
A Dynami
 Cos
heduling Te
hnique for Symmetri
Multipro
essor Clusters�Andy B. Yoo and Morris A. JetteLawren
e Livermore National LaboratoryLivermore, CA 94551e-mail: fyoo2 j jette1g�llnl.govAbstra
tCos
heduling is essential for obtaining good perfor-man
e in a time-shared symmetri
 multipro
essor(SMP) 
luster environment. The most 
ommon te
h-nique, gang s
heduling, has limitations su
h as poors
alability and vulnerability to faults mainly due toexpli
it syn
hronization between its 
omponents. Ade
entralized approa
h 
alled dynami
 
os
heduling(DCS) has been shown to be e�e
tive for network ofworkstations (NOW), but this te
hnique may not besuitable for the workloads on a very large SMP-
lusterwith thousands of pro
essors. Furthermore, its imple-mentation 
an be prohibitively expensive for su
h alarge-s
ale ma
hine. In this paper, we propose a novel
os
heduling te
hnique whi
h 
an a
hieve 
os
hedul-ing on very large SMP-
lusters in a s
alable, eÆ
ient,and 
ost-e�e
tive way. In the proposed te
hnique, ea
hlo
al s
heduler a
hieves 
os
heduling based upon mes-sage traÆ
 between the 
omponents of parallel jobs.Message trapping is 
arried out at the user-level, elim-inating the need for unsupported hardware or devi
e-level programming. A sending pro
ess atta
hes its sta-tus to outgoing messages so lo
al s
hedulers on remotenodes 
an make more intelligent s
heduling de
isions.On
e s
heduled, pro
esses are guaranteed some min-imum period of time to exe
ute. This provides anopportunity to syn
hronize the parallel job's 
ompo-nents a
ross all nodes and a
hieve good program per-forman
e. The results from a performan
e study revealthat the proposed te
hnique is a promising approa
hthat 
an redu
e response time signi�
antly over un
o-ordinated time-sharing and bat
h s
heduling.�This work was performed under the auspi
es of the U.S. De-partment of Energy by University of California Lawren
e Liver-more National Laboratory under 
ontra
t No. W-7405-Eng-48.

1 Introdu
tionThe most prevailing ma
hine ar
hite
ture for large-s
ale parallel 
omputers in re
ent years has been the
luster of symmetri
 multipro
essors (SMPs), whi
h
onsists of a set of SMP ma
hines inter
onne
ted bya high-speed network. Ea
h SMP node is a shared-memory multipro
essor running its own image of an op-erating system (OS) and often 
onstru
ted using 
om-modity o�-the-shelf (COTS) 
omponents mainly dueto e
onomi
 reasons [1℄. Continuous de
rease in thepri
e of these 
ommodity parts in 
onjun
tion with thegood s
alability of the 
luster ar
hite
ture has made itfeasible to e
onomi
ally build SMP-
lusters that havethousands of pro
essors and total physi
al memory sizeon the order of Terabytes. The most prominent exam-ple of su
h very large-s
ale SMP-
lusters is the Depart-ment of Energy (DOE) A

elerated Strategi
 Comput-ing Initiative (ASCI) proje
t [5℄ ma
hines [3, 4, 6℄.EÆ
iently managing jobs running on parallel ma-
hines of this size while meeting various user demandsis a 
riti
al but 
hallenging task. Most super
omputing
enters operating SMP-
lusters rely on bat
h systemssu
h as LoadLeveler [16, 26℄ for job s
heduling [31℄.We may utilize a system eÆ
iently using these bat
hsystems, but high system utilization usually 
omes atthe expense of poor system responsiveness with a work-load dominated by long running jobs, as is typi
al ofmany large s
ale systems [11℄. An alternative s
hedul-ing te
hnique that improves the system responsivenesswhile improving fairness and freedom from starvationis time-sharing. With time-sharing, we 
an 
reate vir-tual ma
hines as desired to provide the desired level ofresponsiveness.An important issue in managing message-passingparallel jobs in a time-shared 
luster environment ishow to 
os
hedule the pro
esses (or tasks) of ea
h run-ning job. Cos
heduling here refers to a te
hnique thats
hedules the set of tasks 
onstituting a parallel job



at the same time so that they 
an run simultaneouslya
ross all nodes on whi
h they are allo
ated. Whena parallel job is laun
hed on an SMP-
luster, a set ofpro
esses are 
reated on the nodes allotted to the job.These pro
esses of the job usually 
ooperate with ea
hother by ex
hanging messages. In most 
ases, two 
om-muni
ating pro
esses do not pro
eed until both pro-
esses a
knowledge the 
ompletion of a message trans-mission. Therefore, the interpro
ess 
ommuni
ationbe
omes a bottlene
k whi
h may prevent the job frommaking progress if both sending and re
eiving pro
essesare not s
heduled at the time of the message transmis-sion. Without 
os
heduling, the pro
esses 
onstitut-ing a parallel job su�er high 
ommuni
ation laten
iesdue to spin-waiting periods and 
ontext swit
hes. Theill e�e
t on system performan
e of running multipleparallel jobs without 
os
heduling has been well do
u-mented [23℄. It is very diÆ
ult to 
os
hedule paralleljobs in a time-shared environment using lo
al operat-ing systems running independently on ea
h node alone.A new exe
ution environment is required in whi
h par-allel jobs 
an be 
os
heduled.A few resear
h e�orts have been made to develop ate
hnique with whi
h the 
os
heduling 
an be a
hievedeÆ
iently for SMP-
lusters and networks of worksta-tions (NOW). The simplest approa
h to 
os
hedulingis a te
hnique 
alled gang s
heduling [13, 14, 17, 18, 19,20℄. In gang s
heduling, a matrix 
alled gang matrix,whi
h expli
itly des
ribes all s
heduling information, isused. Ea
h 
olumn and ea
h row of a gang matrix rep-resent a pro
essor in the system and a time sli
e duringwhi
h the pro
esses in the row are s
heduled to run, re-spe
tively. The 
os
heduling is a
hieved by pla
ing allthe pro
esses of a job on the same row of the gang ma-trix. The gang matrix is usually maintained by a 
en-tral manager (CM) running on a separate 
ontrol host.The CM distributes the gang matrix whenever there isa 
hange in s
hedule. A small daemon pro
ess runningon ea
h node follows this well-de�ned s
hedule to allo-
ate resour
es to pro
esses on that node. This simples
heduling a
tion guarantees 
os
heduling of paralleljobs due to the way the gang matrix is 
onstru
ted.The gang s
heduling te
hnique is relatively simple toimplement.A few su

essful gang s
heduling systems have beendeveloped and operational on a
tual produ
tion ma-
hines [17, 19℄. However, gang s
heduling has limita-tions. First, 
orre
t 
os
heduling of jobs entirely de-pends upon the integrity of the distributed s
hedulinginformation. If any of these s
hedules, whi
h are trans-mitted through unreliable network, are lost or altered,it is highly likely that the jobs will not be 
os
hed-uled. Se
ond, the gang s
heduler's 
entral manager is

a single point of failure. The last and the most seriousdrawba
k of the gang s
heduling te
hnique is its poors
alability. As the number of nodes in the system in-
reases, not only the size of the gang matrix but alsothe number of 
ontrol messages in
reases. These 
on-trol messages 
onvey various information su
h as thenode status, the health of lo
al daemons and the jobsrunning on ea
h node, and so on. In many 
ases, the
entral manager is required to take appropriate a
tionsto pro
ess the information delivered by a 
ontrol mes-sage. Due to the ex
essive load imposed on the 
entralmanager, the gang s
heduler does not s
ale well to avery large system.Another method for a
hieving 
os
heduling isa de
entralized s
heme 
alled dynami
 
os
heduling(DCS) [22, 27, 28℄. In DCS, the 
oordinated s
hedulingof pro
esses that 
onstitute a parallel job is performedindependently by the lo
al s
heduler, with no 
entral-ized 
ontrol. Sin
e there is no �xed s
hedule to followin DCS, the lo
al s
heduler must rely on 
ertain lo
alevents to determine when and whi
h pro
esses to s
hed-ule. Among various lo
al events that a lo
al s
hed-uler 
an use to infer the status of pro
esses runningon other nodes, the most e�e
tive and 
ommonly-usedone is message arrival. The rationale here is that whena message is re
eived from a remote node, it is highlylikely that the sending pro
ess on the remote node is
urrently s
heduled. This implies is that upon re
eiv-ing a message, the lo
al s
heduler should s
hedule there
eiving pro
ess immediately, if not already s
heduled,to 
os
hedule both the sending and re
eiving pro
esses.A few experimental s
heduling systems based onthis method have been developed [22, 27℄. All ofthese prototypes are implemented in an NOW environ-ment, where workstations are inter
onne
ted throughfast swit
hes like Myrinet [21℄. Interpro
ess 
ommuni-
ation is 
arried out using high-performan
e user-levelmessaging layers that support user-spa
e to user-spa
e
ommuni
ation [24, 29, 30℄ in these systems to redu
e
ommuni
ation laten
y. These implementations relyupon programming the �rmware in network interfa
e
ards (NIC) so as to 
ommuni
ate s
heduling require-ments for pro
esses to the operating system. LargeSMP 
lusters are diÆ
ult to support under the best of
ir
umstan
es. The spe
ialized hardware and �rmwarerequired by the typi
al DCS 
on�guration would notnormally be supported by the hardware vendor and
ould be very 
hallenging to support at large s
ales.The DCS te
hnique 
an a
hieve e�e
tive, robust
os
heduling of pro
esses 
onstituting a parallel job.However, 
urrent DCS implementations available maynot be suitable for a large-s
ale SMP-
lusters. Inter-pro
ess 
ommuni
ations within an SMP typi
ally uses



shared-memory for improved performan
e. CurrentDCS te
hniques would need to remove this optimiza-tion and route messages through the NIC in order toe�e
t s
heduling. Context swit
hing 
an also indu
esigni�
ant memory management overhead, in
ludingboth 
a
he refresh and potentially paging. We knowof no DCS implementation whi
h addresses memorymanagement issues.In this paper, we propose and evaluate a novel
os
heduling te
hnique for an SMP-
luster. To designa s
alable 
os
heduling te
hnique, we have adopted theDCS approa
h whi
h allows us to eliminate any form of
entralized 
ontrol. The primary 
on
ern of the previ-ous DCS s
hemes is boosting the priority of a re
eivingpro
ess as qui
kly as possible on a message arrival toestablish immediate 
os
heduling. To a

omplish this,they program the network devi
es so that an in
om-ing message 
an be trapped long before the re
eivingpro
ess gets s
heduled. We believe that what is moreimportant to improve overall performan
e is not rea
t-ing immediately to in
oming messages but keeping the
ommuni
ating pro
esses 
os
heduled while they arerunning1. In the proposed s
heme, therefore, a pro
essof a parallel job, on
e s
heduled, is guaranteed to re-main s
heduled for 
ertain period of time assuming thatother pro
esses of the job are either already s
heduledor getting s
heduled through message ex
hanges.A me
hanism to dete
t message arrivals is embed-ded into a message-passing library whose sour
e 
odeis freely available to the publi
, making the designportable and 
ost-e�e
tive. On a message arrival, there
eiving pro
ess reports this to a lo
al s
heduler whi
hmakes appropriate s
heduling de
isions. Pro
esses thatare not s
heduled need to be run periodi
ally to trapin
oming messages. An adverse e�e
t of this sporadi
exe
ution of non-s
heduled pro
esses is that they maysend messages triggering preemption of other 
os
hed-uled pro
esses. This problem is resolved by atta
hingthe status of sending pro
ess to ea
h outgoing message.We implement and evaluate the proposed 
os
hedul-ing te
hnique on a Compaq Alpha 
luster testbed atLLNL. The results from our measurements show thatthe proposed 
os
heduling te
hnique 
an redu
e job re-sponse time as mu
h as 50% 
ompared with unsyn
hro-nized time-sharing. The e�e
t of various system pa-rameters on performan
e is also analyzed in this study.The rest of the paper is organized as follows. Se
tion2 des
ribes the proposed te
hnique and its implemen-tation. Experiment results are reported in Se
tion 3.1This view is also shared by another promising de
entralized
os
heduling s
heme 
alled impli
it 
os
heduling [2℄, where thelo
al s
heduler allows the 
urrently s
heduled pro
ess to spin-wait instead of preempting it immediately upon a message arrivalas in the DCS 
os
heduling s
hemes.

Finally, Se
tion 4 draws 
on
lusions and presents di-re
tions for future resear
h.2 Design and Implementation2.1 Basi
 DesignThe proposed 
os
heduler for SMP-
lusters is based ontwo design prin
iples.1. It is essential for a
hieving 
os
heduling to make
orre
t de
isions on when and whi
h pro
esses onea
h node to s
hedule.2. It is 
ru
ial to maximize 
os
heduled time as aportion of s
heduled time for the pro
esses onea
h node. If preemption o

urs too frequently,the parallel job's throughput will su�er froman in
rease in spin-wait time at syn
hronizationpoints, 
a
he refresh delays, and potentially pag-ing delays.A key fa
tor in s
alable 
os
heduler design is de
en-tralization of s
heduling me
hanism. An ideal s
alable
os
heduler should not employ any 
entralized 
on-trol or data stru
tures, but 
ompletely rely upon au-tonomous lo
al s
hedulers. Our 
os
heduling te
hniquealso follows su
h de
entralized approa
h. Without anyglobal information on the status of all the pro
essesin the system, ea
h lo
al s
heduler has to determinethe status of remote pro
esses and 
os
hedule the lo
alpro
esses with their remote peers. Ex
hanging 
on-trol messages that 
ontain pro
ess status informationamong lo
al s
hedulers is not a s
alable solution. Analternative is to use 
ertain impli
it lo
al informationto infer the status of remote pro
esses. Su
h impli
it in-formation in
ludes response time, message arrival, ands
heduling progress [2℄.Like all the previous work [2, 22, 27, 28℄, our 
os
hed-uler depends upon message arrival to infer status infor-mation of remote pro
esses. The message arrival refersto the re
eipt of a message from a remote node. Whena message is re
eived, this implies the sending pro
essis highly likely to be 
urrently s
heduled. Therefore, itis 
ru
ial to qui
kly s
hedule the re
eiving pro
ess toa
hieve 
os
heduling.In order to implement this idea, we need a me
h-anism whi
h dete
ts the arrival of a message and re-ports this to the lo
al s
heduler. This message trap-ping me
hanism is performed at user-level in our de-sign to ful�ll one of our design goals: 
ost-e�e
tiveness.The implementation 
an be easily done by inserting afew lines of 
ode into a small number of appli
ationprogram interfa
es (APIs) provided by open-sour
e



message-passing libraries like MPICH [15℄. This 
odenoti�es the lo
al s
heduler of message arrival throughan interpro
ess 
ommuni
ation (IPC) me
hanism. Theuser-level message trapping me
hanism allows us toavoid the pur
hase of and support of additional hard-ware or software. In addition, the use of publi
ly avail-able software makes our design quite portable.The lo
al s
heduler fun
tions in
lude maintaininginformation su
h as the pro
ess ID (pid) and the sta-tus of pro
esses assigned to the node and s
hedulingappropriate pro
esses for 
os
heduling. When a pro-
ess is about to start or terminate exe
ution, the pro-
ess reports these events to the lo
al s
heduler alongwith its own pid. When noti�ed of these events, thelo
al s
heduler adds/removes the pid re
eived to/fromthe data stru
ture it manages. Similarly, when a mes-sage arrives, the re
eiving pro
ess reports this with itspid to the lo
al s
heduler, whi
h then responds by per-forming appropriate s
heduling operations. Here thereport of message arrival serves as a request to lo
als
heduler to s
hedule the re
eiving pro
ess.The group of pro
esses 
onstituting the same paral-lel job on ea
h node serve as a s
heduling unit. Thatis, whenever a pro
ess is s
heduled, its peer pro
esseson the same node are simultaneously s
heduled. Thisestablishes the 
os
heduling more qui
kly. Sin
e thepeer pro
esses of a re
ently s
heduled pro
ess shouldeventually be s
heduled via message-passing, we 
animprove 
on
urren
y by s
heduling the entire group ofpeer pro
esses together. More importantly, this strat-egy may in
rease the number of messages to other un-s
heduled pro
esses on remote nodes and hen
e a
hievethe 
os
heduling more qui
kly.In an attempt to re
e
t the se
ond design prin
iple,we ensure that all the newly s
heduled pro
esses runfor a 
ertain period of time without being preempted.This guarantees that ea
h parallel job runs at least forthe given time without being preempted by anotherjob. We use a predetermined threshold value for theguaranteed minimum exe
ution time (GMET), but thevalue may be 
al
ulated dynami
ally as well. Re
eiv-ing a s
heduling request from a user pro
ess, the lo
als
heduler 
he
ks if the 
urrently s
heduled pro
esseshave run at least for the GMET. If so, a 
ontext swit
his performed. Otherwise, the request is ignored.While message arrivals 
ause user pro
ess to sends
heduling requests, these s
heduling requests 
an al-low the running pro
ess to 
ontinue to run. This mayresult in starvation of other jobs. Starvation is pre-vented by a timer pro
ess that periodi
ally sends a 
on-text swit
h request to the lo
al s
heduler. The lo
als
heduler, on re
eiving this request, performs a 
on-text swit
h in a similar fashion to a s
heduling request

messagestatus

Timer

Local Scheduler

context_switch;

Timer

Local Scheduler

context_switch;

exit (pid);

start (pid, application_id);

User Process

start (pid, application_id);

schedule (pid); schedule (pid);

User Process

exit (pid);

Message-Passing LibraryMessage-Passing Library

Figure 1: The design of proposed 
os
heduler.from a user pro
ess. In this 
ase, however, the lo
als
heduler sele
ts a new job to run. The lo
al s
hedulersele
ts the job whi
h has re
eived the least CPU timeas the next one to run improving fairness. The lo
als
heduler keeps tra
k of the CPU time ea
h job has
onsumed to fa
ilitate this s
heduling pro
ess. We usea time-sli
e on the order of se
onds in this resear
h,adhering to the se
ond design prin
iple. The rationalebehind su
h a long time-sli
e is to insure the job estab-lishes 
os
heduling and exe
utes 
os
heduled for someminimum time. This also redu
es the overhead of 
a
herefresh and paging.There is a 
riti
al issue in 
onjun
tion with the user-level message trapping that needs to be addressed. Inorder for a user pro
ess to trap in
oming messages, thepro
ess itself has to be s
heduled. Otherwise, messagearrivals will never be dete
ted and reported to the lo
als
heduler. The lo
al s
heduler in our design, therefore,periodi
ally s
hedules all the jobs for a brief period oftime to dete
t any message arrival. A serious side ef-fe
t of this simple approa
h is that the lo
al s
hedulermay re
eive false s
heduling requests. A false s
hedul-ing request 
an be sent to the lo
al s
heduler when auser pro
ess re
eives a message from a remote pro
esswhi
h is s
heduled only for the message-trapping pur-pose. These false s
heduling requests may results inwrongful preemption of 
os
heduled pro
esses and sig-ni�
ant performan
e degradation. We solve this prob-lem by atta
hing the status of sending pro
ess to ev-ery outgoing message. With the status of sending pro-
ess available, the re
eiving pro
ess 
an easily deter-mine whether a 
ontext swit
h would help to a
hieve
os
heduling or not. The design of the 
os
heduler isshown in Fig. 1.2.2 ImplementationThe proposed 
os
heduler des
ribed has been imple-mented and evaluated on an eight-node Compaq Al-pha 
luster testbed running Tru64 Unix 5.0 at LLNL.Ea
h node has two Compaq Alpha EV6 pro
essor op-



erating at 500 MHz with 1 GB of main memory. Theimplementation exer
ise has involved only minor mod-i�
ations to a user-level message-passing library andthe development of two very simple daemon pro
esses.The implementation of this 
os
heduler is des
ribed indetail below.2.2.1 MPICH LibraryWe have modi�ed an open-sour
e message-passing li-brary, MPICH [15℄, to implement the user-level mes-sage trapping as well as the pro
ess registry operations.The MPICH is a freely-available, high-performan
e,portable implementation of the popular MPI Mes-sage Passing Interfa
e standard. We have 
hosen theMPICH library mainly due to its popularity and easya

ess to its sour
e 
ode.A few new fun
tions are added to the MPICH libraryin this implementation. These fun
tions notify the lo-
al s
heduler when 
ertain events o

ur through IPC.Those requests are a

ompanied by the pid of sendingpro
ess. The fun
tions are summarized in Table. 1.MPI Register is invoked during the initializationphase of an MPI pro
ess. The MPI Register, wheninvoked, sends a CMDREG request to lo
al s
heduler.An MPI appli
ation id is also sent along with the re-quest to notify the lo
al s
heduler of whi
h MPI jobthe pro
ess belongs to. The lo
al s
heduler 
reatesa small shared-memory region at the time a pro
essis registered through whi
h the pro
ess 
an determineits s
heduling status. Similarly, MPI Terminate is in-voked during the �nalization phase of the MPI pro-
ess and sends CMDOUT request to the lo
al s
hed-uler. The terminating pro
ess is then removed fromthe list of pro
esses assigned to the lo
al s
heduler.MPI S
hedule sends CMDSCH request along with itspid to lo
al s
heduler in an attempt to s
hedule itself.A few MPICH fun
tions need to be modi�ed as wellto in
orporate the 
apability to handle messages 
ar-rying pro
ess status information. These fun
tions arenet send, net re
v, and net re
v timeout. We havemodi�ed net send in su
h a way that a single byte rep-resenting the status of sending pro
ess is atta
hed toea
h outgoing message. The a
tual length of the mes-sage is in
reased by one byte. The additional byte ispre�xed to the message, be
ause the re
eiving pro
ess
an spe
ify arbitrary message length. If we post�x thestatus information to an outgoing message, and a dif-ferent message length is given in a re
eiving routine, theinformation 
an be lost or even worse, in
orre
t statusinformation 
an be extra
ted by the re
eiving pro
ess.By always sending the status information before a
tualmessage body, we 
an preserve and retrieve 
orre
t sta-

tus information regardless of the message length spe
-i�ed by a user.With the modi�
ations made to net re
v andnet re
v timeout, the status information is separatedfrom ea
h in
oming message, and the a
tual messageis passed to whi
hever routine invoked these fun
tions.An early s
heduling de
ision, whi
h is whether a 
on-text swit
h is appropriate or not, is made at this levelusing the status information re
eived. That is, if thesending pro
ess is 
urrently s
heduled and the re
eiv-ing pro
ess is not, a 
ontext swit
h is desirable. Arequest for 
ontext swit
h is sent to the lo
al s
hedulerby 
alling MPI S
hedule.2.2.2 Class S
hedulerIn our implementation, we use the Compaq Tru64UNIX priority boost me
hanism 
alled 
lass s
hed-uler [7℄ to s
hedule pro
esses of a parallel job. Withthe 
lass s
heduler, we 
an de�ne a 
lass of system en-tities and assign 
ertain per
entage of CPU time to the
lass. The 
lass s
heduler ensures that a

ess to theCPUs for ea
h 
lass does not ex
eed its spe
i�ed limit.The entities that 
onstitute a 
lass 
an be users, groups,pro
ess groups, pids, or sessions. There may be a num-ber of 
lasses on a system. A database of 
lasses, 
lassmembers, and the per
entage of CPU time for the 
lassis maintained by the 
lass s
heduler. The database 
anbe modi�ed while the 
lass s
heduler is running, andthe 
hanges take e�e
t immediately.The kernel has very little knowledge of 
lass s
hedul-ing. A 
lass, in the kernel, is an element in an arrayof integers representing 
lo
k ti
ks. A thread that issubje
t to 
lass s
heduling has knowledge of its indexin the array. Ea
h time the thread uses CPU time, thenumber of 
lo
k ti
ks used is subtra
ted from the arrayelement. When the 
ount rea
hes zero the thread is ei-ther prevented from running altogether or, optionally,re
eives the lowest s
heduling priority possible.When 
lass s
heduling is enabled, a 
lass s
hed-uler daemon is started. The 
lass s
heduler daemonwakes up periodi
ally and 
al
ulates the total numberof 
lo
k ti
ks in the interval. Then, for ea
h 
lass inthe database, it divides the total by the per
entage al-lo
ated to the 
lass and pla
es the result into an array.When �nished, the array is written to the kernel.The 
lass s
heduler provides APIs whi
h system de-velopers 
an use to enable and disable 
lass s
hedul-ing, 
reate and destroy a 
lass, add and remove a 
lassmember, 
hange the CPU per
entage allotment for a
lass, and so on. Using these APIs, we de�ne a 
lass ofpids for ea
h group of pro
esses 
onstituting the sameMPI job. We use the appli
ation id of the MPI job



Fun
tion Request Event Lo
al S
heduler A
tionMPI Register CMDREG Pro
ess Initialization Register requesting pro
essMPI Terminate CMDOUT Pro
ess Termination Remove requesting pro
essMPI S
hedule CMDSCH Message Arrival S
hedule requesting pro
ess, if allowedTable 1: Summary of newly de�ned MPI fun
tions.as the name of the 
lass. Pro
esses of an MPI job
an be s
heduled at the same time to the 
lass rep-resenting those pro
esses. For example, if we allo
ate100% of CPU time to a 
lass, only the pro
esses de-�ned in the 
lass will re
eive CPU time. The lo
als
heduler performs a 
ontext swit
h by swapping theCPU per
entage of two 
lasses of pro
esses that arebeing 
ontext-swit
hed.It was mentioned that all the pro
esses, whether 
ur-rently s
heduled or not, need to re
eive some CPU timeperiodi
ally to trap in
oming messages at the user-level. One way of doing this is to let the lo
al s
hedulerperiodi
ally allo
ate 100% of CPU time to ea
h of the
lasses in the system for a very short time. This is afeasible solution, but it may burden the lo
al s
heduleras the number of jobs assigned to the node in
reases.Therefore, we rely on the 
lass s
heduler to a
hieve theuser-level message trapping. In our implementation,1% of CPU time is allo
ated to ea
h uns
heduled 
lassso that the pro
esses in the 
lass are exe
uted for veryshort periods of time, and remaining CPU per
entageis allo
ated to a s
heduled 
lass. Therefore, if there aren 
lasses in the system, (n � 1)% of CPU time is al-lo
ated to n� 1 
lasses, and a s
heduled 
lass re
eives(100 � n + 1)% of CPU time. The 
lass s
heduler is
on�gured to stri
tly adhere to these per
entage allo-
ations and time allo
ated to a 
lass whi
h is not usedby that 
lass is not used by other job 
lasses. When-ever a 
lass is 
reated or destroyed, the CPU allotmentto the s
heduled 
lass is adjusted a

ordingly.2.2.3 DaemonsTwo daemons, timer and s
heduler daemons, are im-plemented for pro
ess s
heduling. In our implemen-tation, there are no 
oordinating a
tivities among thedaemons residing on di�erent nodes. Although we maya
hieve better performan
e by allowing the daemons toex
hange messages for the 
oordination, we intention-ally ex
lude this option to make our s
heme to be s
al-able. However, we believe that allowing sporadi
 mes-sage ex
hanges for the 
oordination among daemons
ould improve performan
e.The task of the timer daemon is to periodi
ally senda request for 
ontext swit
h to s
heduler daemon toenfor
e time-sharing. The timer daemon simply re-

peats the pro
ess of sleeping for a predetermined in-terval, whi
h works as time-sli
e, followed by sendingthe 
ontext-swit
h request to the s
heduler daemon.The s
heduler daemon performs key s
heduling op-erations su
h as managing pro
ess and MPI job statusand 
hanging the priority of pro
esses. The s
hedulerdaemon is a simple server that a
ts upon requests fromeither user pro
ess or the timer daemon. Those re-quests are sent to the s
heduler daemon via shared-memory IPC, sin
e the IPC o

urs only within a singlenode and the shared-memory provides the fastest IPCme
hanism. A shared-memory region, through whi
hrequests are sent, is 
reated when the s
heduler daemonstarts exe
ution.The main body of the s
heduler daemon 
onsists ofa loop in whi
h the daemon waits for a request andthen exe
ute 
ertain operations 
orresponding to therequest re
eived. There are �ve requests de�ned for thes
heduler daemon: CMDREG, CMDOUT, CMDCSW,CMDSCH, and CMDDWN.The CMDDWN request terminates the s
hedulerdaemon. On re
eiving this request, the s
heduler dae-mon removes the shared-memory region 
reated forIPC and then exits. CMDREG and CMDOUT re-quests are asso
iated with the pro
ess management op-erations. An MPI pro
ess sends CMDREG to notifythat the pro
ess is about to start exe
ution. When re-
eiving this request, the s
heduler daemon 
reates anentry in the pro
ess table it maintains. An entry in thepro
ess table 
ontains information about a pro
ess su
has its pid and the MPI job that the pro
ess belongs to.The table also 
ontains s
heduling information aboutthe MPI job assigned to the node. Su
h information onan MPI job in
ludes the job id, the number of memberpro
esses, the time when the job was s
heduled andpreempted, and a pointer to a shared-memory regionfrom whi
h pro
esses of the job read the job's status.The table is organized in su
h a way that there is a linkbetween ea
h MPI job and all the pro
esses that 
on-stitute the job. When an MPI job is registered for the�rst time, the s
heduler daemon performs two things.First, it 
reates an entry for the job in the pro
ess ta-ble. Next, a 
lass is 
reated using the job's appli
ationid as the 
lass name. The pid of the requesting pro-
ess is added to the table and the 
lass 
reated. Anewly 
reated 
lass re
eives 1% of CPU time initially.



The CPU time allotment of s
heduled 
lass is adjusteda

ordingly when a new 
lass is 
reated.CMDOUT, a request issued upon pro
ess termina-tion, does the reverse of CMDREG. Re
eiving CMD-OUT request, the s
heduler daemon removes the pid ofthe sending pro
ess from the pro
ess table and the 
or-responding 
lass. When the last pro
ess terminates,
orresponding pro
ess table entries and 
lass de�nedfor the terminating job are destroyed, and the CPUtime allotment of s
heduled 
lass is adjusted.The CMDCSW request is issued by the timer dae-mon. Upon re
eiving this request, the s
heduler dae-mon simply swaps the CPU time allotment of 
urrentlys
heduled job with that of the next job to be exe
uted.The CMDSCH request also 
auses a 
ontext swit
h,but it is issued by a user pro
ess upon a message ar-rival. The s
heduler daemon, upon re
eiving this re-quest, �rst determines whether the 
ontext swit
h isallowed by 
he
king if 
urrently s
heduled job has 
on-sumed at least the GMET. If so, the requesting job iss
heduled by adjusting the CPU time allotment. Oth-erwise, the request is dis
arded.The pseudo 
odes for the daemons are given below.Timer Daemon:1. Create a pointer to a shared-memory region for IPC.2. loopSleep for n se
onds, where n is predeterminedvalue for time-sli
e.Send CMDCSW to s
heduler daemon.end loopS
heduler Daemon:1. Create a shared-memory region for IPC.2. Initialize pro
ess table and system queue.3. loopWait for a request.swit
h (request)
ase CMDDWN:Destroy 
lasses, if there are any.Remove the shared-memory region.Exit.
ase CMDREG:if (there is no entry for job 
orrespondingto the requesting pro
ess) thenCreate an entry in the pro
ess table andperform initialization for the job.Create a new 
lass for the job and as-sign 1% of CPU time to the 
lass.Create a shared-memory region for the
ommuni
ation of job status.if (there are no other job in the system)thenS
hedule the newly 
reated job.

elseAdjust the CPU time allotment of as
heduled job.end ifend ifAdd the sending pro
ess to the pro
esstable and 
orresponding 
lass.
ase CMDOUT:Remove requesting pro
ess from the pro-
ess table and the 
lass the pro
ess be-longs to.if (the number of pro
esses in an MPI job
orresponding to the requesting pro-
ess is zero) thenDestroy the entry and the 
lass de�nedfor the MPI job.if (the job is 
urrently s
heduled) thenS
hedule the next job in the queue,if there is one.elseAdjust the per
entage of CPU timeallo
ated to a s
heduled job.end ifend if
ase CMDCSW:S
hedule a job that has re
eived the leastCPU time by adjusting the CPU timeallotment.
ase CMDSCH:if (
urrently s
heduled job, if exists, hasrun at least for the GMET) thenS
hedule the requesting job by adjust-ing the CPU time allotment.end ifend swit
h3 Experimental ResultsIn this resear
h, we have 
ondu
ted a performan
estudy on an 8-node Compaq Alpha SMP 
luster testbedto evaluate the proposed 
os
heduler using popularNAS Parallel Ben
hmarks (NASPB) [8, 9, 10, 25℄.Three workloads, ea
h exhibiting di�erent degree of
ommuni
ation intensity, are used to evaluate theperforman
e under various message traÆ
 
onditions.Here, the 
ommuni
ation intensity of a job is measuredby the number of messages ex
hanged during the 
ourseof exe
ution. The �rst workload 
onsists of randomlysele
ted 
lass A and 
lass B NASPBs and represents aworkload with moderate message traÆ
, under whi
hthe 
ommuni
ation intensity of jobs varies to a greatextent. The se
ond workload is 
onstru
ted from thethree most 
ommuni
ation-intense NASPBs (LU, SP,and BT) to represent a workload with heavy message



Workload Ben
hmarksWorkload 1 bt.B.4, ep.B.8 (2), bt.A.4, sp.A.9, mg.A.2, lu.B.4Workload 2 bt.A.4 (2), lu.A.2 (2), sp.B.9, sp.A.9, sp.A.4, lu.B.2Workload 3 ep.A.2 (2), ep.A.4 (2), ep.B.8, ep.B.4 (2), ep.A.8Table 2: Three workloads used.

Workload 1 Workload 2 Workload 3
Workloads

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

M
ea

n 
Jo

b 
R

es
po

ns
e 

T
im

e 
(S

ec
)

Uncoordinated Scheduling
Coscheduling

Figure 2: Comparison of mean job response timefor di�erent workloads (Time sli
e = 15 se
onds andGMET = 5 se
onds).traÆ
. The third workload 
onsists of only the EPNASPB in whi
h there is little 
ommuni
ation betweenpro
esses. The three workloads are summarized in Ta-ble 2. We followed the naming 
onvention used in theNASPB to identify ea
h ben
hmark. The number of aben
hmark within a workload is given in parenthesis.The performan
e measure of interest in this study ismean job response time.Fig. 2 
ompares the performan
e of the new
os
heduling te
hnique with that of un
oordinatedtime-sharing. The un
oordinated time-sharing (ors
heduling) here refers to the exe
ution of multiplejobs simultaneously and s
heduled solely by the lo
aloperating systems on ea
h node. The time sli
e andGMET used in this experiment are 15 and 5 se
onds,respe
tively. For all three workloads, the new 
os
hed-uler shows better or 
omparable response time behav-ior 
ompared to the un
oordinated time-sharing. Asexpe
ted, the best performan
e is a
hieved when themessage traÆ
 is heavy (Workload 2). Here, the meanjob response time is redu
ed by 50% when the pro-posed 
os
heduling te
hnique is used. The measuresfor mean job response time are almost identi
al for the

2 3 4 5
MPL

0.0

2000.0

4000.0

6000.0

M
ea

n 
Jo

b 
R

es
po

ns
e 

T
im

e 
(S

ec
)

Uncoordinated Scheduling
Coscheduling

Figure 3: Comparison of mean job response time fordi�erent multiprogramming level (MPL) (Time sli
e =15 se
onds and GMET = 5 se
onds).



Workload 3. This is be
ause the e�e
t of un
oordi-nated s
heduling of the pro
esses 
onstituting a paralleljob on performan
e is not signi�
ant when the messagetraÆ
 is light. These results are a strong indi
ationthat the proposed te
hnique is a promising approa
hto 
os
heduling, whi
h 
an eÆ
iently improve the per-forman
e of parallel jobs under various message traÆ

onditions.Fig. 3 shows the response-time behavior of the pro-posed 
os
heduling te
hnique and un
oordinated time-sharing s
heduling for varying multiprogramming level(MPL). The time-sli
e and the GMET lengths are thesame as in Fig. 2. The workloads used in this exper-iment are summarized in Table 3. We in
rease theload to the system by adding a new set of randomlysele
ted NASPBs to existing workload, as MPL in-
reases. In this experiment, only 
lass A ben
hmarksare 
onsidered to minimize the e�e
t of paging over-head. As Fig. 3 indi
ates, the proposed 
os
hedulings
heme obtains the best performan
e gain (85 % re-du
tion in response time) when the MPL is 2. Thisis be
ause without 
oordinated s
heduling, pro
essesof parallel jobs tend to blo
k frequently waiting fortheir 
ommuni
ating peers to be s
heduled, whereasour te
hnique redu
es the blo
king time 
onsiderablythrough 
os
heduling of the pro
esses. However, theperforman
e gain de
reases as the MPL in
reases. Thereason for this is that as the number of time-shared jobsin
reases, the waiting time due to blo
king is 
ompen-sated by in
reased 
omputation and 
ommuni
ation in-terleave, while 
os
heduling the parallel jobs be
omesin
reasingly diÆ
ult. Athough the proposed s
hemea
hieves subpar performan
e with a large MPL, it isexpe
ted perform well under normal 
ir
umstan
es inwhi
h the MPL is usually kept small in order to mini-mize the overhead, espe
ially from paging a
tivity [12℄.Fig. 4 plots the average job wait time underbat
h s
heduling (without ba
k�lling) and proposed
os
heduling te
hnique with varying time sli
e lengthand MPL. In this experiment, we submitted 100NASPBs to the system at on
e and measured the wait(or queueing) time of ea
h job. The workload 
onsistsof 98 
lass A NASPBs and two 
lass C NASPBs (LU).GMET is set to 2 se
onds in this experiment. A sepa-rate s
ript starts new jobs in su
h a way that desiredMPL is maintained. Fig. 4 shows that the proposed
os
heduling te
hnique redu
es the average job waittime by as mu
h as 41% over simple bat
h s
hedul-ing. The poor performan
e of the bat
h s
heduling isdue to what is known as the `blo
king' property of the�rst 
ome �rst served (FCFS) s
heduling dis
ipline [32℄.That is, under the FCFS poli
y a job has to wait untilall pre
eding jobs �nish their exe
ution, and therefore,

Scheduling Policies

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

A
vg

. J
ob

 W
ai

t T
im

e 
(S

ec
)

Batch
Cosch (10,2)
Cosch (10,3)
Cosch (15,2)
Cosch (15,3)
Cosch (30,2)
Cosch (30,3)

Figure 4: Comparison of average job wait time underbat
h and proposed 
os
heduling te
hnique with dif-ferent time sli
e length and MPL (Cos
h (time sli
e,MPL)).its wait time is the total of the exe
ution time of allthe pre
eding jobs. On the other hand, the proposedte
hnique, with its time-sharing and 
os
heduling 
a-pability, is not a�e
ted by the blo
king property andhen
e performs very well in this experiment. Further-more, 
loser examination reveals that the average jobwait time in
reases as the MPL in
reases. As alreadydis
ussed in Fig. 3, this is be
ause it be
omes in
reas-ingly diÆ
ult to establish 
os
heduling as the MPL in-
reases.Figures 5 and 6 examine the e�e
t of the GMET andthe time-sli
e lengths on performan
e of the proposed
os
heduler, respe
tively. Fig. 5 shows the response-time behavior of the 
os
heduler for three workloadsdes
ribed in Table 2 as the length of GMET varies. Thetime-sli
e length in this experiment is set to 30 se
onds.The results reveal that the GMET length does not af-fe
t the performan
e of the 
os
heduler for workloads 1and 3, where the 
ommuni
ation intensity is relativelylow. On the other hand, the GMET length has signi�-
ant e�e
t on the system performan
e for the workload2 in whi
h the 
ommuni
ation intensity is high. If theGMET length is set too small for su
h a workload withhigh 
ommuni
ation intensity, 
os
heduling a paralleljob is extremely diÆ
ult be
ause some of the pro
essesthat 
onstitute the parallel job are highly likely to bepreempted before the 
os
heduling is established due tothe in
reased message traÆ
. If the length of GMETis too large, the 
os
heduler fails to qui
kly respond



MPL Ben
hmarks2 sp.A.16, sp.A.93 sp.A.16, sp.A.9, lu.A.84 sp.A.16, sp.A.9, lu.A.8, 
g.A.16, ft.A.85 sp.A.16, sp.A.9, lu.A.8, 
g.A.16, ft.A.8, ep.A.8Table 3: The workloads used for ea
h MPL.

0.0 5.0 10.0 15.0
GMET (Sec)

0.0

500.0

1000.0

1500.0

2000.0

M
ea

n 
Jo

b 
R

es
po

ns
e 

T
im

e 
(s

ec
)

Workload 1
Workload 2
Workload 3

Figure 5: The e�e
t of the GMET on performan
e(Time sli
e = 30 se
onds).

5.0 10.0 15.0 20.0 25.0
Time Slice (Sec)

0.0

1000.0

2000.0

3000.0

M
ea

n 
Jo

b 
R

es
po

ns
e 

T
im

e 
(S

ec
)

Workload 1
Workload 2
Workload 3

Figure 6: The e�e
t of time sli
e on performan
e(GMET = 5 se
onds).

to in
oming 
ontext-swit
h requests from remote pro-
esses, and this degrades the performan
e. However,the performan
e degradation in this 
ase is not as se-vere as in the previous 
ase, sin
e the large GMETlength still prevents ex
essive 
ontext-swit
hes. Thisis 
learly visible in Fig. 5, where the response-time
urve for the workload 2 sharply drops and then in-
reases as the GMET length 
hanges from 2 through5 se
onds. For the GMET lengths greater than 5 se
-onds, the response-time behavior remains almost un-
hanged, sin
e most of 
ontext-swit
h requests are dis-
arded with su
h long GMETs and the performan
e isstri
tly governed by the length of the time sli
e used.Fig. 6 plots the 
hanges in response time as the time-sli
e length varies for the three workloads. The GMETlength is set to 5 se
onds. As expe
ted, the perfor-man
e of the 
os
heduler is hardly a�e
ted by the time-sli
e length for workload 3. However, the response time
ontinuously in
reases for both workloads 1 and 2 withtime-sli
es greater than 15 se
onds. This 
an be ex-plained in 
onjun
tion with the results from the previ-ous experiment. Sin
e there is no global 
ontrol in ourdesign, whi
h 
ould s
hedule all pro
esses of a paralleljob 
on
urrently, a situation in whi
h s
heduled pro-
esses that 
onstitute di�erent parallel jobs 
ontend fors
heduling of their 
ommuni
ating peers o

urs quitefrequently. If the GMET length is set too large (as inthis experiment), the 
ontext-swit
h requests throughmessages sent to remote nodes are dis
arded and hen
ethe parallel jobs eventually stall until a 
ontext-swit
his initiated by one of the timer daemons. Consequently,the waiting time of ea
h job in
reases as the time-sli
elength in
reases.As shown in Fig. 5 and Fig. 6, the GMET and thetime-sli
e lengths 
an have signi�
ant e�e
t on perfor-man
e and hen
e, sele
ting optimal values for theseparameters is 
riti
al. However, su
h optimal valuesare highly workload-dependent and therefore, 
arefulworkload analysis must be 
ondu
ted. The experimentresults also suggest that in general short time-sli
e andlong GMET lengths are favorable to obtaining goodsystem performan
e.



4 Con
luding Remarks and Fu-ture StudyEÆ
iently 
os
heduling pro
esses of message-passingparallel jobs on a time-shared 
luster of 
omputersposes great 
hallenges. In this paper, we propose a newte
hnique for a 
luster of SMP ma
hines, whi
h o�ersa s
alable, portable, eÆ
ient, and 
ost-e�e
tive solu-tion for a
hieving 
os
heduling. The proposed te
h-nique uses message arrivals to dire
t the system to-wards 
os
heduling and hen
e requires no expli
it syn-
hronization me
hanism. Unlike other 
os
hedulings
hemes based on message arrivals, however, in
omingmessages are pro
essed at the user level to avoid theneed for additional hardware and system software. Thestatus of a sending pro
ess is atta
hed to ea
h outgo-ing message so that better s
heduling de
isions 
an bemade by the re
ipient. Pro
esses are guaranteed to runat least for a 
ertain period of time on
e s
heduled toensure that ea
h parallel job makes progress while be-ing 
os
heduled and that time period is on the order ofse
onds. This design prin
iple is the key to the su

essof our 
os
heduler in obtaining high performan
e. Ex-perimental results indi
ate that the proposed te
hniqueis a promising and inexpensive approa
h to eÆ
ient
os
heduling, whi
h 
an improve the performan
e sig-ni�
antly over un
oordinated time-sharing and bat
hs
heduling.There are a few interesting dire
tions for future re-sear
h. The performan
e of our 
os
heduler is greatlya�e
ted by the length of time-sli
e and GMET. The re-sults from a preliminary analysis reveal that short time-sli
e and long GMET lengths are bene�
ial to a
hievinggood system performan
e. We plan to 
ondu
t morerigorous study on the e�e
t of these parameters on per-forman
e in the future study. The experiment has been
ondu
ted on a rather small 
luster. The s
alabilityof the proposed s
heme will be measured on a mu
hlarger 
luster in the future resear
h. In addition, testsof this te
hnique in heterogeneous 
omputing environ-ment 
ould provide the ability to exe
ute even largerproblems.
A
knowledgmentThe authors would like to thank anonymous refereesfor their valuable 
omments that helped us improvethe qaulity of this paper.

Referen
es[1℄ T. E. Anderson, D. E. Culler, and D. A. Patter-son. A Case for NOW (Networks of Workstations).IEEE Mi
ro, 15(1):54{64, Feb. 1995.[2℄ A. C. Arpa
i-Dusseau, D. E. Culler, and A. M.Mainwaring. S
heduling with Impli
it Informationin Distributed Systems. In Pro
. ACM SIGMET-RICS 1998 Conf. on Measurement and Modelingof Computer Ssystems, 1998.[3℄ ASCI Blue Mountain. http://www.lanl.gov/-as
i/bluemtn/bluemtn.html.[4℄ ASCI Blue Pa
i�
. http://www.llnl.gov/-platforms/bluepa
.[5℄ ASCI Proje
t. http://www.llnl.gov/as
i.[6℄ ASCI Red. http://www.sandia.gov/ASCI/Red.[7℄ Class S
heduler. http://www.unix.digital.-
om/faqs/publi
ations/base do
.[8℄ D. H. Bailey et al. The NAS Parallel Ben
hmarks.International Journal of Super
omputer Appli
a-tions, 5:63{73, 1991.[9℄ D. H. Bailey et al. The NAS Parallel Ben
hmarks.Te
hni
al Report NASA Te
hni
al Memorandom103863, NASA Ames Resear
h Center, 1993.[10℄ D. H. Bailey et al. The NAS Parallel Ben
hmarks2.0. Te
hni
al Report NAS-95-020, NASA AmesResear
h Center, De
. 1995.[11℄ D. H. Bailey et al. Valuation of Ultra-S
ale Com-puting Systems: A White Paper, De
. 1999.[12℄ D. G. Feitelson. Memory Usage in the LANLCM-5 Workload. In Pro
. IPPS'97 Workshop onJob S
heduling St rategies for Parallel Pro
essing,pages 78{94, 1997.[13℄ D. G. Feitelson and M. Jette. Improved Utiliza-tion and Responsiveness with Gang S
heduling.In IPPS'97 Workshop on Job S
heduling Strategiesfor Parallel Pro
essing, Vol. 1291 of Le
ture Notesin Computer S
ien
e, pages 238{261. Springer-Verlag, Apr. 1997.[14℄ H. Franke, P. Pattnaik, and L. Rudolph. GangS
heduling for Highly EÆ
ient Multipro
essors. InPro
. Sixth Symp. on the Frontiers of MassivelyParallel Pro
essing, O
t. 1996.



[15℄ W. Gropp and E. Lusk. A High-Performan
e,Portable Implementation of the MPI MessagePassing Interfa
e Standard. Parallel Computing,22:54{64, Feb. 1995.[16℄ IBM Corporation. LoadLeveler's User Guide, Re-lease 2.1.[17℄ J. E. Moreira et al. A Gang-S
heduling System forASCI Blue-Pa
i�
. In Pro
. Distributed Comput-ing and Meta
omputing (DCM) Workshop, High-Performan
e Computing and Networking '99, Apr.1999.[18℄ M. Jette. Performan
e Chara
teristi
s of GangS
heduling in Multiprogrammed Environments. InPro
. SuperComputing97, Nov. 1997.[19℄ M. Jette. Expanding Symmetri
 Multipro
essorCapability Through Gang S
heduling. In IPPS'98Workshop on Job S
heduling Strategies for Paral-lel Pro
essing, Mar. 1998.[20℄ M. Jette, D. Stor
h, and E. Yim. Timesharing theCray T3D. In Cray User Group, pages 247{252,Mar. 1996.[21℄ N. J. Boden et al. Myrinet: A Gigabit-per-se
ondLo
al Area Network. IEEE Mi
ro, 15(1):29{36,Feb. 1995.[22℄ S. Nagar, A. Banerjee, A. Sivasubramaniam, andC. R. Das. A Closer Look At Cos
heduling Ap-proa
hes for a Network of Workstations. In Pro
.11th ACM Symp. of Parallel Algorithms and Ar-
hite
tures, June 1999.[23℄ J. K. Ousterhout. S
heduling Te
hnique for Con-
urrent Systems. In Int'l Conf. on DistributedComputing Systems, pages 22{30, 1982.[24℄ S. Pakin, M. Lauria, and A. Chien. High Perfor-man
e Messaging on Workstations: Illinois FastMeessages (FM). In Pro
. Super
omputing '95,De
. 1995.[25℄ S. Saini and D. H. Bailey. NAS Parallel Ben
h-mark (Version 1.0) Results 11-96. Te
hni
al Re-port NAS-96-18, NASA Ames Resear
h Center,Nov. 1996.[26℄ J. Skovira, W. Chan, H. Zhou, and D. Lifka. TheEasy-LoadLeveler API Proje
t. In IPPS'96 Work-shop on Job S
heduling Strategies for Parallel Pro-
essing, Vol. 1162 of Le
ture Notes in ComputerS
ien
e, pages 41{47. Springer-Verlag, Apr. 1996.

[27℄ P. G. Sobalvarro. Demand-based Cos
heduling ofParallel Jobs on Multiprogrammed Multipro
es-sors. PhD thesis, Dept. of Ele
tri
al Engineeringand Compuer S
ien
e, Massa
husetts Institututeof Te
hnology, 1997.[28℄ P. G. Sobalvarro and W. E. Weihl. Demand-based Cos
heduling of Parallel Jobs on Mul-tipr ogrammed Multipro
essors. In Pro
. IPPS'95Workshop on Job S
heduling Strategies for Paral-lel Pro
essing, pages 63{75, Apr. 1995.[29℄ T. von Ei
ken, A. Basu, V. Bu
h, and W. Vo-gels. U-Nnet: A User-Level Network Interfa
e forParallel and Distributed Computing. In Pro
. 15thACM Symp. on Operating System Prin
iples, De
.1995.[30℄ T. von Ei
ken, D. E. Culler, S. C. Goldsten, andK. E. S
hauser. A
tive Messages: A Me
hanismfor Integrated Communi
ation and Computation.In Pro
. 19th Annual Int'l Symp. on ComputerAr
hite
ture, De
. 1995.[31℄ Top 500 Super
omputer Sites. http://www.-netlib.org/ben
hmark/top500.html.[32℄ B. S. Yoo and C. R. Das. A Fast and EÆ
ientPro
essor Management S
heme for k-ary n-
ubes.Journal of Parallel and Distributed Computing,55(2):192{214, De
. 1998.


