
SRPT Sheduling for Web ServersMor Harhol-Balter, Nikhil Bansal, Biana Shroeder, and Mukesh AgrawalShool of Computer Siene, Carnegie Mellon UniversityPittsburgh, PA 15213fharhol, nikhil, biana, mukeshg�s.mu.eduAbstrat. This note briey summarizes some results from two papers:[4℄ and [23℄. These papers pose the following question:Is it possible to redue the expeted response time of every re-quest at a web server, simply by hanging the order in whih weshedule the requests?In [4℄ we approah this question analytially via an M/G/1 queue. In [23℄we approah the same question via implementation involving an Apaheweb server running on Linux.1 IntrodutionMotivation and goalsA lient aessing a busy web server an expet a long wait. This delay is om-prised of several omponents: the propagation delay and transmission delay onthe path between the lient and the server; delays due to queueing at routers;delays aused by TCP due to loss, ongestion, and slow start; and �nally thedelay at the server itself. The aggregate of these delays, i.e. the time from whenthe lient makes a request until the entire �le arrives is de�ned to be the responsetime of the request.We fous on what we an do to improve the delay at the server. Researh hasshown that in situations where the server is reeiving a high rate of requests,the delays at the server make up a signi�ant portion of the response time [6℄,[5℄, [32℄.Our work will fous on stati requests only of the form \Get me a �le." Mea-surements [31℄ suggest that the request stream at most web servers is dominatedby stati requests. The question of how to servie stati requests quikly is thefous of many ompanies e.g., Akamai Tehnologies, and muh ongoing researh.Our ideaOur idea is simple. For stati requests, the size of the request (i.e. the time re-quired to servie the request) is well-approximated by the size of the �le, whihis well-known to the server. Thus far, no ompanies or researhers have madeuse of this information. Traditionally, requests at a web server are sheduled



12independently of their size. The requests are time-shared, with eah request re-eiving a fair share of the web server resoures. We all this FAIR sheduling(a.k.a. Proessor-Sharing sheduling). We propose, instead, unfair sheduling, inwhih priority is given to short requests, or those requests whih have short re-maining time, in aordane with the well-known sheduling algorithm Shortest-Remaining-Proessing-Time-�rst (SRPT). The expetation is that using SRPTsheduling of requests at the server will redue the queueing time at the server.The ontroversyIt has long been known that SRPT has the lowest mean response time of anysheduling poliy, for any arrival sequene and job sizes [41, 46℄. Despite this fat,appliations have shied away from using this poliy for fear that SRPT \starves"big requests [9, 47, 48, 45℄. It is often stated that the huge average performaneimprovements of SRPT over other poliies stem from the fat that SRPT unfairlypenalizes the large jobs in order to help the small jobs. It is often thought thatthe performane of small jobs annot be improved without hurting the large jobsand thus large jobs su�er unfairly under SRPT.2 Analysis of SRPT based on [4℄Relevant previous workIt has long been known that SRPT minimizes mean response time [41, 46℄. Ra-jaraman et al. showed further that the mean slowdown under SRPT is at mosttwie optimal, for any job sequene [19℄.Shrage and Miller �rst derived the expressions for the response times in anM/G/1/SRPT queue [42℄. This was further generalized by Pehinkin et al. todisiplines where the remaining times are divided into intervals [36℄. The steady-state appearane of the M/G/1/SRPT queue was obtained by Shassberger [40℄.The mean response time for a job of size x in an M/G/1/SRPT server is givenbelow:E[T (x)℄SRPT = �(R x0 t2f(t)dt+ x2(1� F (x)))2(1� � R x0 tf(t)dt)2 + Z x0 dt1� � R t0 yf(y)dywhere � is the average arrival rate and f(t) is the p.d.f. of the job size distribu-tion.The above formula is diÆult to evaluate numerially, due to its omplexform (many nested integrals). Hene, the omparison of SRPT to other poliieswas long negleted. More reently, SRPT has been ompared with other poliiesby plotting the mean response times for spei� job size distributions underspei� loads [39, 37, 43℄. These inlude a 7-year long study at University ofAahen under Shreiber et. al. These results are all plots for spei� job sizedistributions and loads. Hene it is not lear whether the onlusions based onthese plots hold more generally.



13It is often ited that SRPT may lead to starvation of large jobs [8, 47, 48,45℄. Usually, examples of adversarial request sequenes are given to justify this.However, suh worst ase examples do not reet the behavior of SRPT onaverage. The term \starvation" is also used by people to indiate the unfairnessof SRPT's treatment of long jobs. The argument given is that if a shedulingpoliy redues the response time of small jobs, then the response times for thelarge jobs would have to inrease onsiderably in aordane with onservationlaws. This argument is true for sheduling poliies whih do not make use of size,see the famous Kleinrok Conservation Law [28℄, [29, Page 197℄.Very little has been done to evaluate the problem of unfairness analytially.Reently, Bender et al. onsider the metri max slowdown of a job, as indiationof unfairness [8℄. They show with an example that SRPT an have an arbitrarilylarge max slowdown. However, max slowdown may not be the best metri forunfairness. One large job may have an exeptionally long response time in somease, but it might do well most of the time. A more relevant metri is the maxmean slowdown.The question of how heavy-tailed workloads might a�et SRPT's perfor-mane has not been examined.Our modelThroughout paper [4℄ we assume an M/G/1 queue where G is assumed to be aontinuous distribution with �nite mean and variane.It turns out that the job size distribution1 is important with respet to evalu-ating SRPT. We will therefore assume a general job size distribution. We will alsoonentrate on the speial ase of distributions with the heavy-tailed prop-erty (HT property). We de�ne the HT property to say that the largest 1%of the jobs omprise at least half the load. This HT property appears in manyreent measurements of omputing system workloads, inluding both sequentialjobs and parallel jobs [30, 24, 13, 26, 38, 44℄. In partiular the sizes of web �lesrequested and the sizes of web �les stored have been shown to follow a Paretodistribution whih possesses the HT property [7, 14, 16℄.Some results from [4℄In [4℄, we prove the following results, among others:{ Although it is well-known that SRPT sheduling optimizes mean responsetime, it is not known how SRPT ompares with Proessor-Sharing sheduling(a.k.a. FAIR sheduling) with respet to mean slowdown. We prove thatSRPT sheduling also outperforms Proessor-Sharing (PS) sheduling withrespet to mean slowdown for all job size distributions.1 Note: By \the size of a job" we mean the servie requirement of the request. In thease of stati web requests, this is proportional to the number of bytes in the request.



14{ Given that SRPT improves performane over PS both with respet to meanresponse time and mean slowdown, we next investigate the magnitude ofthe improvement. We prove that for all job size distributions with the HTproperty the improvement is very signi�ant under high loads. For example,for load 0:9, SRPT improves over PS with respet to mean slowdown by afator of at least 4 for all distributions with the HT property. As the loadapproahes 1, we �nd that SRPT improves over PS with respet to meanslowdown by a fator of 100 for all distributions with the HT property. Ingeneral we prove that for all job size distributions as the load approahesone, the mean response time under SRPT improves upon the mean responsetime under PS by at least a fator of 2 and likewise for mean slowdown.{ The performane improvement of SRPT over PS does not usually ome atthe expense of the large jobs. In fat, we observe via example that for manyjob size distributions with the HT property every single job, inluding ajob of the maximum possible size, prefers SRPT to PS (unless the load isextremely lose to 1).{ While the above result does not hold at all loads, we prove that no matterwhat the load, at least 99% of the jobs have a lower expeted responsetime under SRPT than under PS, for all job size distributions with the HTproperty. In fat, these 99% of the jobs do signi�antly better. We show thatthese jobs have an average slowdown of at most 4, at any load � < 1, whereastheir performane ould be arbitrarily bad under PS as the load approahes1. Similar, but weaker results are shown for general distributions.{ While the previous result is onerned only with 99% of the jobs, we alsoprove upper bounds on how muh worse any job ould fare under SRPT asopposed to PS for general distributions. Our bounds show that jobs neverdo too muh worse under SRPT than under PS. For example, for all job sizedistributions, the expeted response time under SRPT for any job is nevermore than 3 times that under PS, when the load is 0:8, and never morethan 5.5 times that under PS when the load is 0:9. In fat, if the load is lessthan half, then for every job size distribution, eah job has a lower expetedresponse time and slowdown under SRPT than under PS.{ The above results show an upper bound on how muh worse a job ould fareunder SRPT as opposed to PS for general job size distributions. We likewiseprove lower bounds on the performane of SRPT as ompared with PS forgeneral job size distributions.3 Implementation of SRPT based on [23℄Relevant previous systems workThere has been muh literature devoted to improving the response time of webrequests. Some of this literature fouses on reduing network lateny, e.g. byahing requests ([21℄, [11℄, [10℄) or improving the HTTP protool ([18℄, [34℄).Other literature works on reduing the delays at a server, e.g. by building more



15eÆient HTTP servers ([20℄, [35℄) or improving the server's OS ([17℄, [3℄, [27℄,[33℄).The solution we propose is di�erent from the above in that we only want tohange the order in whih requests are sheduled. In the remainder of this setionwe disuss only work on priority-based or size-based sheduling of requests.Almeida et. al. [1℄ use both a user-level approah and a kernel-level implemen-tation to prioritizing HTTP requests at a web server. The user-level approahin [1℄ involves modifying the Apahe web server to inlude a Sheduler proesswhih determines the order in whih requests are fed to the web server. Thekernel-level approah in [1℄ simply sets the priority of the proess whih handlesa request in aordane with the priority of the request. Observe that setting thepriority of a proess only allows very oarse-grained ontrol over the shedulingof the proess, as pointed out in the paper. The user-level and kernel-level ap-proahes in this paper are good starting points, but the results show that more�ne-grained implementation work is needed. For example, in their experiments,the high-priority requests only bene�t by up to 20% and the low priority requestssu�er by up to 200%.Another attempt at priority sheduling of HTTP requests whih deals speif-ially with SRPT sheduling at web servers is our own earlier work [15℄. Thisimplementation does not involve any modi�ation of the kernel. We experimentwith onnetion sheduling at the appliation level only. We are able to improvemean response time by a fator of lose to 4, for some ranges of load, but theimprovement omes at a prie: a drop in throughput by a fator of almost 2.The problem is that sheduling at the appliation level does not provide �neenough ontrol over the order in whih pakets enter the network. In order toobtain enough ontrol over sheduling, we are fored to limit the throughput ofrequests.Our approahIt's not immediately lear what SRPT means in the ontext of a web server. Aweb server is not a single-resoure system. It is not obvious whih of the webserver's resoures need to be sheduled. As one would expet, it turns out thatsheduling is only important at the bottlenek resoure. Frequently this bottle-nek resoure is the bandwidth on the aess link out of the web server. \On asite onsisting primarily of stati ontent, network bandwidth is the most likelysoure of a performane bottlenek. Even a fairly modest server an ompletelysaturate a T3 onnetion or 100Mbps Fast Ethernet onnetion."[25℄ (also or-roborated by [12℄, [2℄). There's another reason why the bottlenek resoure tendsto be the bandwidth on the aess link out of the web site: Aess links to websites (T3, OC3, et.) ost thousands of dollars per month, whereas CPU is heapin omparison. Likewise disk utilization remains low sine most �les end up inthe ahe. It is important to note that although we onentrate on the ase wherethe network bandwidth is the bottlenek resoure, all the ideas in this paper analso be applied to the ase where the CPU is the bottlenek | in whih aseSRPT sheduling is applied to the CPU.



16 Sine the network is the bottlenek resoure, we try to apply the SRPT al-gorithm at the level of the network. Our idea is to ontrol the order in whih theserver's soket bu�ers are drained. Reall that for eah (non-persistent) requesta onnetion is established between the lient and the web server. Correspond-ing to eah onnetion, there is a soket bu�er on the web server end into whihthe web server writes the ontents of the requested �le. Traditionally, the di�er-ent soket bu�ers are drained in Round-Robin Order, eah getting a fair shareof the bandwidth of the outgoing link. We instead propose to give priority tothose sokets orresponding to onnetions for small �le requests or where theremaining data required by the request is small. Throughout, we use the LinuxOS.Figure 1 shows data ow in standard Linux, whih employs FAIR sheduling.Data streaming into eah soket bu�er is enapsulated into pakets whih obtainTCP headers and IP headers. Finally, there is a single2 \priority queue" (transmitqueue), into whih all streams feed. This single \priority queue," an get as longas 100 pakets.
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Fig. 1. Data ow in Standard Linux | FAIR sheduling.Figure 2 shows the ow of data in Linux after our modi�ations: Insteadof a single priority queue (transmit queue), there are multiple priority queues.Priority queue i is only allowed to ow if priority queues 0 through i� 1 are allempty. We used 6 priority queues in our experiments.After modifying the Linux kernel, we next had to modify the Apahe webserver to assign priorities in aordane with SRPT. Our modi�ed Apahe de-termines the size of a request and then sets the priority of the orrespondingsoket by alling setsokopt. As Apahe sends the �le, the remaining size ofthe request dereases. When the remaining size falls below the threshold for theurrent priority lass, Apahe updates the soket priority.Lastly, we had to ome up with an algorithm for partitioning the requestsinto priority lasses whih work well with the heavy-tailed web workload.2 The queue atually onsists of 3 priority queues, a.k.a. bands. By default, however,all pakets are queued to the same band.
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feedFig. 2. Flow of data in Linux with priority queueing (2 priorities shown)The ombination of (i) the modi�ations to Linux, (ii) the modi�ations tothe Apahe web server, and (iii) the priority algorithm allows us to implementSRPT sheduling. Details on eah of these three omponents are provided in[23℄.A very simple experimental arhiteture is used to run our tests. It involvesonly two mahines eah with an Intel Pentium III 700MHz proessor and 256MBRAM, running Linux 2.2.16, and onneted by a 10Mb/se full-duplex Ethernetonnetion. The Apahe web server is run on one of the mahines. The othermahine (referred to as the \lient mahine") hosts 200 or so (simulated) liententities whih send requests to the web server.The lient's requests are taken from a 1-day trae from the Soer WorldCup 1998, from the Internet TraÆ Arhive [22℄. The 1-day trae ontains 4.5million HTTP requests, virtually all of whih are stati. The trae exhibits astrong heavy-tailed property with the largest < 3% of the requests making up> 50% of the total load.This request sequene is ontrolled so that the same experiment an be re-peated at many di�erent server loads. The server load is the load at the bot-tlenek devie { in this ase the network link out of the web server. The loadthus represents the fration of bandwidth used on the network link out of theweb server (for example if the requests require 8Mb/se of bandwidth, and theavailable bandwidth on the link if 10Mb/se, then the network load is 0:8).Some results from [23℄Our experiments yield the following results:{ SRPT-based sheduling dereases mean response time in our LAN setup bya fator of 3 { 8 for loads greater than 0:5.{ SRPT-based sheduling helps small requests a lot, while negligibly penalizinglarge requests. Under a load of 0:8, 80% of the requests improve by a fator of10 under SRPT-based sheduling. Only the largest 0:1% of requests su�er aninrease in mean response time under SRPT-based sheduling (by a fatorof only 1.2).{ The variane in the response time is far lower under SRPT as ompared withFAIR, in fat two orders of magnitude lower for most requests.
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