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Abstract

Our main goal in this paper is to study the scheduling of
parallel BSP tasks on clusters of computers. We focus our
attention on special characteristics of BSP tasks, which can
use fewer processors than the original required, but with a
particular cost model. We discuss the problem of schedul-
ing a batch of BSP tasks on a fixed number of computers.
The objective is to minimize the completion time of the last
task (makespan). We show that the problem is difficult and
present approximation algorithms and heuristics. We fin-
ish the paper presenting the results of extensive simulations
under different workloads.

1 Introduction

With the growing popularity of Computational Grids [6]
the model of environment in which parallel applications
are executing is changing rapidly. In contrast to dedi-
cated homogeneous clusters, where the number of proces-
sors and their characteristics are knowna priori, Compu-
tational Grids are highly dynamic. In these new environ-
ments, the number of machines available for computation
and their characteristics can change frequently. When we
look at the case of Opportunistic Grid Computing, which
uses the shared idle time of the existing computing infras-
tructure [8], the changes in machine availability occur even
more rapidly. Thus, a model of parallel computation that
does not allow variations in the number of processors avail-
able for computation would not fit well in this environment.

Moldable tasks are able to maximize the use of available
resources in a dynamic Grid in the presence of fluctuations
in machine availability. In this paper we extend theBulk
Synchronous Parallel(BSP) model [25] of computation to
allow for the definition of moldable tasks that can be ex-
ecuted in a varying number of processors. As it will be
described in detail later, a BSP application is a sequence of
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supersteps, composed of the execution of independent pro-
cesses, separated by barrier synchronizations.

Due to complexity of the grid environment, we have first
focused our work on the problem of scheduling tasks with
a fixed set of available computers. However, we are cur-
rently investigating mechanisms to improve the scheduling
by supporting preemption of BSP tasks so as to schedule
malleable tasks. We are also studying mechanisms to pro-
pose a dynamic scheduling scheme. These improvements
we allow us to develop sophisticated heuristics to schedule
parallel applications on actual computational grids.

The remainder of this paper is organized as follows. At
the end of this section we present our motivation and related
work regarding the scheduling of moldable tasks. In Sec-
tion 2 we describe the BSP model and we also discuss the
moldability on BSP and the problem of scheduling mold-
able tasks. In Section 3 we propose an approximation al-
gorithm and some heuristics providing complexity proofs.
In Section 4 we show experimental results to evaluate the
proposed algorithms. In Section 5, we close the paper with
some final remarks and ideas for future works.

1.1 Motivation

Our group is developing a novel Grid middleware infras-
tructure called InteGrade [8]. The main principles of In-
teGrade are: modern object-oriented design, efficient com-
munication based on CORBA, and native support for paral-
lel computing. In the current version∗, the BSP model [9]
for parallel computation is supported through an implemen-
tation of the BSPlib [12] library. In this paper, we propose
new scheduling algorithms for batches of BSP tasks, which
are being included into the InteGrade system.

Using only rigid BSP tasks, we could use classical re-
sults for scheduling tasks with different execution times and
number of processors. However, in our grid environment
we can easily reduce the number of processors of a BSP
task, allocating two or more processes to the same proces-
sor. As our environment is based on CORBA, there are no

∗Available for download athttp://gsd.ime.usp.br/integrade



differences between local and remote communications, this
is transparent to the programmer.

Given a BSP task that requires execution timet onn pro-
cessors, we can allocate it without effort, depending on the
memory constraints, using fewer processors. The behavior
of moldability can be approximated by a discrete function.
If fewer thann processors are available, sayn′, the execu-
tion time can be estimated bytd n

n′
e.

1.2 Related work

Most existing works for scheduling moldable tasks are
based on a two-phase approach introduced by Turek, Wolf,
and Yu [24]. The basic idea is to select, in a first step, an
allocation (the number of processors allocated to each task)
and then solve the resulting non-moldable scheduling prob-
lem, which is a classical multiprocessor scheduling prob-
lem. As far as the makespan criterion is concerned, this
problem is identical to a2-dimensional strip-packing prob-
lem [1,4]. It is clear that applying an approximation of guar-
anteeλ for the non-moldable problem on the allocation of
an optimal solution provides the same guaranteeλ for the
moldable problem. Ludwig [14] improved the complexity
of the allocation selection of the Turek’s algorithm in the
special case of monotonic tasks. Based on this result and
on the 2-dimensional strip-packing algorithm of guarantee2
proposed by Steinberg [21], he presented a2-approximation
algorithm for the moldable scheduling problem. These re-
sults however are designed for the general moldable tasks
problem, where each task has a different execution time for
each number of processors.

As we will see in the formal definition of BSP mold-
able tasks, the size of our instances is much smaller. This
happens because we know the penalty incurred when the
number of processors allocated to a task is different from
the requested number of processors.

Mounié, Rapine and Trystram improved this 2-
approximation result by concentrating more on the first
phase (the allocation problem). More precisely, they pro-
posed to select an allocation such that it is no longer needed
to solve a general strip-packing instance, but a simpler one
where better performance guarantees can be ensured. They
published a

√
3-approximation algorithm [17] and later sub-

mitted a3/2-approximation algorithm [16, 18]. However,
these results are for a special case of moldable tasks where
the execution time decreases when the number of proces-
sors allocated to the task increases and the workload (de-
fined astime×processors) increases accordingly. We will
see that this hypothesis is not verified here. To the best of
our knowledge there is no other work on scheduling mold-
able BSP tasks.

2 The BSP Computing Model

The Bulk Synchronous Parallelmodel (BSP) [25] was
introduced by Leslie Valiant as a bridging model, linking
architecture and software. BSP offers both a powerful ab-
straction for computer architects and compiler writers anda
concise model of parallel program execution, enabling ac-
curate performance prediction for proactive application de-
sign.

A BSP abstract computer consists of a collection of vir-
tual processors, each with local memory, connected by an
interconnection network whose only properties of interest
are the time to do a barrier synchronization and the rate at
which continuous, randomly addressed data can be deliv-
ered. A BSP computation consists of a sequence of parallel
supersteps, where each superstep is composed of computa-
tion and communication, followed by a barrier of synchro-
nization.

The BSP model is compatible with conventional
SPMD/MPMD (single/multiple program, multiple data),
and is at least as flexible as MPI [15], having both remote
memory (DRMA) and message-passing (BSMP) capabili-
ties. The timing of communication operations, however, is
different since the effects of BSP communication operations
do not become effective until the next superstep.

The postponing of communications to the end of a super-
step is the key idea for implementations of the BSP model.
It removes the need to support non-barrier synchronizations
among processes and guarantees that processes within a su-
perstep are mutually independent. This makes BSP easier
to implement on different architectures and makes BSP pro-
grams easier to write, to understand, and to analyze mathe-
matically. For example, since the timing of BSP communi-
cations makes circular data dependencies among BSP pro-
cesses impossible, there is no risk of deadlocks or livelocks
in a BSP program. Also, the separation of the computation,
communication, and synchronization phases allows one to
compute time bounds and predict performance using rela-
tively simple mathematical equations [20].

An advantage of BSP over other approaches to
architecture-independent programming, such as the PVM
[22] and MPI [10] message passing libraries, lies in the sim-
plicity of its interface, as there are only 20 basic functions.
A piece of software written for an ordinary sequential ma-
chine can be transformed into a parallel application with the
addition of only a few instructions.

Another advantage is performance predictability. The
performance of a BSP computer is analyzed by assuming
that, in one time unit, an operation can be computed by a
processor on the data available in local memory and based
on the following parameters:

1. P – the number of processors;



2. ws
i – the time to compute the supersteps on processor

i;

3. hs
i – the number of bytes sent or received by processor

i on supersteps;

4. g – the ratio of communication throughput to processor
throughput;

5. l – the time required to barrier synchronize all proces-
sors.

To avoid congestion, for every processor on each super-
step,hs

i must be no greater thand l
g
e.

Moreover, there are plenty of algorithms developed for
CGM (Coarse Grained Multicomputer Model) [5], which
has the same principles of BSP, and can be easily ported to
BSP.

Several implementations of the BSP model have been
developed since the initial proposal by Valiant. They pro-
vide to the users full control over communication and syn-
chronization in their applications. The mapping of virtual
BSP processors to physical processors is hidden from the
user, no matter what the real machine architecture is. BSP
implementations developed in the past include: Oxford’s
BSPlib [12] (1993), JBSP [11] (1999), a Java version, PUB
[2] (1999) and BSP-G [23] (2003).

2.1 Moldability on BSP

Given a BSP task that requiresn processors, it is com-
posed ofn different processes which communicate on the
global synchronization points. When designing BSP algo-
rithms, for example using CGM techniques, one of the goals
can be to distribute the load across processes more or less
evenly.

To model moldability we use the following fact. When
embedding BSP processes into homogeneous processors, if
a single processor receives two tasks, intuitively, it willhave
twice as much work as the other processors. To reach each
global synchronization, this processor will have to execute
two processes and to send and receive the data correspond-
ing to these processes. However, to continue processing, all
the other processors have to wait. Hence, the program com-
pletion time onn− 1 processors will be approximately two
times the original expected time onn processors.

The same idea can be used when scheduling BSP tasks
on fewer processors than the required. Each BSP process
has to be scheduled to a processor and the expected comple-
tion time will be the original time multiplied by the maxi-
mum number of processes allocated to a processor. It is
clear to observe that when processes are allocated to ho-
mogeneous processors, in order to minimize execution time
the difference in the number of processes allocated to the

most and to the least loaded processor should be at most
one. This difference must be zero when the used number of
processors divides the number of processes.

For the scheduling algorithms used in this paper, given
a BSP task composed ofn processes and with processing
time t, if n′ < n processors are used, the processing time
will be td n

n′
e. So, if only n − 1 processors are available,

the execution time of these tasks will be the same whether
usingn − 1, or dn

2
e processors. Obviously, in the last case,

we will have a smaller work area (number of processors
times execution time).

2.2 Notations and properties

We are considering the problem of scheduling indepen-
dent moldable BSP tasks on a cluster ofm processors.

In the rest of the paper the number of processors re-
quested by the BSP taski will be denotedreqi. The exe-
cution time of taski on a numberp of processors will be
ti(p). As we are dealing with BSP tasks, we can reduce
the number of processors allocated to a task at the cost of a
longer execution time. The relation between processor allo-
cation and time is the following:

∀q∀p ∈
[

reqi

q + 1
,
reqi

q

[

, ti(p) = (q + 1)ti(reqi)

wherep andq are integers. In this work we do not consider
a minimal number of processors for each task.

Table 1 shows an example withreqi = 7 andti(reqi) =
1, and the resulting workload which is defined as the prod-
uct of processors allocated and execution times. We can see
in this example that the workload is not monotonous in our
case as in some other works on moldable tasks [17], but it
is always larger than or equal to the workload with the re-
quired number of processors. Remark that for any task, on
one processor the workload is equal to the minimum work-
load.

Table 1. A BSP task and its possible execution
times and associated workloads.

#procs. 7 6 5 4 3 2 1
time 1 2 2 2 3 4 7
work 7 12 10 8 9 8 7

2.3 NP-hardness

The problem of scheduling independent moldable tasks
is generally believed to be NP-hard, but this has never been
formally proven. It contains as a special case the problem
of scheduling independent sequential tasks (requiring only



one processor), which is NP-hard [7]. However, the size of
the moldable tasks problem isO(n ∗m) since each task has
to be defined with all its possible allocation, whereas the
size of the sequential problem isO(n + ln(m)) since we
only need to know the number of available processors and
the length of each task.

In the BSP moldable task problem, the problem size is
hopefully much smaller, as we only need to know for each
task the requested number of processors and the execution
time for this required number of processors. The moldable
behavior of the tasks is then deduced from the definition
of BSP moldable tasks. Therefore the overall size of an in-
stance is inO(n∗ ln(m)) which is polynomial in bothn and
ln(m). The reduction from the multi-processor scheduling
problem is then polynomial, which proves the NP-hardness
of our problem.

3 Algorithms

To solve efficiently the problem of scheduling parallel
BSP tasks, we have to design polynomial algorithm which
provides on average a result close to the optimal. The first
step is therefore to determine a good lower bound of the op-
timal value to be able to measure the performance of our
algorithms. Two classic lower bounds for scheduling par-
allel tasks are the total workload divided by the number of
available processors and the length of the longest task. With
our previous notations, these two lower bounds are respec-
tively

∑

i ti(reqi)/m andmaxi ti(reqi).

3.1 Guaranteed algorithm

The best way to assess the quality of an algorithm is to
mathematically prove that for any instance, the ratio be-
tween the makespanω of the schedule produced by the
algorithm and the optimal makespanω∗ is bounded by a
constant factorρ. As we said in the introduction, the prob-
lem of scheduling independent moldable tasks has already
been studied and some guaranteed algorithms have already
been proposed for this problem. The best algorithm to date
is a 3/2 approximation algorithm proposed by Mounié et
al. [18], however this algorithm needs an additional mono-
tonicity property for the tasks. This property states that the
workload is non decreasing when the number of processors
allocated to a task increases which is clearly not the case
with our moldable BSP tasks. An older algorithm which
does not require this monotonic property has been designed
by Ludwig [14]. This algorithm has a performance ratio of2
as does the one we are proposing below, however it is much
more complicated to use since it involves a strip packing
phase. This is why we decided to design a 2-approximation
algorithm based on our knowledge of the BSP tasks.

The algorithm is based on the dual approximation
scheme as defined by [13]. The dual approximation scheme
is based on successive guessω̂ of the optimal makespan, and
for each guess runs a simple scheduler which either outputs
a schedule of makespan lower or equal to2ω̂, or outputs
that ω̂ is lower than the optimal. With this scheduler and
a binary search, the value of̂ω quickly converges toward
a lower bound of the optimal makespan for which we can
produce a schedule in no more than2ω̂ units of time.

The scheduler works as follows. Based on the guessω̂,
we determine for each taski the minimal allocationai (if it
exists) such thatti(ai) ≤ 2ω̂. If there is a task such that
this ai does not exists (i.e.ti(reqi) > 2ω̂) the optimal
makespan is larger than this particularti(reqi) and there-
fore larger than̂ω. Given theseai, we schedule all the tasks
that require more than one processor (“large” tasks) on ex-
actly ai processors, and we schedule the remaining tasks
(“small” tasks = requiring exactly one processor) on theq
remaining processors with a largest processing time first or-
der.

There are three cases in which this algorithm fails to pro-
duce a schedule in no more than2ω̂ units of time:

1. There are too many processors required by “large”
tasks (

∑

ai>1
ai > m).

2. There are no processors left for “small” tasks
(
∑

ai>1
ai = m and

∑

ai=1
ai > 0).

3. One of the sequential tasks is scheduled to com-
plete after the2ω̂ deadline. As the first fit has a 2-
approximation ratio, it means that there is too much
workload for “small” tasks
(
∑

ai=1
ti(1) > (m −

∑

ai>1
ai)ω̂).

For each case we will prove that if the schedule fails, the
guesŝω is lower than the optimal makespan. Before going
into details for each case, we need to prove the following
lemma:

Lemma 1 For all task i such thatai > 1, we have
ti(reqi)reqi ≥ aiω̂.

The idea behind this lemma is that theai processors allo-
cated to taski are used efficiently for a sufficient period of
time.

Proof. For ai equal to2, we know thatti(ai − 1) > 2ω̂ as
ai is the minimal number of processors to have an execu-
tion time no more than2ω̂. As we noted in Section 2.2 the
workload on one processor is equal to the minimal work-
loadreqiti(reqi), therefore we can write whenai = 2 and
ti(ai − 1) = reqiti(reqi) thatti(reqi)reqi ≥ aiω̂.

For the other extremal case, whenai = reqi, since
reqi ≥ 2 we havereqi−1 ≥ reqi/2 and thenti(reqi−1) =



2ti(reqi) by definition of the execution times (see Sec-
tion 2.2). By definition ofai, we then have2ti(reqi) > 2ω̂
and thenreqiti(reqi) > aiω̂.

For the general case where2 < ai < reqi, by definition
of ti(ai), there exists an integerq such thatti(ai) = (q +
1)ti(reqi). As ai is minimum,ti(ai − 1) > 2ω̂ and there
exists also an integers ≥ 1 such thatti(ai − 1) = (q + s +
1)ti(reqi). Therefore we have the following lower bound
for ti(reqi):

ti(reqi) >
2ω̂

q + s + 1
(1)

By definition of the execution times, asti(ai − 1) =
(q + s + 1)ti(reqi), we haveai − 1 < reqi/(q + s) which
can be rewritten as:

reqi ≥ (q + s)(ai − 1) + 1 (2)

By combining inequalities 1 and 2, we have a lower
bound for the left term of the lemma:

ti(reqi)reqi >
2((q + s)(ai − 1) + 1)

q + s + 1
ω̂ (3)

In order to conclude, we have to compare the values of
ai and2((q + s)(ai − 1) + 1)/(q + s + 1) which is done by
comparing their difference:

2((q + s)(ai − 1) + 1) − ai(q + s + 1) =

2qai + 2sai − 2q − 2s + 2 − qai − sai − ai =

q(ai − 2) + s(ai − 2) − (ai − 2) =

(q + s − 1)(ai − 2)

This value being positive or equal to zero,aiω̂ is a lower
bound of the right term of inequality 3, which concludes the
proof of the lemma. ¤

Theorem 1 When the schedule fails, the guessω̂ is too
small.

Proof.

Case 1
∑

ai>1

ai > m

In this case the minimal total workload
∑

i reqiti(reqi)
can be bounded in the following way:

∑

i

reqiti(reqi) ≥
∑

ai>1

reqiti(reqi)

≥
∑

ai>1

aiω̂

∑

ai>1

aiω̂ > mω̂

Thereforeω̂ is lower than the optimal makespan.

Case 2
∑

ai>1

ai = m and
∑

ai=1

ai > 0

As previously, we can bound the minimal total workload
but this time the strong inequality is the first one:

∑

i

reqiti(reqi) >
∑

ai>1

reqiti(reqi)

∑

ai>1

reqiti(reqi) ≥
∑

ai>1

aiω̂

∑

ai>1

aiω̂ = mω̂

Which again proves that the guess was too small.

Case 3

∑

ai=1

ti(1) >

(

m −
∑

ai>1

ai

)

ω̂

Finally in this case, the bounding is a little more subtle:

∑

i

reqiti(reqi) =
∑

ai>1

reqiti(reqi) +
∑

ai=1

reqiti(reqi)

≥
∑

ai>1

aiω̂ +
∑

ai=1

ti(1)

>
∑

ai>1

aiω̂ +

(

m −
∑

ai>1

ai

)

ω̂ = mω̂

Therefore in all the cases where the schedule fails, the
guess was lower than the optimal makespan. ¤

Corollary 1 The proposed algorithm provides a 2-
approximation for BSP moldable tasks.

The sum of the sequential execution times of all the tasks
is an upper bound of the optimal makespan, which is poly-
nomial in the size of the instance. Starting from this guess,
we can use the algorithm in a binary search of the lowest



possible valuêω for which we can build a schedule in at
most 2ω̂. If ε/2 is the size of the last step of the binary
search,ω̂ − ε/2 is a lower bound of the optimalω∗, and
2ω̂ < 2ω∗ + ε which means that the schedule produced in
the last step is at most2 + ε times longer than the optimal.

3.2 Tested heuristics

We have implemented four algorithms to schedule a set
of BSP tasks, each task comprising a set of processes, on
homogeneous processors.

Thefirst algorithm A1 is the well-known Largest Task
First list scheduling (where largest refers tonumber of
processors×execution timei.e. the workload) with a pre-
processing stage. This pre-processing consists of modify-
ing all tasks regarding the maximum number of processors
maxnprocs each one will receive. The idea here is to re-
duce the size of the largest jobs in order to have less hetero-
geneity in the set of tasks.

When the original number of processorsreqnprocs of a
task is modified, the amount of timereqtime needed to exe-
cute it is also modified. The pseudo-code below is executed
on each task before scheduling.

Algorithm 1 Pseudo-code to pre-processing each task to be
scheduled in algorithmA1.

if task.reqnprocs > maxnprocs then
task.reqtime = d(task.reqnprocs/maxnprocs)e ∗
task.reqtime
task.reqnprocs = maxnprocs

end if

The main problem of this algorithm is that we must ver-
ify all possiblemaxnprocs values, from one to the number
of processors available in the computing system so as to dis-
cover the most appropriated value. Doing this we noticed
that the true LTF scheduling (i.e. whenmaxnprocs = m
tasks are not reduced) was usually far from the optimal
makespan.

Once the tasks are reduced they are sorted according to
their sizes inO(n ∗ ln(n)) steps, and then scheduled inn
steps. The overall complexity of this algorithm is therefore
O(m ∗ n ∗ ln(n)).

Thesecond algorithmA2 is based on the idea of reduc-
ing the idle time in the schedule by optimizing the place-
ment of the different tasks (see Figure 1). The algorithm
comprises two steps:

1. Look for thebesttask such that, when scheduled, the
idle time is reduced or remains the same.Best task
means the smallest amount of idle time, the better the
task. Note that in this step, the number of processors

and time to execute the task can be modified. If a task
is found, schedule it.

2. If Step 1 has failed, schedule the first largest task that
was not scheduled yet.
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Figure 1. Examples of schedulings to reduce
the idle time.

As we have seen in the presentation of the BSP moldable
model, for a given task there can be several allocations hav-
ing the same execution time. For example, in Table 1 the
allocations to 4, 5 and 6 processors all have an execution
time of 2. We therefore will only consider here interesting
allocations, for which there is no smaller allocation for the
same execution time.

With this restriction the number of possible allo-
cations goes down fromreqnprocs to approximately
2
√

reqnprocs. This greatly reduces the complexity of the
algorithm, however the overall complexity is still greater
thanO(n ∗ ln(m)) which is the size of the instance.

The third algorithm A3 is a derivation of the second
one previously presented. It basically consists of schedul-
ing tasks that generate the smallest idle time, even if the
new idle time is greater than the original one. Thus, the
first step presented in the previous algorithm is not limited
to smaller idle times, and the second step is never executed.

The fourth algorithm A4 is the guaranteed algorithm
presented in the previous section. It is the fastest algorithm,
however we will see that its average behavior is far from the
best solutions found.

4 Experimental Results

In order to evaluate the algorithms, we developed a sim-
ulator that implements the presented algorithms and used
both real and generated workloads. The real workloads§

§Available at: http://www.cs.huji.ac.il/labs/parallel/workload/logs.html
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Figure 2. Evaluation of the scheduling algorithms on 64 proc essors.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0  0.25  0.5  0.75  1  1.25  1.5  1.75  2

m
ak

es
pa

n 
/ l

ow
er

bo
un

d

# tasks / # procs

A1
A2
A3
A4

(a) Real Workloads

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0  0.25  0.5  0.75  1  1.25  1.5  1.75  2

m
ak

es
pa

n 
/ l

ow
er

bo
un

d

# tasks / # procs

A1
A2
A3
A4

(b) Generated Workloads

Figure 3. Evaluation of the scheduling algorithms on 128 pro cessors.

are from two IBM SP2 systems located at Cornell The-
ory Center (CTC) and San Diego Supercomputer Center
(SDSC) [19], and the generated workloads were generated
by a Gaussian distribution. Unlike the real workloads, the
number of processors requested by the tasks in the gener-
ated instances are in most cases not powers of two [3]. Note
that although the real workloads are not from execution of
parallel BSP tasks, the selected machines work with regu-
lar parallel applications, and to the best of our knowledge
there should be no difference between workloads of MPI
and BSP applications.

To perform the experiments we chose three different
platforms: with respectively 64, 128 and 256 processors.

We selected the SDSC workloads to evaluate the algorithms
on 64 and 128 processors and the CTC workloads were
used in the experiments with 256 processors. The gener-
ated workloads were used for all platforms.

For each experiment we performed 40 executions with
different workloads, and then we took out the five best and
the five worst results to reduce the deviation. The tasks
in each real workload experiment were selected randomly
from all the tasks in the corresponding logs. The graphics
illustrated in Figures 2, 3 and 4 depict the results obtained
in our experiments. In these figures thex-axis is the ra-
tio between the number of tasks scheduled and the number
of processors of the computer, while they-axis is the ra-
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Figure 4. Evaluation of the scheduling algorithms on 256 pro cessors.

tio between the schedule length and a lower bound of the
optimal makespan for the considered instance. This lower
bound is actually the maximum of the two classical lower
bounds: the execution time of the longest task (when allo-
cated to its required number of processors) and the minimal
average workload per processor. The schedule produced by
the fourth algorithm is always lower or equal to two times
the average workload, as can be deduced from the proof of
Theorem 1.

Based on the results we can observe that algorithmA1
generally produces the best schedules. The algorithmsA2
andA3 have similar behaviors and are very close toA1. Fi-
nally, as expected the fourth algorithm has a ratio which
is close to 2 in the unfavorable cases. Remark that for
the generated workload, the worst results ofA4 are for
tasks/processors ratios close to 1. This result confirms the
intuition [16] that for moldable task problems the difficult
part is when there are approximately as many tasks as pro-
cessors.

To illustrate the difference between the fourth algorithm
and the three other algorithms, we included Figure 5 and 6
that depict two schedules for 20 tasks on 16 processors re-
spectively made with the third and the fourth algorithm. On
Figure 6 it appears clearly that reducing all the tasks to the
allocation which is the smallest below the2ω̂ limit tends to
produce schedules close to twice the optimal, since most of
the tasks are sequential.

As mentioned previously, the main problem of the algo-
rithm A1 is that we need to schedule the tasks several times
in order to discover the threshold, which is the maximum
amount of processors the tasks should use. However, when
there is a small number of processors in the computing en-
vironment, this algorithm is still usable in reasonable time.

Figure 5. A schedule of 20 tasks on 16 pro-
cessors with algorithm A3.

Figure 6. A schedule of 20 tasks on 16 pro-
cessors with algorithm A4.

For larger numbers of processors, the algorithmsA2 andA3
should be used, since even if they do not produce the best
results, the difference is within reasonable bounds. As we
could have guessed, the longer it takes to schedule the tasks,
the better the results.

This is illustrated in Figure 7, where the execution times
of the four algorithms are compared on 64 processors for 10
to 100 tasks. As previously described, the fourth algorithm
is much faster than the three others, and the slowest algo-
rithm is the first one. The execution times on the time scale
are in milliseconds. For larger instances (1024 tasks on 512
processors) we witnessed execution times of several min-
utes on a recent computer (Pentium III 800 MHz, 512MB
RAM). We ran all the other experiments on the same com-
puter.

Another important observation is that the results using
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Figure 7. Execution times for up to 100 tasks on 64 processors .

real and generated workloads are similar for the algorithms
A1, A2 andA3. Our main goal to make experiments with
generated workloads is that the real workloads are mostly
made of regulars tasks, as well as tasks requiring processors
in powers of two. These characteristics are usually found
only in dedicated computer systems, such as supercomput-
ers and clusters. Thus, we have used workloads with other
characteristics in order to verify the quality of the proposed
algorithms on different environments.

5 Conclusion and Future Work

In this paper we studied the scheduling of moldable BSP
parallel tasks. First we showed that the problem isNP -
hard, and then we provided a 2-approximation algorithm
and some good heuristics. On the algorithms, the number of
processors given to a task withn processes can range from 1
to n. However, due mainly to memory limitations this may
not be feasible in practice. Moreover, with few processors
the task can be delayed for long time. Thus, as future work
we intend to limit the minimal number of processors for a
task in order to limit the maximal number of processes in
each processor.

This work has as its final goal an implementation to be
used to schedule parallel applications on our grid environ-
ment, InteGrade. Also as future works we intend to explore
the possibilities provided by our grid environment, proces-
sors heterogeneity, parallel tasks preemption, and machine
unavailability. For the last two cases we will study in de-
tail the effects of interrupting a parallel task and possibly
continue to execute it on a different number of processors,

which is possible with the BSP synchronizations and our
already implemented checkpointing library.
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