Core Algorithms of the Maui Scheduler

David Jackson, Quinn Snell, and Mark Clement
Brigham Young University, Provo, Utah 84602

jacksond@supercluster.org {snell, clement }Qcs.byu.edu

Abstract

The Maui scheduler has received wide acceptance in
the HPC community as a highly configurable and ef-
fective batch scheduler. It is currently in use on hun-
dreds of SP, O2K, and Linuz cluster systems through-
out the world including a high percentage of the largest
and most cutting edge research sites. While the algo-
rithms used within Maui have proven themselves ef-
fective, nothing has been published to date document-
ing these algorithms nor the configurable aspects they
support. This paper focuses on three areas of Maui
scheduling, specifically, backfill, job prioritization, and
fairshare. It briefly discusses the goals of each com-
ponent, the issues and corresponding design decisions,
and the algorithms enabling the Maui policies. It also
covers the configurable aspects of each algorithm and
the impact of various parameter selections.

1 Introduction

The Maui scheduler [1] has received wide acceptance
in the HPC community as an highly configurable and
effective batch scheduler. It is currently in use on hun-
dreds of IBM SP-2, SGI Origin 2000, and Linux cluster
systems throughout the world including a high percent-
age of the largest and most cutting edge research sites.
While Maui was initially known for its advance reser-
vation and backfill scheduling capabilities, it also pos-
sesses many additional optimizations and job manage-
ment features. There are many aspects of the schedul-
ing decision which must be addressed. This paper doc-
uments the underlying algorithms associated with the
Maui scheduler. While Maui originated as a project de-
signed to purely maximize system utilization, it rapidly
evolved into a tool with a goal of maximizing schedul-
ing performance while supporting an extensive array of
policy tools. The words performance and policy go a
long way to complicating this problem.

2 Overview

Maui, like other batch schedulers [2, 3, 4], deter-
mines when and where submitted jobs should be run.
Jobs are selected and started in such a way as to not
only enforce a site’s mission goals, but also to intel-
ligently improve resource usage and minimize average
job turnaround time. Mission goals are expressed via
a combination of policies which constrain how jobs will
be started. A number of base concepts require review
to set the groundwork for a detailed discussion of the
algorithms.

2.1 Scheduling Iteration

Like most schedulers, Maui schedules on a iterative
basis, scheduling, followed by a period of sleeping or
processing external commands. Maui will start a new
iteration when one or more of the following conditions
is met:

e a job or resource state-change (i.e. job termina-
tion, node failure) event occurs

e 3 reservation boundary event occurs

e the scheduler is instructed to resume scheduling
via an external command

e a configurable timer expires
2.2 Job Class

Maui supports the concept of a job class, also known
as a job queue. Each class may have an associated set
of constraints determining what types of jobs can be
submitted to it. These constraints can limit the size
or length of the job and can be associated with certain
default job attributes, such as memory required per
job. Constraints can also be set on a per-class basis
specifying which users, groups, etc., can submit to the
class. Further, each class can optionally be set up to

only be allowed access to a particular subset of nodes.
Within Maui, all jobs are associated with a class. If no
class is specified, a default class is assigned to the job.

2.3 QoS

Maui also supports the concept of quality of ser-
vice (QoS) levels. These QoS levels may be configured
to allow many types of special privileges including ad-
justed job priorities, improved queue time and expan-
sion factor targets, access to additional resources, or
exemptions from certain policies. Each QoS level is as-
signed an access control list (ACL) to determine which
users, groups, accounts, or job classes may access the
associated privileges. In cases where a job may possess
access to multiple QoS levels, the user submitting the
job may specify the desired QoS. All jobs within Maui
are associated with a QoS level. If no QoS is specified,
a default QoS is assigned.

2.4 Job Credentials

Each batch job submitted to Maui is associated with
a number of key attributes or credentials describing job
ownership. These credentials include the standard user
and group ID of the submitting user. However, they
also include an optional account, or project, ID for use
in conjunction with allocation management systems.
Additionally, as mentioned above, each job is also as-
sociated with a job class and QoS credential.

2.5 Throttling Policies

Maui’s scheduling behavior can be constrained by
way of throttling policies, policies which limit the total
quantity of resources available to a given credential at
any given moment. The resources constrained include
things such as processors, jobs, nodes, and memory.
For example, a site may choose to set a throttling policy
limiting the maximum number of jobs running simul-
taneously per user to 3 and set another policy limiting
the group, staff, to only using a total of 32 processors
at a time. Maui allows both hard and soft throttling
policy limits to be set. Soft limits are more constrain-
ing than hard limits. Each iteration, Maui attempts to
schedule all possible jobs according to soft policy con-
straints. If idle resources remain, Maui will re-evaluate
its queue and attempt to run jobs which meet the less
constraining hard policies.

3 Scheduling Iterations

On each scheduling iteration, Maui obtains fresh re-
source manager information, updates its own state in-
formation, and schedules selected jobs. These activities
are broken down into the following general steps:

1. Obtain updated resource manager information.
Calls are issued to the resource manager to get
up-to-date detailed information about node and
job state, configuration, etc.

2. Update statistics. Historical statistics and usage
information for running jobs are updated. Statis-
tics records for completed jobs are also generated.

3. Refresh reservations. Maui adjusts existing reser-
vations incorporating updated node availability in-
formation by adding and removing nodes as ap-
propriate. Changes in node availability may also
cause various reservations to slide forward or back-
ward in time if the reservation timeframe is not
locked down. Maui may also create or remove
reservations in accordance with configured reser-
vation time constraints during this phase. Fi-
nally, idle jobs which possess reservations provid-
ing immediate access to resources are started in
this phase.

4. Select jobs meeting minimum scheduling crite-
ria. A list is generated which contains all jobs
which can be feasibly scheduled. Criteria such as
job state, job holds, availability of configured re-
sources, etc. are taken into account in generating
this list. Each job’s compliance with various throt-
tling policies is also evaluated with violating jobs
eliminated from the feasible job list.

5. Prioritize feasible jobs. The list of feasible
jobs is prioritized according to various job at-
tributes, scheduling performance targets, required
resources, and historical usage information.

6. Schedule jobs in priority order. Jobs which meet
soft throttling policy constraints are selected and
then started sequentially in a highest-priority-first
order. When the current highest priority idle job
is unable to start due to a lack of resource avail-
ability, the existing reservation space is analyzed
and the earliest available time at which this job
can run is determined. A reservation for this job
is then created. Maui continues processing jobs in
priority order, starting the jobs it can and creat-
ing reservations for those it can’t until it has made
reservations for the top N jobs where N is a site
configurable parameter.

7. Soft policy backfill. With the priority FIFO phase
complete, Maui determines the current available
backfill windows and attempts to best fill these
holes with the remaining jobs which pass all
soft throttling policy constraints. The configured
backfill algorithm and metric is applied when fill-
ing these windows.

8. Hard policy backfill. If resources remain after the
previous backfill phase, Maui selects jobs which
meet the less constraining hard throttling policies
and again attempts to schedule this expanded set
of jobs according to the configured backfill algo-
rithm and metric.

4 Backfill

Backfill is a scheduling optimization which allows a
scheduler to make better use of available resources by
running jobs out of order. When Maui schedules, it
prioritizes the jobs in the queue according to a num-
ber of factors and then orders the jobs into a highest-
priority-first sorted list. It starts the jobs one by one
stepping through the priority list until it reaches a job
which it cannot start. Because all jobs and reservations
possess a start time and a wallclock limit, Maui can de-
termine the completion time of all jobs in the queue.
Consequently, Maui can also determine the earliest the
needed resources will become available for the highest
priority job to start.

Backfill operates based on this earliest-job-start in-
formation. Because Maui knows the earliest the high-
est priority job can start, and which resources it will
need at that time, it can also determine which jobs can
be started without delaying this job. Enabling backfill
allows the scheduler to start other, lower-priority jobs
so long as they do not delay the highest priority job.
If Backfill is enabled, Maui, protects the highest pri-
ority job’s start time by creating a job reservation to
reserve the needed resources at the appropriate time.
Maui then can start any job which will not interfere
with this reservation.

Backfill offers significant scheduler performance im-
provement. Both anecdotal evidence and simulation
based results indicate that in a typical large system,
enabling backfill will increase system utilization by
around 20% and improve average job turnaround time
by an even greater amount. Because of the way it
works, essentially filling in holes in node space, backfill
tends to favor smaller and shorter running jobs more
than larger and longer running ones. It is common to
see over 90% of these small and short jobs backfilled
as is recorded in the one year CHPC workload trace

[5]. Consequently, sites will see marked improvement
in the level of service delivered to the small, short jobs
and only moderate to no improvement for the larger,
long ones.

Suspicions arise regarding the use of backfill. Com-
mon sense indicates that in all systems there must be
a tradeoff. In scheduling systems this tradeoff gen-
erally involves trading system utilization for fairness,
or system utilization for turnaround time. However,
tradeoffs are not always required. While it is true
that tradeoffs are generally mandatory in a highly ef-
ficient system, in a less efficient one, you can actually
get something for nothing. Backfill takes advantage
of inefficiencies in batch scheduling actually improving
system utilization and job turnaround time and even
improving some forms of fairness such balancing aver-
age expansion factor distribution along a job duration
scale.

4.1 Backfill Drawbacks

While backfill scheduling is advantageous, minor
drawbacks do exist. First, the ability of backfill
scheduling to select jobs out of order tends to dilute
the impact of the job prioritization algorithm in de-
termining which jobs are most important. It does not
eliminate this impact, but does noticeably decrease it.

Another problem, widely ignored in the HPC realm,
is that in spite of reservations to protect a job’s start
time, backfill scheduling can actually delay a subset of
backlogged jobs. The term delay is actually inaccurate.
While the start time of a job with a reservation will
never slide back in time, backfill can prevent it from
sliding forward in time as much as it could have other-
wise, resulting in a psuedo-delay. This behavior arises
through the influence of inaccuracies in job run time
estimates and resulting wallclock limits. When a user
submits a job, he makes an estimate of how long the job
will take to run. He then pads this estimate to make
certain that the job will have adequate time to com-
plete in spite of issues such as being assigned to slow
compute resources, unexpectedly long data staging, or
simply unexpectedly slow computation. Because of this
padding, or because of poor initial estimates, wallclock
limits have been historically poor, averaging approxi-
mately 20 to 40% across a wide spectrum of systems.
Feitelson reported similar findings [6] and the online
traces at supercluster.org for the Center for High Per-
formance Computing at the University of Utah and the
Maui High Performance Computing Center show wall-
clock accuracies of 29.4% and 33.5% respectively.

This problem is exhibited in a simple scenario shown
in Figure 1 involving a six-node system with a running

Job A's actual finish time

Job A's projected finish time

Time

Figure 1. Wallclock accuracy induced backfill
delays.

Effects of Backfill on QueueTime
T T

40+

Number of Jobs

I .
-20000 0 20000 60000 120000
Seconds of Delay

L L
-120000 -60000

Figure 2. Actual queue-time delay resulting
from backfill based on inaccurate walltime es-
timates

job on 4 nodes, job A, which estimates its completion
time will be in 3 hours. Two jobs are then queued, job
B, requiring five nodes, cannot start until job A com-
pletes while job C requires only two nodes and three
hours of walltime. A standard backfill algorithm would
reserve resources for job B and then start job C. Now,
lets assume the wallclock estimate of job A is off and it
actually completes one hour early. Job B still cannot
run because job C is now using one of its needed nodes.
Because backfill started job C out of order, the start of
the higher priority job B was actually delayed from its
potential start time by one hour.

This is not a significant problem and is outweighed
by the positive effects of backfill. Studies have shown
that across a number of systems, only a small percent-
age of jobs are truly delayed. Figure 2 is representative
of these results. To obtain this information, a large

job trace from the Maui High Performance Comput-
ing Center was run with and without backfill enabled.
The differences in individual queue times were calcu-
lated and plotted. Roughly 10% of the jobs experience
a greater queue time with backfill enabled. These re-
sults are further examined in forthcoming studies. The
percentage of delayed jobs is reduced by two primary
factors. First, backfill results in general improvements
in system utilization and job turnaround time for all
jobs, not just those that are actually backfilled. This
is because even jobs which are not backfilled are of-
ten blocked from running by other jobs which do get
backfilled. When the blocking job is started early, the
blocked job also gets to start earlier. Its a classic case
of a rising tide lifts all ships and virtually every job
benefits. The second relevant factor is that wall clock
limit inaccuracies are widespread. The 2D bin pack-
ing view of an HPC system where the start time of
each job can be effectively calculated out to infinity is
grossly misleading. The real world situation is far more
sticky with jobs constantly completing at unexpected
times resulting in a constant reshuffling of job reser-
vations. Maui performs these reservation adjustments
in a priority order allowing the highest priority jobs
access to the newly available resources first, thus pro-
viding a mechanism to favor priority jobs with every
early job completion encountered. This priority based
evaluation consequently provides priority jobs the best
chance of improving their start time. Thus, priority
based reservation adjustment counters, as far as possi-
ble, the wallclock accuracy psuedo-delays.

Given the pros and cons, it appears clear for most
sites that backfill is definitely worth it. Its drawbacks
are rare and minor while its benefits are widespread
and significant.

4.2 Backfill Algorithm

The algorithm behind Maui backfill scheduling is
mostly straightforward although there are a number
of issues and parameters to be aware of. First of all,
Maui makes two backfill scheduling passes. For each
pass, Maui selects a list of jobs which are eligible for
backfill according to the user specified throttling policy
limits described earlier. On the first pass, only those
jobs which meet the constraints of the soft policies are
considered and scheduled. The second pass expands
this list of jobs to include those which meet the less
constraining hard fairness throttling policies.

A second key concept regarding Maui backfill is the
concept of backfill windows. Figure 3 shows a simple
batch environment containing two running jobs and a
reservation for a third job. The present time is rep-

Nodes

Nodes

Nodes

Job A

Time (hours)

F

Backfill Window 1
1 node, unlimited hours

Time (hours)

Backfill Window 2
3 nodes, 2 hours

Time (hours)

Figure 3. Backfill Windows.

resented by the leftmost end of the box with the fu-
ture moving to the right. The light gray boxes repre-
sent currently idle nodes which are eligible for backfill.
To determine backfill windows, Maui analyzes the idle
nodes essentially looking for largest node-time rectan-
gles. In the case represented by figure 2, it determines
that there are two backfill windows. The first window
contains only one node and has no time limit because
this node is not blocked by any reservation. The sec-
ond window, Window 2, consists of 3 nodes which are
available for two hours because some of the nodes are
blocked by a reservation. It is important to note that
these backfill windows partially overlap yielding larger
windows and thus increasing backfill scheduling oppor-
tunities.

Once the backfill windows have been determined,
Maui begins to traverse them. By default, these win-
dows are traversed widest window first but this can be
configured to allow a longest window first approach
to be employed. As each backfill window is evalu-
ated, Maui applies the backfill algorithm specified by
the BACKFILLPOLICY parameter, be it FIRSTFIT,
BESTFIT, etc.

Agsuming the BESTFIT algorithm is applied, the
following steps are taken.

1. The list of feasible backfill jobs is filtered, selecting
only those which will actually fit in the current
backfill window.

2. The degree-of-fit of each job is determined based
on the SCHEDULINGCRITERIA parameter (i.e.,
processors, seconds, processor-seconds, etc.)

(i.e., if processors is selected, the job which re-
quests the most processors will have the best fit)

3. The job with the best fit is started and the backfill
window size adjusted.

4. While backfill jobs and idle resources remain, re-
peat step 1.

Other backfill policies behave in a similar manner with
more details available in the Maui documentation.
Figure 4 shows a comparison of backfill algorithms.
This graph was generated using the emulation capabil-
ities within the Maui scheduler which have be demon-
strated in [7, 8, 9]. Notice that over the life of the simu-
lation, the resulting utilization for all three algorithms
track each other closely; so closely that it doesn’t seem
to matter which algorithm is chosen. When Maui starts
up, priority jobs are scheduled. A backfill round then
follows which places all possible jobs on the remain-
ing resources until the space is insufficient to allow any
backfill job to run. After this first iteration, Maui can

95. 5
95 1
oy
Soa4s
g —@—FIRSTFI T
S 94 A ~—@— Ml i t Resour ¢
© BESTFI T
< —&— Ml ti Resour
93. 51 BALFI T
93 T T T T T T T T
10 20 30 40 50 60 70 80 90
Si nul ation Da

Figure 4. Comparison of various backfill algo-
rithms.

only backfill when a new job is submitted (i.e., it may
be small enough to run on available idle resources) or
when a running job completes freeing additional re-
sources for scheduling. Scheduling iteration granular-
ity is generally so small that most often only a single
job completes or enters the queue in a single iteration.
Often, a large percentage of the freed resources are ded-
icated to a FIFO priority job and are not available for
backfill. The reduced set of free resources is rarely ad-
equate to run more than one backfill job. These condi-
tions often result in the backfill algorithms making the
same job selection for backfill. In the cases where more
than one job could be run, the algorithms often se-
lected the jobs in different order, but were constrained
by resource availability to start the same set of jobs.
The cases that allowed more than two jobs to be back-
filled within a single iteration allowed the algorithms
to differentiate themselves. However, these cases were
so infrequent statistically as to have no significant im-
pact on the overall statistics. The algorithms could be
reevaluated with very large scheduling intervals to in-
crease job turnover. However, it would not reflect real
world conditions as the current results do.

There is one important note. By default, Maui re-
serves only the highest priority job resulting in a very
liberal and aggressive backfill. This reservation guaran-
tees that backfilled jobs will not delay the highest and
only the highest priority job. This reservation behavior
fails to provide any resource protection for priority jobs
other than the first, meaning these jobs could poten-
tially be significantly delayed. However, by minimizing
the number of constraints imposed on the scheduler, it
allows it more freedom to optimize its schedule, poten-
tially resulting in better overall system utilization and
job turnaround time. The parameter RESERVATION-
DEPTH is available to control how conservative/liberal

Table 1. Maui Priority Components

Priority Evaluation Use
Compo- Metrics
nent
Service Current queue | Allows favoring jobs with lowest
time and ex- | current scheduling performance
pansion factor | (promotes balanced delivery of job
queuetime and expansion factor
service levels)
Requested | Requested Allows favoring of jobs which meet
Re- processors, various requested resource con-
sources memory, straints (i.e., favoring large proces-
swap, local | sor jobs counters backfills procliv-
disk, nodes, | ity for smaller jobs and improves
and processor- | overall system utilization)
equivalents
Fairshare | User, group, | Allows favoring jobs based on his-
account, QoS, | torical usage associated with their
and Class | credentials
fairshare
utilization
Direct User, group, | Allows political priorities to be as-
Priority account, QoS, | signed to various groups
Specifica- | and Class
tion administra-
tor specified
priorities
Target Current delta | Allows ability to specify service
between mea- | targets and enable non-linear pri-
sured and tar- | ority growth to enable a job to
get queue time | reach this service target
and expansion
factor values
Bypass Job bypass | Allows favoring of jobs bypassed
count by backfill to prevent backfill
based job starvation

the backfill policy is. This parameter controls how deep
down the priority queue reservations should be made.
A large number for RESERVATIONDEPTH results in
conservative backfill behavior. Sites can use this pa-
rameter to obtain their desired balance level between
priority based job distribution and system utilization.

5 Job Prioritization

Job prioritization is an often overlooked aspect of
batch job management. While trivially simple FIFO
job prioritization algorithms can satisfy basic needs,
much in the way of site policy can be expressed via
flexible job prioritization. This allows the site to avoid
resorting to an endless array of queues and being af-
fected by the potential resource fragmentation draw-
backs associated with them. The Maui prioritization
mechanism takes into account 6 main categories of in-
formation which are listed in Table 1.

Priority components can be weighted and combined

with other scheduling mechanisms to deliver higher
overall system utilization, balanced job queue time ex-
pansion factors, and prevent job starvation. Priority
adjustments are also often used as a mechanism of ob-
taining quality of service targets for a subset of jobs and
for favoring short term resource distribution patterns
along job credential and job requirement boundaries.

5.1 Priority Algorithm

Because there are so many factors incorporated into
the scheduling decision, with a corresponding number
of metrics, (i.e., minutes queued and processors re-
quested) a hierarchy of priority weights is required to
allow priority tuning at a sensible level. The high-level
priority calculation for job J is as follows:

Priority = SERVICEWEIGHT * SERVICEFACTOR +
RESOURCEWEIGHT * RESOURCEFACTOR +
FAIRSHAREWEIGHT * FAIRSHAREFACTOR +
DIRECTSPECWEIGHT * DIRECTSPECFACTOR +
TARGETWEIGHT * TARGETFACTOR +
BYPASSWEIGHT * BYPASSFACTOR

where each *WEIGHT value is a configurable parame-
ter and each *FACTOR component is calculated from
subcomponents as described in table 1. Note that the
*CAP parameters below are also configurable param-
eters which allow a site to cap the contribution of a
particular priority factor.

6 Fairshare

There are a number of interpretations of the term
fairshare as applied to batch systems. In general, how-
ever, they each involve a mechanism which controls the
distribution of delivered resources across various job
attribute-based dimensions. They do this by tracking
a utilization metric over time and using this historical
data to adjust scheduling behavior so as to maintain
resource usage within configured fairshare constraints.
The above vague description of fairshare leaves great
room for interpretation and leaves many algorithmic
questions unanswered. For example, it is not clear
what the metric of utilization should be nor to which
job attributes this correlation data should be corre-
lated. Also, the method of compiling historical data
in order to compare it to a particular target value is
unclear. Finally, the significant issue of how fairshare
targets are enforced is left completely open.

Maui offers flexibility in configuring fairshare in ar-
eas including the tracked utilization metric, the uti-
lization to job correlation attributes, the historical pe-
riod, and the method of fairshare enforcement. Figure
5 shows a typical Maui fairshare configuration.

Table 2. Job Priority Component Equations.
NOTE: XFactor/XF represents expansion
factor information calculated as (QueueTime
- ExecutionTime / (ExecutionTime)

Factor Formula

Service

QueueTimeWeight * min(QueueTimeCap,QueueTime ;)

+
XFactorWeight * min(XFCap,XFactor ;)

Resource MIN(RESOURCECAP,
NODEWEIGHT * Nodes; +
PROCWEIGHT * Processorsy +
MEMWEIGHT * Memory ; +
SWAPWEIGHT * Swapj +
DISKWEIGHT * Disky +
PEWEIGHT * PEj)

Fairshare | mnrscar,
FSUSERWEIGHT * FSDeltaUserUsage[UserJ] +
FSGROUPWEIGHT *®
FSDeltaGroupUsage[Group ;] +
FSACCOUNTWEIGHT *®
FSDeltaAccountUsage[Account 7] +
FSQOSWEIGHT * FSDelthQOSUsage[QOS 5] +
FSCLASSWEIGHT * FSDeltaClassUsage[Class ;])

Dlrectspec USERWEIGHT * Priority[User ;] +
GROUPWEIGHT * Priority[Group] +
ACCOUNTWEIGHT * Priority[Account j] +
QOSWEIGHT * Priority[QOS 7] +
CLASSWEIGHT * Priority[Class]

Target (MAX(.0001,XFTarget - XFCurrent)~ 2 +
(MAX(.0001,QTTarget - QTCurrent ;)2

NOTE: XF is a unitless ratio while' QT is reported in
minutes.

Bypass

BypassCount j

Fairshare target usage can be specified on a per user,
group, account, QOS, or class basis by way of a fair-
share target. Each target is specified as a percentage
value where each value is interpreted as a percent of de-
livered utilization. The use of delivered utilization as
the target basis as opposed to using percent of config-
ured or available resources allows the fairshare system
to transparently take into account factors such schedul-
ing inefficiencies, system maintenance, job failures, etc.

Fairshare targets can be specified as floors, ceilings,
targets, and caps. In the above example, Maui will
adjust job priority in an attempt to deliver 50% of
delivered processor-hours to user BigKahuna, no more

FSPOLICY PSDEDICATED # track fairshare usage by dedicated proc-seconds
FSINTERVAL 12:00:00 # maintain 12 hour fairshare utilization records
FSDEPTH 14 # track effective usage using last 14 records
FSDECAY 0.80 # decay historical records
FSWEIGHT 100 # specify relative fairshare priority weight
USERFSWEIGHT 2 # relative user fairshare impact
GROUPFSWEIGHT 1 # relative group fairshare impact
QOSFSWEIGHT 10 # relative QOS fairshare impact
CLASSFSWEIGHT 4 # relative class fairshare impact
UserCfg[BigKahuna] FSTARGET=50 # target usage of 50% (target)
GroupCfg[staff] FSTARGET=10.0- # target usage below 10} (ceiling)
Q0SCfg[HighPriority]l FSTARGET=40.0+ # target usage above 40% (floor)
ClassCfglinteractive] FSTARGET=15.0" # ignore interactive jobs

if usage exceeds 15% (cap)

Figure 5. Sample Fairshare Configuration.

than 10% to group staff, and at least 40% to QOS
HighPriority. The config file also specifies a cap on
the class interactive instructing Maui to block inter-
active class jobs from running if the weighted one week
usage of the class ever exceeds 15%.

6.1 Fairshare Algorithm

The fairshare algorithm is composed of several parts.
These parts handle tasks including the updating of his-
torical fairshare usage information, managing fairshare
windows, determining effective fairshare usage, and de-
termining the impact of a job’s various effective fair-
share usage components.

6.1.1 Updating Historical Fairshare Usage In-
formation

The first issue in a fairshare system is determining the
metric of utilization measurement. Likely candidates
include utilized cpu and dedicated cpu. The first met-
ric, utilized cpu charges a job only for the cpu actu-
ally consumed by job processes. The latter, charges
a job for all the processing cycles dedicated to the
job, regardless of whether or not the job made effec-
tive use of them. In a multi-resource, time-sharing,
or shared node system, these metrics may not be ade-
quate as they ignore the consumption of non-processor
resources. In addition to these CPU metrics, Maui in-
cludes an option to track resource consumption by pro-
cessor equivalent metric (PE), where a job’s requested
PE value is equivalent to

PE = MAX(ProcsRequestedByJob / TotalConfiguredProcs,
MemoryRequestedByJob / TotalConfiguredMemory,
DiskRequestedByJob / TotalConfiguredDisk,
SwapRequestedByJob / TotalConfiguredSwap) *
TotalConfiguredProcs

This metric determines a job’s most constraining re-
source consumption and translates it into an equiva-
lent, processor count. For example, a 1 processor 4
GB job running on a system with a total of 8 proces-
sors and 16 GB of RAM would have a PE of 2 (i.e.
MAX(1/8,4/16)*8= 2). To update fairshare usage in-
formation, the algorithm steps through the list of active
jobs and the list of credentials associated with each job.
Typically, each job is associated with a user, group,
class (or queue), quality of service (QOS) level, and an
optional account. The fairshare usage for each recorded
job credential is incremented by the job’s fairshare met-
ric amount multiplied by the time interval since the last
fairshare measurement was taken as shown below:

for (J in JobList)

for (C in J->CredentialList)
FSUsage [C->Type] [C->Name] [0] += <FSMETRIC> * Interval

\ < Constant percentage decay
Relative]
Contribution
to Overall \\)
Fairshare < Fairshare Interval
Utilization NG A
- \\'— e
N
E By
1
Time (days)

Figure 6. Effective Fairshare Usage

6.1.2 Determining Effective Fairshare Usage

If fairshare targets are to be used, a mechanism for
compiling fairshare information collected over time into
a single effective usage value is required. This mecha-
nism must determine the timeframe covered and how
this information is to be aged. Maui’s fairshare algo-
rithm utilizes the concept of fairshare windows each
covering a particular period of time. The algorithm al-
lows a site to specify how long each window should
last, how fairshare usage in each window should be
weighted, and how many windows should be evaluated
in obtaining the final effective fairshare usage. For ex-
ample. a site may wish to make fairshare adjustments
based on usage of the previous 8 days. To do this, they
may choose to evaluate 8 fairshare windows each con-
sisting of 24 hour periods, with a decay, or aging factor
of 0.75 as seen in Figure 6.

To maintain fairshare windows, Maui rolls its fair-
share window information each time a fairshare window
boundary is reached as shown in the algorithm below:

for (N=1->FSDepth)
{
FSUsage[ObjectTypel [ObjectName] [N] =
FSUsage[ObjectType] [ObjectName] [N-1]
}
FSUsage [ObjectType] [ObjectName] [0] = 0.0;

The effective fairshare usage is then calculated at each
scheduling algorithm using the following:

FSEffectiveUsage [ObjectTypel [ObjectIndex] = 0.0
for (N=0->FSDEPTH)
FSEffectiveUsage[ObjectTypel [ObjectIndex] +=
FSUsage[ObjectType] [ObjectIndex] [N] * (FSDECAY " N)

6.1.3 Determining the Impact of Fairshare In-
formation

Maui utilizes fairshare information in one of two ways.
If a fairshare target, floor, or ceiling is specified, fair-
share information is used to adjust job priority. If a

fairshare cap is specified, fairshare utilization informa-
tion is used to determine a job’s acceptability to be
scheduled. (See table 3)

Table 3. Fairshare Target Types

Target | Scheduler Action

Type

Target Always adjust job priority to favor target us-
age

Floor Increase job priority if usage drops below tar-
get

Ceiling Decrease job priority if usage exceeds target

Cap Do not consider job for scheduling if usage
exceeds target

As mentioned previously, Maui determines percent-
age fairshare utilization with respect to actual delivered
utilization, not configured or available utilization. This
is calculated using the following equation:
FSPercentUsage [ObjectType] [ObjectIndex] =

FSEffectiveUsage[ObjectType] [ObjectIndex] /
FSTotalEffectiveUsage

The impact of all relevant fairshare targets are consid-
ered and incorporated into the final priority adjustment
of a job as described in section 3.

There is a common misperception about fairshare.
Some sites initially believe that they can specify fair-
share targets and that the scheduler can force these
targets to be met. This is not the case. Since a fair-
share system cannot control the mix of jobs submitted,
it cannot guarantee successful fulfillment of targets. If
a high target user does not submit jobs, then his tar-
get cannot be met regardless of how hard the scheduler
tries and preventing other jobs from running will not
help. The purpose of a fairshare system should be to
steer existing workload, favoring jobs below the tar-
get so as to improve the turnaround time of these jobs
and perhaps allow the associated users the opportu-
nity to submit subsequent dependent jobs sooner. A
fairshare system can only push submitted jobs so as to
approach targets, hence the extensive use of priority
adjustments.

The Maui fairshare system fits neatly in a time-
based spectrum of resource distribution capabilities.
At the short term end, a number of throttling policies
are available allowing a specification of how many jobs,
processors, nodes, etc. can be used by a given entity
at a single time (i.e., the sum of processors simultane-
ously utilized by user John’s jobs may not exceed 32).
Fairshare allows resource usage targets to be specified
over a given time frame, generally a few days to a few
weeks. For longer time frames, Maui interfaces to pow-
erful allocation management systems, such as PNNL’s

QBank, which allow per user allocations to be managed
over an arbitrary time frame. Such systems allow Maui
to check the available balance of a job, blocking those
jobs with inadequate balances, and debiting allocations
for successfully completed jobs.

6.2 Summary

The purpose of this paper was to present the back-
fill, job prioritization, and fairshare algorithms used
within the Maui scheduler. While wide-spread use and
numerous informal evaluations of the scheduler have
demonstrated value in these algorithms, no formal or
exhaustive analysis of the effectiveness of each algo-
rithm has been published. These algorithms will be
evaluated individually in forthcoming papers.

While the described backfill, priority, and fairshare
systems appear to have met the needs of a wide spec-
trum of HPC architectures and site policies, research
and development in these areas continue. Significant
enhancements to Maui also continue in the realm of
quality of service delivery and new preemption based
backfill optimizations. Additional work is also ongoing
in extending Maui’s existing interface for grid appli-
cations and general metascheduling, with a near term
focus on improving job start time estimations. Re-
search regarding the effect of the quality of this start
time information on the performance of multi-system
load balancing systems is currently underway.

References

[1] D. Jackson. The Maui Scheduler. Technical report.
http:/ /supercluster.org/projects/maui.

[2] J.S. Skovira, W. Chen, and H. Zhou. The EASY -
LoadLeveler API Project. Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer
Science 1162, pages 41-47, 1996.

[3] R.L. Henderson. Job scheduling under the Portable
Batch System. Job Scheduling Strategies for Paral-
lel Processing, Lecture Notes in Computer Science,
949, 1995.

[4] JM. Barton and N. Bitar. A scalable multi-
discipline multiple processor scheduling framework
for IRIX. Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science,
949, 1995.

[5] D. Jackson. HPC workload
repository. Technical report,.
http://www.supercluster.org/research/traces.

[6]

[7]

D. Feitelson and A. Mu’alem Weil. Utilization and
predicability in scheduling the IBM SP2 with back-
filling. In Proceedings of IPPS/SPDP, April 1998.

Q. Snell, M. Clement, D. Jackson, and C. Gregory.
The performance impact of advance reservation
metascheduling. Lecture Notes in Computer Sci-
ence: Job Scheduling Strategiew for Parallel Pro-
cessing, 1911, 2000.

John Jardine. Avoiding livelock using the Y
Metascheduler and exponential back-off. Master’s
thesis, Brigham Young University, 2000.

D. Jackson, Q. Snell, and M. Clement. Simula-
tion based HPC workload analysis. In Interna-
tional Parallel and Distributed Processing Sympo-
sium, 2001.

