
Performane Evaluationwith Heavy Tailed Distributions(Extended Abstrat)?Mark E. CrovellaDepartment of Computer SieneBoston University111 Cummington St.Boston MA USA 02215rovella�s.bu.edu1 IntrodutionOver the last deade an important new diretion has developed in the perfor-mane evaluation of omputer systems: the study of heavy-tailed distributions.Loosely speaking, these are distributions whose tails follow a power-law with lowexponent, in ontrast to traditional distributions (e.g., Gaussian, Exponential,Poisson) whose tails deline exponentially (or faster). In the late '80s and early'90s experimental evidene began to aumulate that some properties of om-puter systems and networks showed distributions with very long tails [7, 28, 29℄,and attention turned to heavy-tailed distributions in partiular in the mid '90s[3, 9, 23, 36, 44℄.To de�ne heavy tails more preisely, let X be a random variable with u-mulative distribution funtion F (x) = P [X � x℄ and its omplement �F (x) =1� F (x) = P [X > x℄. We say here that a distribution F (x) is heavy tailed if�F (x) � x�� 0 < � < 2 (1)for some positive onstant , where a(x) � b(x) means limx!1 a(x)=b(x) = 1:This de�nition restrits our attention somewhat narrowly to distributions withstritly polynomial tails; broader lasses suh as the subexponential distributions[19℄ an be de�ned and most of the qualitative remarks we make here apply tosuh broader lasses.Heavy tailed distributions behave quite differently from the distributionsmore ommonly used in performane evaluation (e.g., the Exponential). In par-tiular, when sampling random variables that follow heavy tailed distributions,the probability of very large observations ourring is non-negligible. In fat,under our de�nition, heavy tailed distributions have in�nite variane, reet-ing the extremely high variability that they apture; and when � � 1, thesedistributions have in�nite mean.? This is a revised version of a paper originally appearing in Leture Notes in ComputerSiene 1786, pp. 1{9, Marh 2000.



22 EvideneThe evidene for heavy-tailed distributions in a number of aspets of omputersystems is now quite strong. The broadest evidene onerns the sizes of dataobjets stored in and transferred through omputer systems; in partiular, thereis evidene for heavy tails in the sizes of:{ Files stored on Web servers [3, 9℄;{ Data �les transferred through the Internet [9, 36℄;{ Files stored in general-purpose Unix �lesystems [25℄; and{ I/O traes of �lesystem, disk, and tape ativity [21, 38{40℄This evidene suggests that heavy-tailed distributions of data objets arewidespread, and these heavy-tailed distributions have been impliated as anunderlying ause of self-similarity in network traÆ [9, 30, 35, 44℄.Next, measurements of job servie times or proess exeution times ingeneral-purpose omputing environments have been found to exhibit heavy tails[17, 23, 28℄.A third area in whih heavy tails have reently been noted is in the distribu-tion of node degree of ertain graph strutures. Faloutsos et al. [14℄ show thatthe inter-domain struture of the Internet, onsidered as a direted graph, showsa heavy-tailed distribution in the outdegree of nodes. These studies have alreadyinuened the way that Internet-like graph topologies are reated for use in sim-ulation [32, 26℄. Another study shows that the same is true (with respet to bothindegree and outdegree) for ertain sets of World Wide Web pages whih forma graph due to their hyperlinked struture [1℄; this result has been extended tothe Web as a whole in [6℄.Finally, a phenomenon related to heavy tails is the so-alled Zipf 's Law [45℄.Zipf's Law relates the \popularity" of an objet to its loation in a list sortedby popularity. More preisely, onsider a set of objets (suh as Web servers,or Web pages) to whih repeated referenes are made. Over some time interval,ount the number of referenes made to eah objet, denoted by R. Now sortthe objets in order of dereasing number of referenes made and let an objet'splae on this list be denoted by n. Then Zipf's Law states thatR = n��for some positive onstants  and �. In its original formulation, Zipf's Law set� = 1 so that popularity (R) and rank (n) are inversely proportional. In pratie,various values of � are found, with values often near to or less than 1. Evidenefor Zipf's Law in omputing systems (espeially the Internet) is widespread [2,13, 18, 33℄; a good overview of suh results is presented in [5℄.3 Impliations of Heavy TailsUnfortunately, although heavy-tailed distributions are prevalent and importantin omputer systems, their unusual nature presents a number of problems forperformane analysis.



3The fat that even low-order distributional moments an be in�nite meansthat many traditional system metris an be unde�ned. As a simple example,onsider the mean queue length in an M=G=1 queue, whih (by the Pollazek-Khinhin formula) is proportional to the seond moment of servie time. Thus,when servie times are drawn from a heavy-tailed distribution, many propertiesof this queue (mean queue length, mean waiting time) are in�nite. Observationslike this one suggest that performane analysts dealing with heavy tails may needto turn their attention away from means and varianes and toward understandingthe full distribution of relevant metris. Most early work in this diretion hasfoused on the shape of the tail of suh distributions (e.g., [34℄).Some heavy-tailed distributions apparently have no onvenient losed-formLaplae transforms (e.g., the Pareto distribution), and even for those distribu-tions possessing Laplae transforms, simple systems like the the M=G=1 mustbe evaluated numerially, and with onsiderable are [41℄.In pratie, random variables that follow heavy tailed distributions are har-aterized as exhibiting many small observations mixed in with a few large ob-servations. In suh datasets, most of the observations are small, but most of theontribution to the sample mean or variane omes from the rare, large obser-vations. This means that those sample statistis that are de�ned onverge veryslowly. This is partiularly problemati for simulations involving heavy tails,whih many be very slow to reah steady state [12℄.Finally, beause arbitrarily large observations an not be ruled out, issues ofsale should enter in to any disussion of heavy tailed models. No real systeman experiene arbitrarily large events, and generally one must pay attentionto the pratial upper limit on event size, whether determined by the timesaleof interest, the onstraints of storage or transmission apaity, or other system-de�ned limits. On the brighter side, a useful result is that it is often reasonableto substitute �nitely-supported distributions for the idealized heavy-tailed dis-tributions in analyti settings, as long as the approximation is aurate over therange of sales of interest [16, 20, 22℄.4 Taking Advantage of Heavy TailsDespite the hallenges they present to performane analysis, heavy tailed distri-butions also exhibit properties that an be exploited in the design of omputersystems. Reent work has begun to explore how to take advantage of the preseneof heavy tailed distributions to improve omputer systems' performane.4.1 Two Important PropertiesIn this regard, there are two properties of heavy tailed distributions that o�erpartiular leverage in the design of omputer systems. The �rst property is re-lated to the fat that heavy tailed distributions show delining hazard rate, andis most onisely aptured in terms of onditional expetation:E[X jX > k℄ � k



4when X is a heavy tailed random variable and k is large enough to be \in thetail." We refer to this as the expetation paradox, after [31, p. 343℄; it says thatif we are making observations of heavy-tailed interarrivals, then the longer wehave waited, the longer we should expet to wait. (The expetation is unde�nedwhen � � 1, but the general idea still holds.) This should be ontrasted withthe ase when the underlying distribution has exponential tails or has boundedsupport above (as in the uniform distribution); in these ases, eventually onealways gets to the point where the longer one waits, the less time one shouldexpet to ontinue waiting.The seond useful property of heavy tailed distributions we will all themass-ount disparity. This property an be stated formally as [19℄:limx!1 P [X1 + :::+Xn > x℄P [max(X1; :::; Xn) > x℄ = 1 for all n � 2whih is the ase when the Xi are i.i.d. positive random variables drawn from aheavy-tailed distribution. This property states that when onsidering olletionsof observations of a heavy-tailed random variable, the aggregated mass ontainedin the small observations is negligible ompared to the largest observation indetermining the likelihood of large values of the sum.In pratie this means that the majority of the mass in a set of observationsis onentrated in a very small subset of the observations. This an be visualizedas a box into whih one has put a few boulders, and then �lled the rest of theway with sand. This mass-ount disparity means that one must be areful in\optimizing the ommon ase" [27℄. The typial observation is small; the typialunit of work is ontained in a large observation.This disparity an be studied by de�ning the mass-weighted distributionfuntion: Fw(x) = R x�1 u dF (u)R1�1 v dF (v) (2)and omparing Fw(x) with F (x). Varying x over its valid range yields a plot ofthe fration of total mass that is ontained in the fration of observations lessthan x: An example of this omparison is shown in Figure 1. This �gure showsFw(x) vs. F (x) for the Exponential distribution, and for a partiular heavy-taileddistribution. The heavy-tailed distribution is hosen to orrespond to empirialmeasurements of �le sizes in the World Wide Web [4℄; it has � = 1:0. Sinethe denominator in (2) is in�nite for heavy tailed distributions with � � 1, theatual distribution used has been trunated to span six orders of magnitude |whih is reasonable for �le size distributions (whih an range in size from bytesto megabytes).The �gure shows that for the Exponential distribution, the amount of massontained in small observations is roughly ommensurate with the fration oftotal observations onsidered; i.e., the urve is not too far from the line y = x.On the other hand, for the heavy tailed distribution, the amount of mass is notat all ommensurate with the fration of observations onsidered; about 60% ofthe mass is ontained in the upper 1% of the observations! This is onsistent
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Fig. 1. Total Mass as a Funtion of Smallest Observationswith results in [37℄ showing that 50-80% of the bytes in FTP transfers are dueto the largest 2% of all transfers.4.2 Exploiting The Heavy Tail PropertiesOne these properties are understood, they an be exploited in a number of waysto improve system performane. This setion summarizes some (though not all)reent attempts to do this.Load Balaning in Distributed Systems In some distributed systems, tasks anbe pre-empted and moved from one node to another, whih an improve loadbalane. However, the ost of migration is not trivial and an outweigh perfor-mane gains from improved load balane if not used arefully. In [23℄, the authorsshow that previous assessments of the potential for pre-emptive migration hadmainly used exponential tasks size assumptions and onluded that the potentialgains from task migration were small. However, one the task size distributionis understood to be heavy-tailed, two bene�ts emerge: 1) the mass-ount dis-parity means that relative few tasks need to be migrated to radially improveload balane; and 2) the expetation paradox means that a task's lifetime todate is a good preditor of its expeted future lifetime. Taken together, thesetwo bene�ts form the foundation for a enlightened load balaning poliy thatan signi�antly improve the performane of a wide lass of distributed systems.When pre-emption is not an option, understanding of heavy tailed distribu-tions an still inform load balaning poliies. The question in these systems is\whih queue should an arriving task join?" In the ase when servie at the nodesis FCFS, and knowledge is available about the size of the arriving task, the bestpoliy is ommonly assumed to be joining the queue with the shortest expeted



6delay [43℄ although this is known to be best only for task size distributions withinreasing failure rate. In [24℄, the authors show a better poliy for the ase inwhih task sizes have a heavy-tailed distribution, whih they all SITA-E. Theidea is to assign an inoming task to a queue based on the inoming task's size.Eah queue handles tasks whose sizes lie in a ontiguous range, and ranges arehosen so as to equalize load in expetation. This poliy is shown to signi�antlyoutperform shortest-expet-delay assignment, when 1 < � � 2. The bene�tsof the poliy arue primarily from the the mass-ount disparity in task sizes:grouping like tasks together means that the vast majority of tasks are sent toonly a few queues; at these queues, task size variability is dramatially reduedand so FCFS servie is very eÆient.Finally, in another paper [8, 11℄, the authors show that in the same setting(distributed system of FCFS servers, task sizes are heavy tailed, and inomingtask sizes are known) the expeted slowdown metri is optimized by poliies thatdo not balane load. (Slowdown is de�ned as a job's waiting time in queue dividedby its servie demand.) This is possible beause of the mass-ount disparity; whenmost tasks are sent to only a few queues, reduing the load at those queuesdereases the slowdown experiened at those queues. In this ase, most tasksexperiene dereased slowdown, while the relatively few large tasks experieneonly slightly inreased slowdown. In expetation, slowdown is dereased.Sheduling in Web Servers In single-node systems, attention has been given tothe sheduling issue. Most systems use a variant of timesharing to shedule tasks,possibly inorporating multilevel feedbak; this is e�etive when task sizes areunknown. In [22℄, the authors argue that Web servers are in a unusual position;they an estimate task size upon task arrival beause, for stati Web pages,the �le size is known at request time. As a result, they argue for the use ofshortest-remaining-proessing-time (SRPT) sheduling within Web servers. Onesigni�ant drawbak of SRPT is that it improves the response time of small tasksat the expense of large tasks; however the authors argue that this is aeptablewhen tasks follow heavy-tailed distributions suh as are enountered in the Web.The reason is that the mass-ount disparity means that under SRPT, althoughlarge tasks are interrupted by small tasks, the small tasks represent only a minorfration of total system load. Thus the great majority of tasks have their responsetime improved, while the relatively few large tasks are not seriously punished. In[10℄ the authors desribe an atual Web server implemented to use this shedulingpoliy. The paper shows evidene that the new server exhibits mean responsetimes 4-5 times lower than a popularly deployed server (Apahe); and that theperformane impats on large tasks are relatively mild.Routing and Swithing in the Internet In Internet traÆ management, a numberof improved approahes to routing and swithing have been proposed, based onthe observation that the lengths of bulk data ows in the Internet exhibit heavytails.One promising routing tehnique is to use swithing hardware, by reatingshortuts (temporary iruits) for long sequenes of pakets that share a ommon



7soure and destination. Shortuts provide the bene�ts of fast swith-based rout-ing, at the expense of network and swith overhead for their setup. The authorsin [15℄ argue that Web traÆ an be eÆiently routed using this tehnique. Theirresults rely on the mass-ount disparity, showing that the majority of the bytesan be routed by reating shortuts for only a small fration of all data ows.They show that in some settings, a setup threshold of 25 pakets (the numberof same-path pakets to observe before reating a swithed onnetion) is suf-�ient to eliminate 90% of the setup osts while routing more than 50% of thebytes over swithed iruits. The hoie of threshold impliitly makes use of theexpetation paradox: longer thresholds an be used to o�set larger setup osts,sine longer thresholds identify ows whose expeted future length is longer aswell.Another proposed routing tehnique is load-sensitive routing. Load sensitiverouting attempts to route traÆ around points of ongestion in the network;urrent Internet routing only makes use of link state (up or down). Unfortunately,load-sensitive routing an be expensive and potentially unstable if applied toevery routing deision. However, the authors in [42℄ show that if applied onlyto the long-lived ows, it an be eÆient and onsiderably more stable. Thesuess of this tehnique relies on the heavy tailed distribution of Internet ows:the mass-ount disparity means that a large fration of bytes an be routed byrerouting only a small fration of the ows; and the expetation paradox allowsthe poliy to observe a ow for some period of time to lassify it as a long ow.AknowledgmentsThe author is grateful to Mor Harhol-Balter, with whom some of the ideas inthis paper were developed and lari�ed. This work was supported by NSF grantsCCR-9501822, CCR-9706685, and by grants from Hewlett-Pakard Laboratories.Referenes1. R�eka Albert, Hawoong Jeong, and Albert-L�aszl�o Barab�asi. Diameter of the worldwide web. Nature, 401:130{131, 1999.2. Virg��lio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira. Char-aterizing referene loality in the WWW. In Proeedings of 1996 InternationalConferene on Parallel and Distributed Information Systems (PDIS '96), pages92{103, Deember 1996.3. Martin F. Arlitt and Carey L. Williamson. Internet web servers: Workload hara-terization and performane impliations. IEEE/ACM Transations on Networking,5(5):631{645, 1997.4. Paul Barford and Mark E. Crovella. Generating representative Web workloadsfor network and server performane evaluation. In Proeedings of Performane'98/SIGMETRICS '98, pages 151{160, July 1998.5. Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Sott Shenker. Web ahingand zipf-like distributions: Evidene and impliations. In Proeedings of INFOCOM'99, pages 126{134, 1999.
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