
Core Algorithms of the Maui S
hedulerDavid Ja
kson, Quinn Snell, and Mark ClementBrigham Young University, Provo, Utah 84602ja
ksond�super
luster.org fsnell, 
lementg�
s.byu.eduAbstra
tThe Maui s
heduler has re
eived wide a

eptan
e inthe HPC 
ommunity as a highly 
on�gurable and ef-fe
tive bat
h s
heduler. It is 
urrently in use on hun-dreds of SP, O2K, and Linux 
luster systems through-out the world in
luding a high per
entage of the largestand most 
utting edge resear
h sites. While the algo-rithms used within Maui have proven themselves ef-fe
tive, nothing has been published to date do
ument-ing these algorithms nor the 
on�gurable aspe
ts theysupport. This paper fo
uses on three areas of Mauis
heduling, spe
i�
ally, ba
k�ll, job prioritization, andfairshare. It brie
y dis
usses the goals of ea
h 
om-ponent, the issues and 
orresponding design de
isions,and the algorithms enabling the Maui poli
ies. It also
overs the 
on�gurable aspe
ts of ea
h algorithm andthe impa
t of various parameter sele
tions.1 Introdu
tionThe Maui s
heduler [1℄ has re
eived wide a

eptan
ein the HPC 
ommunity as an highly 
on�gurable ande�e
tive bat
h s
heduler. It is 
urrently in use on hun-dreds of IBM SP-2, SGI Origin 2000, and Linux 
lustersystems throughout the world in
luding a high per
ent-age of the largest and most 
utting edge resear
h sites.While Maui was initially known for its advan
e reser-vation and ba
k�ll s
heduling 
apabilities, it also pos-sesses many additional optimizations and job manage-ment features. There are many aspe
ts of the s
hedul-ing de
ision whi
h must be addressed. This paper do
-uments the underlying algorithms asso
iated with theMaui s
heduler. While Maui originated as a proje
t de-signed to purely maximize system utilization, it rapidlyevolved into a tool with a goal of maximizing s
hedul-ing performan
e while supporting an extensive array ofpoli
y tools. The words performan
e and poli
y go along way to 
ompli
ating this problem.

2 OverviewMaui, like other bat
h s
hedulers [2, 3, 4℄, deter-mines when and where submitted jobs should be run.Jobs are sele
ted and started in su
h a way as to notonly enfor
e a site's mission goals, but also to intel-ligently improve resour
e usage and minimize averagejob turnaround time. Mission goals are expressed viaa 
ombination of poli
ies whi
h 
onstrain how jobs willbe started. A number of base 
on
epts require reviewto set the groundwork for a detailed dis
ussion of thealgorithms.
2.1 Scheduling IterationLike most s
hedulers, Maui s
hedules on a iterativebasis, s
heduling, followed by a period of sleeping orpro
essing external 
ommands. Maui will start a newiteration when one or more of the following 
onditionsis met:� a job or resour
e state-
hange (i.e. job termina-tion, node failure) event o

urs� a reservation boundary event o

urs� the s
heduler is instru
ted to resume s
hedulingvia an external 
ommand� a 
on�gurable timer expires
2.2 Job ClassMaui supports the 
on
ept of a job 
lass, also knownas a job queue. Ea
h 
lass may have an asso
iated setof 
onstraints determining what types of jobs 
an besubmitted to it. These 
onstraints 
an limit the sizeor length of the job and 
an be asso
iated with 
ertaindefault job attributes, su
h as memory required perjob. Constraints 
an also be set on a per-
lass basisspe
ifying whi
h users, groups, et
., 
an submit to the
lass. Further, ea
h 
lass 
an optionally be set up to



only be allowed a

ess to a parti
ular subset of nodes.Within Maui, all jobs are asso
iated with a 
lass. If no
lass is spe
i�ed, a default 
lass is assigned to the job.
2.3 QoSMaui also supports the 
on
ept of quality of ser-vi
e (QoS) levels. These QoS levels may be 
on�guredto allow many types of spe
ial privileges in
luding ad-justed job priorities, improved queue time and expan-sion fa
tor targets, a

ess to additional resour
es, orexemptions from 
ertain poli
ies. Ea
h QoS level is as-signed an a

ess 
ontrol list (ACL) to determine whi
husers, groups, a

ounts, or job 
lasses may a

ess theasso
iated privileges. In 
ases where a job may possessa

ess to multiple QoS levels, the user submitting thejob may spe
ify the desired QoS. All jobs within Mauiare asso
iated with a QoS level. If no QoS is spe
i�ed,a default QoS is assigned.
2.4 Job CredentialsEa
h bat
h job submitted to Maui is asso
iated witha number of key attributes or 
redentials des
ribing jobownership. These 
redentials in
lude the standard userand group ID of the submitting user. However, theyalso in
lude an optional a

ount, or proje
t, ID for usein 
onjun
tion with allo
ation management systems.Additionally, as mentioned above, ea
h job is also as-so
iated with a job 
lass and QoS 
redential.
2.5 Throttling PoliciesMaui's s
heduling behavior 
an be 
onstrained byway of throttling poli
ies, poli
ies whi
h limit the totalquantity of resour
es available to a given 
redential atany given moment. The resour
es 
onstrained in
ludethings su
h as pro
essors, jobs, nodes, and memory.For example, a site may 
hoose to set a throttling poli
ylimiting the maximum number of jobs running simul-taneously per user to 3 and set another poli
y limitingthe group, sta�, to only using a total of 32 pro
essorsat a time. Maui allows both hard and soft throttlingpoli
y limits to be set. Soft limits are more 
onstrain-ing than hard limits. Ea
h iteration, Maui attempts tos
hedule all possible jobs a

ording to soft poli
y 
on-straints. If idle resour
es remain, Maui will re-evaluateits queue and attempt to run jobs whi
h meet the less
onstraining hard poli
ies.

3 S
heduling IterationsOn ea
h s
heduling iteration, Maui obtains fresh re-sour
e manager information, updates its own state in-formation, and s
hedules sele
ted jobs. These a
tivitiesare broken down into the following general steps:1. Obtain updated resour
e manager information.Calls are issued to the resour
e manager to getup-to-date detailed information about node andjob state, 
on�guration, et
.2. Update statisti
s. Histori
al statisti
s and usageinformation for running jobs are updated. Statis-ti
s re
ords for 
ompleted jobs are also generated.3. Refresh reservations. Maui adjusts existing reser-vations in
orporating updated node availability in-formation by adding and removing nodes as ap-propriate. Changes in node availability may also
ause various reservations to slide forward or ba
k-ward in time if the reservation timeframe is notlo
ked down. Maui may also 
reate or removereservations in a

ordan
e with 
on�gured reser-vation time 
onstraints during this phase. Fi-nally, idle jobs whi
h possess reservations provid-ing immediate a

ess to resour
es are started inthis phase.4. Sele
t jobs meeting minimum s
heduling 
rite-ria. A list is generated whi
h 
ontains all jobswhi
h 
an be feasibly s
heduled. Criteria su
h asjob state, job holds, availability of 
on�gured re-sour
es, et
. are taken into a

ount in generatingthis list. Ea
h job's 
omplian
e with various throt-tling poli
ies is also evaluated with violating jobseliminated from the feasible job list.5. Prioritize feasible jobs. The list of feasiblejobs is prioritized a

ording to various job at-tributes, s
heduling performan
e targets, requiredresour
es, and histori
al usage information.6. S
hedule jobs in priority order. Jobs whi
h meetsoft throttling poli
y 
onstraints are sele
ted andthen started sequentially in a highest-priority-�rstorder. When the 
urrent highest priority idle jobis unable to start due to a la
k of resour
e avail-ability, the existing reservation spa
e is analyzedand the earliest available time at whi
h this job
an run is determined. A reservation for this jobis then 
reated. Maui 
ontinues pro
essing jobs inpriority order, starting the jobs it 
an and 
reat-ing reservations for those it 
an't until it has madereservations for the top N jobs where N is a site
on�gurable parameter.



7. Soft poli
y ba
k�ll. With the priority FIFO phase
omplete, Maui determines the 
urrent availableba
k�ll windows and attempts to best �ll theseholes with the remaining jobs whi
h pass allsoft throttling poli
y 
onstraints. The 
on�guredba
k�ll algorithm and metri
 is applied when �ll-ing these windows.8. Hard poli
y ba
k�ll. If resour
es remain after theprevious ba
k�ll phase, Maui sele
ts jobs whi
hmeet the less 
onstraining hard throttling poli
iesand again attempts to s
hedule this expanded setof jobs a

ording to the 
on�gured ba
k�ll algo-rithm and metri
.4 Ba
k�llBa
k�ll is a s
heduling optimization whi
h allows as
heduler to make better use of available resour
es byrunning jobs out of order. When Maui s
hedules, itprioritizes the jobs in the queue a

ording to a num-ber of fa
tors and then orders the jobs into a highest-priority-�rst sorted list. It starts the jobs one by onestepping through the priority list until it rea
hes a jobwhi
h it 
annot start. Be
ause all jobs and reservationspossess a start time and a wall
lo
k limit, Maui 
an de-termine the 
ompletion time of all jobs in the queue.Consequently, Maui 
an also determine the earliest theneeded resour
es will be
ome available for the highestpriority job to start.Ba
k�ll operates based on this earliest-job-start in-formation. Be
ause Maui knows the earliest the high-est priority job 
an start, and whi
h resour
es it willneed at that time, it 
an also determine whi
h jobs 
anbe started without delaying this job. Enabling ba
k�llallows the s
heduler to start other, lower-priority jobsso long as they do not delay the highest priority job.If Ba
k�ll is enabled, Maui, prote
ts the highest pri-ority job's start time by 
reating a job reservation toreserve the needed resour
es at the appropriate time.Maui then 
an start any job whi
h will not interferewith this reservation.Ba
k�ll o�ers signi�
ant s
heduler performan
e im-provement. Both ane
dotal eviden
e and simulationbased results indi
ate that in a typi
al large system,enabling ba
k�ll will in
rease system utilization byaround 20% and improve average job turnaround timeby an even greater amount. Be
ause of the way itworks, essentially �lling in holes in node spa
e, ba
k�lltends to favor smaller and shorter running jobs morethan larger and longer running ones. It is 
ommon tosee over 90% of these small and short jobs ba
k�lledas is re
orded in the one year CHPC workload tra
e

[5℄. Consequently, sites will see marked improvementin the level of servi
e delivered to the small, short jobsand only moderate to no improvement for the larger,long ones.Suspi
ions arise regarding the use of ba
k�ll. Com-mon sense indi
ates that in all systems there must bea tradeo�. In s
heduling systems this tradeo� gen-erally involves trading system utilization for fairness,or system utilization for turnaround time. However,tradeo�s are not always required. While it is truethat tradeo�s are generally mandatory in a highly ef-�
ient system, in a less eÆ
ient one, you 
an a
tuallyget something for nothing. Ba
k�ll takes advantageof ineÆ
ien
ies in bat
h s
heduling a
tually improvingsystem utilization and job turnaround time and evenimproving some forms of fairness su
h balan
ing aver-age expansion fa
tor distribution along a job durations
ale.
4.1 Backfill DrawbacksWhile ba
k�ll s
heduling is advantageous, minordrawba
ks do exist. First, the ability of ba
k�lls
heduling to sele
t jobs out of order tends to dilutethe impa
t of the job prioritization algorithm in de-termining whi
h jobs are most important. It does noteliminate this impa
t, but does noti
eably de
rease it.Another problem, widely ignored in the HPC realm,is that in spite of reservations to prote
t a job's starttime, ba
k�ll s
heduling 
an a
tually delay a subset ofba
klogged jobs. The term delay is a
tually ina

urate.While the start time of a job with a reservation willnever slide ba
k in time, ba
k�ll 
an prevent it fromsliding forward in time as mu
h as it 
ould have other-wise, resulting in a psuedo-delay. This behavior arisesthrough the in
uen
e of ina

ura
ies in job run timeestimates and resulting wall
lo
k limits. When a usersubmits a job, he makes an estimate of how long the jobwill take to run. He then pads this estimate to make
ertain that the job will have adequate time to 
om-plete in spite of issues su
h as being assigned to slow
ompute resour
es, unexpe
tedly long data staging, orsimply unexpe
tedly slow 
omputation. Be
ause of thispadding, or be
ause of poor initial estimates, wall
lo
klimits have been histori
ally poor, averaging approxi-mately 20 to 40% a
ross a wide spe
trum of systems.Feitelson reported similar �ndings [6℄ and the onlinetra
es at super
luster.org for the Center for High Per-forman
e Computing at the University of Utah and theMaui High Performan
e Computing Center show wall-
lo
k a

ura
ies of 29.4% and 33.5% respe
tively.This problem is exhibited in a simple s
enario shownin Figure 1 involving a six-node system with a running



Nodes

Job B

Job C

Job A

Time

Job A's projected finish time

Job A's actual finish time

Figure 1. Wallclock accuracy induced backfill
delays.

0

10

20

30

40

50

-120000 -60000 -20000 0 20000 60000 120000

N
um

be
r 

of
 J

ob
s

Seconds of Delay

Effects of Backfill on QueueTime

Figure 2. Actual queue-time delay resulting
from backfill based on inaccurate walltime es-
timatesjob on 4 nodes, job A, whi
h estimates its 
ompletiontime will be in 3 hours. Two jobs are then queued, jobB, requiring �ve nodes, 
annot start until job A 
om-pletes while job C requires only two nodes and threehours of walltime. A standard ba
k�ll algorithm wouldreserve resour
es for job B and then start job C. Now,lets assume the wall
lo
k estimate of job A is o� and ita
tually 
ompletes one hour early. Job B still 
annotrun be
ause job C is now using one of its needed nodes.Be
ause ba
k�ll started job C out of order, the start ofthe higher priority job B was a
tually delayed from itspotential start time by one hour.This is not a signi�
ant problem and is outweighedby the positive e�e
ts of ba
k�ll. Studies have shownthat a
ross a number of systems, only a small per
ent-age of jobs are truly delayed. Figure 2 is representativeof these results. To obtain this information, a large

job tra
e from the Maui High Performan
e Comput-ing Center was run with and without ba
k�ll enabled.The di�eren
es in individual queue times were 
al
u-lated and plotted. Roughly 10% of the jobs experien
ea greater queue time with ba
k�ll enabled. These re-sults are further examined in forth
oming studies. Theper
entage of delayed jobs is redu
ed by two primaryfa
tors. First, ba
k�ll results in general improvementsin system utilization and job turnaround time for alljobs, not just those that are a
tually ba
k�lled. Thisis be
ause even jobs whi
h are not ba
k�lled are of-ten blo
ked from running by other jobs whi
h do getba
k�lled. When the blo
king job is started early, theblo
ked job also gets to start earlier. Its a 
lassi
 
aseof a rising tide lifts all ships and virtually every jobbene�ts. The se
ond relevant fa
tor is that wall 
lo
klimit ina

ura
ies are widespread. The 2D bin pa
k-ing view of an HPC system where the start time ofea
h job 
an be e�e
tively 
al
ulated out to in�nity isgrossly misleading. The real world situation is far moresti
ky with jobs 
onstantly 
ompleting at unexpe
tedtimes resulting in a 
onstant reshu�ing of job reser-vations. Maui performs these reservation adjustmentsin a priority order allowing the highest priority jobsa

ess to the newly available resour
es �rst, thus pro-viding a me
hanism to favor priority jobs with everyearly job 
ompletion en
ountered. This priority basedevaluation 
onsequently provides priority jobs the best
han
e of improving their start time. Thus, prioritybased reservation adjustment 
ounters, as far as possi-ble, the wall
lo
k a

ura
y psuedo-delays.Given the pros and 
ons, it appears 
lear for mostsites that ba
k�ll is de�nitely worth it. Its drawba
ksare rare and minor while its bene�ts are widespreadand signi�
ant.
4.2 Backfill AlgorithmThe algorithm behind Maui ba
k�ll s
heduling ismostly straightforward although there are a numberof issues and parameters to be aware of. First of all,Maui makes two ba
k�ll s
heduling passes. For ea
hpass, Maui sele
ts a list of jobs whi
h are eligible forba
k�ll a

ording to the user spe
i�ed throttling poli
ylimits des
ribed earlier. On the �rst pass, only thosejobs whi
h meet the 
onstraints of the soft poli
ies are
onsidered and s
heduled. The se
ond pass expandsthis list of jobs to in
lude those whi
h meet the less
onstraining hard fairness throttling poli
ies.A se
ond key 
on
ept regarding Maui ba
k�ll is the
on
ept of ba
k�ll windows. Figure 3 shows a simplebat
h environment 
ontaining two running jobs and areservation for a third job. The present time is rep-



Nodes

Time (hours)

Adv.

Res.

Job A

Job B

Nodes

Time (hours)

Nodes

Time (hours)

Backfill Window 1

1 node, unlimited hours

Backfill Window 2

3 nodes, 2 hours

Idle

Idle

Idle

Figure 3. Backfill Windows.

resented by the leftmost end of the box with the fu-ture moving to the right. The light gray boxes repre-sent 
urrently idle nodes whi
h are eligible for ba
k�ll.To determine ba
k�ll windows, Maui analyzes the idlenodes essentially looking for largest node-time re
tan-gles. In the 
ase represented by �gure 2, it determinesthat there are two ba
k�ll windows. The �rst window
ontains only one node and has no time limit be
ausethis node is not blo
ked by any reservation. The se
-ond window, Window 2, 
onsists of 3 nodes whi
h areavailable for two hours be
ause some of the nodes areblo
ked by a reservation. It is important to note thatthese ba
k�ll windows partially overlap yielding largerwindows and thus in
reasing ba
k�ll s
heduling oppor-tunities.On
e the ba
k�ll windows have been determined,Maui begins to traverse them. By default, these win-dows are traversed widest window �rst but this 
an be
on�gured to allow a longest window �rst approa
hto be employed. As ea
h ba
k�ll window is evalu-ated, Maui applies the ba
k�ll algorithm spe
i�ed bythe BACKFILLPOLICY parameter, be it FIRSTFIT,BESTFIT, et
.Assuming the BESTFIT algorithm is applied, thefollowing steps are taken.1. The list of feasible ba
k�ll jobs is �ltered, sele
tingonly those whi
h will a
tually �t in the 
urrentba
k�ll window.2. The degree-of-�t of ea
h job is determined basedon the SCHEDULINGCRITERIA parameter (i.e.,pro
essors, se
onds, pro
essor-se
onds, et
.)(i.e., if pro
essors is sele
ted, the job whi
h re-quests the most pro
essors will have the best �t)3. The job with the best �t is started and the ba
k�llwindow size adjusted.4. While ba
k�ll jobs and idle resour
es remain, re-peat step 1.Other ba
k�ll poli
ies behave in a similar manner withmore details available in the Maui do
umentation.Figure 4 shows a 
omparison of ba
k�ll algorithms.This graph was generated using the emulation 
apabil-ities within the Maui s
heduler whi
h have be demon-strated in [7, 8, 9℄. Noti
e that over the life of the simu-lation, the resulting utilization for all three algorithmstra
k ea
h other 
losely; so 
losely that it doesn't seemto matter whi
h algorithm is 
hosen. When Maui startsup, priority jobs are s
heduled. A ba
k�ll round thenfollows whi
h pla
es all possible jobs on the remain-ing resour
es until the spa
e is insuÆ
ient to allow anyba
k�ll job to run. After this �rst iteration, Maui 
an



93

93.5

94

94.5

95

95.5

10 20 30 40 50 60 70 80 90

Simulation Day

FIRSTFIT

MulitResourc
BESTFIT

MultiResourc
BALFIT

%
 U

til
iz

at
io

n

Figure 4. Comparison of various backfill algo-
rithms.only ba
k�ll when a new job is submitted (i.e., it maybe small enough to run on available idle resour
es) orwhen a running job 
ompletes freeing additional re-sour
es for s
heduling. S
heduling iteration granular-ity is generally so small that most often only a singlejob 
ompletes or enters the queue in a single iteration.Often, a large per
entage of the freed resour
es are ded-i
ated to a FIFO priority job and are not available forba
k�ll. The redu
ed set of free resour
es is rarely ad-equate to run more than one ba
k�ll job. These 
ondi-tions often result in the ba
k�ll algorithms making thesame job sele
tion for ba
k�ll. In the 
ases where morethan one job 
ould be run, the algorithms often se-le
ted the jobs in di�erent order, but were 
onstrainedby resour
e availability to start the same set of jobs.The 
ases that allowed more than two jobs to be ba
k-�lled within a single iteration allowed the algorithmsto di�erentiate themselves. However, these 
ases wereso infrequent statisti
ally as to have no signi�
ant im-pa
t on the overall statisti
s. The algorithms 
ould bereevaluated with very large s
heduling intervals to in-
rease job turnover. However, it would not re
e
t realworld 
onditions as the 
urrent results do.There is one important note. By default, Maui re-serves only the highest priority job resulting in a veryliberal and aggressive ba
k�ll. This reservation guaran-tees that ba
k�lled jobs will not delay the highest andonly the highest priority job. This reservation behaviorfails to provide any resour
e prote
tion for priority jobsother than the �rst, meaning these jobs 
ould poten-tially be signi�
antly delayed. However, by minimizingthe number of 
onstraints imposed on the s
heduler, itallows it more freedom to optimize its s
hedule, poten-tially resulting in better overall system utilization andjob turnaround time. The parameter RESERVATION-DEPTH is available to 
ontrol how 
onservative/liberal

Table 1. Maui Priority ComponentsPriorityCompo-nent EvaluationMetri
s UseServi
e Current queuetime and ex-pansion fa
tor Allows favoring jobs with lowest
urrent s
heduling performan
e(promotes balan
ed delivery of jobqueuetime and expansion fa
torservi
e levels)RequestedRe-sour
es Requestedpro
essors,memory,swap, lo
aldisk, nodes,and pro
essor-equivalents Allows favoring of jobs whi
h meetvarious requested resour
e 
on-straints (i.e., favoring large pro
es-sor jobs 
ounters ba
k�lls pro
liv-ity for smaller jobs and improvesoverall system utilization)Fairshare User, group,a

ount, QoS,and Classfairshareutilization Allows favoring jobs based on his-tori
al usage asso
iated with their
redentialsDire
tPrioritySpe
i�
a-tion User, group,a

ount, QoS,and Classadministra-tor spe
i�edpriorities Allows politi
al priorities to be as-signed to various groupsTarget Current deltabetween mea-sured and tar-get queue timeand expansionfa
tor values Allows ability to spe
ify servi
etargets and enable non-linear pri-ority growth to enable a job torea
h this servi
e targetBypass Job bypass
ount Allows favoring of jobs bypassedby ba
k�ll to prevent ba
k�llbased job starvationthe ba
k�ll poli
y is. This parameter 
ontrols how deepdown the priority queue reservations should be made.A large number for RESERVATIONDEPTH results in
onservative ba
k�ll behavior. Sites 
an use this pa-rameter to obtain their desired balan
e level betweenpriority based job distribution and system utilization.5 Job PrioritizationJob prioritization is an often overlooked aspe
t ofbat
h job management. While trivially simple FIFOjob prioritization algorithms 
an satisfy basi
 needs,mu
h in the way of site poli
y 
an be expressed via
exible job prioritization. This allows the site to avoidresorting to an endless array of queues and being af-fe
ted by the potential resour
e fragmentation draw-ba
ks asso
iated with them. The Maui prioritizationme
hanism takes into a

ount 6 main 
ategories of in-formation whi
h are listed in Table 1.Priority 
omponents 
an be weighted and 
ombined



with other s
heduling me
hanisms to deliver higheroverall system utilization, balan
ed job queue time ex-pansion fa
tors, and prevent job starvation. Priorityadjustments are also often used as a me
hanism of ob-taining quality of servi
e targets for a subset of jobs andfor favoring short term resour
e distribution patternsalong job 
redential and job requirement boundaries.
5.1 Priority AlgorithmBe
ause there are so many fa
tors in
orporated intothe s
heduling de
ision, with a 
orresponding numberof metri
s, (i.e., minutes queued and pro
essors re-quested) a hierar
hy of priority weights is required toallow priority tuning at a sensible level. The high-levelpriority 
al
ulation for job J is as follows:Priority = SERVICEWEIGHT * SERVICEFACTOR +RESOURCEWEIGHT * RESOURCEFACTOR +FAIRSHAREWEIGHT * FAIRSHAREFACTOR +DIRECTSPECWEIGHT * DIRECTSPECFACTOR +TARGETWEIGHT * TARGETFACTOR +BYPASSWEIGHT * BYPASSFACTORwhere ea
h *WEIGHT value is a 
on�gurable parame-ter and ea
h *FACTOR 
omponent is 
al
ulated fromsub
omponents as des
ribed in table 1. Note that the*CAP parameters below are also 
on�gurable param-eters whi
h allow a site to 
ap the 
ontribution of aparti
ular priority fa
tor.6 FairshareThere are a number of interpretations of the termfairshare as applied to bat
h systems. In general, how-ever, they ea
h involve a me
hanism whi
h 
ontrols thedistribution of delivered resour
es a
ross various jobattribute-based dimensions. They do this by tra
kinga utilization metri
 over time and using this histori
aldata to adjust s
heduling behavior so as to maintainresour
e usage within 
on�gured fairshare 
onstraints.The above vague des
ription of fairshare leaves greatroom for interpretation and leaves many algorithmi
questions unanswered. For example, it is not 
learwhat the metri
 of utilization should be nor to whi
hjob attributes this 
orrelation data should be 
orre-lated. Also, the method of 
ompiling histori
al datain order to 
ompare it to a parti
ular target value isun
lear. Finally, the signi�
ant issue of how fairsharetargets are enfor
ed is left 
ompletely open.Maui o�ers 
exibility in 
on�guring fairshare in ar-eas in
luding the tra
ked utilization metri
, the uti-lization to job 
orrelation attributes, the histori
al pe-riod, and the method of fairshare enfor
ement. Figure5 shows a typi
al Maui fairshare 
on�guration.

Table 2. Job Priority Component Equations.NOTE: XFactor/XF represents expansion
factor information calculated as (QueueTime
- ExecutionTime / (ExecutionTime)Fa
tor FormulaServi
e QueueTimeWeight * min(QueueTimeCap,QueueTimeJ )+XFa
torWeight * min(XFCap,XFa
torJ )Resour
e MIN(RESOURCECAP,NODEWEIGHT * NodesJ +PROCWEIGHT * Pro
essorsJ +MEMWEIGHT * MemoryJ +SWAPWEIGHT * SwapJ +DISKWEIGHT * DiskJ +PEWEIGHT * PEJ )Fairshare MIN(FSCAP,FSUSERWEIGHT * FSDeltaUserUsage[UserJ ℄ +FSGROUPWEIGHT *FSDeltaGroupUsage[GroupJ ℄ +FSACCOUNTWEIGHT *FSDeltaA

ountUsage[A

ountJ ℄ +FSQOSWEIGHT * FSDeltaQOSUsage[QOSJ ℄ +FSCLASSWEIGHT * FSDeltaClassUsage[ClassJ ℄)Dire
tspe
 USERWEIGHT * Priority[UserJ ℄ +GROUPWEIGHT * Priority[GroupJ ℄ +ACCOUNTWEIGHT * Priority[A

ountJ ℄ +QOSWEIGHT * Priority[QOSJ ℄ +CLASSWEIGHT * Priority[ClassJ ℄Target (MAX(.0001,XFTarget - XFCurrentJ )�2 +(MAX(.0001,QTTarget - QTCurrentJ )�2NOTE: XF is a unitless ratio while QT is reported inminutes.Bypass BypassCountJFairshare target usage 
an be spe
i�ed on a per user,group, a

ount, QOS, or 
lass basis by way of a fair-share target. Ea
h target is spe
i�ed as a per
entagevalue where ea
h value is interpreted as a per
ent of de-livered utilization. The use of delivered utilization asthe target basis as opposed to using per
ent of 
on�g-ured or available resour
es allows the fairshare systemto transparently take into a

ount fa
tors su
h s
hedul-ing ineÆ
ien
ies, system maintenan
e, job failures, et
.Fairshare targets 
an be spe
i�ed as 
oors, 
eilings,targets, and 
aps. In the above example, Maui willadjust job priority in an attempt to deliver 50% ofdelivered pro
essor-hours to user BigKahuna, no moreFSPOLICY PSDEDICATED # tra
k fairshare usage by dedi
ated pro
-se
ondsFSINTERVAL 12:00:00 # maintain 12 hour fairshare utilization re
ordsFSDEPTH 14 # tra
k effe
tive usage using last 14 re
ordsFSDECAY 0.80 # de
ay histori
al re
ordsFSWEIGHT 100 # spe
ify relative fairshare priority weightUSERFSWEIGHT 2 # relative user fairshare impa
tGROUPFSWEIGHT 1 # relative group fairshare impa
tQOSFSWEIGHT 10 # relative QOS fairshare impa
tCLASSFSWEIGHT 4 # relative 
lass fairshare impa
tUserCfg[BigKahuna℄ FSTARGET=50 # target usage of 50% (target)GroupCfg[staff℄ FSTARGET=10.0- # target usage below 10% (
eiling)QOSCfg[HighPriority℄ FSTARGET=40.0+ # target usage above 40% (floor)ClassCfg[intera
tive℄ FSTARGET=15.0^ # ignore intera
tive jobs# if usage ex
eeds 15% (
ap)

Figure 5. Sample Fairshare Configuration.



than 10% to group sta�, and at least 40% to QOSHighPriority. The 
on�g �le also spe
i�es a 
ap onthe 
lass intera
tive instru
ting Maui to blo
k inter-a
tive 
lass jobs from running if the weighted one weekusage of the 
lass ever ex
eeds 15%.
6.1 Fairshare AlgorithmThe fairshare algorithm is 
omposed of several parts.These parts handle tasks in
luding the updating of his-tori
al fairshare usage information, managing fairsharewindows, determining e�e
tive fairshare usage, and de-termining the impa
t of a job's various e�e
tive fair-share usage 
omponents.6.1.1 Updating Histori
al Fairshare Usage In-formationThe �rst issue in a fairshare system is determining themetri
 of utilization measurement. Likely 
andidatesin
lude utilized 
pu and dedi
ated 
pu. The �rst met-ri
, utilized 
pu 
harges a job only for the 
pu a
tu-ally 
onsumed by job pro
esses. The latter, 
hargesa job for all the pro
essing 
y
les dedi
ated to thejob, regardless of whether or not the job made e�e
-tive use of them. In a multi-resour
e, time-sharing,or shared node system, these metri
s may not be ade-quate as they ignore the 
onsumption of non-pro
essorresour
es. In addition to these CPU metri
s, Maui in-
ludes an option to tra
k resour
e 
onsumption by pro-
essor equivalent metri
 (PE), where a job's requestedPE value is equivalent toPE = MAX(Pro
sRequestedByJob / TotalConfiguredPro
s,MemoryRequestedByJob / TotalConfiguredMemory,DiskRequestedByJob / TotalConfiguredDisk,SwapRequestedByJob / TotalConfiguredSwap) *TotalConfiguredPro
sThis metri
 determines a job's most 
onstraining re-sour
e 
onsumption and translates it into an equiva-lent pro
essor 
ount. For example, a 1 pro
essor 4GB job running on a system with a total of 8 pro
es-sors and 16 GB of RAM would have a PE of 2 (i.e.MAX(1/8,4/16)*8= 2). To update fairshare usage in-formation, the algorithm steps through the list of a
tivejobs and the list of 
redentials asso
iated with ea
h job.Typi
ally, ea
h job is asso
iated with a user, group,
lass (or queue), quality of servi
e (QOS) level, and anoptional a

ount. The fairshare usage for ea
h re
ordedjob 
redential is in
remented by the job's fairshare met-ri
 amount multiplied by the time interval sin
e the lastfairshare measurement was taken as shown below:for (J in JobList)for (C in J->CredentialList)FSUsage[C->Type℄[C->Name℄[0℄ += <FSMETRIC> * Interval

Time (days)

Constant percentage decay
Relative

Contribution

to Overall

Fairshare

Utilization }

Fairshare Interval

Figure 6. Effective Fairshare Usage6.1.2 Determining E�e
tive Fairshare UsageIf fairshare targets are to be used, a me
hanism for
ompiling fairshare information 
olle
ted over time intoa single e�e
tive usage value is required. This me
ha-nism must determine the timeframe 
overed and howthis information is to be aged. Maui's fairshare algo-rithm utilizes the 
on
ept of fairshare windows ea
h
overing a parti
ular period of time. The algorithm al-lows a site to spe
ify how long ea
h window shouldlast, how fairshare usage in ea
h window should beweighted, and how many windows should be evaluatedin obtaining the �nal e�e
tive fairshare usage. For ex-ample. a site may wish to make fairshare adjustmentsbased on usage of the previous 8 days. To do this, theymay 
hoose to evaluate 8 fairshare windows ea
h 
on-sisting of 24 hour periods, with a de
ay, or aging fa
torof 0.75 as seen in Figure 6.To maintain fairshare windows, Maui rolls its fair-share window information ea
h time a fairshare windowboundary is rea
hed as shown in the algorithm below:for (N=1->FSDepth){ FSUsage[Obje
tType℄[Obje
tName℄[N℄ =FSUsage[Obje
tType℄[Obje
tName℄[N-1℄}FSUsage[Obje
tType℄[Obje
tName℄[0℄ = 0.0;The e�e
tive fairshare usage is then 
al
ulated at ea
hs
heduling algorithm using the following:FSEffe
tiveUsage[Obje
tType℄[Obje
tIndex℄ = 0.0for (N=0->FSDEPTH)FSEffe
tiveUsage[Obje
tType℄[Obje
tIndex℄ +=FSUsage[Obje
tType℄[Obje
tIndex℄[N℄ * (FSDECAY ^ N)6.1.3 Determining the Impa
t of Fairshare In-formationMaui utilizes fairshare information in one of two ways.If a fairshare target, 
oor, or 
eiling is spe
i�ed, fair-share information is used to adjust job priority. If a



fairshare 
ap is spe
i�ed, fairshare utilization informa-tion is used to determine a job's a

eptability to bes
heduled. (See table 3)
Table 3. Fairshare Target TypesTargetType S
heduler A
tionTarget Always adjust job priority to favor target us-ageFloor In
rease job priority if usage drops below tar-getCeiling De
rease job priority if usage ex
eeds targetCap Do not 
onsider job for s
heduling if usageex
eeds targetAs mentioned previously, Maui determines per
ent-age fairshare utilization with respe
t to a
tual deliveredutilization, not 
on�gured or available utilization. Thisis 
al
ulated using the following equation:FSPer
entUsage[Obje
tType℄[Obje
tIndex℄ =FSEffe
tiveUsage[Obje
tType℄[Obje
tIndex℄ /FSTotalEffe
tiveUsageThe impa
t of all relevant fairshare targets are 
onsid-ered and in
orporated into the �nal priority adjustmentof a job as des
ribed in se
tion 3.There is a 
ommon misper
eption about fairshare.Some sites initially believe that they 
an spe
ify fair-share targets and that the s
heduler 
an for
e thesetargets to be met. This is not the 
ase. Sin
e a fair-share system 
annot 
ontrol the mix of jobs submitted,it 
annot guarantee su

essful ful�llment of targets. Ifa high target user does not submit jobs, then his tar-get 
annot be met regardless of how hard the s
hedulertries and preventing other jobs from running will nothelp. The purpose of a fairshare system should be tosteer existing workload, favoring jobs below the tar-get so as to improve the turnaround time of these jobsand perhaps allow the asso
iated users the opportu-nity to submit subsequent dependent jobs sooner. Afairshare system 
an only push submitted jobs so as toapproa
h targets, hen
e the extensive use of priorityadjustments.The Maui fairshare system �ts neatly in a time-based spe
trum of resour
e distribution 
apabilities.At the short term end, a number of throttling poli
iesare available allowing a spe
i�
ation of how many jobs,pro
essors, nodes, et
. 
an be used by a given entityat a single time (i.e., the sum of pro
essors simultane-ously utilized by user John's jobs may not ex
eed 32).Fairshare allows resour
e usage targets to be spe
i�edover a given time frame, generally a few days to a fewweeks. For longer time frames, Maui interfa
es to pow-erful allo
ation management systems, su
h as PNNL's

QBank, whi
h allow per user allo
ations to be managedover an arbitrary time frame. Su
h systems allow Mauito 
he
k the available balan
e of a job, blo
king thosejobs with inadequate balan
es, and debiting allo
ationsfor su

essfully 
ompleted jobs.
6.2 SummaryThe purpose of this paper was to present the ba
k-�ll, job prioritization, and fairshare algorithms usedwithin the Maui s
heduler. While wide-spread use andnumerous informal evaluations of the s
heduler havedemonstrated value in these algorithms, no formal orexhaustive analysis of the e�e
tiveness of ea
h algo-rithm has been published. These algorithms will beevaluated individually in forth
oming papers.While the des
ribed ba
k�ll, priority, and fairsharesystems appear to have met the needs of a wide spe
-trum of HPC ar
hite
tures and site poli
ies, resear
hand development in these areas 
ontinue. Signi�
antenhan
ements to Maui also 
ontinue in the realm ofquality of servi
e delivery and new preemption basedba
k�ll optimizations. Additional work is also ongoingin extending Maui's existing interfa
e for grid appli-
ations and general metas
heduling, with a near termfo
us on improving job start time estimations. Re-sear
h regarding the e�e
t of the quality of this starttime information on the performan
e of multi-systemload balan
ing systems is 
urrently underway.Referen
es[1℄ D. Ja
kson. The Maui S
heduler. Te
hni
al report.http://super
luster.org/proje
ts/maui.[2℄ J.S. Skovira, W. Chen, and H. Zhou. The EASY -LoadLeveler API Proje
t. Job S
heduling Strategiesfor Parallel Pro
essing, Le
ture Notes in ComputerS
ien
e 1162, pages 41{47, 1996.[3℄ R.L. Henderson. Job s
heduling under the PortableBat
h System. Job S
heduling Strategies for Paral-lel Pro
essing, Le
ture Notes in Computer S
ien
e,949, 1995.[4℄ J.M. Barton and N. Bitar. A s
alable multi-dis
ipline multiple pro
essor s
heduling frameworkfor IRIX. Job S
heduling Strategies for ParallelPro
essing, Le
ture Notes in Computer S
ien
e,949, 1995.[5℄ D. Ja
kson. HPC workloadrepository. Te
hni
al report.http://www.super
luster.org/resear
h/tra
es.



[6℄ D. Feitelson and A. Mu'alem Weil. Utilization andpredi
ability in s
heduling the IBM SP2 with ba
k-�lling. In Pro
eedings of IPPS/SPDP, April 1998.[7℄ Q. Snell, M. Clement, D. Ja
kson, and C. Gregory.The performan
e impa
t of advan
e reservationmetas
heduling. Le
ture Notes in Computer S
i-en
e: Job S
heduling Strategiew for Parallel Pro-
essing, 1911, 2000.[8℄ John Jardine. Avoiding livelo
k using the YMetas
heduler and exponential ba
k-o�. Master'sthesis, Brigham Young University, 2000.[9℄ D. Ja
kson, Q. Snell, and M. Clement. Simula-tion based HPC workload analysis. In Interna-tional Parallel and Distributed Pro
essing Sympo-sium, 2001.


