A Dynamic Coscheduling Technique for Symmetric

Multiprocessor Clusters

*

Andy B. Yoo and Morris A. Jette

Lawrence Livermore National Laboratory
Livermore, CA 94551
e-mail: {yoo2 | jettel}@llnl.gov

Abstract

Coscheduling is essential for obtaining good perfor-
mance in a time-shared symmetric multiprocessor
(SMP) cluster environment. The most common tech-
nique, gang scheduling, has limitations such as poor
scalability and vulnerability to faults mainly due to
explicit synchronization between its components. A
decentralized approach called dynamic coscheduling
(DCS) has been shown to be effective for network of
workstations (NOW), but this technique may not be
suitable for the workloads on a very large SMP-cluster
with thousands of processors. Furthermore, its imple-
mentation can be prohibitively expensive for such a
large-scale machine. In this paper, we propose a novel
coscheduling technique which can achieve coschedul-
ing on very large SMP-clusters in a scalable, efficient,
and cost-effective way. In the proposed technique, each
local scheduler achieves coscheduling based upon mes-
sage traffic between the components of parallel jobs.
Message trapping is carried out at the user-level, elim-
inating the need for unsupported hardware or device-
level programming. A sending process attaches its sta-
tus to outgoing messages so local schedulers on remote
nodes can make more intelligent scheduling decisions.
Once scheduled, processes are guaranteed some min-
imum period of time to execute. This provides an
opportunity to synchronize the parallel job’s compo-
nents across all nodes and achieve good program per-
formance. The results from a performance study reveal
that the proposed technique is a promising approach
that can reduce response time significantly over unco-
ordinated time-sharing and batch scheduling.

*This work was performed under the auspices of the U.S. De-
partment of Energy by University of California Lawrence Liver-
more National Laboratory under contract No. W-7405-Eng-48.

1 Introduction

The most prevailing machine architecture for large-
scale parallel computers in recent years has been the
cluster of symmetric multiprocessors (SMPs), which
consists of a set of SMP machines interconnected by
a high-speed network. Each SMP node is a shared-
memory multiprocessor running its own image of an op-
erating system (OS) and often constructed using com-
modity off-the-shelf (COTS) components mainly due
to economic reasons [1]. Continuous decrease in the
price of these commodity parts in conjunction with the
good scalability of the cluster architecture has made it
feasible to economically build SMP-clusters that have
thousands of processors and total physical memory size
on the order of Terabytes. The most prominent exam-
ple of such very large-scale SMP-clusters is the Depart-
ment of Energy (DOE) Accelerated Strategic Comput-
ing Initiative (ASCI) project [5] machines [3, 4, 6].

Efficiently managing jobs running on parallel ma-
chines of this size while meeting various user demands
is a critical but challenging task. Most supercomputing
centers operating SMP-clusters rely on batch systems
such as LoadLeveler [16, 26] for job scheduling [31].
We may utilize a system efficiently using these batch
systems, but high system utilization usually comes at
the expense of poor system responsiveness with a work-
load dominated by long running jobs, as is typical of
many large scale systems [11]. An alternative schedul-
ing technique that improves the system responsiveness
while improving fairness and freedom from starvation
is time-sharing. With time-sharing, we can create vir-
tual machines as desired to provide the desired level of
responsiveness.

An important issue in managing message-passing
parallel jobs in a time-shared cluster environment is
how to coschedule the processes (or tasks) of each run-
ning job. Coscheduling here refers to a technique that
schedules the set of tasks constituting a parallel job

at the same time so that they can run simultaneously
across all nodes on which they are allocated. When
a parallel job is launched on an SMP-cluster, a set of
processes are created on the nodes allotted to the job.
These processes of the job usually cooperate with each
other by exchanging messages. In most cases, two com-
municating processes do not proceed until both pro-
cesses acknowledge the completion of a message trans-
mission. Therefore, the interprocess communication
becomes a bottleneck which may prevent the job from
making progress if both sending and receiving processes
are not scheduled at the time of the message transmis-
sion. Without coscheduling, the processes constitut-
ing a parallel job suffer high communication latencies
due to spin-waiting periods and context switches. The
ill effect on system performance of running multiple
parallel jobs without coscheduling has been well docu-
mented [23]. It is very difficult to coschedule parallel
jobs in a time-shared environment using local operat-
ing systems running independently on each node alone.
A new execution environment is required in which par-
allel jobs can be coscheduled.

A few research efforts have been made to develop a
technique with which the coscheduling can be achieved
efficiently for SMP-clusters and networks of worksta-
tions (NOW). The simplest approach to coscheduling
is a technique called gang scheduling [13, 14, 17, 18, 19,
20]. In gang scheduling, a matrix called gang matrix,
which explicitly describes all scheduling information, is
used. Each column and each row of a gang matrix rep-
resent a processor in the system and a time slice during
which the processes in the row are scheduled to run, re-
spectively. The coscheduling is achieved by placing all
the processes of a job on the same row of the gang ma-
trix. The gang matrix is usually maintained by a cen-
tral manager (CM) running on a separate control host.
The CM distributes the gang matrix whenever there is
a change in schedule. A small daemon process running
on each node follows this well-defined schedule to allo-
cate resources to processes on that node. This simple
scheduling action guarantees coscheduling of parallel
jobs due to the way the gang matrix is constructed.
The gang scheduling technique is relatively simple to
implement.

A few successful gang scheduling systems have been
developed and operational on actual production ma-
chines [17, 19]. However, gang scheduling has limita-
tions. First, correct coscheduling of jobs entirely de-
pends upon the integrity of the distributed scheduling
information. If any of these schedules, which are trans-
mitted through unreliable network, are lost or altered,
it is highly likely that the jobs will not be cosched-
uled. Second, the gang scheduler’s central manager is

a single point of failure. The last and the most serious
drawback of the gang scheduling technique is its poor
scalability. As the number of nodes in the system in-
creases, not only the size of the gang matrix but also
the number of control messages increases. These con-
trol messages convey various information such as the
node status, the health of local daemons and the jobs
running on each node, and so on. In many cases, the
central manager is required to take appropriate actions
to process the information delivered by a control mes-
sage. Due to the excessive load imposed on the central
manager, the gang scheduler does not scale well to a
very large system.

Another method for achieving coscheduling is
a decentralized scheme called dynamic coscheduling
(DCS) [22, 27, 28]. In DCS, the coordinated scheduling
of processes that constitute a parallel job is performed
independently by the local scheduler, with no central-
ized control. Since there is no fixed schedule to follow
in DCS, the local scheduler must rely on certain local
events to determine when and which processes to sched-
ule. Among various local events that a local sched-
uler can use to infer the status of processes running
on other nodes, the most effective and commonly-used
one is message arrival. The rationale here is that when
a message is received from a remote node, it is highly
likely that the sending process on the remote node is
currently scheduled. This implies is that upon receiv-
ing a message, the local scheduler should schedule the
receiving process immediately, if not already scheduled,
to coschedule both the sending and receiving processes.

A few experimental scheduling systems based on
this method have been developed [22, 27]. All of
these prototypes are implemented in an NOW environ-
ment, where workstations are interconnected through
fast switches like Myrinet [21]. Interprocess communi-
cation is carried out using high-performance user-level
messaging layers that support user-space to user-space
communication [24, 29, 30] in these systems to reduce
communication latency. These implementations rely
upon programming the firmware in network interface
cards (NIC) so as to communicate scheduling require-
ments for processes to the operating system. Large
SMP clusters are difficult to support under the best of
circumstances. The specialized hardware and firmware
required by the typical DCS configuration would not
normally be supported by the hardware vendor and
could be very challenging to support at large scales.

The DCS technique can achieve effective, robust
coscheduling of processes constituting a parallel job.
However, current DCS implementations available may
not be suitable for a large-scale SMP-clusters. Inter-
process communications within an SMP typically uses

shared-memory for improved performance. Current
DCS techniques would need to remove this optimiza-
tion and route messages through the NIC in order to
effect scheduling. Context switching can also induce
significant memory management overhead, including
both cache refresh and potentially paging. We know
of no DCS implementation which addresses memory
management, issues.

In this paper, we propose and evaluate a novel
coscheduling technique for an SMP-cluster. To design
a scalable coscheduling technique, we have adopted the
DCS approach which allows us to eliminate any form of
centralized control. The primary concern of the previ-
ous DCS schemes is boosting the priority of a receiving
process as quickly as possible on a message arrival to
establish immediate coscheduling. To accomplish this,
they program the network devices so that an incom-
ing message can be trapped long before the receiving
process gets scheduled. We believe that what is more
important to improve overall performance is not react-
ing immediately to incoming messages but keeping the
communicating processes coscheduled while they are
running'. In the proposed scheme, therefore, a process
of a parallel job, once scheduled, is guaranteed to re-
main scheduled for certain period of time assuming that
other processes of the job are either already scheduled
or getting scheduled through message exchanges.

A mechanism to detect message arrivals is embed-
ded into a message-passing library whose source code
is freely available to the public, making the design
portable and cost-effective. On a message arrival, the
receiving process reports this to a local scheduler which
makes appropriate scheduling decisions. Processes that
are not scheduled need to be run periodically to trap
incoming messages. An adverse effect of this sporadic
execution of non-scheduled processes is that they may
send messages triggering preemption of other cosched-
uled processes. This problem is resolved by attaching
the status of sending process to each outgoing message.

We implement and evaluate the proposed coschedul-
ing technique on a Compaq Alpha cluster testbed at
LLNL. The results from our measurements show that
the proposed coscheduling technique can reduce job re-
sponse time as much as 50% compared with unsynchro-
nized time-sharing. The effect of various system pa-
rameters on performance is also analyzed in this study.

The rest of the paper is organized as follows. Section
2 describes the proposed technique and its implemen-
tation. Experiment results are reported in Section 3.

IThis view is also shared by another promising decentralized
coscheduling scheme called implicit coscheduling [2], where the
local scheduler allows the currently scheduled process to spin-
wait instead of preempting it immediately upon a message arrival
as in the DCS coscheduling schemes.

Finally, Section 4 draws conclusions and presents di-
rections for future research.

2 Design and Implementation

2.1 Basic Design

The proposed coscheduler for SMP-clusters is based on
two design principles.

1. It is essential for achieving coscheduling to make
correct decisions on when and which processes on
each node to schedule.

2. Tt is crucial to maximize coscheduled time as a
portion of scheduled time for the processes on
each node. If preemption occurs too frequently,
the parallel job’s throughput will suffer from
an increase in spin-wait time at synchronization
points, cache refresh delays, and potentially pag-
ing delays.

A key factor in scalable coscheduler design is decen-
tralization of scheduling mechanism. An ideal scalable
coscheduler should not employ any centralized con-
trol or data structures, but completely rely upon au-
tonomous local schedulers. Our coscheduling technique
also follows such decentralized approach. Without any
global information on the status of all the processes
in the system, each local scheduler has to determine
the status of remote processes and coschedule the local
processes with their remote peers. Exchanging con-
trol messages that contain process status information
among local schedulers is not a scalable solution. An
alternative is to use certain implicit local information
to infer the status of remote processes. Such implicit in-
formation includes response time, message arrival, and
scheduling progress [2].

Like all the previous work [2, 22, 27, 28], our cosched-
uler depends upon message arrival to infer status infor-
mation of remote processes. The message arrival refers
to the receipt of a message from a remote node. When
a message is received, this implies the sending process
is highly likely to be currently scheduled. Therefore, it
is crucial to quickly schedule the receiving process to
achieve coscheduling.

In order to implement this idea, we need a mech-
anism which detects the arrival of a message and re-
ports this to the local scheduler. This message trap-
ping mechanism is performed at user-level in our de-
sign to fulfill one of our design goals: cost-effectiveness.
The implementation can be easily done by inserting a
few lines of code into a small number of application
program interfaces (APIs) provided by open-source

message-passing libraries like MPICH [15]. This code
notifies the local scheduler of message arrival through
an interprocess communication (IPC) mechanism. The
user-level message trapping mechanism allows us to
avoid the purchase of and support of additional hard-
ware or software. In addition, the use of publicly avail-
able software makes our design quite portable.

The local scheduler functions include maintaining
information such as the process ID (pid) and the sta-
tus of processes assigned to the node and scheduling
appropriate processes for coscheduling. When a pro-
cess is about to start or terminate execution, the pro-
cess reports these events to the local scheduler along
with its own pid. When notified of these events, the
local scheduler adds/removes the pid received to/from
the data structure it manages. Similarly, when a mes-
sage arrives, the receiving process reports this with its
pid to the local scheduler, which then responds by per-
forming appropriate scheduling operations. Here the
report of message arrival serves as a request to local
scheduler to schedule the receiving process.

The group of processes constituting the same paral-
lel job on each node serve as a scheduling unit. That
is, whenever a process is scheduled, its peer processes
on the same node are simultaneously scheduled. This
establishes the coscheduling more quickly. Since the
peer processes of a recently scheduled process should
eventually be scheduled via message-passing, we can
improve concurrency by scheduling the entire group of
peer processes together. More importantly, this strat-
egy may increase the number of messages to other un-
scheduled processes on remote nodes and hence achieve
the coscheduling more quickly.

In an attempt to reflect the second design principle,
we ensure that all the newly scheduled processes run
for a certain period of time without being preempted.
This guarantees that each parallel job runs at least for
the given time without being preempted by another
job. We use a predetermined threshold value for the
guaranteed minimum ezecution time (GMET), but the
value may be calculated dynamically as well. Receiv-
ing a scheduling request from a user process, the local
scheduler checks if the currently scheduled processes
have run at least for the GMET. If so, a context switch
is performed. Otherwise, the request is ignored.

While message arrivals cause user process to send
scheduling requests, these scheduling requests can al-
low the running process to continue to run. This may
result in starvation of other jobs. Starvation is pre-
vented by a timer process that periodically sends a con-
text switch request to the local scheduler. The local
scheduler, on receiving this request, performs a con-
text switch in a similar fashion to a scheduling request

Message-Passing Library Message-Passing Library
start (pid, application_id); start (pid, application_id);
exit (pid); exit (pid);

schedule (pid); schedule (pid);

Local Scheduler Local Scheduler

context_switch; context_switch;

Figure 1: The design of proposed coscheduler.

from a user process. In this case, however, the local
scheduler selects a new job to run. The local scheduler
selects the job which has received the least CPU time
as the next one to run improving fairness. The local
scheduler keeps track of the CPU time each job has
consumed to facilitate this scheduling process. We use
a time-slice on the order of seconds in this research,
adhering to the second design principle. The rationale
behind such a long time-slice is to insure the job estab-
lishes coscheduling and executes coscheduled for some
minimum time. This also reduces the overhead of cache
refresh and paging.

There is a critical issue in conjunction with the user-
level message trapping that needs to be addressed. In
order for a user process to trap incoming messages, the
process itself has to be scheduled. Otherwise, message
arrivals will never be detected and reported to the local
scheduler. The local scheduler in our design, therefore,
periodically schedules all the jobs for a brief period of
time to detect any message arrival. A serious side ef-
fect of this simple approach is that the local scheduler
may receive false scheduling requests. A false schedul-
ing request can be sent to the local scheduler when a
user process receives a message from a remote process
which is scheduled only for the message-trapping pur-
pose. These false scheduling requests may results in
wrongful preemption of coscheduled processes and sig-
nificant performance degradation. We solve this prob-
lem by attaching the status of sending process to ev-
ery outgoing message. With the status of sending pro-
cess available, the receiving process can easily deter-
mine whether a context switch would help to achieve
coscheduling or not. The design of the coscheduler is
shown in Fig. 1.

2.2 Implementation

The proposed coscheduler described has been imple-
mented and evaluated on an eight-node Compaq Al-
pha cluster testbed running Tru64 Unix 5.0 at LLNL.
Each node has two Compaq Alpha EV6 processor op-

erating at 500 MHz with 1 GB of main memory. The
implementation exercise has involved only minor mod-
ifications to a user-level message-passing library and
the development of two very simple daemon processes.
The implementation of this coscheduler is described in
detail below.

2.2.1 MPICH Library

We have modified an open-source message-passing li-
brary, MPICH [15], to implement the user-level mes-
sage trapping as well as the process registry operations.
The MPICH is a freely-available, high-performance,
portable implementation of the popular MPI Mes-
sage Passing Interface standard. We have chosen the
MPICH library mainly due to its popularity and easy
access to its source code.

A few new functions are added to the MPICH library
in this implementation. These functions notify the lo-
cal scheduler when certain events occur through IPC.
Those requests are accompanied by the pid of sending
process. The functions are summarized in Table. 1.

MPI_Register is invoked during the initialization
phase of an MPI process. The MPI Register, when
invoked, sends a CMDREG request to local scheduler.
An MPT application id is also sent along with the re-
quest to notify the local scheduler of which MPI job
the process belongs to. The local scheduler creates
a small shared-memory region at the time a process
is registered through which the process can determine
its scheduling status. Similarly, MPI_Terminate is in-
voked during the finalization phase of the MPI pro-
cess and sends CMDOUT request to the local sched-
uler. The terminating process is then removed from
the list of processes assigned to the local scheduler.
MPI_Schedule sends CMDSCH request along with its
pid to local scheduler in an attempt to schedule itself.

A few MPICH functions need to be modified as well
to incorporate the capability to handle messages car-
rying process status information. These functions are
net_send, net_recv, and net_recv_timeout. We have
modified net_send in such a way that a single byte rep-
resenting the status of sending process is attached to
each outgoing message. The actual length of the mes-
sage is increased by one byte. The additional byte is
prefixed to the message, because the receiving process
can specify arbitrary message length. If we postfix the
status information to an outgoing message, and a dif-
ferent message length is given in a receiving routine, the
information can be lost or even worse, incorrect status
information can be extracted by the receiving process.
By always sending the status information before actual
message body, we can preserve and retrieve correct sta-

tus information regardless of the message length spec-
ified by a user.

With the modifications made to net_recv and
net_recv_timeout, the status information is separated
from each incoming message, and the actual message
is passed to whichever routine invoked these functions.
An early scheduling decision, which is whether a con-
text switch is appropriate or not, is made at this level
using the status information received. That is, if the
sending process is currently scheduled and the receiv-
ing process is not, a context switch is desirable. A
request for context switch is sent to the local scheduler
by calling MPI_Schedule.

2.2.2 Class Scheduler

In our implementation, we use the Compaq Tru64
UNIX priority boost mechanism called class sched-
uler [7] to schedule processes of a parallel job. With
the class scheduler, we can define a class of system en-
tities and assign certain percentage of CPU time to the
class. The class scheduler ensures that access to the
CPUs for each class does not exceed its specified limit.
The entities that constitute a class can be users, groups,
process groups, pids, or sessions. There may be a num-
ber of classes on a system. A database of classes, class
members, and the percentage of CPU time for the class
is maintained by the class scheduler. The database can
be modified while the class scheduler is running, and
the changes take effect immediately.

The kernel has very little knowledge of class schedul-
ing. A class, in the kernel, is an element in an array
of integers representing clock ticks. A thread that is
subject to class scheduling has knowledge of its index
in the array. Each time the thread uses CPU time, the
number of clock ticks used is subtracted from the array
element. When the count reaches zero the thread is ei-
ther prevented from running altogether or, optionally,
receives the lowest scheduling priority possible.

When class scheduling is enabled, a class sched-
uler daemon is started. The class scheduler daemon
wakes up periodically and calculates the total number
of clock ticks in the interval. Then, for each class in
the database, it divides the total by the percentage al-
located to the class and places the result into an array.
When finished, the array is written to the kernel.

The class scheduler provides APIs which system de-
velopers can use to enable and disable class schedul-
ing, create and destroy a class, add and remove a class
member, change the CPU percentage allotment for a
class, and so on. Using these APIs, we define a class of
pids for each group of processes constituting the same
MPI job. We use the application id of the MPI job

| Function | Request | Event | Local Scheduler Action |
MPI_Register CMDREG | Process Initialization | Register requesting process
MPI_Terminate | CMDOUT | Process Termination | Remove requesting process
MPI_Schedule CMDSCH | Message Arrival Schedule requesting process, if allowed

Table 1: Summary of newly defined MPI functions.

as the name of the class. Processes of an MPI job
can be scheduled at the same time to the class rep-
resenting those processes. For example, if we allocate
100% of CPU time to a class, only the processes de-
fined in the class will receive CPU time. The local
scheduler performs a context switch by swapping the
CPU percentage of two classes of processes that are
being context-switched.

It was mentioned that all the processes, whether cur-
rently scheduled or not, need to receive some CPU time
periodically to trap incoming messages at the user-
level. One way of doing this is to let the local scheduler
periodically allocate 100% of CPU time to each of the
classes in the system for a very short time. This is a
feasible solution, but it may burden the local scheduler
as the number of jobs assigned to the node increases.
Therefore, we rely on the class scheduler to achieve the
user-level message trapping. In our implementation,
1% of CPU time is allocated to each unscheduled class
so that the processes in the class are executed for very
short periods of time, and remaining CPU percentage
is allocated to a scheduled class. Therefore, if there are
n classes in the system, (n — 1)% of CPU time is al-
located to n — 1 classes, and a scheduled class receives
(100 — n 4+ 1)% of CPU time. The class scheduler is
configured to strictly adhere to these percentage allo-
cations and time allocated to a class which is not used
by that class is not used by other job classes. When-
ever a class is created or destroyed, the CPU allotment
to the scheduled class is adjusted accordingly.

2.2.3 Daemons

Two daemons, timer and scheduler daemons, are im-
plemented for process scheduling. In our implemen-
tation, there are no coordinating activities among the
daemons residing on different nodes. Although we may
achieve better performance by allowing the daemons to
exchange messages for the coordination, we intention-
ally exclude this option to make our scheme to be scal-
able. However, we believe that allowing sporadic mes-
sage exchanges for the coordination among daemons
could improve performance.

The task of the timer daemon is to periodically send
a request for context switch to scheduler daemon to
enforce time-sharing. The timer daemon simply re-

peats the process of sleeping for a predetermined in-
terval, which works as time-slice, followed by sending
the context-switch request to the scheduler daemon.

The scheduler daemon performs key scheduling op-
erations such as managing process and MPI job status
and changing the priority of processes. The scheduler
daemon is a simple server that acts upon requests from
either user process or the timer daemon. Those re-
quests are sent to the scheduler daemon via shared-
memory IPC, since the IPC occurs only within a single
node and the shared-memory provides the fastest IPC
mechanism. A shared-memory region, through which
requests are sent, is created when the scheduler daemon
starts execution.

The main body of the scheduler daemon consists of
a loop in which the daemon waits for a request and
then execute certain operations corresponding to the
request received. There are five requests defined for the
scheduler daemon: CMDREG, CMDOUT, CMDCSW,
CMDSCH, and CMDDWN.

The CMDDWN request terminates the scheduler
daemon. On receiving this request, the scheduler dae-
mon removes the shared-memory region created for
IPC and then exits. CMDREG and CMDOUT re-
quests are associated with the process management op-
erations. An MPI process sends CMDREG to notify
that the process is about to start execution. When re-
ceiving this request, the scheduler daemon creates an
entry in the process table it maintains. An entry in the
process table contains information about a process such
as its pid and the MPI job that the process belongs to.
The table also contains scheduling information about
the MPI job assigned to the node. Such information on
an MPI job includes the job id, the number of member
processes, the time when the job was scheduled and
preempted, and a pointer to a shared-memory region
from which processes of the job read the job’s status.
The table is organized in such a way that there is a link
between each MPI job and all the processes that con-
stitute the job. When an MPI job is registered for the
first time, the scheduler daemon performs two things.
First, it creates an entry for the job in the process ta-
ble. Next, a class is created using the job’s application
id as the class name. The pid of the requesting pro-
cess is added to the table and the class created. A
newly created class receives 1% of CPU time initially.

The CPU time allotment of scheduled class is adjusted
accordingly when a new class is created.

CMDOUT, a request issued upon process termina-
tion, does the reverse of CMDREG. Receiving CMD-
OUT request, the scheduler daemon removes the pid of
the sending process from the process table and the cor-
responding class. When the last process terminates,
corresponding process table entries and class defined
for the terminating job are destroyed, and the CPU
time allotment of scheduled class is adjusted.

The CMDCSW request is issued by the timer dae-
mon. Upon receiving this request, the scheduler dae-
mon simply swaps the CPU time allotment of currently
scheduled job with that of the next job to be executed.
The CMDSCH request also causes a context switch,
but it is issued by a user process upon a message ar-
rival. The scheduler daemon, upon receiving this re-
quest, first determines whether the context switch is
allowed by checking if currently scheduled job has con-
sumed at least the GMET. If so, the requesting job is
scheduled by adjusting the CPU time allotment. Oth-
erwise, the request is discarded.

The pseudo codes for the daemons are given below.

Timer Daemon:

1. Create a pointer to a shared-memory region for IPC.
2. loop
Sleep for n seconds, where n is predetermined
value for time-slice.
Send CMDCSW to scheduler daemon.
end loop

Scheduler Daemon:

1. Create a shared-memory region for IPC.
2. Initialize process table and system queue.
3. loop
Wait for a request.
switch (request)
case CMDDWN:
Destroy classes, if there are any.
Remove the shared-memory region.
Exit.
case CMDREG:

if (there is no entry for job corresponding
to the requesting process) then
Create an entry in the process table and
perform initialization for the job.
Create a new class for the job and as-
sign 1% of CPU time to the class.
Create a shared-memory region for the
communication of job status.
if (there are no other job in the system)
then
Schedule the newly created job.

else
Adjust the CPU time allotment of a

scheduled job.
end if
end if
Add the sending process to the process

table and corresponding class.
case CMDOUT:

Remove requesting process from the pro-
cess table and the class the process be-

longs to.
if (the number of processes in an MPI job

corresponding to the requesting pro-
cess is zero) then
Destroy the entry and the class defined

for the MPI job.
if (the job is currently scheduled) then

Schedule the next job in the queue,

if there is one.
else

Adjust the percentage of CPU time

allocated to a scheduled job.
end if
end if
case CMDCSW:

Schedule a job that has received the least
CPU time by adjusting the CPU time

allotment.
case CMDSCH:

if (currently scheduled job, if exists, has
run at least for the GMET) then
Schedule the requesting job by adjust-

ing the CPU time allotment.
end if

end switch

3 Experimental Results

In this research, we have conducted a performance
study on an 8-node Compaq Alpha SMP cluster testbed
to evaluate the proposed coscheduler using popular
NAS Parallel Benchmarks (NASPB) [8, 9, 10, 25].
Three workloads, each exhibiting different degree of
communication intensity, are used to evaluate the
performance under various message traffic conditions.
Here, the communication intensity of a job is measured
by the number of messages exchanged during the course
of execution. The first workload consists of randomly
selected class A and class B NASPBs and represents a
workload with moderate message traffic, under which
the communication intensity of jobs varies to a great
extent. The second workload is constructed from the
three most communication-intense NASPBs (LU, SP,
and BT) to represent a workload with heavy message

| Workload | Benchmarks |
Workload 1 | bt.B.4, ep.B.8 (2), bt.A.4, sp.A.9, mg.A.2, lu.B.4
Workload 2 | bt.A.4 (2), lu.A.2 (2), sp.B.9, sp.A.9, sp.A.4, lu.B.2
Workload 3 ep-A.2 (2), ep.A.4 (2), ep.B.8, ep.B.4 (2), ep.A.8

Table 2: Three workloads used.

5000.0

Uncoordinated Scheduling
Coscheduling

__ 40000 -

(s}

Q

o

Q

£

~ 3000.0

Q

1%}

<

o

Q.

0

2

a 2000.0 -

[<]

S

=t

IS

2

1000.0 -
0.0
Workload 1 Workload 2 Workload 3
Workloads
Figure 2: Comparison of mean job response time

for different workloads (Time slice = 15 seconds and
GMET = 5 seconds).

traffic. The third workload consists of only the EP
NASPB in which there is little communication between
processes. The three workloads are summarized in Ta-
ble 2. We followed the naming convention used in the
NASPB to identify each benchmark. The number of a
benchmark within a workload is given in parenthesis.
The performance measure of interest in this study is
mean job response time.

Fig. 2 compares the performance of the new
coscheduling technique with that of uncoordinated
time-sharing. The uncoordinated time-sharing (or
scheduling) here refers to the execution of multiple
jobs simultaneously and scheduled solely by the local
operating systems on each node. The time slice and
GMET used in this experiment are 15 and 5 seconds,
respectively. For all three workloads, the new cosched-
uler shows better or comparable response time behav-
ior compared to the uncoordinated time-sharing. As
expected, the best performance is achieved when the
message traffic is heavy (Workload 2). Here, the mean
job response time is reduced by 50% when the pro-
posed coscheduling technique is used. The measures
for mean job response time are almost identical for the

6000.0

Uncoordinated Scheduling
Coscheduling

4000.0 1

2000.0 1

Mean Job Response Time (Sec)

0.0

MPL

Figure 3: Comparison of mean job response time for
different multiprogramming level (MPL) (Time slice =
15 seconds and GMET = 5 seconds).

Workload 3. This is because the effect of uncoordi-
nated scheduling of the processes constituting a parallel
job on performance is not significant when the message
traffic is light. These results are a strong indication
that the proposed technique is a promising approach
to coscheduling, which can efficiently improve the per-
formance of parallel jobs under various message traffic
conditions.

Fig. 3 shows the response-time behavior of the pro-
posed coscheduling technique and uncoordinated time-
sharing scheduling for varying multiprogramming level
(MPL). The time-slice and the GMET lengths are the
same as in Fig. 2. The workloads used in this exper-
iment are summarized in Table 3. We increase the
load to the system by adding a new set of randomly
selected NASPBs to existing workload, as MPL in-
creases. In this experiment, only class A benchmarks
are considered to minimize the effect of paging over-
head. As Fig. 3 indicates, the proposed coscheduling
scheme obtains the best performance gain (85 % re-
duction in response time) when the MPL is 2. This
is because without coordinated scheduling, processes
of parallel jobs tend to block frequently waiting for
their communicating peers to be scheduled, whereas
our technique reduces the blocking time considerably
through coscheduling of the processes. However, the
performance gain decreases as the MPL increases. The
reason for this is that as the number of time-shared jobs
increases, the waiting time due to blocking is compen-
sated by increased computation and communication in-
terleave, while coscheduling the parallel jobs becomes
increasingly difficult. Athough the proposed scheme
achieves subpar performance with a large MPL, it is
expected perform well under normal circumstances in
which the MPL is usually kept small in order to mini-
mize the overhead, especially from paging activity [12].

Fig. 4 plots the average job wait time under
batch scheduling (without backfilling) and proposed
coscheduling technique with varying time slice length
and MPL. In this experiment, we submitted 100
NASPBs to the system at once and measured the wait
(or queueing) time of each job. The workload consists
of 98 class A NASPBs and two class C NASPBs (LU).
GMET is set to 2 seconds in this experiment. A sepa-
rate script starts new jobs in such a way that desired
MPL is maintained. Fig. 4 shows that the proposed
coscheduling technique reduces the average job wait
time by as much as 41% over simple batch schedul-
ing. The poor performance of the batch scheduling is
due to what is known as the ‘blocking’ property of the
first come first served (FCFS) scheduling discipline [32].
That is, under the FCFS policy a job has to wait until
all preceding jobs finish their execution, and therefore,

5000.0
Batch
Cosch (10,2)
Cosch (10,3)
4000.0 - Cosch (15,2)
= — Cosch (15,3)
3 Cosch (30,2)
~ Cosch (30,3)
g 3000.0
£ —
%
=
€ 20000 -
S
-
>
4
1000.0 -
0.0

Scheduling Policies

Figure 4: Comparison of average job wait time under
batch and proposed coscheduling technique with dif-
ferent time slice length and MPL (Cosch (time slice,
MPL)).

its wait time is the total of the execution time of all
the preceding jobs. On the other hand, the proposed
technique, with its time-sharing and coscheduling ca-
pability, is not affected by the blocking property and
hence performs very well in this experiment. Further-
more, closer examination reveals that the average job
wait time increases as the MPL increases. As already
discussed in Fig. 3, this is because it becomes increas-
ingly difficult to establish coscheduling as the MPL in-
creases.

Figures 5 and 6 examine the effect of the GMET and
the time-slice lengths on performance of the proposed
coscheduler, respectively. Fig. 5 shows the response-
time behavior of the coscheduler for three workloads
described in Table 2 as the length of GMET varies. The
time-slice length in this experiment is set to 30 seconds.
The results reveal that the GMET length does not af-
fect the performance of the coscheduler for workloads 1
and 3, where the communication intensity is relatively
low. On the other hand, the GMET length has signifi-
cant effect on the system performance for the workload
2 in which the communication intensity is high. If the
GMET length is set too small for such a workload with
high communication intensity, coscheduling a parallel
job is extremely difficult because some of the processes
that constitute the parallel job are highly likely to be
preempted before the coscheduling is established due to
the increased message traffic. If the length of GMET
is too large, the coscheduler fails to quickly respond

| MPL | Benchmarks
2 sp-A.16, sp.A.9
3 sp.A.16, sp.A.9, lu.A.8
4 sp-A.16, sp.A.9, lu.A.8, cg.A.16, ft.A.8
5 sp-A.16, sp.A.9, lu.A.8, cg.A.16, ft.A.8, ep.A.8

Table 3: The workloads used for each MPL.

2000.0 =—a Workload 1 B
O——=0 Workload 2
A—4 Workload 3
o)
Q
L
o 1500.0 - 1
£
=
Q
(2]
j =
o
&
$ 10000 g
4
Qo
[=]
S
f =
[
Q
= 5000 1
A—h—h—— & A
0.0 L L :
0.0 5.0 10.0 15.0
GMET (Sec)

Figure 5: The effect of the GMET on performance
(Time slice = 30 seconds).

3000.0

=—=a Workload 1
O——=0 Workload 2
A——A Workload 3

2000.0

1000.0 - 1

Mean Job Response Time (Sec)

A& — A A A
OO 1 L L L L
5.0 10.0 15.0 20.0 25.0
Time Slice (Sec)

Figure 6: The effect of time slice on performance
(GMET = 5 seconds).

to incoming context-switch requests from remote pro-
cesses, and this degrades the performance. However,
the performance degradation in this case is not as se-
vere as in the previous case, since the large GMET
length still prevents excessive context-switches. This
is clearly visible in Fig. 5, where the response-time
curve for the workload 2 sharply drops and then in-
creases as the GMET length changes from 2 through
5 seconds. For the GMET lengths greater than 5 sec-
onds, the response-time behavior remains almost un-
changed, since most of context-switch requests are dis-
carded with such long GMETs and the performance is
strictly governed by the length of the time slice used.

Fig. 6 plots the changes in response time as the time-
slice length varies for the three workloads. The GMET
length is set to 5 seconds. As expected, the perfor-
mance of the coscheduler is hardly affected by the time-
slice length for workload 3. However, the response time
continuously increases for both workloads 1 and 2 with
time-slices greater than 15 seconds. This can be ex-
plained in conjunction with the results from the previ-
ous experiment. Since there is no global control in our
design, which could schedule all processes of a parallel
job concurrently, a situation in which scheduled pro-
cesses that constitute different parallel jobs contend for
scheduling of their communicating peers occurs quite
frequently. If the GMET length is set too large (as in
this experiment), the context-switch requests through
messages sent to remote nodes are discarded and hence
the parallel jobs eventually stall until a context-switch
is initiated by one of the timer daemons. Consequently,
the waiting time of each job increases as the time-slice
length increases.

As shown in Fig. 5 and Fig. 6, the GMET and the
time-slice lengths can have significant effect on perfor-
mance and hence, selecting optimal values for these
parameters is critical. However, such optimal values
are highly workload-dependent and therefore, careful
workload analysis must be conducted. The experiment
results also suggest that in general short time-slice and
long GMET lengths are favorable to obtaining good
system performance.

4 Concluding Remarks and Fu-
ture Study

Efficiently coscheduling processes of message-passing
parallel jobs on a time-shared cluster of computers
poses great challenges. In this paper, we propose a new
technique for a cluster of SMP machines, which offers
a scalable, portable, efficient, and cost-effective solu-
tion for achieving coscheduling. The proposed tech-
nique uses message arrivals to direct the system to-
wards coscheduling and hence requires no explicit syn-
chronization mechanism. Unlike other coscheduling
schemes based on message arrivals, however, incoming
messages are processed at the user level to avoid the
need for additional hardware and system software. The
status of a sending process is attached to each outgo-
ing message so that better scheduling decisions can be
made by the recipient. Processes are guaranteed to run
at least for a certain period of time once scheduled to
ensure that each parallel job makes progress while be-
ing coscheduled and that time period is on the order of
seconds. This design principle is the key to the success
of our coscheduler in obtaining high performance. Ex-
perimental results indicate that the proposed technique
is a promising and inexpensive approach to efficient
coscheduling, which can improve the performance sig-
nificantly over uncoordinated time-sharing and batch
scheduling.

There are a few interesting directions for future re-
search. The performance of our coscheduler is greatly
affected by the length of time-slice and GMET. The re-
sults from a preliminary analysis reveal that short time-
slice and long GMET lengths are beneficial to achieving
good system performance. We plan to conduct more
rigorous study on the effect of these parameters on per-
formance in the future study. The experiment has been
conducted on a rather small cluster. The scalability
of the proposed scheme will be measured on a much
larger cluster in the future research. In addition, tests
of this technique in heterogeneous computing environ-
ment could provide the ability to execute even larger
problems.

Acknowledgment

The authors would like to thank anonymous referees
for their valuable comments that helped us improve
the qaulity of this paper.

References

[1] T. E. Anderson, D. E. Culler, and D. A. Patter-
son. A Case for NOW (Networks of Workstations).
IEEE Micro, 15(1):54-64, Feb. 1995.

[2] A. C. Arpaci-Dusseau, D. E. Culler, and A. M.
Mainwaring. Scheduling with Implicit Information
in Distributed Systems. In Proc. ACM SIGMET-
RICS 1998 Conf. on Measurement and Modeling
of Computer Ssystems, 1998.

[3] ASCI Blue Mountain. http://www.lanl.gov/-
asci/bluemtn/bluemtn.html.

[4] ASCI Blue Pacific. http://www.llnl.gov/-
platforms/bluepac.

[5] ASCI Project. http://www.1llnl.gov/asci.
[6] ASCI Red. http://www.sandia.gov/ASCI/Red.

[7] Class Scheduler. http://www.unix.digital.-
com/faqs/publications/base doc.

[8] D. H. Bailey et al. The NAS Parallel Benchmarks.
International Journal of Supercomputer Applica-
tions, 5:63-73, 1991.

[9] D. H. Bailey et al. The NAS Parallel Benchmarks.
Technical Report NASA Technical Memorandom
103863, NASA Ames Research Center, 1993.

[10] D. H. Bailey et al. The NAS Parallel Benchmarks
2.0. Technical Report NAS-95-020, NASA Ames
Research Center, Dec. 1995.

[11] D. H. Bailey et al. Valuation of Ultra-Scale Com-
puting Systems: A White Paper, Dec. 1999.

[12] D. G. Feitelson. Memory Usage in the LANL
CM-5 Workload. In Proc. IPPS’97 Workshop on
Job Scheduling St rategies for Parallel Processing,
pages 7894, 1997.

[13] D. G. Feitelson and M. Jette. Improved Utiliza-
tion and Responsiveness with Gang Scheduling.
In IPPS’97 Workshop on Job Scheduling Strategies
for Parallel Processing, Vol. 1291 of Lecture Notes
in Computer Science, pages 238-261. Springer-
Verlag, Apr. 1997.

[14] H. Franke, P. Pattnaik, and L. Rudolph. Gang
Scheduling for Highly Efficient Multiprocessors. In
Proc. Sixth Symp. on the Frontiers of Massively
Parallel Processing, Oct. 1996.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

W. Gropp and E. Lusk. A High-Performance,
Portable Implementation of the MPI Message

Passing Interface Standard. Parallel Computing,
22:54-64, Feb. 1995.

IBM Corporation. LoadLeveler’s User Guide, Re-
lease 2.1.

J. E. Moreira et al. A Gang-Scheduling System for
ASCI Blue-Pacific. In Proc. Distributed Comput-
ing and Metacomputing (DCM) Workshop, High-
Performance Computing and Networking ’99, Apr.
1999.

M. Jette. Performance Characteristics of Gang
Scheduling in Multiprogrammed Environments. In
Proc. SuperComputing97, Nov. 1997.

M. Jette. Expanding Symmetric Multiprocessor
Capability Through Gang Scheduling. In IPPS’98
Workshop on Job Scheduling Strategies for Paral-
lel Processing, Mar. 1998.

M. Jette, D. Storch, and E. Yim. Timesharing the
Cray T3D. In Cray User Group, pages 247-252,
Mar. 1996.

N. J. Boden et al. Myrinet: A Gigabit-per-second
Local Area Network. IEEE Micro, 15(1):29-36,
Feb. 1995.

S. Nagar, A. Banerjee, A. Sivasubramaniam, and
C. R. Das. A Closer Look At Coscheduling Ap-
proaches for a Network of Workstations. In Proc.
11th ACM Symp. of Parallel Algorithms and Ar-
chitectures, June 1999.

J. K. Ousterhout. Scheduling Technique for Con-
current Systems. In Int’l Conf. on Distributed
Computing Systems, pages 22—-30, 1982.

S. Pakin, M. Lauria, and A. Chien. High Perfor-
mance Messaging on Workstations: Illinois Fast
Meessages (FM). In Proc. Supercomputing ’95,
Dec. 1995.

S. Saini and D. H. Bailey. NAS Parallel Bench-
mark (Version 1.0) Results 11-96. Technical Re-
port NAS-96-18, NASA Ames Research Center,
Nov. 1996.

J. Skovira, W. Chan, H. Zhou, and D. Lifka. The
Easy-LoadLeveler API Project. In IPPS’96 Work-
shop on Job Scheduling Strategies for Parallel Pro-
cessing, Vol. 1162 of Lecture Notes in Computer
Science, pages 41-47. Springer-Verlag, Apr. 1996.

[27]

[30]

P. G. Sobalvarro. Demand-based Coscheduling of
Parallel Jobs on Multiprogrammed Multiproces-
sors. PhD thesis, Dept. of Electrical Engineering
and Compuer Science, Massachusetts Institutute
of Technology, 1997.

P. G. Sobalvarro and W. E. Weihl. Demand-
based Coscheduling of Parallel Jobs on Mul-
tipr ogrammed Multiprocessors. In Proc. IPPS’95
Workshop on Job Scheduling Strategies for Paral-
lel Processing, pages 63-75, Apr. 1995.

T. von Eicken, A. Basu, V. Buch, and W. Vo-
gels. U-Nnet: A User-Level Network Interface for
Parallel and Distributed Computing. In Proc. 15th
ACM Symp. on Operating System Principles, Dec.
1995.

T. von Eicken, D. E. Culler, S. C. Goldsten, and
K. E. Schauser. Active Messages: A Mechanism
for Integrated Communication and Computation.
In Proc. 19th Annual Int’l Symp. on Computer
Architecture, Dec. 1995.

Top 500 Supercomputer Sites. http://www.-
netlib.org/benchmark/top500.html.

B. S. Yoo and C. R. Das. A Fast and Efficient
Processor Management Scheme for k-ary n-cubes.
Journal of Parallel and Distributed Computing,
55(2):192-214, Dec. 1998.

