
A Dynami Cosheduling Tehnique for SymmetriMultiproessor Clusters�Andy B. Yoo and Morris A. JetteLawrene Livermore National LaboratoryLivermore, CA 94551e-mail: fyoo2 j jette1g�llnl.govAbstratCosheduling is essential for obtaining good perfor-mane in a time-shared symmetri multiproessor(SMP) luster environment. The most ommon teh-nique, gang sheduling, has limitations suh as poorsalability and vulnerability to faults mainly due toexpliit synhronization between its omponents. Adeentralized approah alled dynami osheduling(DCS) has been shown to be e�etive for network ofworkstations (NOW), but this tehnique may not besuitable for the workloads on a very large SMP-lusterwith thousands of proessors. Furthermore, its imple-mentation an be prohibitively expensive for suh alarge-sale mahine. In this paper, we propose a novelosheduling tehnique whih an ahieve oshedul-ing on very large SMP-lusters in a salable, eÆient,and ost-e�etive way. In the proposed tehnique, eahloal sheduler ahieves osheduling based upon mes-sage traÆ between the omponents of parallel jobs.Message trapping is arried out at the user-level, elim-inating the need for unsupported hardware or devie-level programming. A sending proess attahes its sta-tus to outgoing messages so loal shedulers on remotenodes an make more intelligent sheduling deisions.One sheduled, proesses are guaranteed some min-imum period of time to exeute. This provides anopportunity to synhronize the parallel job's ompo-nents aross all nodes and ahieve good program per-formane. The results from a performane study revealthat the proposed tehnique is a promising approahthat an redue response time signi�antly over uno-ordinated time-sharing and bath sheduling.�This work was performed under the auspies of the U.S. De-partment of Energy by University of California Lawrene Liver-more National Laboratory under ontrat No. W-7405-Eng-48.

1 IntrodutionThe most prevailing mahine arhiteture for large-sale parallel omputers in reent years has been theluster of symmetri multiproessors (SMPs), whihonsists of a set of SMP mahines interonneted bya high-speed network. Eah SMP node is a shared-memory multiproessor running its own image of an op-erating system (OS) and often onstruted using om-modity o�-the-shelf (COTS) omponents mainly dueto eonomi reasons [1℄. Continuous derease in theprie of these ommodity parts in onjuntion with thegood salability of the luster arhiteture has made itfeasible to eonomially build SMP-lusters that havethousands of proessors and total physial memory sizeon the order of Terabytes. The most prominent exam-ple of suh very large-sale SMP-lusters is the Depart-ment of Energy (DOE) Aelerated Strategi Comput-ing Initiative (ASCI) projet [5℄ mahines [3, 4, 6℄.EÆiently managing jobs running on parallel ma-hines of this size while meeting various user demandsis a ritial but hallenging task. Most superomputingenters operating SMP-lusters rely on bath systemssuh as LoadLeveler [16, 26℄ for job sheduling [31℄.We may utilize a system eÆiently using these bathsystems, but high system utilization usually omes atthe expense of poor system responsiveness with a work-load dominated by long running jobs, as is typial ofmany large sale systems [11℄. An alternative shedul-ing tehnique that improves the system responsivenesswhile improving fairness and freedom from starvationis time-sharing. With time-sharing, we an reate vir-tual mahines as desired to provide the desired level ofresponsiveness.An important issue in managing message-passingparallel jobs in a time-shared luster environment ishow to oshedule the proesses (or tasks) of eah run-ning job. Cosheduling here refers to a tehnique thatshedules the set of tasks onstituting a parallel job



at the same time so that they an run simultaneouslyaross all nodes on whih they are alloated. Whena parallel job is launhed on an SMP-luster, a set ofproesses are reated on the nodes allotted to the job.These proesses of the job usually ooperate with eahother by exhanging messages. In most ases, two om-muniating proesses do not proeed until both pro-esses aknowledge the ompletion of a message trans-mission. Therefore, the interproess ommuniationbeomes a bottlenek whih may prevent the job frommaking progress if both sending and reeiving proessesare not sheduled at the time of the message transmis-sion. Without osheduling, the proesses onstitut-ing a parallel job su�er high ommuniation lateniesdue to spin-waiting periods and ontext swithes. Theill e�et on system performane of running multipleparallel jobs without osheduling has been well dou-mented [23℄. It is very diÆult to oshedule paralleljobs in a time-shared environment using loal operat-ing systems running independently on eah node alone.A new exeution environment is required in whih par-allel jobs an be osheduled.A few researh e�orts have been made to develop atehnique with whih the osheduling an be ahievedeÆiently for SMP-lusters and networks of worksta-tions (NOW). The simplest approah to oshedulingis a tehnique alled gang sheduling [13, 14, 17, 18, 19,20℄. In gang sheduling, a matrix alled gang matrix,whih expliitly desribes all sheduling information, isused. Eah olumn and eah row of a gang matrix rep-resent a proessor in the system and a time slie duringwhih the proesses in the row are sheduled to run, re-spetively. The osheduling is ahieved by plaing allthe proesses of a job on the same row of the gang ma-trix. The gang matrix is usually maintained by a en-tral manager (CM) running on a separate ontrol host.The CM distributes the gang matrix whenever there isa hange in shedule. A small daemon proess runningon eah node follows this well-de�ned shedule to allo-ate resoures to proesses on that node. This simplesheduling ation guarantees osheduling of paralleljobs due to the way the gang matrix is onstruted.The gang sheduling tehnique is relatively simple toimplement.A few suessful gang sheduling systems have beendeveloped and operational on atual prodution ma-hines [17, 19℄. However, gang sheduling has limita-tions. First, orret osheduling of jobs entirely de-pends upon the integrity of the distributed shedulinginformation. If any of these shedules, whih are trans-mitted through unreliable network, are lost or altered,it is highly likely that the jobs will not be oshed-uled. Seond, the gang sheduler's entral manager is

a single point of failure. The last and the most seriousdrawbak of the gang sheduling tehnique is its poorsalability. As the number of nodes in the system in-reases, not only the size of the gang matrix but alsothe number of ontrol messages inreases. These on-trol messages onvey various information suh as thenode status, the health of loal daemons and the jobsrunning on eah node, and so on. In many ases, theentral manager is required to take appropriate ationsto proess the information delivered by a ontrol mes-sage. Due to the exessive load imposed on the entralmanager, the gang sheduler does not sale well to avery large system.Another method for ahieving osheduling isa deentralized sheme alled dynami osheduling(DCS) [22, 27, 28℄. In DCS, the oordinated shedulingof proesses that onstitute a parallel job is performedindependently by the loal sheduler, with no entral-ized ontrol. Sine there is no �xed shedule to followin DCS, the loal sheduler must rely on ertain loalevents to determine when and whih proesses to shed-ule. Among various loal events that a loal shed-uler an use to infer the status of proesses runningon other nodes, the most e�etive and ommonly-usedone is message arrival. The rationale here is that whena message is reeived from a remote node, it is highlylikely that the sending proess on the remote node isurrently sheduled. This implies is that upon reeiv-ing a message, the loal sheduler should shedule thereeiving proess immediately, if not already sheduled,to oshedule both the sending and reeiving proesses.A few experimental sheduling systems based onthis method have been developed [22, 27℄. All ofthese prototypes are implemented in an NOW environ-ment, where workstations are interonneted throughfast swithes like Myrinet [21℄. Interproess ommuni-ation is arried out using high-performane user-levelmessaging layers that support user-spae to user-spaeommuniation [24, 29, 30℄ in these systems to redueommuniation lateny. These implementations relyupon programming the �rmware in network interfaeards (NIC) so as to ommuniate sheduling require-ments for proesses to the operating system. LargeSMP lusters are diÆult to support under the best ofirumstanes. The speialized hardware and �rmwarerequired by the typial DCS on�guration would notnormally be supported by the hardware vendor andould be very hallenging to support at large sales.The DCS tehnique an ahieve e�etive, robustosheduling of proesses onstituting a parallel job.However, urrent DCS implementations available maynot be suitable for a large-sale SMP-lusters. Inter-proess ommuniations within an SMP typially uses



shared-memory for improved performane. CurrentDCS tehniques would need to remove this optimiza-tion and route messages through the NIC in order toe�et sheduling. Context swithing an also induesigni�ant memory management overhead, inludingboth ahe refresh and potentially paging. We knowof no DCS implementation whih addresses memorymanagement issues.In this paper, we propose and evaluate a novelosheduling tehnique for an SMP-luster. To designa salable osheduling tehnique, we have adopted theDCS approah whih allows us to eliminate any form ofentralized ontrol. The primary onern of the previ-ous DCS shemes is boosting the priority of a reeivingproess as quikly as possible on a message arrival toestablish immediate osheduling. To aomplish this,they program the network devies so that an inom-ing message an be trapped long before the reeivingproess gets sheduled. We believe that what is moreimportant to improve overall performane is not reat-ing immediately to inoming messages but keeping theommuniating proesses osheduled while they arerunning1. In the proposed sheme, therefore, a proessof a parallel job, one sheduled, is guaranteed to re-main sheduled for ertain period of time assuming thatother proesses of the job are either already sheduledor getting sheduled through message exhanges.A mehanism to detet message arrivals is embed-ded into a message-passing library whose soure odeis freely available to the publi, making the designportable and ost-e�etive. On a message arrival, thereeiving proess reports this to a loal sheduler whihmakes appropriate sheduling deisions. Proesses thatare not sheduled need to be run periodially to trapinoming messages. An adverse e�et of this sporadiexeution of non-sheduled proesses is that they maysend messages triggering preemption of other oshed-uled proesses. This problem is resolved by attahingthe status of sending proess to eah outgoing message.We implement and evaluate the proposed oshedul-ing tehnique on a Compaq Alpha luster testbed atLLNL. The results from our measurements show thatthe proposed osheduling tehnique an redue job re-sponse time as muh as 50% ompared with unsynhro-nized time-sharing. The e�et of various system pa-rameters on performane is also analyzed in this study.The rest of the paper is organized as follows. Setion2 desribes the proposed tehnique and its implemen-tation. Experiment results are reported in Setion 3.1This view is also shared by another promising deentralizedosheduling sheme alled impliit osheduling [2℄, where theloal sheduler allows the urrently sheduled proess to spin-wait instead of preempting it immediately upon a message arrivalas in the DCS osheduling shemes.

Finally, Setion 4 draws onlusions and presents di-retions for future researh.2 Design and Implementation2.1 Basi DesignThe proposed osheduler for SMP-lusters is based ontwo design priniples.1. It is essential for ahieving osheduling to makeorret deisions on when and whih proesses oneah node to shedule.2. It is ruial to maximize osheduled time as aportion of sheduled time for the proesses oneah node. If preemption ours too frequently,the parallel job's throughput will su�er froman inrease in spin-wait time at synhronizationpoints, ahe refresh delays, and potentially pag-ing delays.A key fator in salable osheduler design is deen-tralization of sheduling mehanism. An ideal salableosheduler should not employ any entralized on-trol or data strutures, but ompletely rely upon au-tonomous loal shedulers. Our osheduling tehniquealso follows suh deentralized approah. Without anyglobal information on the status of all the proessesin the system, eah loal sheduler has to determinethe status of remote proesses and oshedule the loalproesses with their remote peers. Exhanging on-trol messages that ontain proess status informationamong loal shedulers is not a salable solution. Analternative is to use ertain impliit loal informationto infer the status of remote proesses. Suh impliit in-formation inludes response time, message arrival, andsheduling progress [2℄.Like all the previous work [2, 22, 27, 28℄, our oshed-uler depends upon message arrival to infer status infor-mation of remote proesses. The message arrival refersto the reeipt of a message from a remote node. Whena message is reeived, this implies the sending proessis highly likely to be urrently sheduled. Therefore, itis ruial to quikly shedule the reeiving proess toahieve osheduling.In order to implement this idea, we need a meh-anism whih detets the arrival of a message and re-ports this to the loal sheduler. This message trap-ping mehanism is performed at user-level in our de-sign to ful�ll one of our design goals: ost-e�etiveness.The implementation an be easily done by inserting afew lines of ode into a small number of appliationprogram interfaes (APIs) provided by open-soure



message-passing libraries like MPICH [15℄. This odenoti�es the loal sheduler of message arrival throughan interproess ommuniation (IPC) mehanism. Theuser-level message trapping mehanism allows us toavoid the purhase of and support of additional hard-ware or software. In addition, the use of publily avail-able software makes our design quite portable.The loal sheduler funtions inlude maintaininginformation suh as the proess ID (pid) and the sta-tus of proesses assigned to the node and shedulingappropriate proesses for osheduling. When a pro-ess is about to start or terminate exeution, the pro-ess reports these events to the loal sheduler alongwith its own pid. When noti�ed of these events, theloal sheduler adds/removes the pid reeived to/fromthe data struture it manages. Similarly, when a mes-sage arrives, the reeiving proess reports this with itspid to the loal sheduler, whih then responds by per-forming appropriate sheduling operations. Here thereport of message arrival serves as a request to loalsheduler to shedule the reeiving proess.The group of proesses onstituting the same paral-lel job on eah node serve as a sheduling unit. Thatis, whenever a proess is sheduled, its peer proesseson the same node are simultaneously sheduled. Thisestablishes the osheduling more quikly. Sine thepeer proesses of a reently sheduled proess shouldeventually be sheduled via message-passing, we animprove onurreny by sheduling the entire group ofpeer proesses together. More importantly, this strat-egy may inrease the number of messages to other un-sheduled proesses on remote nodes and hene ahievethe osheduling more quikly.In an attempt to reet the seond design priniple,we ensure that all the newly sheduled proesses runfor a ertain period of time without being preempted.This guarantees that eah parallel job runs at least forthe given time without being preempted by anotherjob. We use a predetermined threshold value for theguaranteed minimum exeution time (GMET), but thevalue may be alulated dynamially as well. Reeiv-ing a sheduling request from a user proess, the loalsheduler heks if the urrently sheduled proesseshave run at least for the GMET. If so, a ontext swithis performed. Otherwise, the request is ignored.While message arrivals ause user proess to sendsheduling requests, these sheduling requests an al-low the running proess to ontinue to run. This mayresult in starvation of other jobs. Starvation is pre-vented by a timer proess that periodially sends a on-text swith request to the loal sheduler. The loalsheduler, on reeiving this request, performs a on-text swith in a similar fashion to a sheduling request

messagestatus

Timer

Local Scheduler

context_switch;

Timer

Local Scheduler

context_switch;

exit (pid);

start (pid, application_id);

User Process

start (pid, application_id);

schedule (pid); schedule (pid);

User Process

exit (pid);

Message-Passing LibraryMessage-Passing Library

Figure 1: The design of proposed osheduler.from a user proess. In this ase, however, the loalsheduler selets a new job to run. The loal shedulerselets the job whih has reeived the least CPU timeas the next one to run improving fairness. The loalsheduler keeps trak of the CPU time eah job hasonsumed to failitate this sheduling proess. We usea time-slie on the order of seonds in this researh,adhering to the seond design priniple. The rationalebehind suh a long time-slie is to insure the job estab-lishes osheduling and exeutes osheduled for someminimum time. This also redues the overhead of aherefresh and paging.There is a ritial issue in onjuntion with the user-level message trapping that needs to be addressed. Inorder for a user proess to trap inoming messages, theproess itself has to be sheduled. Otherwise, messagearrivals will never be deteted and reported to the loalsheduler. The loal sheduler in our design, therefore,periodially shedules all the jobs for a brief period oftime to detet any message arrival. A serious side ef-fet of this simple approah is that the loal shedulermay reeive false sheduling requests. A false shedul-ing request an be sent to the loal sheduler when auser proess reeives a message from a remote proesswhih is sheduled only for the message-trapping pur-pose. These false sheduling requests may results inwrongful preemption of osheduled proesses and sig-ni�ant performane degradation. We solve this prob-lem by attahing the status of sending proess to ev-ery outgoing message. With the status of sending pro-ess available, the reeiving proess an easily deter-mine whether a ontext swith would help to ahieveosheduling or not. The design of the osheduler isshown in Fig. 1.2.2 ImplementationThe proposed osheduler desribed has been imple-mented and evaluated on an eight-node Compaq Al-pha luster testbed running Tru64 Unix 5.0 at LLNL.Eah node has two Compaq Alpha EV6 proessor op-



erating at 500 MHz with 1 GB of main memory. Theimplementation exerise has involved only minor mod-i�ations to a user-level message-passing library andthe development of two very simple daemon proesses.The implementation of this osheduler is desribed indetail below.2.2.1 MPICH LibraryWe have modi�ed an open-soure message-passing li-brary, MPICH [15℄, to implement the user-level mes-sage trapping as well as the proess registry operations.The MPICH is a freely-available, high-performane,portable implementation of the popular MPI Mes-sage Passing Interfae standard. We have hosen theMPICH library mainly due to its popularity and easyaess to its soure ode.A few new funtions are added to the MPICH libraryin this implementation. These funtions notify the lo-al sheduler when ertain events our through IPC.Those requests are aompanied by the pid of sendingproess. The funtions are summarized in Table. 1.MPI Register is invoked during the initializationphase of an MPI proess. The MPI Register, wheninvoked, sends a CMDREG request to loal sheduler.An MPI appliation id is also sent along with the re-quest to notify the loal sheduler of whih MPI jobthe proess belongs to. The loal sheduler reatesa small shared-memory region at the time a proessis registered through whih the proess an determineits sheduling status. Similarly, MPI Terminate is in-voked during the �nalization phase of the MPI pro-ess and sends CMDOUT request to the loal shed-uler. The terminating proess is then removed fromthe list of proesses assigned to the loal sheduler.MPI Shedule sends CMDSCH request along with itspid to loal sheduler in an attempt to shedule itself.A few MPICH funtions need to be modi�ed as wellto inorporate the apability to handle messages ar-rying proess status information. These funtions arenet send, net rev, and net rev timeout. We havemodi�ed net send in suh a way that a single byte rep-resenting the status of sending proess is attahed toeah outgoing message. The atual length of the mes-sage is inreased by one byte. The additional byte ispre�xed to the message, beause the reeiving proessan speify arbitrary message length. If we post�x thestatus information to an outgoing message, and a dif-ferent message length is given in a reeiving routine, theinformation an be lost or even worse, inorret statusinformation an be extrated by the reeiving proess.By always sending the status information before atualmessage body, we an preserve and retrieve orret sta-

tus information regardless of the message length spe-i�ed by a user.With the modi�ations made to net rev andnet rev timeout, the status information is separatedfrom eah inoming message, and the atual messageis passed to whihever routine invoked these funtions.An early sheduling deision, whih is whether a on-text swith is appropriate or not, is made at this levelusing the status information reeived. That is, if thesending proess is urrently sheduled and the reeiv-ing proess is not, a ontext swith is desirable. Arequest for ontext swith is sent to the loal shedulerby alling MPI Shedule.2.2.2 Class ShedulerIn our implementation, we use the Compaq Tru64UNIX priority boost mehanism alled lass shed-uler [7℄ to shedule proesses of a parallel job. Withthe lass sheduler, we an de�ne a lass of system en-tities and assign ertain perentage of CPU time to thelass. The lass sheduler ensures that aess to theCPUs for eah lass does not exeed its spei�ed limit.The entities that onstitute a lass an be users, groups,proess groups, pids, or sessions. There may be a num-ber of lasses on a system. A database of lasses, lassmembers, and the perentage of CPU time for the lassis maintained by the lass sheduler. The database anbe modi�ed while the lass sheduler is running, andthe hanges take e�et immediately.The kernel has very little knowledge of lass shedul-ing. A lass, in the kernel, is an element in an arrayof integers representing lok tiks. A thread that issubjet to lass sheduling has knowledge of its indexin the array. Eah time the thread uses CPU time, thenumber of lok tiks used is subtrated from the arrayelement. When the ount reahes zero the thread is ei-ther prevented from running altogether or, optionally,reeives the lowest sheduling priority possible.When lass sheduling is enabled, a lass shed-uler daemon is started. The lass sheduler daemonwakes up periodially and alulates the total numberof lok tiks in the interval. Then, for eah lass inthe database, it divides the total by the perentage al-loated to the lass and plaes the result into an array.When �nished, the array is written to the kernel.The lass sheduler provides APIs whih system de-velopers an use to enable and disable lass shedul-ing, reate and destroy a lass, add and remove a lassmember, hange the CPU perentage allotment for alass, and so on. Using these APIs, we de�ne a lass ofpids for eah group of proesses onstituting the sameMPI job. We use the appliation id of the MPI job



Funtion Request Event Loal Sheduler AtionMPI Register CMDREG Proess Initialization Register requesting proessMPI Terminate CMDOUT Proess Termination Remove requesting proessMPI Shedule CMDSCH Message Arrival Shedule requesting proess, if allowedTable 1: Summary of newly de�ned MPI funtions.as the name of the lass. Proesses of an MPI joban be sheduled at the same time to the lass rep-resenting those proesses. For example, if we alloate100% of CPU time to a lass, only the proesses de-�ned in the lass will reeive CPU time. The loalsheduler performs a ontext swith by swapping theCPU perentage of two lasses of proesses that arebeing ontext-swithed.It was mentioned that all the proesses, whether ur-rently sheduled or not, need to reeive some CPU timeperiodially to trap inoming messages at the user-level. One way of doing this is to let the loal shedulerperiodially alloate 100% of CPU time to eah of thelasses in the system for a very short time. This is afeasible solution, but it may burden the loal sheduleras the number of jobs assigned to the node inreases.Therefore, we rely on the lass sheduler to ahieve theuser-level message trapping. In our implementation,1% of CPU time is alloated to eah unsheduled lassso that the proesses in the lass are exeuted for veryshort periods of time, and remaining CPU perentageis alloated to a sheduled lass. Therefore, if there aren lasses in the system, (n � 1)% of CPU time is al-loated to n� 1 lasses, and a sheduled lass reeives(100 � n + 1)% of CPU time. The lass sheduler ison�gured to stritly adhere to these perentage allo-ations and time alloated to a lass whih is not usedby that lass is not used by other job lasses. When-ever a lass is reated or destroyed, the CPU allotmentto the sheduled lass is adjusted aordingly.2.2.3 DaemonsTwo daemons, timer and sheduler daemons, are im-plemented for proess sheduling. In our implemen-tation, there are no oordinating ativities among thedaemons residing on di�erent nodes. Although we mayahieve better performane by allowing the daemons toexhange messages for the oordination, we intention-ally exlude this option to make our sheme to be sal-able. However, we believe that allowing sporadi mes-sage exhanges for the oordination among daemonsould improve performane.The task of the timer daemon is to periodially senda request for ontext swith to sheduler daemon toenfore time-sharing. The timer daemon simply re-

peats the proess of sleeping for a predetermined in-terval, whih works as time-slie, followed by sendingthe ontext-swith request to the sheduler daemon.The sheduler daemon performs key sheduling op-erations suh as managing proess and MPI job statusand hanging the priority of proesses. The shedulerdaemon is a simple server that ats upon requests fromeither user proess or the timer daemon. Those re-quests are sent to the sheduler daemon via shared-memory IPC, sine the IPC ours only within a singlenode and the shared-memory provides the fastest IPCmehanism. A shared-memory region, through whihrequests are sent, is reated when the sheduler daemonstarts exeution.The main body of the sheduler daemon onsists ofa loop in whih the daemon waits for a request andthen exeute ertain operations orresponding to therequest reeived. There are �ve requests de�ned for thesheduler daemon: CMDREG, CMDOUT, CMDCSW,CMDSCH, and CMDDWN.The CMDDWN request terminates the shedulerdaemon. On reeiving this request, the sheduler dae-mon removes the shared-memory region reated forIPC and then exits. CMDREG and CMDOUT re-quests are assoiated with the proess management op-erations. An MPI proess sends CMDREG to notifythat the proess is about to start exeution. When re-eiving this request, the sheduler daemon reates anentry in the proess table it maintains. An entry in theproess table ontains information about a proess suhas its pid and the MPI job that the proess belongs to.The table also ontains sheduling information aboutthe MPI job assigned to the node. Suh information onan MPI job inludes the job id, the number of memberproesses, the time when the job was sheduled andpreempted, and a pointer to a shared-memory regionfrom whih proesses of the job read the job's status.The table is organized in suh a way that there is a linkbetween eah MPI job and all the proesses that on-stitute the job. When an MPI job is registered for the�rst time, the sheduler daemon performs two things.First, it reates an entry for the job in the proess ta-ble. Next, a lass is reated using the job's appliationid as the lass name. The pid of the requesting pro-ess is added to the table and the lass reated. Anewly reated lass reeives 1% of CPU time initially.



The CPU time allotment of sheduled lass is adjustedaordingly when a new lass is reated.CMDOUT, a request issued upon proess termina-tion, does the reverse of CMDREG. Reeiving CMD-OUT request, the sheduler daemon removes the pid ofthe sending proess from the proess table and the or-responding lass. When the last proess terminates,orresponding proess table entries and lass de�nedfor the terminating job are destroyed, and the CPUtime allotment of sheduled lass is adjusted.The CMDCSW request is issued by the timer dae-mon. Upon reeiving this request, the sheduler dae-mon simply swaps the CPU time allotment of urrentlysheduled job with that of the next job to be exeuted.The CMDSCH request also auses a ontext swith,but it is issued by a user proess upon a message ar-rival. The sheduler daemon, upon reeiving this re-quest, �rst determines whether the ontext swith isallowed by heking if urrently sheduled job has on-sumed at least the GMET. If so, the requesting job issheduled by adjusting the CPU time allotment. Oth-erwise, the request is disarded.The pseudo odes for the daemons are given below.Timer Daemon:1. Create a pointer to a shared-memory region for IPC.2. loopSleep for n seonds, where n is predeterminedvalue for time-slie.Send CMDCSW to sheduler daemon.end loopSheduler Daemon:1. Create a shared-memory region for IPC.2. Initialize proess table and system queue.3. loopWait for a request.swith (request)ase CMDDWN:Destroy lasses, if there are any.Remove the shared-memory region.Exit.ase CMDREG:if (there is no entry for job orrespondingto the requesting proess) thenCreate an entry in the proess table andperform initialization for the job.Create a new lass for the job and as-sign 1% of CPU time to the lass.Create a shared-memory region for theommuniation of job status.if (there are no other job in the system)thenShedule the newly reated job.

elseAdjust the CPU time allotment of asheduled job.end ifend ifAdd the sending proess to the proesstable and orresponding lass.ase CMDOUT:Remove requesting proess from the pro-ess table and the lass the proess be-longs to.if (the number of proesses in an MPI joborresponding to the requesting pro-ess is zero) thenDestroy the entry and the lass de�nedfor the MPI job.if (the job is urrently sheduled) thenShedule the next job in the queue,if there is one.elseAdjust the perentage of CPU timealloated to a sheduled job.end ifend ifase CMDCSW:Shedule a job that has reeived the leastCPU time by adjusting the CPU timeallotment.ase CMDSCH:if (urrently sheduled job, if exists, hasrun at least for the GMET) thenShedule the requesting job by adjust-ing the CPU time allotment.end ifend swith3 Experimental ResultsIn this researh, we have onduted a performanestudy on an 8-node Compaq Alpha SMP luster testbedto evaluate the proposed osheduler using popularNAS Parallel Benhmarks (NASPB) [8, 9, 10, 25℄.Three workloads, eah exhibiting di�erent degree ofommuniation intensity, are used to evaluate theperformane under various message traÆ onditions.Here, the ommuniation intensity of a job is measuredby the number of messages exhanged during the ourseof exeution. The �rst workload onsists of randomlyseleted lass A and lass B NASPBs and represents aworkload with moderate message traÆ, under whihthe ommuniation intensity of jobs varies to a greatextent. The seond workload is onstruted from thethree most ommuniation-intense NASPBs (LU, SP,and BT) to represent a workload with heavy message



Workload BenhmarksWorkload 1 bt.B.4, ep.B.8 (2), bt.A.4, sp.A.9, mg.A.2, lu.B.4Workload 2 bt.A.4 (2), lu.A.2 (2), sp.B.9, sp.A.9, sp.A.4, lu.B.2Workload 3 ep.A.2 (2), ep.A.4 (2), ep.B.8, ep.B.4 (2), ep.A.8Table 2: Three workloads used.

Workload 1 Workload 2 Workload 3
Workloads

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

M
ea

n 
Jo

b 
R

es
po

ns
e 

T
im

e 
(S

ec
)

Uncoordinated Scheduling
Coscheduling

Figure 2: Comparison of mean job response timefor di�erent workloads (Time slie = 15 seonds andGMET = 5 seonds).traÆ. The third workload onsists of only the EPNASPB in whih there is little ommuniation betweenproesses. The three workloads are summarized in Ta-ble 2. We followed the naming onvention used in theNASPB to identify eah benhmark. The number of abenhmark within a workload is given in parenthesis.The performane measure of interest in this study ismean job response time.Fig. 2 ompares the performane of the newosheduling tehnique with that of unoordinatedtime-sharing. The unoordinated time-sharing (orsheduling) here refers to the exeution of multiplejobs simultaneously and sheduled solely by the loaloperating systems on eah node. The time slie andGMET used in this experiment are 15 and 5 seonds,respetively. For all three workloads, the new oshed-uler shows better or omparable response time behav-ior ompared to the unoordinated time-sharing. Asexpeted, the best performane is ahieved when themessage traÆ is heavy (Workload 2). Here, the meanjob response time is redued by 50% when the pro-posed osheduling tehnique is used. The measuresfor mean job response time are almost idential for the

2 3 4 5
MPL

0.0

2000.0

4000.0

6000.0

M
ea

n 
Jo

b 
R

es
po

ns
e 

T
im

e 
(S

ec
)

Uncoordinated Scheduling
Coscheduling

Figure 3: Comparison of mean job response time fordi�erent multiprogramming level (MPL) (Time slie =15 seonds and GMET = 5 seonds).



Workload 3. This is beause the e�et of unoordi-nated sheduling of the proesses onstituting a paralleljob on performane is not signi�ant when the messagetraÆ is light. These results are a strong indiationthat the proposed tehnique is a promising approahto osheduling, whih an eÆiently improve the per-formane of parallel jobs under various message traÆonditions.Fig. 3 shows the response-time behavior of the pro-posed osheduling tehnique and unoordinated time-sharing sheduling for varying multiprogramming level(MPL). The time-slie and the GMET lengths are thesame as in Fig. 2. The workloads used in this exper-iment are summarized in Table 3. We inrease theload to the system by adding a new set of randomlyseleted NASPBs to existing workload, as MPL in-reases. In this experiment, only lass A benhmarksare onsidered to minimize the e�et of paging over-head. As Fig. 3 indiates, the proposed oshedulingsheme obtains the best performane gain (85 % re-dution in response time) when the MPL is 2. Thisis beause without oordinated sheduling, proessesof parallel jobs tend to blok frequently waiting fortheir ommuniating peers to be sheduled, whereasour tehnique redues the bloking time onsiderablythrough osheduling of the proesses. However, theperformane gain dereases as the MPL inreases. Thereason for this is that as the number of time-shared jobsinreases, the waiting time due to bloking is ompen-sated by inreased omputation and ommuniation in-terleave, while osheduling the parallel jobs beomesinreasingly diÆult. Athough the proposed shemeahieves subpar performane with a large MPL, it isexpeted perform well under normal irumstanes inwhih the MPL is usually kept small in order to mini-mize the overhead, espeially from paging ativity [12℄.Fig. 4 plots the average job wait time underbath sheduling (without bak�lling) and proposedosheduling tehnique with varying time slie lengthand MPL. In this experiment, we submitted 100NASPBs to the system at one and measured the wait(or queueing) time of eah job. The workload onsistsof 98 lass A NASPBs and two lass C NASPBs (LU).GMET is set to 2 seonds in this experiment. A sepa-rate sript starts new jobs in suh a way that desiredMPL is maintained. Fig. 4 shows that the proposedosheduling tehnique redues the average job waittime by as muh as 41% over simple bath shedul-ing. The poor performane of the bath sheduling isdue to what is known as the `bloking' property of the�rst ome �rst served (FCFS) sheduling disipline [32℄.That is, under the FCFS poliy a job has to wait untilall preeding jobs �nish their exeution, and therefore,

Scheduling Policies

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

A
vg

. J
ob

 W
ai

t T
im

e 
(S

ec
)

Batch
Cosch (10,2)
Cosch (10,3)
Cosch (15,2)
Cosch (15,3)
Cosch (30,2)
Cosch (30,3)

Figure 4: Comparison of average job wait time underbath and proposed osheduling tehnique with dif-ferent time slie length and MPL (Cosh (time slie,MPL)).its wait time is the total of the exeution time of allthe preeding jobs. On the other hand, the proposedtehnique, with its time-sharing and osheduling a-pability, is not a�eted by the bloking property andhene performs very well in this experiment. Further-more, loser examination reveals that the average jobwait time inreases as the MPL inreases. As alreadydisussed in Fig. 3, this is beause it beomes inreas-ingly diÆult to establish osheduling as the MPL in-reases.Figures 5 and 6 examine the e�et of the GMET andthe time-slie lengths on performane of the proposedosheduler, respetively. Fig. 5 shows the response-time behavior of the osheduler for three workloadsdesribed in Table 2 as the length of GMET varies. Thetime-slie length in this experiment is set to 30 seonds.The results reveal that the GMET length does not af-fet the performane of the osheduler for workloads 1and 3, where the ommuniation intensity is relativelylow. On the other hand, the GMET length has signi�-ant e�et on the system performane for the workload2 in whih the ommuniation intensity is high. If theGMET length is set too small for suh a workload withhigh ommuniation intensity, osheduling a paralleljob is extremely diÆult beause some of the proessesthat onstitute the parallel job are highly likely to bepreempted before the osheduling is established due tothe inreased message traÆ. If the length of GMETis too large, the osheduler fails to quikly respond



MPL Benhmarks2 sp.A.16, sp.A.93 sp.A.16, sp.A.9, lu.A.84 sp.A.16, sp.A.9, lu.A.8, g.A.16, ft.A.85 sp.A.16, sp.A.9, lu.A.8, g.A.16, ft.A.8, ep.A.8Table 3: The workloads used for eah MPL.

0.0 5.0 10.0 15.0
GMET (Sec)

0.0

500.0

1000.0

1500.0

2000.0

M
ea

n 
Jo

b 
R

es
po

ns
e 

T
im

e 
(s

ec
)

Workload 1
Workload 2
Workload 3

Figure 5: The e�et of the GMET on performane(Time slie = 30 seonds).

5.0 10.0 15.0 20.0 25.0
Time Slice (Sec)

0.0

1000.0

2000.0

3000.0

M
ea

n 
Jo

b 
R

es
po

ns
e 

T
im

e 
(S

ec
)

Workload 1
Workload 2
Workload 3

Figure 6: The e�et of time slie on performane(GMET = 5 seonds).

to inoming ontext-swith requests from remote pro-esses, and this degrades the performane. However,the performane degradation in this ase is not as se-vere as in the previous ase, sine the large GMETlength still prevents exessive ontext-swithes. Thisis learly visible in Fig. 5, where the response-timeurve for the workload 2 sharply drops and then in-reases as the GMET length hanges from 2 through5 seonds. For the GMET lengths greater than 5 se-onds, the response-time behavior remains almost un-hanged, sine most of ontext-swith requests are dis-arded with suh long GMETs and the performane isstritly governed by the length of the time slie used.Fig. 6 plots the hanges in response time as the time-slie length varies for the three workloads. The GMETlength is set to 5 seonds. As expeted, the perfor-mane of the osheduler is hardly a�eted by the time-slie length for workload 3. However, the response timeontinuously inreases for both workloads 1 and 2 withtime-slies greater than 15 seonds. This an be ex-plained in onjuntion with the results from the previ-ous experiment. Sine there is no global ontrol in ourdesign, whih ould shedule all proesses of a paralleljob onurrently, a situation in whih sheduled pro-esses that onstitute di�erent parallel jobs ontend forsheduling of their ommuniating peers ours quitefrequently. If the GMET length is set too large (as inthis experiment), the ontext-swith requests throughmessages sent to remote nodes are disarded and henethe parallel jobs eventually stall until a ontext-swithis initiated by one of the timer daemons. Consequently,the waiting time of eah job inreases as the time-slielength inreases.As shown in Fig. 5 and Fig. 6, the GMET and thetime-slie lengths an have signi�ant e�et on perfor-mane and hene, seleting optimal values for theseparameters is ritial. However, suh optimal valuesare highly workload-dependent and therefore, arefulworkload analysis must be onduted. The experimentresults also suggest that in general short time-slie andlong GMET lengths are favorable to obtaining goodsystem performane.



4 Conluding Remarks and Fu-ture StudyEÆiently osheduling proesses of message-passingparallel jobs on a time-shared luster of omputersposes great hallenges. In this paper, we propose a newtehnique for a luster of SMP mahines, whih o�ersa salable, portable, eÆient, and ost-e�etive solu-tion for ahieving osheduling. The proposed teh-nique uses message arrivals to diret the system to-wards osheduling and hene requires no expliit syn-hronization mehanism. Unlike other oshedulingshemes based on message arrivals, however, inomingmessages are proessed at the user level to avoid theneed for additional hardware and system software. Thestatus of a sending proess is attahed to eah outgo-ing message so that better sheduling deisions an bemade by the reipient. Proesses are guaranteed to runat least for a ertain period of time one sheduled toensure that eah parallel job makes progress while be-ing osheduled and that time period is on the order ofseonds. This design priniple is the key to the suessof our osheduler in obtaining high performane. Ex-perimental results indiate that the proposed tehniqueis a promising and inexpensive approah to eÆientosheduling, whih an improve the performane sig-ni�antly over unoordinated time-sharing and bathsheduling.There are a few interesting diretions for future re-searh. The performane of our osheduler is greatlya�eted by the length of time-slie and GMET. The re-sults from a preliminary analysis reveal that short time-slie and long GMET lengths are bene�ial to ahievinggood system performane. We plan to ondut morerigorous study on the e�et of these parameters on per-formane in the future study. The experiment has beenonduted on a rather small luster. The salabilityof the proposed sheme will be measured on a muhlarger luster in the future researh. In addition, testsof this tehnique in heterogeneous omputing environ-ment ould provide the ability to exeute even largerproblems.
AknowledgmentThe authors would like to thank anonymous refereesfor their valuable omments that helped us improvethe qaulity of this paper.

Referenes[1℄ T. E. Anderson, D. E. Culler, and D. A. Patter-son. A Case for NOW (Networks of Workstations).IEEE Miro, 15(1):54{64, Feb. 1995.[2℄ A. C. Arpai-Dusseau, D. E. Culler, and A. M.Mainwaring. Sheduling with Impliit Informationin Distributed Systems. In Pro. ACM SIGMET-RICS 1998 Conf. on Measurement and Modelingof Computer Ssystems, 1998.[3℄ ASCI Blue Mountain. http://www.lanl.gov/-asi/bluemtn/bluemtn.html.[4℄ ASCI Blue Pai�. http://www.llnl.gov/-platforms/bluepa.[5℄ ASCI Projet. http://www.llnl.gov/asi.[6℄ ASCI Red. http://www.sandia.gov/ASCI/Red.[7℄ Class Sheduler. http://www.unix.digital.-om/faqs/publiations/base do.[8℄ D. H. Bailey et al. The NAS Parallel Benhmarks.International Journal of Superomputer Applia-tions, 5:63{73, 1991.[9℄ D. H. Bailey et al. The NAS Parallel Benhmarks.Tehnial Report NASA Tehnial Memorandom103863, NASA Ames Researh Center, 1993.[10℄ D. H. Bailey et al. The NAS Parallel Benhmarks2.0. Tehnial Report NAS-95-020, NASA AmesResearh Center, De. 1995.[11℄ D. H. Bailey et al. Valuation of Ultra-Sale Com-puting Systems: A White Paper, De. 1999.[12℄ D. G. Feitelson. Memory Usage in the LANLCM-5 Workload. In Pro. IPPS'97 Workshop onJob Sheduling St rategies for Parallel Proessing,pages 78{94, 1997.[13℄ D. G. Feitelson and M. Jette. Improved Utiliza-tion and Responsiveness with Gang Sheduling.In IPPS'97 Workshop on Job Sheduling Strategiesfor Parallel Proessing, Vol. 1291 of Leture Notesin Computer Siene, pages 238{261. Springer-Verlag, Apr. 1997.[14℄ H. Franke, P. Pattnaik, and L. Rudolph. GangSheduling for Highly EÆient Multiproessors. InPro. Sixth Symp. on the Frontiers of MassivelyParallel Proessing, Ot. 1996.



[15℄ W. Gropp and E. Lusk. A High-Performane,Portable Implementation of the MPI MessagePassing Interfae Standard. Parallel Computing,22:54{64, Feb. 1995.[16℄ IBM Corporation. LoadLeveler's User Guide, Re-lease 2.1.[17℄ J. E. Moreira et al. A Gang-Sheduling System forASCI Blue-Pai�. In Pro. Distributed Comput-ing and Metaomputing (DCM) Workshop, High-Performane Computing and Networking '99, Apr.1999.[18℄ M. Jette. Performane Charateristis of GangSheduling in Multiprogrammed Environments. InPro. SuperComputing97, Nov. 1997.[19℄ M. Jette. Expanding Symmetri MultiproessorCapability Through Gang Sheduling. In IPPS'98Workshop on Job Sheduling Strategies for Paral-lel Proessing, Mar. 1998.[20℄ M. Jette, D. Storh, and E. Yim. Timesharing theCray T3D. In Cray User Group, pages 247{252,Mar. 1996.[21℄ N. J. Boden et al. Myrinet: A Gigabit-per-seondLoal Area Network. IEEE Miro, 15(1):29{36,Feb. 1995.[22℄ S. Nagar, A. Banerjee, A. Sivasubramaniam, andC. R. Das. A Closer Look At Cosheduling Ap-proahes for a Network of Workstations. In Pro.11th ACM Symp. of Parallel Algorithms and Ar-hitetures, June 1999.[23℄ J. K. Ousterhout. Sheduling Tehnique for Con-urrent Systems. In Int'l Conf. on DistributedComputing Systems, pages 22{30, 1982.[24℄ S. Pakin, M. Lauria, and A. Chien. High Perfor-mane Messaging on Workstations: Illinois FastMeessages (FM). In Pro. Superomputing '95,De. 1995.[25℄ S. Saini and D. H. Bailey. NAS Parallel Benh-mark (Version 1.0) Results 11-96. Tehnial Re-port NAS-96-18, NASA Ames Researh Center,Nov. 1996.[26℄ J. Skovira, W. Chan, H. Zhou, and D. Lifka. TheEasy-LoadLeveler API Projet. In IPPS'96 Work-shop on Job Sheduling Strategies for Parallel Pro-essing, Vol. 1162 of Leture Notes in ComputerSiene, pages 41{47. Springer-Verlag, Apr. 1996.

[27℄ P. G. Sobalvarro. Demand-based Cosheduling ofParallel Jobs on Multiprogrammed Multiproes-sors. PhD thesis, Dept. of Eletrial Engineeringand Compuer Siene, Massahusetts Institututeof Tehnology, 1997.[28℄ P. G. Sobalvarro and W. E. Weihl. Demand-based Cosheduling of Parallel Jobs on Mul-tipr ogrammed Multiproessors. In Pro. IPPS'95Workshop on Job Sheduling Strategies for Paral-lel Proessing, pages 63{75, Apr. 1995.[29℄ T. von Eiken, A. Basu, V. Buh, and W. Vo-gels. U-Nnet: A User-Level Network Interfae forParallel and Distributed Computing. In Pro. 15thACM Symp. on Operating System Priniples, De.1995.[30℄ T. von Eiken, D. E. Culler, S. C. Goldsten, andK. E. Shauser. Ative Messages: A Mehanismfor Integrated Communiation and Computation.In Pro. 19th Annual Int'l Symp. on ComputerArhiteture, De. 1995.[31℄ Top 500 Superomputer Sites. http://www.-netlib.org/benhmark/top500.html.[32℄ B. S. Yoo and C. R. Das. A Fast and EÆientProessor Management Sheme for k-ary n-ubes.Journal of Parallel and Distributed Computing,55(2):192{214, De. 1998.


