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Abstract. Advance reservation of resources has been suggested as a
means to provide a certain level of support that meets user expectations
with respect to specific job start times in parallel systems. Those ex-
pectations may relate to a single job application or an application that
consists of a collection of dependent jobs; in the context of Grid com-
puting, applications consisting of dependent tasks become increasingly
important, usually known as workflows. This paper focuses on the prob-
lem of planning advance reservations for individual tasks of workflow-
type of applications when the user specifies a requirement only for the
whole workflow application. Two policies to automate advance reserva-
tion planning for individual tasks efficiently are presented and evaluated.

1 Introduction

With the emergence of more and more sophisticated services, Grid computing
is becoming rapidly a popular way of providing support for many data inten-
sive, scientific applications that, among other, may have large computational
resource requirements. Such applications, without being embarrassingly paral-
lel, may demonstrate a reasonably large degree of task parallelism. The specific
paradigm we consider in this paper concerns Grid workflow applications. These
applications require the execution of a list of tasks in a specific order. Most
often, tasks and their dependences can be represented by a Directed Acyclic
Graph (DAG). Several studies indicate that such DAG-like applications would
constitute an important use case for emerging Grids [30, 4, 19].

DAG scheduling, as an optimization problem, has been well studied in the
context of traditional homogeneous (and recently heterogeneous) parallel com-
puting [12,23,29]. However, in the context of the Grid, the underlying envi-
ronment is significantly different. Besides the heterogeneity and the possibly
substantial communication overheads, there are issues related to the different
administration domains that might be involved in providing resources for an
application to run. All these may hinder the exploitation of parallelism. How-
ever, the most important characteristic of the environment is that the traditional
model of running on homogeneous parallel machines, where a single local sched-
uler would be in charge, is no longer the norm. The consequence is that it cannot
be guaranteed that the attempt to exploit parallelism may result in any perfor-
mance improvements. For example, the parallel tasks may not actually execute



in parallel on different resources (belonging to different administration domains)
simply because of different behaviours that the job queue of each resource may
adopt. In principle, this is due to the limited level of service that most current
systems can offer; essentially this is summarized to “run a job whenever it gets
to the head of the job queue”. From the user’s point of view, this might be per-
ceived as lack of acceptable quality in the service offered when running onto a
large, distributed, multi-site platform.

Advance Reservation of resources has been suggested as a means to guaran-
tee that tasks will run onto a resource when the user expects them to run [17,
28]. Essentially, advance reservation specifies a precise time that jobs may start
running. This allows the user to request resources from systems with different
schedulers for a specific time interval (e.g., start time, finish time), thereby ob-
taining a sufficient number of resources for the time s(he) may need. Advance
reservation has already received significant attention and has been considered
an important requirement for future Grid resource management systems [25].
There has been already significant progress on supporting it by several projects
and schedulers, such as the Load Sharing Facility platform (LSF) [16], Maui [10],
COSY [6], and EASY [15,27]; still, there is some scepticism in the community,
especially with respect to the degree to which advance reservations contribute
to improving the overall performance of a scheduler [9]. Various techniques have
also been proposed to solve a number of problems stemming from advance reser-
vation, such as reservation planning [31], Quality of Service [18] and resource
utilization issues [13, 14, 21].

All existing work on advance reservation assumes that the environment con-
sists of independent jobs competing for resources. However, in the context of
workflow applications, such as those considered in [4,19, 30], the workflow con-
sists of a set of tasks linked by precedence constraints to a DAG. Although
one might consider the whole workflow as a single job for which resources are
negotiated and reserved for its whole duration (that is, start of the entry task
until the finish of the exit task), this may lead to a waste of resources and low
utilization: this is because precedence constraints and a varying degree of par-
allelism may leave resources without work to do. In that case, one may want to
reserve resources for specific tasks. However, the reservation of tasks cannot be
done without taking into account all other tasks in the DAG and, in particular,
precedence constraints as well as the time that each task may need in order to
complete (clearly, a child node in the DAG cannot start execution when a parent
node is still running).

This paper focuses on the problem of planning advance reservations for the
individual tasks of a DAG on a heterogeneous platform taking into account a
user constraint in terms of the latest possible time that the execution of the
whole DAG will be completed. In other words, we assume that the user specifies
a time interval for which resources for the whole DAG are required. This time
interval is determined by the time that the application can start running and
the latest possible time that it can finish. Given this time interval, the problem
relates to how to reserve appropriate time intervals for each task taking also into



account the overall user constraint about the latest possible time that the whole
application can finish.

The paper describes and evaluates two different strategies to solve the prob-
lem of finding individual task reservations. These strategies attempt to include
sufficient ‘extra time’ to individual task reservations based on a user’s request
for the latest time that the whole execution of the DAG must finish. To the
best of our knowledge, there has not been any prior work on this problem. The
increasing interest in workflows in the context of the Grid requires studies to
be undertaken at the level of finding appropriate strategies for planning reser-
vations.

The remainder of the paper is organized as follows. Section 2 provides some
background for the model used and the problem considered. Section 3 proposes
two novel heuristics for task reservation in DAGs. Six different variants of the
two heuristics have been implemented and are evaluated in Section 4. Finally,
Section 5 concludes the paper.

2 Background

The model we use to represent the application, that is the DAG, and its as-
sociated information (e.g., estimated execution time of tasks and communica-
tion costs) is based on a model widely used in other heterogeneous computing
scheduling studies [23,29,33]. A DAG consists of nodes and edges, where nodes
(or tasks) represent computation and edges represent precedence constraints be-
tween nodes. The DAG has a single entry node and a single exit node. There
is also a set of machines (resources) on which nodes can execute (usually, the
execution time is different on each machine) and which need different time to
transmit data. A machine can execute only one task at a time, and a task cannot
start execution until all data from its parent nodes is available. An estimate for
the execution time of each task on each machine is supposed to be known. Same,
the amount of data that needs to be communicated between tasks is also known;
along with an estimate for the communication cost between different machines,
the last two values give the estimated data communication cost between two
tasks that have a direct precedence constraint (that is, they are linked with an
edge in the DAG) and they are running on specific (different) resources.

A number of papers have addressed the problem of minimizing the makespan
when mapping the nodes of the DAG onto a set of heterogeneous machines;
several algorithms, such as HEFT [29] or HBMCT [23], are known to provide
good performance. It might be observed here that those algorithms could be used
to provide an initial solution to the problem of planning advance reservations. In
particular, these algorithms can provide a mapping of the tasks onto space and
time (meaning on what machine a task will execute and what its starting time
would be). As long as the overall makespan is smaller than the latest acceptable
finish time for the whole application, one could plan reservations on the basis of
this mapping.



However, there is one more subtle point to be made. The algorithms above
provide a mapping on the basis of the estimated execution time of each task.
In practice, the execution time of a task may differ significantly from the static
estimate. Using advance reservation, if a job exceeds the time for which a resource
has been reserved, it will, most likely, be killed (if re-negotiation is not possible).
In the case of a DAG, killing one task would imply that all children tasks cannot
start at their specified point in time (that is, the reservation slot for the resource);
this may lead to an application failure, or, at best, the need to renegotiate the
reservation of resources for the current task and all its descendants. If, for a
moment, we consider advance reservation in the context of a single job rather
than a DAG, it should be noted that, when making advance reservations, users
are expected to reserve resources for a somewhat longer period of time than the
time they predict their application will need. Certainly, performance prediction
can never be perfect, however, adding some ‘extra spare time’ or ‘slack’ to the
reservation will minimize the chances of their job getting killed (because it is
still running at the end of the reservation slot). It would be against the whole
concept of orchestrating and enacting workflows to expect that users would do
the same at the task level with their workflows; instead, it is anticipated that
users would specify requirements (and hence add some ‘slack’) for the whole
workflow.

In previous work, it has been observed that, after scheduling a DAG, individ-
ual tasks in a DAG might include some ‘slack’ anyway, as a result of precedence
and resource constraints (for example, think of the parent of a task, which fin-
ishes much earlier than all other parents of the task). In [24], the notion of spare
time is introduced to represent the maximal delay that a task can afford to delay
without affecting the start time of any of its dependent tasks (both on the DAG
or on the same machine). Using this notion, assume a DAG, where the user has
specified the latest acceptable finish time (or deadline) for the whole DAG, and
an initial schedule has been constructed, using any conventional DAG scheduling
algorithm, such as HEFT [29] or HBMCT [23]. Then, the problem becomes how
to distribute fairly any extra time left between the finish time of the last task in
the DAG and the latest acceptable finish time of the whole DAG, to the individ-
ual reservations of each task of the DAG, in such a way that each task gets the
maximum possible amount of spare time comparing to the time it is predicted it
will need !. Such a distribution would increase the spare time of each task (the
spare time defined as above); it can be assumed safely that this would minimize
the chances of an application failure due to the task still running at the end of
its reservation slot.

To illustrate the above, consider the example schedule in Figure 1(a), where
a simple DAG with 4 tasks has been mapped onto 3 machines. The problem is
how to distribute to individual tasks the overall application spare time (that is,
the user specified deadline for the overall application minus the finish time of

! Clearly, the assumption is that the maximum acceptable finish time for the whole
application is greater than the finish time of the last task of the DAG as obtained
by the initial schedule
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Fig. 1. A Motivation Example.

Task 4). A possible distribution that provides to each task an amount of spare
time approximately equal to its original execution time estimate is shown in
Figure 1(b).

It should be mentioned that in several cases, the initial allocation of the
tasks may give some spare time to some tasks as a result of parent-children
relationships (for example, where one parent with a single child task finishes
much earlier than the other parent) [24].

3 Towards a Solution of the Problem

3.1 Input and Notation
The input and the notation used is as follows:

— A workflow application is given; this is represented by a directed acyclic
graph G = (V, E), where V is a set of n tasks, and E is the set of edges
representing flow of data between tasks.



(1) Phase 1: Obtain initial assignment by allocating each task in the
given workflow (DAG) to a resource using a DAG scheduling algorithm.
(2) Phase 2:
Repeat
Compute the Application Spare Time
Obtain a new allocation by selecting a policy for allocating
this Application Spare Time to each task
Until the Application Spare Time is zero or reaches a pre-defined value.
The last allocation provides the final reservation plan.

Fig. 2. Advance Reservation Planning for DAG applications

— A set of (heterogeneous) resources is given. We assume that this set of re-
sources qualifies to run all tasks of the DAG.

— For each task of the DAG, an estimated execution time on each machine
is known. In addition, the amount of data that needs to be communicated
between tasks is known, as well as the communication cost per data unit
between different machines.

— An algorithm, alg, can be used to schedule the DAG onto the set of heteroge-
neous resources. This algorithm produces an initial mapping (or allocation)
of tasks onto machines. This allocation is denoted by alct; the finish time of
this allocation is FinishTimegc;- As noticed in the motivating example in
the previous section, the initial allocation can be used to specify a reservation
slot for each task (for example, see the slots for each task in Figure 1.a).

— A user specified maximum acceptable time by which the whole application
(DAG) must finish is given by the user; this is denoted by Deadlineg. Note,
that in real practice, users are expected to specify an earliest possible start
time as well as a latest acceptable finish time. Without loss of generality, we
consider the earliest possible start time to be equivalent to time zero in our
setting.

— Finally, we define Application Spare Time (AST) to be the difference be-
tween Deadlineg and FinishTimegc, that is, AST, e = Deadlineg —
FinishTimegjct-

The purpose of the paper is to come up with an efficient strategy that would
distribute the AST, to individual tasks, thereby extending their reservation
slots (in a way similar to what we did in Figure 1(b) for the original schedule
in Figure 1(a)) and making them more resilient to unexpected delays in their
execution. This would minimize the chances that the application will need to
re-negotiate resources (or even fail), because the execution of a task exceeds the
time for which the resource has been reserved.

3.2 Outline of the Solution

Our strategy to come up with reservations for each task of the DAG consists
of two phases is shown in Figure 2. In the first phase, an initial allocation of a



given DAG application is constructed. Given a set of (heterogeneous) resources,
the initial allocation is obtained using any algorithm for scheduling DAGs onto
those resources in a way that minimizes the makespan (such as, [23,29]). This
allocation is constructed by taking into account estimated execution times for
the tasks and for the communication. The initial allocation provides a start time
and a finish time for each task assigned to a particular resource. If the makespan
of this initial schedule exceeds the user deadline, this allocation is rejected and
the user can be informed that the DAG cannot be scheduled within the required
time.? If the makespan is less than the user deadline, the next phase is invoked.

In the second phase, the problem becomes how to distribute the application
spare time to individual tasks in a way that each task has a sufficient spare
time of its own, and, ideally, the application finish time becomes equal to the
deadline specified by the user. Two strategies are used for this purpose — they
are explained below.

3.3 Recursive Spare Time Allocation

The key idea of the first strategy is to use a formula to compute an amount
of spare time to be added to each task on the basis of the overall application
spare time. After such an amount of extra spare time is added to each task, the
reservation slot of each task is appropriately extended and a new overall appli-
cation spare time (smaller than the original, because of the extended reservation
slots) is computed. This procedure is applied repeatedly until the overall appli-
cation spare time becomes smaller than a threshold. The strategy is illustrated
in Figure 3.

Four different formulae have been used to compute the amount of spare time
to be added to each task:

1. The application spare time is divided evenly amongst all the tasks (this is
the approach used in the description of the strategy in the Figure 3).

2. The application spare time is divided amongst tasks in such a way that each
task gets the same percentage of spare time as a proportion to its estimated
execution time (equivalent to the initially estimated reservation slot).

3. The application spare time is divided amongst tasks in such a way that each
task gets the same percentage of spare time as a proportion to its estimated
execution time, but at the first iteration spare time is given only to the tasks
in the critical path of the allocation.

4. The application spare time is divided amongst tasks in such a way that each
task gets the same percentage of spare time as a proportion to its estimated
execution time. As opposed to the number 2 approach above, this approach
takes into account, each time, the spare time that a current task may exhibit
as a result of successor tasks starting not immediately after the end of the
current task.

2 This case, however, is beyond the scope of this paper. As already mentioned, we
assume that the deadline specified by the user is always greater than the makespan
achieved by the DAG scheduling algorithm.



Input:

An application (workflow) represented by a DAG G with n tasks

A set of machines

A user defined deadline for the execution of the DAG, Deadlineg

An initial schedule, S, built using any DAG scheduling algorithm (e.g., HBMCT),
making use of estimates for the task execution time and the communication

The initial schedule is used to generate for each task, i, a ReservationSlot(z),
which contains task_start_time, task_finish_time, machine_id

Algorithm:
totalST =0
AST = Deadlineg — FinishTimes
repeat
for each task ¢ = 1 to n do
compute the Spare Time for ¢, SpareTime(i)
end for
//compute an amount of spare time to add to each task
//for example, allocating the same amount of spare time to each task, as below
task_sparetime = AST [ n
for each task i = 1 to n do
total ST += task_spare_time
if(SpareTime(i) < totalST)
extend ReservationSlot(i) by (totalST — SpareTime(i))
end if
end for
update Schedule S with the new (extended) reservation slots
(for each ReservationSlot(i), task_start_time and task_finish_time are shifted
to a later time that depends on the extension of the ReservationSlot of
the parents)
AST = Deadlineg — FinishTimes
//threshold is the criterion to exit the loop
//its value can be 5% of the deadline for example
until (AST < threshold)

Fig. 3. The Recursive Spare Time Allocation Approach

3.4 The Critical Path Based Allocation

The critical path based policy tries to distribute the application spare time to the
tasks on the critical path first (since those tasks determine the finish time of the
application), and then it tries to balance the spare time of tasks in the remaining
execution paths. The critical path based approach is shown in Figure 4. Same
as before, two different formulae are used to compute the amount of spare time
to be added to each task on the critical path:

1. The application spare time is divided evenly amongst the tasks in the critical
path (this is the approach used in the description of the strategy in the
figure).



Input:

An application (workflow) represented by a DAG G with n tasks

A set of machines

A user defined deadline for the execution of the DAG, Deadlineg

An initial schedule, S, built using any DAG scheduling algorithm (e.g., HBMCT),
making use of estimates for the task execution time and the communication

The initial schedule is used to generate for each task, i, a ReservationSlot(s),
which contains task_start_time, task_finish_time, machine_id

Algorithm:
AST = Deadlineg — FinishTimes
for each task i = 1 to n do
MinSpareTime(i) = AST
end for
Find all paths Paths in the initial schedule S from the entry task in G to the exit task
Find the critical path in the initial schedule S and its tasks, critical_path _tasks
num-of_cp_tasks = number of critical_path_tasks
cp_sparetime = AST [ num_of _cp_tasks
for each task 7 in critical_path_tasks
MinSpareTime(i) = cp_spare_time
end for
for each other path p in Paths do // not the critical path
num_of _cp_task_this_path = the number of critical path tasks on the path p
remain_spare_time = AST — num_of _cp_task_this_path * cp_spare_time
num_of _task_this_path = the number of tasks on p
remain_tasks = num_of task_this_path — num_of _cp_task_this_path
remain_spare time_each_task = remain_spare_time/remain_tasks
for each task i in this path
if (MinSpareTime(i) > remain_spare_time_each_task) then
MinSpareTime(i) = remain_spare_time_each_task
end if
end for
end for
for each task ¢ = 1 to n do
extend ReservationSlot(i) by MinSpareTime(i)
end for
update Schedule S with the new (extended) reservation slots
(for each ReservationSlot(i), task_start_time and task_finish_time are shifted to
a later time that depends on the extension of the ReservationSlot of the parents)

Fig. 4. The Critical Path Based Allocation Approach

2. The application spare time is divided amongst tasks in the critical path
in such a way that each task gets the same percentage of spare time as a
proportion to its current execution time.
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Fig. 5. An example of reserving slots using a schedule generated by the HBMCT
algorithm

3.5 An Example

An example with 10 tasks is used here to illustrate the two proposed approaches.
The example workflow is shown in Figure 5(a); (b) gives the estimated computa-
tion cost of each task on 3 different machines, and (c) gives the commmunication
costs between machines. Using the HBMCT DAG scheduling algorithm [23], the
schedule is shown in Figure 5(d) with a makespan of 124.6; an initial reservation
for each task of the workflow is built from this schedule with the starting time
and finishing time of each task shown in Figure 5(e).



task|spare time|allocated spare time|Slot (start)|Slot (finish)
0 0 7.54 0 24.54
1 0 7.54 44.14 74.68
2 4.6 2.94 57.78 75.72
3 0 7.54 62.08 73.62
Iteration 1 | 4 0 7.54 36.24 57.78
AST =75.4| 5 0 7.54 24.54 62.08
6 1.2 6.34 73.62 96.96
7 0 7.54 74.68 128.22
8 2.3 5.24 77.38 104.62
9 0 7.54 133.36 159.9

Fig. 6. An example to illustrate the steps of the Recursive Spare Time Allocation
Approach using the workflow in Figure 5.

path num_cp-_tasks|remaining ST allocated spare time
0—1—7—9 (cp) 4 75.4 {(0, 18.85), (1, 18.85),(7, 18.85),(9, 18.85)}
0—-5—3—6—9 2 37.7 {(0, 18.85), (5, 12.56),(3,12.56), (6, 12.56), (9, 18.85)}
0—-4—2—58—9 2 37.7 {(0, 18.85), (4, 12.56),(2,12.56), (8, 12.56), (9, 18.85)}
0—>4—7—9 3 18.85 {(0, 18.85), (4, 12.56), (6, 12.56), (9, 18.85)}
0—-5—8—9 2 37.7 {(0, 18.85), (5, 12.56), (8, 12.56), (9,18.85)}

(a) reservation steps

task|Slot (start)|Slot (finish)||task|Slot (start)|Slot (finish)
0 0 35.85 5 35.85 78.41
1 55.45 97.3 6 94.97 124.53
2 74.11 101.67 7 97.3 162.15
3 78.41 94.97 8 101.67 136.23
4 47.55 74.11 9 162.15 200

(b) The final reservation slot of each task

Fig. 7. An example to illustrate the steps of the Critical Path Based Allocation Ap-
proach using the workflow in Figure 5.

Assume a deadline of 200 for the whole workflow is required from the user.
Then, using the schedule above, the initial Application Spare Time (AST) to be
distributed to tasks is equal to 200 — 124.6 = 75.4. Figure 6 shows the first itera-
tion of the Recursive Spare Time Allocation approach. The approach computes
the spare time of each task and allocates the same amount of spare time to each
task apart from the ones already having some spare time. Those tasks will be
allocated the difference only. For instance, task 2 had spare time of 4.6 from the
initial schedule, therefore, another 2.94(= 7.54 — 4.6) is allocated to it in the
new reservation slot. After two more iterations, where additional spare time is
added to each task, the reservation slots for each task and the final schedule are
shown in Figure 8(a).
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Fig. 8. The final reservation of each task of the workflow in Figure 5(a) using the
proposed two approaches.

Figure 7 shows the reservation steps using the Critical Path Based Allocation
approach. All paths in the initial schedule are found, and the tasks which are
in the critical path (which is {0, 1, 7, 9}) obtain the same amount of time by
dividing the AST evenly. The spare time for the remaining tasks is computed by
dividing the remaining amount of AST in the path. Only the smallest amount
of spare time that each task may obtain from different paths will count. For
instance, the spare time of task 5 on the (scheduled) path {0, 5, 3, 6, 9} is 12.56,
and on the other path {0, 5, 8, 9}, the amount for task 5 is 18.85; however, only
the smallest amount, 12.56, counts to the final reservation slot. The reservation
slots for each task and the final schedule are shown in Figure 8(b).

4 Experimental Results

4.1 The Setting

We evaluated the performance of the proposed strategies in terms of their ability
to distribute the application spare time to the individual tasks as well as their



behavior with respect to possible failures at run-time due to differences from the
predicted task execution times. For the evaluation we used simulation.

Both strategies described above (and all their variants, that is, a total of
six variants) are implemented. The six variants are denoted by r_even_time,
r_even_percentl, r_cp_first, r_even_percent2, for the recursive spare time alloca-
tion strategy (in the order they were presented in Section 3.3), and cp_even_time,
and cp_even _percent for the critical path based strategy (again, in the order they
were presented in Section 3.4).

Four different DAG scheduling algorithms have been used to obtain the initial
allocation: Hybrid BMCT [23], FCP [22], DLS [26] and HEFT [29).

Five different types of DAGs have been used for the evaluation. The first
corresponds to a real-world workflow application, Montage [3,4]. The second
corresponds to generic Fork&Join DAGs; the structure can be seen an abstrac-
tion of Montage. It consists of repetitive layers where in each layer a number of
tasks are spawned to be joined again in the next layer. The number of tasks that
are spawned each time is decreased by 1. The third and fourth types of DAGs
correspond to Fast-Fourier-Transform (FFT) and Laplace operations [11]; com-
paring to the previous DAGs their structure is fully symmetric. These two graphs
have been extensively used in several studies related to DAG scheduling [2, 22—
24]. Finally, the fifth type aims to provide a more unstructured type of DAGs
and is randomly generated as follows. Each graph has a single entry and a single
exit node; all other nodes are divided into levels, with each level having at least
two nodes. Levels are created progressively; the numbers of nodes at each level
is randomly selected up to half the number of the remaining (to be generated)
nodes. Care is taken so that each node at a given level is connected to at least
one node of the successor level and wvice versa.

All five types of DAGs have been used by a plethora of studies related to
DAG and workflow scheduling in the literature [4,19,2,22,24, 23, 30, 33]. In our
experiments, we used DAGs of about 60 tasks each (this is approximately 60,
because some types of DAG cannot generate DAGs of exactly 60 tasks). We al-
ways assumed that 5 machines were available. Regarding the estimated execution
time of each task on each different machine: this is randomly generated from a
uniform distribution in the interval [10,100], for the last 4 types and the interval
[50,100] for Montage, while the communication-to-computation ratio (CCR) is
randomly chosen from the interval [0.1, 1].

Two sets of experiments were carried out. The first set evaluates the perfor-
mance of each variant in terms of the spare time assigned to each task. For the
comparison, we assume a fixed deadline. However, given that each algorithm may
generate a different schedule, the makespan of the initial allocation is expected
to differ; this means that the application spare time to be distributed to tasks
may be different (since the deadline is always the same) depending on the origi-
nal DAG scheduling algorithm used. Thus, we present the application spare time
as a percentage ratio of the corresponding makespan (i.e., the FinishTime,ict),
as follows:

o = (ASTget/ FinishTimegc) x 100.



In general, the smaller the value of « is, the tighter the required deadline
would be, comparing to the makespan of the initial schedule; consequently, the
less the spare time that can be distributed to each task (although, as a result of
a seemingly inefficient schedule in terms of the overall makespan, tasks may get
already a high spare time inherent in the schedule).

The second experiment considers run-time execution time deviations from the
estimated execution time of each task (that was used to plan their reservations)
and evaluates how well the strategies can accommodate those deviations.

Finally, we also evaluate the running time of each variant.

4.2 Performance Results

Distribution of Spare Time Using a common deadline in all cases (which
we assume it is at time 1500 after the start of the first task of the DAG), the
six variants are evaluated using four different DAG scheduling algorithms for
the initial allocation and five different types of DAGs. In each case, we are
interested to find out how well each variant distributes the application spare
time to individual tasks. Thus, for all tasks of the DAG, we find the minimum,
average, and maximum spare time for a task (denoted by Min, Avg, Max) as
a percentage of the task’s estimated execution time. The minimum spare time
percentage is the most important indicator, since it shows the highest percentage
of deviation from the estimated execution time of a task that can be afforded by
any task without exceeding the reserved timeslot.

The results, averaged over 100 runs, are shown in Table 1. Several observa-
tions can be made:

— It appears that all six different variants manage to achieve a reasonable
distribution of the spare time to each task as can be seen by observing the
minimum spare time percentage (which is for each task analogous to what
the value of « is for the whole DAG). In most cases, this seems to be close to
or higher than the corresponding value of a. It also appears that the critical
path based approaches (cp_even_time and cp-even_percent) lead to slightly
higher values for the minimum spare time percentage. It is interesting to
notice that, for the Montage workflow, HBMCT manages to guarantee a
minimum spare time percentage of 47.8% for each task, even though the
value of « is only 34.

— On the DAG scheduling algorithm front, it is interesting to notice that
HBMCT generally shows the highest minimal spare time percentage (the
only exception being FFT graphs, where the DLS algorithm performs bet-
ter, by about 5%, in 4 out of the 6 variants). It is worth to notice also
that, even though it has a lower a value (that is, a longer makespan) the
FCP algorithm outperforms HEFT (which has a higher « value and hence
more application spare time to distribute to individual tasks) in terms of the
spare time percentage, for all types of DAG except Montage. This can be
attributed to the inefficient initial schedule that FCP builds, which already
gives a rather large amount of spare time to each task. Still, however, FCP
is outperformed by HBMCT.



HBMCT a=34 FCP a=7 DLS a=32 HEFT a=24
Montage Min Maz Avg |Min Maz Avg |Min Maz Avg |Min Maz Avg
r_even_time 38.3 110.2 66.5| 20.4 157.7 48.2| 36.7 108.6 62.7| 26.8 140.4 56.9
r_even_percentl| 40.8 107.5 69.8| 22.3 146.8 45.8| 34.1 108.0 68.4| 27.5 132.0 58.3
r_cp-first 40.0 102.9 70.2| 23.1 135.8 44.4| 35.4 111.6 65.9| 32.7 134.5 59.9
r_even_percent2| 42.6 108.3 72.5| 22.7 149.5 46.8| 35.4 115.7 67.9| 28.4 131.7 60.5
cp-even_time 43.9 111.6 78.7| 24.4 159.6 50.5| 35.7 122.7 70.2| 30.7 148.2 62.5
cp-even_percent| 47.8 98.7 78.8| 23.9 160.6 55.1| 40.1 115.9 68.4| 34.9 145.1 61.6
HBMCT a=24 FCP a=9 DLS a=23 HEFT a=16
Random Min Maz Avg |Min Maz Avg |Min Maxz Avg |Min Maz Avg
r-even_time 21.2 200.6 55.3| 18.3 186.4 47.6| 18.2 193.2 46.9| 15.6 172.7 42.6
r-even_percentl| 25.9 178.6 60.4| 19.9 179.0 48.2| 17.5 187.9 44.1| 15.0 160.6 41.1
r_cp-first 24.0 203.8 55.4| 19.2 180.9 46.8| 19.6 192.6 46.6| 15.9 172.2 44.0
r.even_percent2| 23.6 168.4 56.6( 19.2 178.3 48.9| 17.5 182.6 42.8| 15.2 154.5 35.6
cp-even_time 27.6 194.7 58.3| 20.8 177.1 48.7| 20.2 184.4 48.4| 16.5 169.9 37.2
cp-even_percent| 25.6 172.2 55.3| 19.6 178.2 49.9| 22.0 170.4 50.7| 16.6 155.4 40.1
HBMCT a=28 FCP a=11 DLS a=28 HEFT =18
Laplace Min Maz Avg |Min Maz Avg |Min Maz Avg |Min Maz Avg
r-even_time 25.4 205.7 62.3| 23.0 188.1 55.5| 24.3 208.4 66.2| 18.7 175.4 56.9
r_even_percentl| 23.3 187.7 70.4| 21.6 166.0 62.4| 21.7 182.1 64.9| 18.7 168.4 57.1
r_cp-first 26.8 215.5 70.5( 23.1 182.4 56.9| 23.7 198.5 66.5| 20.4 177.5 54.8
r-even_percent2| 26.0 185.7 72.3| 19.2 173.8 59.3| 25.5 190.8 73.8| 20.0 172.5 60.5
cp-even_time 27.1 206.4 66.9| 23.0 178.2 55.5| 24.1 197.4 67.4| 23.8 189.4 56.9
cp-even_percent| 28.4 196.9 68.6| 24.6 171.7 56.6| 25.9 192.7 67.3| 21.2 172.6 58.8
HBMCT a=19 FCP a=7 DLS a=18 HEFT a=12
‘ F&J ‘ Min Maz Avg |Min Maz Avg |Min Maz Avg |Min Maz Avg
r-even_time 19.3 165.2 50.5| 17.5 156.6 52.7| 18.7 151.7 52.9| 15.2 140.9 50.5
r_even_percentl| 18.5 156.8 51.6| 17.3 154.3 54.9| 19.7 139.5 55.5| 14.9 142.4 48.4
r_cp-first 20.2 161.8 55.8| 19.5 163.9 56.8| 21.0 158.7 55.0| 18.4 151.6 50.6
r-even_percent2| 18.9 150.5 53.0( 18.2 159.8 59.3| 20.3 145.1 57.9| 17.0 151.4 50.7
cp-even_time 19.6 160.3 57.7| 17.7 164.8 60.6| 19.1 167.6 58.9| 17.8 151.9 54.8
cp-even_percent| 19.5 155.4 60.3| 18.8 151.7 60.1| 20.7 160.6 70.2| 17.6 146.3 57.3
HBMCT o=21| FCP a=8 DLS a=21 | HEFT a=15
FFT Min Maz Avg |Min Maz Avg |Min Maxz Avg |Min Maz Avg
r-even_time 21.6 198.7 56.7| 17.9 170.6 54.0| 22.3 193.7 57.5| 18.2 180.6 55.7
r-even_percentl| 23.6 185.3 58.3| 16.7 165.6 57.4| 22.2 176.6 60.9| 20.2 164.9 58.6
r_cp-first 20.7 192.9 60.6| 18.2 171.8 57.0| 23.1 203.0 62.5| 21.6 200.4 60.8
r-even_percent2| 24.1 182.4 60.4| 20.2 159.8 58.2| 23.7 179.0 61.9| 23.6 196.9 60.5
cp-even_time 23.2 191.9 60.6( 21.9 181.6 59.1| 25.7 190.4 62.4| 24.6 199.8 62.0
cp-even_percent| 24.6 187.1 61.8| 20.4 176.6 60.2| 24.9 195.1 65.8| 23.9 191.7 62.5

Table 1. Minimum, maximum, and average spare time as a percentage of the estimated
execution time of each task using: 6 approaches to distribute spare time to tasks; 4
different DAG scheduling algorithms to obtain the initial schedule; 5 different types of
DAGs of about 60 tasks on average; and scheduling on 5 machines. In all cases, the

user specified deadline is 1500.

— The different types of DAGs, although they generate different results, still

exhibit a consistent behaviour. The only exception arises for the Montage

workflow and in relation to the FCP algorithm. It can be speculated that,
although an originally inefficient schedule (as the one produced by the FCP
algorithm) may have some inherent spare time, this is not necessarily fairly

distributed amongst tasks. There might be an argument here in favour of

algorithms where a carefully produced original schedule (not necessarily op-
timized for minimum makespan) already includes some spare time carefully
distributed among tasks, but this remains to be investigated.




Evaluation of the behaviour of our approach with run-time changes
The second set of experiments examines how well the proposed approaches be-
have in a realistic environment, where they need to accommodate deviations
from the estimated execution time of each task at run-time. In order to emulate
run-time changes (in relation to the estimated execution times) we adopt the
notion of Quality of Information (Qol) [24]. This represents an upper bound on
the percentage of error that the statically estimated execution time may have
with respect to the actual execution time. So, for example, a percentage error
of 10% would indicate that the actual run-time execution time of a task will be
within 10% (plus or minus) of the static estimate for the task. Clearly, in this
case, if the planned reservations for each task have a spare time higher than 10%
(as a percentage of the task’s estimated execution time), the actual execution
time of a task cannot exceed its reservation slot.

In this set of experiments, we used only the HBMCT algorithm, since it ap-
pears to perform generally better than the other algorithms considered earlier.
We also consider only the Montage workflow. We consider different values for «
(20, 50, 100, 150) and QoI (equal to 20%, 50%, 100%, 150% of the estimated
execution time). Our aim is to evaluate the number of failures (a failure means
that one task of the DAG could not complete its execution within its reserved
slot) as well as the utilization of the reserved slots (this is the average utiliza-
tion of the reserved slots for each machine). For comparison purposes, the six
variants proposed in this paper are compared against an approach which re-
serves all resources that might be needed for the entire execution of the DAG
(DAG_Reserve). The results are shown in Table 2. Same as before, the experi-
ment is repeated 100 times and 5 machines are considered.

The main observation is that, generally, if the value of the QoI is less than the
value of « it is unlikely to have failures (the only exception seems to arise for the
largest value of Qol, 150%). This can be justified using the results in the previous
set of experiments, where it was observed that, generally, the minimum spare
time percentage that can be added to each task is close to the value of a. This
means that for deviations in the task execution time that are up to about a%,
the reservation plan is quite resilient and no (or very few) failures are expected.
The main lesson from this observation is that all that users need to do when
asking for resources for a workflow is to specify the amount of ‘slack’ that they
would be prepared to afford for the execution of their workflow: this should be
roughly related to the maximum deviation that they expect from the estimated
execution time of each task in the workflow. Individual reservation slots for each
task can then be derived automatically using appropriate heuristics.

Comparing the variants proposed in this paper with the approach that re-
serves all resources throughout the entire DAG’s execution, it can be seen that
the former is more robust to failures (not surprising, given that in our variants
the spare time of the whole DAG is distributed to individual tasks) but it suffers
from low utilization within the reserved slots. It should be noted here that these
values do not take into account the fact that our variants, which are based on
individual task reservations, leave ‘gaps’ in the resources while the DAG is being



Number of Failures Reserved Slot Utilization

«a Qol 20% 50% 100% 150% 0% 20% 50% 100% 150%
20 |r_even_time 22 8, 100| 60.1 66.2 75.7 82.8 925
r_even_percentl 20 84 100| 59.4 65.6 74.3 813 90.3
r_cp_first 22 84 100 59.3 66.8 76.0 819 92.0
r_even_percent2 21 80 100| 58.7 65.4 76.1 81.5 91.1
cp-even_time 21 83 100| 60.4 67.0 77.1 824 91.7
cp-even_percent 21 82 100| 60.6 66.6 759 821 919
DAG_Reserve 59 100| 44.7 46.4 49.5 53.5 58.8

[e=]

[0}

0

0

0

0

0

0
50 |r_even_time 0 0 19 46| 52.5 594 70.2 82.6 91.9
r_even_percentl 0 0 17 45| 51.4 58.0 68.9 804 90.1
r_cp_first 0 0 17 44| 52.7 585 68.7 80.8 90.2
r_even_percent2 0 0 17 44| 524 58.7 69.3 810 904
cp_even_time 0 0 16 44| 521 59.0 69.5 809 89.8
cp-_even_percent 0 0 16 45| 51.9 58.7 69.1 804 894
DAG_Reserve 0 0 7 29| 354 36.7 38.7 404 438
100|r_even_time 0 0 0 13| 274 33.1 404 644 78.0
r_even_percentl 0 0 0 10| 26.3 314 388 63.1 779
r_cp_first 0 0 0 11| 259 32.0 38.7 63.2 77.0
r_even_percent2 0 0 0 10| 26.4 327 39.0 63.7 76.6
cp-even_time 0 0 0 11| 264 31.8 39.2 63.0 769
cp-even_percent 0 0 0 11| 26.2 31.6 39.0 63.2 773
DAG_Reserve 0 0 0 5/ 20.3 21.5 25.0 279 313
150|r_even_time 0 0 0 7] 21.7 25.8 355 464 61.2
r_even_percentl 0 0 0 4| 21.5 246 34.8 455 59.6
r_cp_first 0 0 0 5| 21.2 248 34.6 46.0 59.8
r_even_percent2 0 0 0 51 20.9 24.7 340 46.0 60.5
cp_even_time 0 0 0 5| 21.2 244 340 464 60.7
cp_even_percent 0 0 0 5| 21.2 244 33.6 46.1 60.9
DAG_Reserve 0 0 0 0| 149 16.7 19.6 226 26.8

Table 2. Number of failures (reservation slot exceeded) and average reserved slot
utilization for each of 6 task reservation approaches and DAG reservation approach with
different QoI and « values. Results obtained over 100 runs using Montage workflows
each with 57 tasks and scheduling on 5 machines with HBMCT algorithm.

executed. Thus, our variants allow to regain unused resource time after a job
has been completed by backfilling [21] other, independent jobs that do not have
advance reservation. This creates a better potential to increase overall resource
utilization. Instead, in the case where the resources are reserved for the entire
DAG, backfilling would not be desirable until the exit task of the DAG has been
completed.

Running Time Although the two strategies that were compared in the previous
section perform similarly, the variants based on the recursive based strategy
achieve the same result at a significantly reduced cost. Figure 9 shows how the
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Fig. 9. Average running time (over 100 runs on randomly generated DAGs) of six
different reservation planning variants and four different DAG scheduling algorithms.

running time varies for each variant considered. The experiment was carried out
with random DAGs (since they provide us with more flexibility in specifying
a different number of tasks for the DAG) having 20 to 100 nodes each; the
reservation plans considered an alpha value of 50. It can been seen that the
critical path based policies lead to faster increases in the running time than
the recursive based ones as the number of nodes in the DAG increases. This is
because finding every path from the entry node to the exit node in the allocated
schedule takes a significant amount of time. This may indicate that the critical
path based variants, although they have the potential to perform slightly better,
they come with an extra cost.

5 Conclusion

This paper presented two novel advance reservation policies for workflows, which
attempt to distribute the spare time between an initial schedule (obtained by any
DAG scheduling algorithm) and the deadline for the execution of the workflow
gracefully to each task, in order to cope with run time execution time changes



for each task. The approaches are based on either recursively allocating the time
to each task or optimizing the critical path tasks. The strategies were designed
to be usable by any DAG scheduling algorithm.

The main outcome of this work has been the proposal of efficient heuristics
that can automate the process of coming up with reservation slots for schedul-
ing individual tasks of a workflow (DAG), in the context of a system allowing
advance reservations, without user intervention. In line with the philosophy for
workflow automation in current research, all that the user needs to specify is the
latest acceptable finish time for the whole workflow. As illustrated in the paper,
the rest can be automated using a combination of appropriate heuristics.

Further evaluation could consider the heuristics presented in this paper in
conjunction with a more dynamic environment, where DAGs as well as other
jobs, not necessarily having advance reservations, co-exist. Such an environment
could allow more complete analysis of resource utilization and performance by
applying backfilling and/or techniques for dynamic re-planning advanced reser-
vations based on run-time information.
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