several organizational
constraints.

An IaaS offer specifies the price that the customer must pay for the provided
resources and a guaranteed quality of service including penalties for violating
these guarantees. It is based on a small number of different tpyes of virtual in-
stances that usually include processor specification, amount of memory, amount
of storage, and network performance2. In these instances, there is a coarse gran-
ularity regarding each resource type and often a close relationship between the
different resource types: a large number of cores is combined with more mem-
ory and better network performance. In a large data center the total number
of resources for each instance type is very large and most data centers provide
resources to their main customers using space sharing. Therefore, we assume in
our study only a single type of instance with a single type of resource to which
we refer as machine. This approach corresponds to a fixed partitioning of the
resources of the data center. Similar to a car rental company, it may be pos-
sible to additionally improve efficiency by allocating a more powerful instance
to a customer request without additional costs if the requested instance is not
available.

In the IaaS scenario, there are typically two aspects of a service guarantee:

Availability The customer is guaranteed that the system is available at least
for a specified percentage during a specified time frame, for instance, 99%
availability each month.

Responsiveness The customer is guaranteed to receive a certain amount of
physical computer resources within a given (brief) time interval.

Guarantee values are set by the IaaS provider as part of his offers. The availabil-
ity condition is a customer protection against long term system failure. It indi-
rectly affects resource management as additional redundant machines must be
available to compensate possible machine failure, see Cirne and Frachtenberg [2].
Usually, the determination of an appropriate amount of overprovisioning can be
separated from other resource management tasks. Therefore, we consider the
amount of overprovisioning to be fixed in the IaaS example and do not address
the availability constraint separately. Since these redundant machines are idle
most of the time, a resource management system may at least partially use them
for batch applications with time sharing.

The responsiveness guarantee for a virtual machine can formally be expressed
by the ratio between a time interval∆t and the total time that a physical resource

2 as an example see aws.amazon.com/ec2/instance-types/
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has been allocated to a virtual machine during ∆t. This ratio is not allowed to
exceed the so called stretch or slack factor f defined in the contract. The system
overhead discussed in Section 2.1 is a reason for a stretch factor that is greater
than one. A lower stretch factor may be more attractive for a customer and may
allow a higher price. The impact of the stretch factor on resource management
will be discussed later. For long term leases, responsiveness can be combined
with availability by defining that a machine is not available in a time interval if
the response time guarantee is not always met during this interval. User-facing
and batch resources primarily differ with respect to their responsiveness, that is
the length of the time interval and the amount of resources allocated within the
time interval.

Most IaaS providers offer physical resources in an on-demand fashion for
user-facing and batch resources and use two approaches to improve efficiency:
usually there is a minimum amount or even a quantum of resources that must
be leased3 and the provider will deliver a certain amount of resources during a
given time interval at his discretion for user-facing and batch applications, that
is, the provider decides when to deliver this guaranteed amount of resources
during the time interval. Without these restrictions, on-demand offerings are
not attractive: either the provider keeps many resources in stand-by for a worst
case situation of high demand or the customer runs a high risk of a request being
rejected due to unavailability of resources. Therefore, the restrictions represent
a trade-off for the customer and the provider. The customer accepts a slightly
increased responsiveness and possibly a small amount of overprovisioning while
the provider benefits from the different use patterns of his customers. In general,
the provider accepts some overprovisioning in order to avoid alienating his cus-
tomers by rejecting their requests since there is a strong lock-in effect in Cloud
Computing and lost customers may be gone forever.

Although no running time information is available the quantum lease ap-
proach produces additional information for resource management. But it must
also be considered that resource allocations can be extended on request of the
customer. Altogether, we have a clairvoyant online problem.

In general the IaaS provider is interested in saving energy but he also does
not want to frequently power up and down resources to avoid the associated
overhead and to comply with the energy contract since electrical utility providers
usually require data center like their other large customers to estimate their
power consumption in advance and to pay penalties in case they do not match the
estimate. Due to their long lease, it is relatively easy to allocate basic interactive
resources. The same is true for batch resources due to their flexibility based on
their long responsiveness. A sudden increase in the demand of flexible interactive
or user-facing resources may be managed by postponing some batch resources.
If this approach is not sufficient new physical resources must be powered up
and a penalty for a wrong energy estimation may occur. A sudden decrease
in the demand may be compensated by allocating batch resources earlier than
originally planned. The explained benefit of the usefulness of batch resources for

3 Amazon uses an instance hour for its Elastic Computing Cloud (EC2).
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resource management is also demonstrated by Amazon’s introduction of its spot
instances. Altogether, there are opportunities for a resource management system
to improve efficiency while avoiding frequently switching a resource from active
mode to inactive mode and vice versa.

3 Optimization Objectives

There are different possible objectives for scheduling problems. In the three
field notation of scheduling problems by Graham, Lawler, Lenstra, and Rinnooy
Kan [6] the objective is specified in the last field. During the last decades of
scheduling research some objectives have been frequently chosen for research
studies, like the makespan of a schedule, and there are many results for these
objectives. The existence of such results is sometimes used as an argument to
select one of the common objectives for a research study of practical relevance.
However, unless the objective does not represent the goal of the system owner
it is unlikely that the system owner is interested in the study. Therefore, it
is important that the original objective of the system owner is described first.
In order to use a common objective, we must show that every good solution
using the common objective is also a good solution with respect to the original
objective.

Many practical scheduling problems have more than one objective. For such
problem, ideally the Pareto optima are detected. Since finding all or even a
sufficient amount of Pareto optima is often very difficult and time consuming,
multi-objective problems are often transformed into conventional single objective
problems by turning one objective into a constraint, that is, a valid area for the
corresponding value is fixed. This approach requires a final analysis to determine
the deviation of this value in the solution from the target value since the problem
solution may deliver a value anywhere in the valid area. This is particularly
important if the transformed objective has a higher priority than the addressed
objective.

In our IaaS example like in most commercial scenarios, the owner has the
primary objective to increase his profit. The use of money and the correspond-
ing evaluation of expenses is a practical approach to transform multi-objective
optimization problems into single objective problems. Unfortunately, the single
objective problem is usually too unspecific and too complex to be addressed by
common optimization approaches without introducing additional assumptions.
In our example, we assume that the owner has set a fixed hourly fee for every
high priority job (interactive or user-facing) and a (lower) fixed hourly fee for
every low priority job (batch). This approach does not correspond to the spot
market concept of Amazon but remember that it is our goal to find an alterna-
tive to the spot market. Further, we assume that the total number of installed
machines and the expenses for housing and personal are fixed and can be ig-
nored for the purpose of optimization. The system owner can influence energy
costs by migrating low priority virtual resources and shutting down idle physi-
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cal resources or activating physical resources that are inactive. We have several
objectives:

– We do not want to reject any high priority request unless all physical re-
sources are busy executing high priority requests.

– We want to achieve the target value of power consumption, that is, a target
number of physical machines should be active unless more machines are
required to execute high priority virtual resources or there are not enough
low priority virtual resources.

– Similar to the spot market we allow that a service guarantee of a low priority
virtual resource is violated but we want our resource management system
to do its best to prevent such a violation if active physical resources are
available.

Often it is difficult to translate the objectives of a system owner into a mathemat-
ical form that has already been used in more theory oriented publications. Since
it is necessary to show the equivalence or at least the close relationship between
both formulations, we must use special care when describing such translation.

4 Algorithm for the IaaS Example

In this section we describe an online allocation algorithm for our IaaS scenario.
This algorithm is later used to explain an evaluation approach.

In our IaaS scenario, we do not allow to request on-demand virtual resources
for a future starting time. In this case customers must select a long term lease.
These long term leases, for instance for basic interactive resources, are not con-
sidered in this section since they have the highest priority and are not allocated
online. Our online algorithm Allocation in Fig. 1 describes the main steps of han-
dling the request for a virtual resource R. The algorithm does not distinguish be-
tween flexible interactive virtual resources and user-facing virtual resources but
combines them into on-demand virtual resources. On-demand virtual resources
are allocated to customers one instance period ∆ at a time, that is, on-demand
allocations have a fixed length determined by the provider. There is a fixed price
for each instance period of an on-demand allocation. Any on-demand allocation
that has been started will be extended on request of the customer. The extension
request must be received time δ before the end of the instance period of the cur-
rent allocation. The provider may either decide to use an explicit extension or a
default extension. In the latter case, any allocation is automatically extended for
another instance period unless the extension is canceled at least time δ before
the end of the current instance period. Therefore, there is only a single successor
of a current on-demand allocation and this request must be received on time
(at most time ∆ before the completion of the current allocation). This property
is tested with procedure successor(). The successor request is preferably allo-
cated to the same physical resource as the current allocation but migration at
the beginning of the new allocation is possible for the reason of shutting down
processors (procedure allocate successor()).



10 U. Schwiegelshohn

A new on-demand allocation will be accepted provided there are some re-
sources that are not occupied by on-demand allocations starting at the current
time plus δ at the latest. This start-up delay produces a stretch factor of at
most (∆ + δ)/∆. If all physical resources are occupied then a batch virtual re-
source must be terminated (procedure batch termination). The new on-demand
virtual resource will be allocated to a suitable physical resources considering
goals regarding idle resources (procedure allocated new()).

Batch virtual resources can be requested for any integer multiple of an in-
stance period up to a maximum value, say k∆. They can be preempted and
migrated at any time. Batch virtual resources are charged a low rate per in-
stance hour. The rate may be determined by bidding like in Amazon’s spot
market. There may be common deadlines for batch virtual resource allocations,
for instance, every day at noon. Whenever a batch virtual resource is submitted
it is assigned the earliest deadline such that its stretch factor exceeds a minimal
value fb for batch virtual resources. The provider selects fb. A batch virtual
resource will be terminated if there are not enough resources for on-demand
virtual resources or if not all batch virtual resources cannot complete in time.
Note that the expression termination does not necessarily mean that the batch
virtual resource is stopped but that it will not be completed by its deadline. The
provider selects the batch virtual resource that will be terminated. If a batch
virtual resource is terminated then the customer is charged for the completed
instance periods. If a batch virtual resource is completed by its deadline then
the customer has to pay an additional charge for each instance period the batch
virtual resource was running.

In case of a shortage of physical resources due to an unpredictable machine
failure batch virtual resources have the lowest priority and are terminated first.
If the number of physical resources is not sufficient to execute all on-demand
virtual resources then the provider has to terminate some on-demand virtual
resources and accept a penalty. For this selection procedure, the provider must
also determine a policy.

5 Evaluation

Every paper on algorithms requires an evaluation of the new algorithm. Ideally
such evaluation covers all valid problem instances, also called the problem space,
and additionally considers the frequency of occurrence for each such problem
instance. On the one hand, it is very difficult for many parallel job scheduling
problems on real machines to provide an easy characterization of the problem
space that formally separates it from all invalid problem instances due to the
large number of constraints in such problems. On the other hand, an evaluation
only requires such separation if invalid (or very rare) problem instances deter-
mine the outcome of the evaluation. The handling of the problem space is an
important property of an evaluation approach.

In general, there are three major approaches for the evaluation of job schedul-
ing algorithms for parallel processors:
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Algorithm Allocation (Request R)

if (there is an on-demand virtual resource R′ with successor(R′)=R) {
accept R;
allocate successor(R′);
start R immediately after completion of R′; }

else if (R is a new on-demand virtual resource) {
if (all physical machines are occupied with on-demand resources) {

reject R; }
else {

if (there is no idle physical machine) {
batch termination; }

accept R;
allocate new(R);
start R as soon as possible; } }

else {
if (there is a valid batch schedule) {

accept R; }
else {

reject R; } }
reschedule batch;

Fig. 1. Algorithm for Acceptance of an Allocation Request R

– Theoretical analysis
– Execution on a real machine
– Simulation

Each of these approaches has advantages and disadvantages that must be taken
into account when deciding how to evaluate an algorithm.

5.1 Theoretical Analysis

When discussing the theoretical analysis approach we distinguish between easy
and difficult problems. For an easy problem, there is an algorithm with polyno-
mial time complexity that always finds an optimal solution in the problem space
if such solution exists. Here, theoretical analysis covers the whole problem space
and is well suited.

For difficult problems, a proof of intractability rarely provides any benefit in
practice with the exception of stating that there is no further need to look for
an optimal algorithm. Therefore, many studies produce algorithms with perfor-
mance guarantees like approximation or competitive factors for these problems.
These guarantees are upper performance bounds (for minimization problems),
that is, they consider specific worst case problem instances. For all other prob-
lem instances, we only know that the deviation from the optimum does not
exceed this guarantee. Since the guarantee is often too large to be acceptable in
a real life situation, the performance guarantee is seldom beneficial in practice.
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The value of this information is further reduced if the performance guarantee is
not tight or if it is determined by an invalid or very unlikely problem instance.
Therefore, studies presenting new performance guarantees must also answer the
following questions:

– Is the determined worst case performance guarantee also acceptable as an
average performance deviation in practice?

– Does any problem instance that determines the performance guarantee has
a high likelihood to occur in practice?

Many practitioners doubt the benefit of a theoretical evaluation for practical job
scheduling problems. The already mentioned EASY backfilling is frequently used
as a prominent example. This approach is applied in many parallel processing
systems although it has a very bad performance guarantee. We still believe that
theory also has similar benefits in the field of job scheduling as, for instance, for
numerical simulation problems. In Section 6 we will give an example to show
that theoretical analysis that can be helpful in practice.

5.2 Execution on a Real Machine

The performance of a newly designed algorithm can be evaluated by testing it in
the field on a real system. In general this approach has the potential to consider
constraints even if we have forgotten or neglected them when developing our
algorithm. But this benefit does not necessarily hold when using a small test
system due to a possible lack of scalability. Moreover, it is often very difficult to
generate a real workload during a test without real customers. Testing on the
target system with real customers avoids these disadvantages but it can only
be used when the management system is mature enough to guarantee that cus-
tomers are not alienated and no system problems are generated. Unfortunately,
a test in the field is usually very expensive particularly if a large production
system is involved. Therefore, it will normally not be used for the early stages of
algorithmic evaluation although the ultimate test must occur on a real system.
Most likely due to this effort, there are very few publications that report on
algorithm evaluation on real systems.

But real systems are used to extract real workload data. Some of these work-
load data are made publicly available by storing them in repositories like the
parallel workload archive for parallel computers4. Then they can be used di-
rectly or indirectly for an evaluation with the help of simulation studies.

5.3 Simulation

The majority of publications on job scheduling for parallel processing includes
some simulation study. In general, a simulation study is comparable with an
experiment in natural science since we generate an artificial environment to an-
swer a research question. Since there is a much longer experimental tradition in

4 www.cs.huji.ac.il/labs/parallel/workload
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natural science than in computer science it is not surprising that no generally
accepted approach for experiments in computer science has been established yet.
The lack of such approach can be observed in many publications of simulation
studies. It would be beneficial to borrow from the concepts of experiments in
physics and chemistry. Since an experiment is designed to answer a research
question this research question must be clearly formulated. Moreover, an exper-
iment is only useful if it can be verified by other researchers. Therefore, it is
necessary to describe all parts of the experiment in sufficient details to enable
such verification.

The simulation experiment is based on a model of the real system. This
model must consider all relevant constraints, see Section 2. While it is straight
forward to include technical and organizational constraints, usage constraints are
a more difficult challenge. As already stated in the beginning of this section we
must sufficiently cover the problem space. Since each problem instance requires
a separate simulation, a large number of simulations and a corresponding large
number of input instances are necessary to guarantee such coverage.

Some publications use randomly generated data. While this approach is easy
to realize it is not clear that random data can guarantee the required coverage.
Therefore, every publication using random data must explicitly show that this
condition is observed. Such proof is missing in many publications.

Alternatively, researcher often use real workload data from the already men-
tioned repositories. Although this approach seems to implicitly guarantee cover-
age of the problem space it also has some disadvantages. First of all, the number
of existing workload traces in accessible repositories may not be sufficient to
execute the required number of experiments to obtain meaningful results. Also
trace data strongly depend on the environment in which they were recorded.
Then we must determine whether a transfer to another environment is possi-
ble. For instance, fewer management conflicts will occur if the workload trace is
recorded on a smaller system than the simulated system. If necessary then the
simulated system must be adapted to the workload trace while still considering
the other constraints. Moreover, a simulation with trace data is always history
based and therefore not well suited to evaluate new algorithms if the environ-
ment allows strong interactions with participants. Such interactions often occur
in market economies with a high volatility of demand or supply as new resource
management algorithms may increase the supply of resources leading to a change
in the demand of resources. For instance, the submission pattern of a user may
change if the user knows that more resources are available. Therefore, a simula-
tion study with trace data must always address the issue of interaction between
system and providers of input data.

Due to the lack of trace data, some researchers use workload models like,
for instance, the one proposed by Lublin and Feitelson [12] for parallel comput-
ers. These workload models are verified with workload traces and usually can
be adapted to the simulation system. To support verification of the simulation
study, the details of the adaptation must be part of the description of the simu-
lation experiment. But since all workload models known to us are static models,
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interactions with customers are not considered. In our view it is one of the key
challenges in the area of job scheduling for parallel processing to develop work-
load models that incorporate a feedback component that changes the workload
depending on the result of the resource management to imitate interaction with
the participants.

6 Evaluation in the IaaS Example

In our example, we select the theoretical evaluation as at least some parts of the
algorithm can be shown to be optimal. In this situation, a theoretical evaluation
is beneficial since the problem space is obviously covered and better results are
not possible for these parts, see Section 5.1. First, we must describe our problem
in a way that is suitable for this kind of evaluation. We focus on on-demand
virtual resources since these requests have a higher priority than batch virtual
resources. The allocation of on-demand virtual resources can be described as
a scheduling problem of jobs with unit processing time on parallel identical
machines. Since we do not know which jobs will be extended we assume that
independent jobs are submitted over time, that is, we have a classical online
scheduling problem. Since we may only migrate an on-demand allocation before
its start, we do not allow preemption in our problem. Due to the limitation of
our stretch factor, the deadline of a job cannot exceed its submission time plus
the stretch factor 1 + δ < 2 as we set ∆ = 1. We want to maximize the busy
time of the physical resources, that is, we want to minimize the total idle time
of these resources. The minimization of the total idle time due to on-demand
virtual resources is equivalent to the minimization of the total number of jobs
that cannot complete before or at their deadlines. Using the common notation
in theoretical scheduling we have the objective function

∑
Uj , see Pinedo [15].

Therefore, we can express our problem as Pm|pj = 1, r
j,online|

∑
Uj . Goldman

et al. [4] address this problem on a single resource and show an upper bound of
0.5 for the competitive factor, that is, there are problem instances such that no
deterministic online algorithm can finish more than half the number of jobs than
an algorithm with complete knowledge of the submission sequence can complete.
This upper bound is achieved by a simple greedy algorithm that accepts every
job that will complete in time. Goldwasser [5] improves this result for slack
factors f ≥ 2. Kim and Chwa [9] show that the results of Goldman et al. and
Goldwasser also hold for parallel identical machines. However, a close look at
the proof of Goldman et al. shows that the proof uses a condition that may
not hold in our problem. To discuss the difference between the general problem
and our case in detail, we first introduce some notation. We say that job Ji
with processing time pi = 1 is submitted at release date ri and has the deadline
di = ri+1+δ. Goldman’s proof requires that we have di < dj for two jobs Ji and
Jj with ri > rj . This condition clearly does not hold for our problem. Remember
that the deadline is not determined by the customer but by the provider. We can
assume that the successor of an on-demand virtual allocation is submitted time δ
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before the completion of the successor resulting in the above mentioned deadline
as well. This special form of the general problem is addressed in Theorem 1.

Theorem 1. In a system with parallel identical machines a greedy approach
guarantees the minimum idleness if all jobs have the same processing time p and
di ≤ dj holds for any two jobs Ji and Jj with ri ≤ rj.

Proof. Consider an arbitrary non-preemptive schedule S with two jobs Ji and Jj
such that ri ≤ rj and ci > cj holds with ci and cj being the completion times of
jobs Ji and Jj in schedule S, respectively. Then we simply exchange the positions
of both jobs in the schedule. Clearly, job Ji can be started at time cj−p ≥ rj ≥ ri.
Similarly, job Jj will complete in time as dj ≥ di ≥ ci holds. We apply this job
exchange until all jobs start in the order of their release dates. Next, we transform
the resulting schedule into a new schedule by applying greedy allocation to the
jobs in the order of their completion times. Note that this transformation cannot
increase the completion time of any job. Therefore, we only need to consider
non-delay schedules in which the order of completion times corresponds to the
order of release dates. For any such schedule S let (c1, c2, . . .) be the sequence

of ordered completion times while (cgreedy1 , cgreedy2 , . . .) is the sequence of the
ordered completion times of schedule Sgreedy generated by the greedy approach.

Due to greedy acceptance and equal processing times for all jobs, ci ≥ cgreedyi

holds for any i if there are at least i jobs in both schedules. Therefore, no schedule
is possible with more jobs than Sgreedy as otherwise greedy acceptance does not
reject the additional jobs resulting in a contradiction. As all jobs have the same
processing time, Sgreedy is optimal.

Since batch virtual resources are terminated if there are not enough physical
resources for on-demand virtual resources our algorithm always produces an
optimal allocation for on-demand virtual resources even if some new requests
must be rejected due to a lack of physical resources. Remember that an extension
of a current on-demand allocation will only be rejected in case of a machine
failure.

Next, we address requests for batch virtual resources. In Algorithm Alloca-
tion, see Fig. 1, we must determine whether there is a valid schedule, that is, a
schedule that completes all allocations before their deadlines. This test is nec-
essary when a new batch virtual resource is submitted and if we must decide
which batch virtual resource must be terminated. Contrary to on-demand vir-
tual resources, we allow preemption for batch virtual resources. There are also
some theoretical results for preemptive online schedule with similar objectives
as the minimization of

∑
Uj . Baruah and Haritsa [1] address preemptive on-

line scheduling with the stretch metric on a single machine. They use the so
called effective processor utilization (EPU). and are the first to present an al-
gorithm that guarantees an EPU of (f − 1)/f with stretch factor f . DasGupta
and Palis [3] show that the ratio (f − 1)/f is an upper bound for total uti-
lization in the parallel identical machine environment if no migration of jobs is
allowed. This bound is guaranteed by a greedy algorithm that accepts every job
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provided that no deadline of any accepted job is violated. Again these results
seem to indicate that it is not possible to guarantee an optimal result with a
polynomial time algorithm. But our specific question whether there is a valid
schedule for a given set of jobs is not an online problem since the number of
jobs does not change while looking for an answer to the question. Moreover, we
allow migration contrary to DasGupta and Palis [3]. Let us first assume that
our batch virtual resources may have different deadlines. Then we look at the
problem from the reverse direction by transforming deadlines into release dates
and obtain the problem Pm|rj ,prmp|Cmax. The reverse problem does not have
any deadlines as all jobs are already available at time 0. This approach also al-
lows us to consider physical resources occupied by on-demand virtual resources
as we interpret these resources as additional jobs that will start at their release
date and complete at the target deadline. The problem Pm|rj ,prmp|Cmax can
be solved with a simple longest remaining processing time (LRPT) approach,
see Pinedo [15]. If all batch virtual resources have the same deadline then we
can also apply a forward approach with additional machines becoming available
as soon as they are not occupied any more by on-demand virtual resources.

However, we cannot find an optimal algorithm with polynomial time com-
plexity to determine which batch virtual resources to terminate in case of a lack
of physical machines. Even if we do not consider the online character of the
problem resulting from future submission of on-demand virtual resources, the
problem can be reduced to the partition problem. Therefore, the provider must
use some heuristic to determine which batch virtual resources to terminate.

7 Conclusion

In this paper, we tried to define some rules that may help to bridge the gap
between algorithmic developers and practitioners in the area of job scheduling
for parallel processing. These rules are not supposed to be strict laws that must
be observed by every paper but rather be guidelines that allow some degree of
flexibility. While every researcher can interpret the rules according to his specific
problem it is also his responsibility to explain these interpretations sufficiently
well to prevent misunderstanding between researchers and practitioners. Based
on experience with numerous research papers in this area, we also feel that it
is necessary to establish an approach for simulation experiments that is related
to the approach used in experiments in natural sciences. Moreover, we hope
that new workload models will be developed that help to consider interactions
between users and the system as such interactions will take place more frequently
due to the increasing use of market concepts in parallel processing.

We have used a simple IaaS scenario to provide an example how we feel that
these rules should be applied in practice. This example can also be considered as a
statement that in job scheduling for parallel processing an evaluation with theory
methods may also be helpful in practice. It extends the well known concept to
use the flexibility of long running jobs with low priority to improve data center
efficiency. Contrary to Amazon’s spot instances, we suggest that the flexibility
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of these jobs does not require an immediate termination of a job in case of a
resource shortage. Instead we suggest that a delay of the job may be beneficial
for provider and customer. In addition, we suggest a modified pricing model that
incorporates a surcharge if the job is completed in time. This way we replace the
strict model of service guarantee for these jobs with a more flexible concept.
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