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In this paper, we show how apgication scheduling can be used to
reduce the turn-around time of supercomputer jobs. Our approach
focuses on the use of SA, an AppLeS apjication scheduler, to
adapivdy aaft the request to be submitted to the supercomputer
based onthe airrent state of the system. We demonstrate that SA
significantly improves a job's turn-aroundtime in a variety of sce
narios. We also identify how the state of the system, the characteris-
tics of the job, and the qudity of the information made avail able to
SA influenceits performance

1. Introduction

In the last decale, parallel supercomputers have emerged as a key platform for
high performance mmputation. In order to promote the performance of fine-grained par-
alel applicaions, such machines are almost always gaceshared. Eac job has dedicated
access to some number of the processors that compose the supercomputer. We therefore
say that ead job runs on its own partition.

In such an environment, an arriving job may not find enough procesors to exe-
cute immediately. When this happens, the ariving job waits until enough resources be-
come available. More predsely, jobs that cannot start immediately are placel in a wait
gueue, which is controlled by the supercomputer scheduler. The supercomputer sched-
uler’s main task is to dedde which job in the wait queue is the next to run. In order to
make this decision, it typicdly requires each job to spedfy n, the number of processors it
neals, and t;, the time requested for exeaution of the job.

However, many parallel jobs are moldale, i.e. they can run over partitions of dif-
ferent sizes. When a moldable job j isto be submitted, the user has to dedde which n (out
of the set of possible partition sizes) is to be used. The doice of n isimportant because it
affedsj’s turn-aroundtime, i.e. the time elapsed between j’s submisson and its comple-
tion. The turn-around time is calculated by adding wait time and exeaition time. In prin-
ciple, the user is able to evaluate the effed of n on the exeaution time. It typically dimin-
ishes as n grows (at least until a cetain value njnit). However, the user cannot in general
estimate the wait time becaise it depends on n, t;, the supercomputer scheduler, and the
current load of the system.



In this paper, we introduce aperformance-efficient strategy for choosing n, the
number of procesors ajob requests. This grategy is implemented by SA (Supercomputer
AppLeS). SA is an AppLeS [Berman 1994 application scheduler that adaptively crafts
the request that submits a given job to the supercomputer. SA uses knowledge of how the
supercomputer scheduler works, together with information that describes the arrent state
of the system, to adaptively choose which partition sizeto request. We show that SA sig-
nificantly improves a job’'s turn-around time, and identify the fadors that influence the
performance atieved by SA. We also establish the maximum improvement that can po-
tentially be adieved by adaptively seleding which request to submit to the
supercomputer. Under most scenarios, SA delivers a performance improvement that is
close to such a maximum.

This paper is organized as follows. Sedion 2 describes sipercomputer scheduling
and the SA application scheduler. It aso states the reseach questions we intend to ad-
dressin this paper. Section 3 describes the models and metrics used to investigate these
reseach questions. Sedion 4 presents and analyzes the results. Sedion 5 sketches direc
tions for future reseach, Sedion 6 discusses related work, and Section 7 concludes this
paper by summarizing its results.

2. Scheduling Jobs on Supercomputers

In order to run a job j on a parallel supercomputer, the user submits a request to
the supercomputer scheduler that spedfies the resources to be allocated to j. Such a re-
guest includes n, the number of procesrsto be allocaed to j, and t;, an upper bound on
the exeaution time of j. Job j runs for te < t;. The supercomputer scheduler killsj if it runs
longer than t;, therefore enforcing the upper bound.

Job j runs with dedicaed accessto n procesrs for t; time units. However, it
might have to wait until such resources beamme available. Let t,, denote the time elapsed
between j’s sibmisson and its gart (i.e., the time j waits in the system’s queue). Define
j’sturn-aroundtime® as t; = ty + te. Note that t; corresponds to the time elapsed between
j’s submisson and its completion. It thus captures the user’s view of how long the system
takes to run j. Reducing the turn-around time t; results in faster response to the user and
hence is a natural performance optimization god. In fad, reducing t; isnormally seen as a
key goal for supercomputer schedulers. Here we take the complementary approach of
trying to reducethe turn-around time t; at the goplication level.

The turn-around time t; depends on the aurrent state of the system, but it can be
influenced by the request (n, t;) that submits j for exeaution. Jobs frequently are mold-
able, i.e. they can run on partitions of different sizes. This paper explores how to seled
which partition size to request in order to improve a moldable job’s turn-around
tfime.

The exeaution time t. generally deaeases with the number of procesors n allo-
caed to the job. Of course eat job has a limit njmi; of how many processors it can effec
tively use, i.e. te levels off or even increases for n > njnit. But since there is no advantage
in requesting N > N, We don't consider such requests here. Note that increasing n might
result in a larger wait time t,,, becaise more resources have to be available for the job to

! Other authors sometimes refer to turn-around time as servicetime or resporse time.



start. Since t, depends on the aurrent state of the supercomputer, the best request to
submit cannot be statically determined.

We use SA (Supercomputer AppLeS) to seled which n (and corresponding t;)
should be used to submit a moldable job to the supercomputer. SA is based on the Ap-
pLeS (Application-Level Scheduling) methodology [Berman 1994 [Berman 1997. Ap-
pLeS schedulers use gplicaion-specific and dynamic information to craft an adaptive
application schedule that can leverage aurrent and forecasted resource @pability.

SA determines the partition size n to be requested based information about the d-
gorithm used by the supercomputer scheduler, the aurrrent state of the system, and esti-
mates for the exeaution times of all jobs in the system. Using this information, SA simu-
lates the submisson of all possible requests and then selects the one that delivers the
smallest turn-around time. When (i) the exeaution time estimates of all jobs are perfed,
and (ii) the supercomputer scheduler does not allow arriving jobs to affed existing ones,
this approach optimally seleds the partition size for a given job. However, while &
sumption (ii) may be true, in pradice aumption (i) is not. SA uses requested times as
estimates for the jobs exeaution times, making it usable in pradice but without the guar-
anteeof optimality.

Thiswork investigates, under common supercomputer usage scenarios.

* The performance a&hieved by SA.

» The maximum improvement that can be ahieved by adaptively seleding the

partition size.

* What fadorsinfluence SA and the maximum improvement.

3. Modelsand Metrics

We use simulations to tadle the questions gated above. This dion describes (i)
the models used for the supercomputer and the job, (ii) the information made available to
SA, and (iii) our performance citeria. Our goal is to reproduce arealistic environment,
while caturing enough detail to answer our research questions. To ensure the redism of
the environment, we rely as much as possible on real-life submisson logs.

3.1. The Supercomputer M odel

In order to smulate a supercomputer, we need to define its sheduler, its size
(how many proces9r it has), and its workload (the stream of jobs it is going to process.
Consider a supercomputer that uses conservative backfilli ng [Feitelson 1998]. Conser-
vative badfilling wses an allocation list to maintain, for any given time, which proces-
sors are dready committed to which jobs. Arriving jobs are put in the first “slot” in which
they fit. Whenever an application finishes using less time than it requested, conservative
bad«filling traverses the wait queue (in submisson order) and “promotes’ the first job
that fits in the just-made-available slot. Of course, this may crede another avail able slot
that is backfilled in the same way. The process $ops only when no more bad«filling can
be done. For a more detailed description of conservative badfilling, we refer the reader
to [Feitelson 1998 and [Cirne 1999.

We employ conservative badfilling as an idedized representative of today’s
supercomputer schedulers. In pradice the behavior of supercomputer schedulers varies
from machine to machine. Even when the same scheduling software is used (e.g., Easy
[Lifka 1995, Maui [Maui], and LSF [Platform]), ead site establishes its own policies,



causing the behavior of their schedulers to differ. However, aimost everywhere badfill-
ing is used to reduce unnecessary idle time. In addition, previous reseach has shown
conservative badfilling to be agood scheduling approac [Feitelson 1998]. Note also
that conservative badfilling guarantees that arriving jobs don't affed existing ones.

The state of a onservative backfilling scheduler can be summarized by the avail -
ahility list. An availability list contains the number of free processors a machine has over
time. For example: [(from time O, to time 10, 15 processors are available), (from time 10, to
time 50, 80 processors are available), (from time 50, to time 210, O processors are avail-
able), (from time 210, to «, 128 processors are available)]. The availability list allows for a
very fast implementation of SA, which doesn’'t simulate all possible requests to choose
the best, but adhieves the same result. Such an implementation evaluates all possible re-
quests by traversing the availability list. Due to spacelimitations and the fad that both
implementation of SA produce the same result, we refer the reader to [Cirne 1999 for a
thorough description of SA based on the availabil ity list.

For the size of the supercomputer and the workload it processes, we use the size
of real-life supercomputers as well asthe logs of the jobs submitted to them. We decided
to use logs because supercomputer behavior is difficult to charaderize [Downey 1999.
The drawback of this approac is that we might be misled by some phenomenon that is
particular to the site alog originates. We minimize this risk by using four distinct
supercomputer logs. The following table summarizes the logs used in this reseach. The
fad that all logs come from an SFP2 machine is not significant. The results presented here
would apply to any distributed-memory parallel computer that serves multiple users via
spacesharing.

Name | Machine Processors | Jobs | Period
ANL | Argonne National Labo- 120| 5921| Nov 1996
ratory SP2 Dec1996
CTC | Cornell Theory Center 430| 60196| Jul 1996
SP2 Feb 1997
KTH | Swedish Royal Institute 100| 25954 | Nov 1996
of Technology SP2 Aug 1997
SDSC | San Diego Super- 128| 19405| Jan 1999
computer Center SP2 May 1999

Table 1 —Workloads used in this reseach

SA makes its cheduling decisions based on the airrent state of the system, and
thus we exped the system state to influence the performance it achieves. We summarize
the state of the supercomputer by itsrelativeloadN = J/ P, where J is the number of jobs
currently in the system (both running and waiting), and P is the total number of proces-
sors in the supercomputer (see Table 1). J is a simple way to gauge the load of the
supercomputer. Dividing it by P fadorsin the size of the supercomputer.

3.2. TheJob Model

SA targets moldable jobs. For ead job it schedules, SA receives from the user
multiple requests that could be used to submit the job. From the set of possible requests,
SA determines which is the best one to submit aceording to the aurrent state of the



supercomputer. Unfortunately for our study, the submisson logs contain only one request
per job (namely, the one submitted by the user).

We mpe with this limitation by using a model of the speed-up of parallel jobs de-
veloped by Downey [Downey 19974]. Speed-up measures how much faster a job j that
uses n processors exeautes than exeaution using only one processor. Symbolically: S(n) =
te(2) / tg(n). If we know the speed-up function §(n) for our jobs, we can generate multiple
possible requests for them. Downey’s geedup model uses two parameters: A (the aver-
age parallelism) and o (an approximation of the coefficient of variance in parall elism).
The speed-up of ajob isthen given by:

< An (0 <) 0@An< A)
A+o(n-1)/2
An (c<1)O(A<n<2A-1)
l&(A-1/2)+n(l-o/2)
S(nA0) =D A (c<1)O(n=2A-1)
MA(o +]) (c21)0(1<n< A+ Ac—0)
o(n+A-1)+A
A (2D 0= A+Ac-0)

Intuitively speaking, A establishes how many procesors a job can use. The larger
the value of A, the more processors the job can use. Figure 1 exemplifies how A affeds
the speed-up of ajob. It fixes 0 = 1 and shows eed-up curves for different values of A.

Downey’s speed-up for different values ofA (o = 1)
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Figure 1 — Downey’'s geed-up function S(n, A, o) for different values of A (witho = 1)



0, on the other hand, determines how close to linea the speed-up is. The smaller
the o, the doser to linear the speed-up is. Figure 2 explores the dfect of o on the speed-
up behavior. It fixes A = 60 and displays peed-up curves for different values of o.
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Figure 2 — Downey’'s eead-up function S(n, A, o) for different values of o (with A = 60)

Since we ae interested in understanding the performance of SA in a variety of
conditions, we vary the values of A and 0. We uniformly choose A in the interval [2, 200
and o inthe interval [0, 2]. This gives large mverage over a wide range of parallel jobs.
Moreover, experimental determination of values for A and o have produced values in
these ranges [Downey 19974].

From the workload we can obtain ny, the number of processors requested by the
user, and te(ny), the job’s exeaution time with n, procesors. Note that A, o, n,, and te(ny)
uniquely determine the sequential exeaution time of the job L = te(1) = t.(n,) [(8(n,, A,0).
L represents how “large” ajob is. The greder the L, the more processing is required to
complete the job.

With A, o and L, we can determine the exeaution time of the job running over an

arbitrary number of procesorsn by t.(n) = ﬁ A, o, and L therefore daraderize
) 10
the job being scheduled by SA.

3.3. Information Availableto SA

Many jobs have mnstraints on how many processors they can use. For example,
jobsthat processbidimensional data many times require aperfed square number of proc-
esors. Moreover, the user has to come up with the submisson choicesto feed SA. These
fadors s1ggest that oftentimes SA will have only a small number of choices to choose



from. Therefore, we focus on the caes in which jobs are presented to SA with 3, 5, or 7
possible requests.

Another important asped of the information available to SA is how far apart the
choices are. Considering possible partition sizes of 40, 41, and 42 may be very different
than having 1Q 40, and 70 Hence we also investigate the impact of the range of choices
on SA. We mnsider choices equally spacal in the range [Nmin, Nmax], Where Nmin IS uni-
formly chosen between 1 and ny, and Nmax is uniformly chosen between ny, and Niiit. Niimit
is the largest number of procesrs a job can use, defined to be the smaller of (i) the
number of procesors in the machine, and (ii) the largest n before the Downey’s eeal up
curve levels off.

Finally, accuracy represents a qualitative asped of the information SA receives.
Users estimates are not perfed. We define the acairacy a as the fradion of the requested
time that was indeed used by ajob. That is, a = te / t;. Since jobs cannot run longer then
the time they’ ve request, a is always a number between 0 and 1 In our smulations, a is
uniformly distributed between 0 and 1, allowing s to investigate the impact of both good
and poor information.

The number of choices, the size of their range (Nmax — Nmin), and the acairacy a are
the factorsthat charaderizethe information made available to SA.

3.4. The PerformanceCriteria

Turn-around time is a useful metric for asingle execution of a job. However mul-
tiple exeautions are necessary to draw satistically valid conclusions, as well as to cover
the spaceof parameters we ae investigating. Hence, we need a performance metric that
summarizes turn-around times over multiple experiments.

Many reseachers have used the mean to combine multiple turn-around times into
asingle metric [Aida 1998 [Cirne 1999 [Feitelson 1998&)] [Krallmann 1999. However,
the mean turn-aroundtime can be dominated by large jobs [Feitelson 1998]. For exam-
ple, improving a job’s turn-around time from 20000 semnds to 18000seconds (a 10%
improvement) reduces the mean by 2000/ T, while improving another job's turn-around
time from 200 seconds to 100 seconds (a 50% improvement) reduces the mean by 100/
T, where T is the total number of jobs.

Some authors have aldressed this problem by using the sowdown s = t; / te in-
stead of the turn-around time [Feitelson 1998 [Feitelson 1998b] [Zotkin 1999. Slow-
down provides a measure that is relative to the job’s execution time and hence large jobs
are not overemphasized in the mean slowdown. However, slowdown is not a metric that
adequately represents the user’s notion of performance. In our case, in which there ae
multiple possible requests to submit, one can often improve the slowdown by seleding
Nmin. This results in a large te, which often leals to a small slowdown s. The problem is
that such a strategy can (and often does) increase the turn-around time.

The geometric mean equally rewards the improvement in the turn-around time of
geomean(X,..., X,)

geomea(y; ..., ¥,)

= geomean(ﬁ,...,ﬁ). Unlike the aithmetic mean, the geometric mean does not favor
1 yn
large jobs. For this reason, the geometric mean is used to aggregate the exeaution time of

any job. In fad, reall that geomean(x,,...,x,) =%/ x[.X, and thus




the programs that compose the Spec benchmark [SPEC]. We hence use the geometric
mean of the turn-around times as our performance aiteria.

4. Results

We ran 56000simulations: 14000 @ workload. In eat simulation, we randomly
chose one job j, generated A, 0, Nmin, Nmax, ad a as described above, and simulated five
strategies for submitting j:

i. Using the user’ srequest, i.e. without SA.

ii. Using SA with 3 choices for partition sizes.

iii . Using SA with 5 choices for partition sizes.

iv. Using SA with 7 choices for partition sizes.

v. Best choice i.e. we simulate the submisson of all 7 choices offered to SA and

report the best turn-around time among them.

While it is not generally possible to determine the best choicein pradice strategy
v establishes the best performance SA can achieve in our experiments, offering a bound
on the maximum improvement achievable by adaptively crafting requests to a
supercomputer. In order to better assessthe maximum improvement, we define the rela-
tive performancefor strategiesii to v astheratio of the turn-around obtained by the user’s
request to the turn-around time achieved the strategy in consideration. The relative per-
formance depicts how many times SA improved on the turn-around time. In particular,
the relative performance of the best choice expresses the maximum improvement poss-
ble in our experiments.

Table 2 shows the overall results for the 56000 smulations. Notice the high
maximum improvement of adaptively seleding supercomputer requests. The turn-around
time of best choiceisaround athird of the turn-around time atained by the user’s choice
yielding a relative performance of 2.98. Furthermore, SA is able to deliver turn-around
times close to the best choice With 7 choices, SA’s relative performance reaches 2.78.
Even with 3 choices, SA delivers a substantial improvement: Its turn-around time is less
than helf of the turn-around time of user’s choice

User’'s SA with | SA with | SA with | Best
choice 3 choices | 5 choices | 7 choices | choice
Geometric Mean of the 12599 6002 5253 4533 4236
Turn-Around Time (sec)
Relative Performance |  ----- 2.10 2.40 2.78 2.98

Table 2 — SA overall results

In the following subsedions, we investigate how SA and the maximum improve-
ment are dfeded by the various parameters that describe the system, the job, and the in-
formation received by SA.

4.1. Results by the State of the System

Figure 3 shows the impad of the relative load N on the results. The experiments
are grouped in deciles acording to N. Therefore, eat data point in the graph averages
around 5600 experiments. The values of N on the x-axis show the boundaries of the
deciles. That is, the values that surround a given data point establish the range of values



averaged by such a point. Unless sated atherwise, the following gaphs display the data
in the same way.
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Figure 3 — Results by N, the relative load of the system

As expected, the turn-around time increases with N. This is becaise the more jobs
there ae in the system, the longer an arriving job has to wait in the queue. The relative
performance provides a less intuitive result. It deaeases as N increases for both best
choice and SA. This suggests that adaptively seleding which request to submit becomes
lessuseful asthe load in system grows.

4.2. Results by Characteristics of the Job

The job scheduled by SA can be charaderized by three parameters: the sequential
execution time L, the average parallelism A, and the wefficient of variance in the paral-
lelism 0. Recl that L measures the amount of computation j caries, A indicates how
many procesrs | can effedively use, and o denotes the slope of |'s peeal-up (the closer
o isto 0, the closer to linea the speed-upis). Figure 4, Figure 5, and Figure 7 show how
such parameters affed the performance of SA and the maximum improvement acieved
by adaptively generating requests.

As one can exped, the larger the L (i.e., the more mmputation a job caries), the
greder the turn-around time. But the wide distribution of L makes it hard to visualize any
other patterns in the turn-around time graph. Relative performance provides a more in-
sightful picture. Notice that the relative performance deaeases for large values of L,
those in 10" decile. For those jobs, the execution time represents a large fraction of the
turn-around time, giving less latitude for SA to improve the job’s performance. Conse-
guently, one would think that the greatest relative performance must occur for small val-
ues of L. Somewhat surprisingly, however, this is not the cae. As can be seen in the
graph, medium values of L (say in the [200Q 5000Q range) provide the best relative per-
formance A closer look at the jobs with small L reveals that most of them have very
small turn-around times (up to 300 seconds). We @njedure that small jobs are eaier to
schedule in the presence of badkfilling and thus get through the system quickly, mini-



mizing the benefits of SA. Another interesting result is that the smaller the L, the more
advantageousiit is to have more dhoices. We ae not sure why that isthe cae.
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As Figure 5 shows, the larger the A (i.e., the greder the potential for parallelism
in the job), the greaer the relative performance adieved by SA and the best choice This
behavior seems reasonable because the greater the average parallelism A, the more flexi-
bility SA has in seleding a good request, which translates to a greaer improvement in the
job’s turn-around time. Also, the utility of having more choices available to SA grows

with A.
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Note that in these experiments the increase in the relative performance slows
down for A > 100 Similarly, the benefit of having more doices available to SA grows
slower for A = 100. We believe this is related to the fad the three out of the four
supercomputers we simulated have only slightly more processors than this value (see

10



Table 1). To expand on this, consider the CTC results in isolation (the SP2 used there had
430 nodes), as iown in Figure 6. As can be seen, the relative performance keeps in-
creasing stealily beyond A = 100
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The results by the wefficient of variance of parallelism o are very surprising. As
Figure 7 shows, SA seems to be completely indifferent to 0. We expeded SA to perform
better with smaller values of o since these imply a speed-up closer to linea. Further in-
vestigations are required to determine why SA exhibits such robust performance regard-

=
w
o
o

1200}
1100}
1000
900
800
700}
600

\/W

—— User’s choice
—— SA with 3 choices
—©— SA with 5 choices
—&- SA with 7 choices
Best choice

-~ VAN AN

0 0204 0608 1 12 14 16 1.8 2

a

Relative Performance

25

—— SA with 3 choices
—©— SA with 5 choices
-5 SA with 7 choices
—&— Best choice

- —

0 020406 08 1 12 14 16 18 2
o

Figure 7 — Resultsby o

4.3. Results by Information Availableto SA
The information made available to SA also impads its performance. We charac
terize the amount and quality of such information by (i) the number of choices available

11



to SA, (ii) the size of the range of such choices, and (iii) the acarracy of the users' esti-
mates a.

The number of choices available to SA is an especially important parameter be-
cause this information must be provided by the user. We therefore treated the number of
choices independently of the other smulation parameters. This allows for the evaluation
of the impad of the number of choices as a function of the other parameters. Figure 3
through Figure 9 present our results.

Figure 8 contains the results by a, the acairacy of the users estimates. Recll that
a =te/ t.. Therefore asmall a implies that the request asked for much more time than the
job adually used. Note that a large request is harder to fit in the availability list and also
harder to badfill (compared to a smaller one). We thus expeded a to strongly impad the
results. However, a shows almost no impad on the maximum improvement and little im-
pad on the performance adually attained by SA. While it is true that small values of a
(say a < 0.2) reault in greder turn-around times for all strategies, we expeded this to
happen more intensely. Similarly, very small values of a (say a < 0.1) reducethe relative
performance of SA, but again to a lesser degree than we expeded. Our results sem to
corroborate other studies that have found inacarate user’s estimates not to significantly
hurt performance [Feitelson 19983 [Zotkin 1999.
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Figure 8 — Results by a (acairacy of the requests)

Figure 9 shows results by varying the size of the range of choices. As before, the
results were grouped into dedles. However, 29.2% of the experiments had range size
equals 7 (this happened so often because many jobs have small n, or njnit). For that rea
son, the first data point in the graph averages the first three deciles of experiments, and
the graphs contain seven data point insteal of ten.

As expected, the maximum improvement grows with the size of the range. The
greder the size of the range, the more leverage SA has in finding a good request to sub-
mit. In particular, large ranges (say above 100 seam to provide asubstantial boost in the
relative performance of both SA and best choice.
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4.4. Simulations Using Real Speedups

Simulations are an important research tool. They allow us to explore issues that
are not tradable analytically or experimentally. However, they can produce invalid re-
sults due to a number of reasons, from poor modeling of reality to undetected bugs in the
simulator. Consequently, it is important to double-chedk the results obtained via simula-
tions.

A crucial part of our smulation model is the job speedup function. In this Sedion,
we show the results of experiments designed to investigate whether using the Downey’s
model of parallel speal-up skewed our results. For these experiments, we used NAS
benchmarks (which have known speed-up behavior) as the jobs to be scheduled by SA.
NAS benchmarks have known execution times for a variety of supercomputers and parti-
tion sizes. Such data is publicaly available & http://www.nas.nasa.gov/Software/NPB/.
Moreover, since they are used to evaluate performance, they are representative of real
jobs. Finally, some of the NAS benchmarks are cnstrained with resped to the number of
procesrs they can use. For some, the number of processors must be aperfed square.
For others, it must be apower-of-two. This represents another red-world constraint for
SA.

In the experiments, we replaced one job in the workload by a NAS benchmark
(which has known speed-up). We then compared the performance of this NAS bench-
mark (i) when SA decides which request to submit, versus (ii) when we request the same
number of processors for the NAS benchmark as the job we replace We use five NAS
benchmarks: MG, LU, SP, BT, and EP. MG and LU require apower-of-two partition size
and thus are the most constrained jobs. http://www.nas.nasa.gov/Software/NPB/ contains
execution time information of MG and LU over 8, 16, 32, 64, 128, and 256 proces=ors for
the SP2. Consequently, for MG and LU, SA had 4to 6 choices depending on the number
of processors of the supercomputer being used (seeTable 1). SPand BT require perfect-
sguare partition size. The exeaution time data @ntains information for 9, 16, 25, 36, 64,
121, and 256 pocessors; providing 5to 7 choices available to SA. There ae no restric-
tions for EP. It can run over any number of processors and thus there ae a many choices

13



as procesrs in the supercomputer. We performed 10000simulations in total: 2000 per
NAS benchmark.

Table 3 shows the overall results of using NAS benchmarks as the job SA sched-
ules. The results are consistent with those found when Downey’s model is used to gener-
ate spead-up information (see Table 2). As before, SA gets relatively close to results ob-
tained by the best choice Furthermore, SA improves the turn-around time of the NAS
benchmarks by a fador of 4.19 compared to the user’s choice a result even better than
the one adieved using Downey’s model. We dtribute this better performance to the fad
that EP provides SA with many more choices than what we have been considering (up to
7 choices), creaing the opportunity for an even greaer improvement in performance

User’schoice | SA choice Best Choice
Geometric M ean of the 116470 27804 25305
Turn-Around Time (sec)
Relative Performance | - 4.19 4.60

Table 3 —Overall NAS results

Indeead, consider Figure 10, which groups the results by the restriction posed by
the number of processors a NAS benchmark can use. Note that the maximum improve-
ment is greder for EP than for the other NAS benchmarks. The presence of EP also ex-
plains the greaer maximum improvement of NAS benchmarks (whose best choice’'s
relative performance ejuals 4.60) compared to jobs with Downey’s eeal-up (whose best
choice's relative performance ejuals 2.98). The large number of choices offered by EP
makes adaptively seleding the request more atradive. Note also that SA is gill able re-
main close to the maximum improvement for EP, which suggests that increasing the
number choices doesn’'t make it harder for SA to find avery good request.
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Figure 10 — NAS results by kind of benchmark

Figure 11 contains the NAS results by N, the relative load of the system. As with
the simulations based on Downey’s ealup (see Figure 3), the exeaution time increases
with N. Again, this is becaise the more jobs there ae in the system, the longer an arriving
job will probably have to wait in the queue. The relative performance on the other hand,
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tends to deaease & N increases, showing however a modest increase for N > 0.2. Since
the relative performance for jobs with Downey’s Peed stabilizes around the same value,
we don't believe this represents a distinct phenomenon.
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Figure 11 —NAS results by N (number of jobs in the system)

Figure 12 presents the results by the acaracy of the user’s estimates a. Note the
similarity to Figure 8, which displays the results based on Downey’s model by acairacy.
Again SA presents a high tolerance to variance in acaracy a. Only small values of a
seem to affed the performance of SA.
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Figure 12 — NAS results by a (acairacy of the requests)

We therefore believe that the NAS results validate the use of Downey’s model in
our simulations.
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5. FutureWork

As with any reseach, this answers ome questions but raises others. To follow up
this work, there ae four reseach topics we intend to pursue. First, we would like to de-
velop SA into atool for production jobs. For some sites, the supercomputer scheduler al-
lows for arriving jobs to affect existing ones, increasing the uncertainty SA has to cope
with. It would be important to evaluate the impad of this added uncertainty on SA.

Seoond, we intend to investigate the dfed multiple instances of SA have on each
other, a question that has been called the Bushel of AppLeS [Berman 1997. We expect
the improvements to the performance of an individual job to be smaller when many jobs
have their requests crafted by SA, becaise the system as whole becmes more efficient,
making it harder for SA to find very good “slots’ in the supercomputer schedule. We
want to investigate whether this is really the cae and, if so, to what extent. Also, it might
be that different mixtures of jobs produce different Bushel of AppLeS effeds. This also
neals to be understood.

Third, we plan to extend SA to target multiple supercomputers, instead of only
one. In principle, SA could be used to submit the same job to al available
supercomputers. While this guarantees a turn-around time that is at least no worse than
seleding one supercomputer, it increases the load on all supercomputers, and thus might
produce a bad Bushel of AppLeS effed. If this indeed happens, it is natural to ask what
policies can supercomputer schedulers implement to discourage such a submit-to-all
strategy. For example, charge for submisgon as well as exeaution might be apromising
approad.

Fourth, we am to enable SA to better ded with priorities. Real-life
supercomputer schedulers enable users to spedfy a priority to the jobs they submit. SA
could deal with priorities at the s of spending more time scheduling. However, it is
very plausible that some users don't want to optimize for turn-around time at any oost.
How we enable the user to expressan optimizaion goal that includes cost and how SA
pursues sich agoal are also intriguing research questions.

6. Related Work

There has been gred interest in supercomputer scheduling in recent years. Some
of the reseach in this areaallow for the scheduler to choose the number of processors
alocaed to ajob [Downey 1997b] or even to change this number during the execution of
the job [Chiang 1996 [Nguyen 1994. Such schedulers therefore try to improve the per-
formance of the system in the same way SA aims to improve the performance of the job.
The main distinction is exactly that these efforts take the system-wide viewpoint. Alter-
natively, we gproad the problem by scheduling one job at atime and use auser-centric
performance metric.

The very fact the SA works at the gplication level, makes it potentially useful for
Grid Computing [Foster 199%]. Computational Grids consist of resources that are geo-
graphically scatered and/or under control of multiple entities, but can be cmbined as
execution platform for some gplication. In this senario, one neals an application
scheduler to seled the resources of interest, determine what pieceof work is to be &
signed to ead to them, and then craft requests to have e&h pieceof work caried out.
This applicability of SA to Grid Computing is no accident. In fad, it was instrumental in
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deciding for the gplicaion-level approadh (in opposition to the system-level one). As
mentioned in the previous Sedion, we plan to extend SA to deal with multiple
supercomputers, potentially by seleding which machine to submit the job to.

The aurrent reseach in Grid scheduling that involves supercomputers sems to
target jobs that spread aaoss multiple machines. Advance reservations are the basic
service to support applicaion scheduling for such jobs [Chapin 1999 [Foster 199%)].
They have been shown to provide better system-wide utilization compared to dedicating
supercomputer time for the jobs that spread aaossmultiple supercomputers [Snell 1999.
Interestingly enough, the availability list is touted in this context as providing the infor-
mation that enables one to decide on which reservation to request [Chapin 1999 [Foster
1999d] [Nitzberg 1999. Our reseach complements this work in that it explores the
availability list to improve the performance of jobs that use a single supercomputer, a far
more mmon case.

An aternative goproach was adopted by the GTOMO, a Grid application that s-
multaneously uses supercomputer nodes and workstations [Smallen 2000. GTOMO re-
lies on a simplified version of the availability list to craft arequest that can start running
immediately. GTOMO can use this grategy because it schedules an embarrassingly par-
allel applicaion, which can always gart running immediately on the workstations. The
supercomputer processors that happen to be available simply add more resources to the
poll of workstations, boosting therefore the performance of the goplicaion.

7. Conclusions

This paper demonstrates that adaptively seleding the partition size of a
supercomputer request can substantially improve the job’s turn-around time. Here we in-
troduce SA, an AppLeS applicaion scheduler, and evaluate how it performs with four
different real-world workloads. SA schedules moldable jobs, i.e. jobs that have flexibility
regarding the size of the partition on which they execute. It deades which partition size
should be requested considering the aurrent dtate of the system, and consistently im-
proves the turn-around time compared to the user’s choice

We simulate SA with four different workloads to evaluate how it performs under
a variety of scenarios. We found SA to consistently improve the turn-around time of the
job it schedules, but by different degrees depending on the scenario. In summary, the per-
formance improvement attained by SA improves with the increase in the amount of par-
allelism in the job, the number of choices SA has available to choose from, and the range
over which such choices are spread. On the other hand, SA’s performance deaeases with
the system’s load. The size of the job doesn’'t appea to have alinea correlation to the
performance of SA: SA does better for medium sized jobs than for small or large jobs.
Finally, the slope of the job’'s geeal-up and the acaracy of the user’s estimates sem to
have surprisingly little effed on SA.

We also investigate how close SA gets to the turn-around time obtained by the
best choice offered to it. Always finding the best choice is impossible in pradice due to
the ladk of perfed information about the jobs exeaution times. Nevertheless we found
SA’s performance to be close to (above 90% of) the performance ahieved by the best
choice
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