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In this paper, we show how application scheduling can be used to
reduce the turn-around time of supercomputer jobs. Our approach
focuses on the use of SA, an AppLeS application scheduler, to
adaptively craft the request to be submitted to the supercomputer
based on the current state of the system. We demonstrate that SA
significantly improves a job’s turn-around time in a variety of sce-
narios. We also identify how the state of the system, the characteris-
tics of the job, and the quality of the information made available to
SA influence its performance.

1. Introduction
In the last decade, parallel supercomputers have emerged as a key platform for

high performance computation. In order to promote the performance of fine-grained par-
allel applications, such machines are almost always space-shared. Each job has dedicated
access to some number of the processors that compose the supercomputer. We therefore
say that each job runs on its own partition.

In such an environment, an arriving job may not find enough processors to exe-
cute immediately. When this happens, the arriving job waits until enough resources be-
come available. More precisely, jobs that cannot start immediately are placed in a wait
queue, which is controlled by the supercomputer scheduler. The supercomputer sched-
uler’s main task is to decide which job in the wait queue is the next to run. In order to
make this decision, it typically requires each job to specify n, the number of processors it
needs, and tr, the time requested for execution of the job.

However, many parallel jobs are moldable, i.e. they can run over partitions of dif-
ferent sizes. When a moldable job j is to be submitted, the user has to decide which n (out
of the set of possible partition sizes) is to be used. The choice of n is important because it
affects j’s turn-around time, i.e. the time elapsed between j’s submission and its comple-
tion. The turn-around time is calculated by adding wait time and execution time. In prin-
ciple, the user is able to evaluate the effect of n on the execution time. It typically dimin-
ishes as n grows (at least until a certain value nlimit). However, the user cannot in general
estimate the wait time because it depends on n, tr, the supercomputer scheduler, and the
current load of the system.
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In this paper, we introduce a performance-efficient strategy for choosing n, the
number of processors a job requests. This strategy is implemented by SA (Supercomputer
AppLeS). SA is an AppLeS [Berman 1996] application scheduler that adaptively crafts
the request that submits a given job to the supercomputer. SA uses knowledge of how the
supercomputer scheduler works, together with information that describes the current state
of the system, to adaptively choose which partition size to request. We show that SA sig-
nificantly improves a job’s turn-around time, and identify the factors that influence the
performance achieved by SA. We also establish the maximum improvement that can po-
tentially be achieved by adaptively selecting which request to submit to the
supercomputer. Under most scenarios, SA delivers a performance improvement that is
close to such a maximum.

This paper is organized as follows: Section 2 describes supercomputer scheduling
and the SA application scheduler. It also states the research questions we intend to ad-
dress in this paper. Section 3 describes the models and metrics used to investigate these
research questions. Section 4 presents and analyzes the results. Section 5 sketches direc-
tions for future research, Section 6 discusses related work, and Section 7 concludes this
paper by summarizing its results.

2. Scheduling Jobs on Supercomputers
In order to run a job j on a parallel supercomputer, the user submits a request to

the supercomputer scheduler that specifies the resources to be allocated to j. Such a re-
quest includes n, the number of processors to be allocated to j, and tr, an upper bound on
the execution time of j. Job j runs for te ≤ tr. The supercomputer scheduler kills j if it runs
longer than tr, therefore enforcing the upper bound.

Job j runs with dedicated access to n processors for tr time units. However, it
might have to wait until such resources become available. Let tw denote the time elapsed
between j’s submission and its start (i.e., the time j waits in the system’s queue). Define
j’s turn-around time1 as tt = tw + te. Note that tt corresponds to the time elapsed between
j’s submission and its completion. It thus captures the user’s view of how long the system
takes to run j. Reducing the turn-around time tt results in faster response to the user and
hence is a natural performance optimization goal. In fact, reducing tt is normally seen as a
key goal for supercomputer schedulers. Here we take the complementary approach of
trying to reduce the turn-around time tt at the application level.

The turn-around time tt depends on the current state of the system, but it can be
influenced by the request (n, tr) that submits j for execution. Jobs frequently are mold-
able, i.e. they can run on partitions of different sizes. This paper explores how to select
which partition size to request in order to improve a moldable job’s turn-around
time.

The execution time te generally decreases with the number of processors n allo-
cated to the job. Of course each job has a limit nlimit of how many processors it can effec-
tively use, i.e. te levels off or even increases for n > nlimit. But since there is no advantage
in requesting n > nlimit, we don’t consider such requests here. Note that increasing n might
result in a larger wait time tw, because more resources have to be available for the job to

                                               
1 Other authors sometimes refer to turn-around time as service time or response time.



3

start. Since tw depends on the current state of the supercomputer, the best request to
submit cannot be statically determined.

We use SA (Supercomputer AppLeS) to select which n (and corresponding tr)
should be used to submit a moldable job to the supercomputer. SA is based on the Ap-
pLeS (Application-Level Scheduling) methodology [Berman 1996] [Berman 1997]. Ap-
pLeS schedulers use application-specific and dynamic information to craft an adaptive
application schedule that can leverage current and forecasted resource capability.

SA determines the partition size n to be requested based information about the al-
gorithm used by the supercomputer scheduler, the current state of the system, and esti-
mates for the execution times of all jobs in the system. Using this information, SA simu-
lates the submission of all possible requests and then selects the one that delivers the
smallest turn-around time. When (i) the execution time estimates of all jobs are perfect,
and (ii ) the supercomputer scheduler does not allow arriving jobs to affect existing ones,
this approach optimally selects the partition size for a given job. However, while as-
sumption (ii ) may be true, in practice assumption (i) is not. SA uses requested times as
estimates for the jobs’ execution times, making it usable in practice, but without the guar-
antee of optimality.

This work investigates, under common supercomputer usage scenarios:
• The performance achieved by SA.
• The maximum improvement that can be achieved by adaptively selecting the

partition size.
• What factors influence SA and the maximum improvement.

3. Models and Metr ics
We use simulations to tackle the questions stated above. This section describes (i)

the models used for the supercomputer and the job, (ii ) the information made available to
SA, and (iii) our performance criteria. Our goal is to reproduce a realistic environment,
while capturing enough detail to answer our research questions. To ensure the realism of
the environment, we rely as much as possible on real-li fe submission logs.

3.1. The Supercomputer Model
In order to simulate a supercomputer, we need to define its scheduler, its size

(how many processor it has), and its workload (the stream of jobs it is going to process).
Consider a supercomputer that uses conservative backfilli ng [Feitelson 1998a]. Conser-
vative backfill ing uses an allocation list to maintain, for any given time, which proces-
sors are already committed to which jobs. Arriving jobs are put in the first “slot” in which
they fit. Whenever an application finishes using less time than it requested, conservative
backfill ing traverses the wait queue (in submission order) and “promotes” the first job
that fits in the just-made-available slot. Of course, this may create another available slot
that is backfil led in the same way. The process stops only when no more backfill ing can
be done. For a more detailed description of conservative backfill ing, we refer the reader
to [Feitelson 1998a] and [Cirne 1999].

We employ conservative backfill ing as an idealized representative of today’s
supercomputer schedulers. In practice the behavior of supercomputer schedulers varies
from machine to machine. Even when the same scheduling software is used (e.g., Easy
[Lifka 1995], Maui [Maui], and LSF [Platform]), each site establishes its own policies,
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causing the behavior of their schedulers to differ. However, almost everywhere backfill-
ing is used to reduce unnecessary idle time. In addition, previous research has shown
conservative backfill ing to be a good scheduling approach [Feitelson 1998a]. Note also
that conservative backfill ing guarantees that arriving jobs don’t affect existing ones.

The state of a conservative backfill ing scheduler can be summarized by the avail -
abilit y li st. An availabil ity list contains the number of free processors a machine has over
time. For example: >�IURP�WLPH����WR�WLPH��������SURFHVVRUV�DUH�DYDLODEOH����IURP�WLPH�����WR
WLPH��������SURFHVVRUV�DUH�DYDLODEOH��� �IURP�WLPH�����WR�WLPH��������SURFHVVRUV�DUH�DYDLO�
DEOH����IURP�WLPH������WR�∞������SURFHVVRUV�DUH�DYDLODEOH�@. The availabil ity list allows for a
very fast implementation of SA, which doesn’t simulate all possible requests to choose
the best, but achieves the same result. Such an implementation evaluates all possible re-
quests by traversing the availabil ity list. Due to space limitations and the fact that both
implementation of SA produce the same result, we refer the reader to [Cirne 1999] for a
thorough description of SA based on the availabil ity list.

For the size of the supercomputer and the workload it processes, we use the size
of real-life supercomputers as well as the logs of the jobs submitted to them. We decided
to use logs because supercomputer behavior is difficult to characterize [Downey 1999].
The drawback of this approach is that we might be misled by some phenomenon that is
particular to the site a log originates. We minimize this risk by using four distinct
supercomputer logs. The following table summarizes the logs used in this research. The
fact that all logs come from an SP2 machine is not significant. The results presented here
would apply to any distributed-memory parallel computer that serves multiple users via
space-sharing.

Name Machine Processors Jobs Period

ANL Argonne National Labo-
ratory SP2

120 5921 Nov 1996
Dec 1996

CTC Cornell Theory Center
SP2

430 60196 Jul 1996
Feb 1997

KTH Swedish Royal Institute
of Technology SP2

100 25954 Nov 1996
Aug 1997

SDSC San Diego Super-
computer Center SP2

128 19405 Jan 1999
May 1999

Table 1 – Workloads used in this research

SA makes its scheduling decisions based on the current state of the system, and
thus we expect the system state to influence the performance it achieves. We summarize
the state of the supercomputer by its relative load N = J / P, where J is the number of jobs
currently in the system (both running and waiting), and P is the total number of proces-
sors in the supercomputer (see Table 1). J is a simple way to gauge the load of the
supercomputer. Dividing it by P factors in the size of the supercomputer.

3.2. The Job Model
SA targets moldable jobs. For each job it schedules, SA receives from the user

multiple requests that could be used to submit the job. From the set of possible requests,
SA determines which is the best one to submit according to the current state of the
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supercomputer. Unfortunately for our study, the submission logs contain only one request
per job (namely, the one submitted by the user).

We cope with this limitation by using a model of the speed-up of parallel jobs de-
veloped by Downey [Downey 1997a]. Speed-up measures how much faster a job j that
uses n processors executes than execution using only one processor. Symbolically: S(n) =
te(1) / te(n). If we know the speed-up function S(n) for our jobs, we can generate multiple
possible requests for them. Downey’s speedup model uses two parameters: A (the aver-
age parallelism) and σ (an approximation of the coefficient of variance in parallelism).
The speed-up of a job is then given by:
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Intuitively speaking, A establishes how many processors a job can use. The larger
the value of A, the more processors the job can use. Figure 1 exemplifies how A affects
the speed-up of a job. It fixes σ = 1 and shows speed-up curves for different values of A.
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Figure 1 – Downey’s speed-up function S(n, A, σ) for different values of A (with σ = 1)
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σ, on the other hand, determines how close to linear the speed-up is. The smaller
the σ, the closer to linear the speed-up is. Figure 2 explores the effect of σ on the speed-
up behavior. It fixes A = 60 and displays speed-up curves for different values of σ.
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Figure 2 – Downey’s speed-up function S(n, A, σ) for different values of σ (with A = 60)

Since we are interested in understanding the performance of SA in a variety of
conditions, we vary the values of A and σ. We uniformly choose A in the interval [2, 200]
and σ in the interval [0, 2]. This gives large coverage over a wide range of parallel jobs.
Moreover, experimental determination of values for A and σ have produced values in
these ranges [Downey 1997a].

From the workload we can obtain nu, the number of processors requested by the
user, and te(nu), the job’s execution time with nu processors. Note that A, σ, nu, and te(nu)
uniquely determine the sequential execution time of the job L = te(1) = t n S n Ae u u( ) ( , , )⋅ V .
L represents how “ large” a job is. The greater the L, the more processing is required to
complete the job.

With A, σ and L, we can determine the execution time of the job running over an

arbitrary number of processors n by t n
L

S n A
e( )

( , , )
= V . A, σ, and L therefore characterize

the job being scheduled by SA.

3.3. Information Available to SA
Many jobs have constraints on how many processors they can use. For example,

jobs that process bidimensional data many times require a perfect square number of proc-
essors. Moreover, the user has to come up with the submission choices to feed SA. These
factors suggest that oftentimes SA will have only a small number of choices to choose
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from. Therefore, we focus on the cases in which jobs are presented to SA with 3, 5, or 7
possible requests.

Another important aspect of the information available to SA is how far apart the
choices are. Considering possible partition sizes of 40, 41, and 42 may be very different
than having 10, 40, and 70. Hence we also investigate the impact of the range of choices
on SA. We consider choices equally spaced in the range [nmin, nmax], where nmin is uni-
formly chosen between 1 and nu, and nmax is uniformly chosen between nu and nlimit. nlimit

is the largest number of processors a job can use, defined to be the smaller of (i) the
number of processors in the machine, and (ii ) the largest n before the Downey’s speed up
curve levels off.

Finally, accuracy represents a qualitative aspect of the information SA receives.
Users’ estimates are not perfect. We define the accuracy a as the fraction of the requested
time that was indeed used by a job. That is, a = te / tr. Since jobs cannot run longer then
the time they’ve request, a is always a number between 0 and 1. In our simulations, a is
uniformly distributed between 0 and 1, allowing us to investigate the impact of both good
and poor information.

The number of choices, the size of their range (nmax – nmin), and the accuracy a are
the factors that characterize the information made available to SA.

3.4. The Performance Cr iteria
Turn-around time is a useful metric for a single execution of a job. However mul-

tiple executions are necessary to draw statistically valid conclusions, as well as to cover
the space of parameters we are investigating. Hence, we need a performance metric that
summarizes turn-around times over multiple experiments.

Many researchers have used the mean to combine multiple turn-around times into
a single metric [Aida 1998] [Cirne 1999] [Feitelson 1998b] [Krallmann 1999]. However,
the mean turn-around time can be dominated by large jobs [Feitelson 1998b]. For exam-
ple, improving a job’s turn-around time from 20000 seconds to 18000 seconds (a 10%
improvement) reduces the mean by 2000 / T, while improving another job’s turn-around
time from 200 seconds to 100 seconds (a 50% improvement) reduces the mean by 100 /
T, where T is the total number of jobs.

Some authors have addressed this problem by using the slowdown s = tt / te in-
stead of the turn-around time [Feitelson 1998a] [Feitelson 1998b] [Zotkin 1999]. Slow-
down provides a measure that is relative to the job’s execution time and hence large jobs
are not overemphasized in the mean slowdown. However, slowdown is not a metric that
adequately represents the user’s notion of performance. In our case, in which there are
multiple possible requests to submit, one can often improve the slowdown by selecting
nmin. This results in a large te, which often leads to a small slowdown s. The problem is
that such a strategy can (and often does) increase the turn-around time.

The geometric mean equally rewards the improvement in the turn-around time of

any job. In fact, recall that geomean( ,..., ) ...x x x xn n
n
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. Unlike the arithmetic mean, the geometric mean does not favor

large jobs. For this reason, the geometric mean is used to aggregate the execution time of
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the programs that compose the Spec benchmark [SPEC]. We hence use the geometric
mean of the turn-around times as our performance criteria.

4. Results
We ran 56000 simulations: 14000 per workload. In each simulation, we randomly

chose one job j, generated A, σ, nmin, nmax, and a as described above, and simulated five
strategies for submitting j:

i. Using the user’s request, i.e. without SA.
ii . Using SA with 3 choices for partition sizes.
iii . Using SA with 5 choices for partition sizes.
iv. Using SA with 7 choices for partition sizes.
v. Best choice, i.e. we simulate the submission of all 7 choices offered to SA and

report the best turn-around time among them.
While it is not generally possible to determine the best choice in practice, strategy

v establishes the best performance SA can achieve in our experiments, offering a bound
on the maximum improvement achievable by adaptively crafting requests to a
supercomputer. In order to better assess the maximum improvement, we define the rela-
tive performance for strategies ii  to v as the ratio of the turn-around obtained by the user’s
request to the turn-around time achieved the strategy in consideration. The relative per-
formance depicts how many times SA improved on the turn-around time. In particular,
the relative performance of the best choice expresses the maximum improvement possi-
ble in our experiments.

Table 2 shows the overall results for the 56000 simulations. Notice the high
maximum improvement of adaptively selecting supercomputer requests: The turn-around
time of best choice is around a third of the turn-around time attained by the user’s choice,
yielding a relative performance of 2.98. Furthermore, SA is able to deliver turn-around
times close to the best choice: With 7 choices, SA’s relative performance reaches 2.78.
Even with 3 choices, SA delivers a substantial improvement: Its turn-around time is less
than half of the turn-around time of user’s choice.

User’s
choice

SA with
3 choices

SA with
5 choices

SA with
7 choices

Best
choice

Geometric Mean of the
Turn-Around Time (secs)

1259.9 600.2 525.3 453.3 423.6

Relative Performance ----- 2.10 2.40 2.78 2.98

Table 2 – SA overall results

In the following subsections, we investigate how SA and the maximum improve-
ment are affected by the various parameters that describe the system, the job, and the in-
formation received by SA.

4.1. Results by the State of the System
Figure 3 shows the impact of the relative load N on the results. The experiments

are grouped in deciles according to N. Therefore, each data point in the graph averages
around 5600 experiments. The values of N on the x-axis show the boundaries of the
deciles. That is, the values that surround a given data point establish the range of values
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averaged by such a point. Unless stated otherwise, the following graphs display the data
in the same way.
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Figure 3 – Results by N, the relative load of the system

As expected, the turn-around time increases with N. This is because the more jobs
there are in the system, the longer an arriving job has to wait in the queue. The relative
performance provides a less intuitive result. It decreases as N increases for both best
choice and SA. This suggests that adaptively selecting which request to submit becomes
less useful as the load in system grows.

4.2. Results by Characteristics of the Job
The job scheduled by SA can be characterized by three parameters: the sequential

execution time L, the average parallelism A, and the coeff icient of variance in the paral-
lelism σ. Recall that L measures the amount of computation j carries, A indicates how
many processors j can effectively use, and σ denotes the slope of j’s speed-up (the closer
σ is to 0, the closer to linear the speed-up is). Figure 4,  Figure 5, and Figure 7 show how
such parameters affect the performance of SA and the maximum improvement achieved
by adaptively generating requests.

As one can expect, the larger the L (i.e., the more computation a job carries), the
greater the turn-around time. But the wide distribution of L makes it hard to visualize any
other patterns in the turn-around time graph. Relative performance provides a more in-
sightful picture. Notice that the relative performance decreases for large values of L,
those in 10th decile. For those jobs, the execution time represents a large fraction of the
turn-around time, giving less latitude for SA to improve the job’s performance. Conse-
quently, one would think that the greatest relative performance must occur for small val-
ues of L. Somewhat surprisingly, however, this is not the case. As can be seen in the
graph, medium values of L (say in the [2000, 50000] range) provide the best relative per-
formance. A closer look at the jobs with small L reveals that most of them have very
small turn-around times (up to 300 seconds). We conjecture that small jobs are easier to
schedule in the presence of backfil ling and thus get through the system quickly, mini-
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mizing the benefits of SA. Another interesting result is that the smaller the L, the more
advantageous it is to have more choices. We are not sure why that is the case.
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Figure 4 – Results by L

As Figure 5 shows, the larger the A (i.e., the greater the potential for parallelism
in the job), the greater the relative performance achieved by SA and the best choice. This
behavior seems reasonable because the greater the average parallelism A, the more flexi-
bil ity SA has in selecting a good request, which translates to a greater improvement in the
job’s turn-around time. Also, the util ity of having more choices available to SA grows
with A.
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Figure 5 – Results by A

Note that in these experiments the increase in the relative performance slows
down for A ≥ 100. Similarly, the benefit of having more choices available to SA grows
slower for A ≥ 100. We believe this is related to the fact the three out of the four
supercomputers we simulated have only slightly more processors than this value (see
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Table 1). To expand on this, consider the CTC results in isolation (the SP2 used there had
430 nodes), as shown in Figure 6. As can be seen, the relative performance keeps in-
creasing steadily beyond A = 100.
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Figure 6 – CTC results by A

The results by the coefficient of variance of parallelism σ are very surprising. As
Figure 7 shows, SA seems to be completely indifferent to σ. We expected SA to perform
better with smaller values of σ since these imply a speed-up closer to linear. Further in-
vestigations are required to determine why SA exhibits such robust performance regard-
ing σ.
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Figure 7 – Results by σ

4.3. Results by Information Available to SA
The information made available to SA also impacts its performance. We charac-

terize the amount and quality of such information by (i) the number of choices available
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to SA, (ii) the size of the range of such choices, and (iii) the accuracy of the users’ esti-
mates a.

The number of choices available to SA is an especially important parameter be-
cause this information must be provided by the user. We therefore treated the number of
choices independently of the other simulation parameters. This allows for the evaluation
of the impact of the number of choices as a function of the other parameters. Figure 3
through Figure 9 present our results.

Figure 8 contains the results by a, the accuracy of the users’ estimates. Recall that
a = te / tr. Therefore a small a implies that the request asked for much more time than the
job actually used. Note that a large request is harder to fit in the availabil ity list and also
harder to backfill (compared to a smaller one). We thus expected a to strongly impact the
results. However, a shows almost no impact on the maximum improvement and little im-
pact on the performance actually attained by SA. While it is true that small values of a
(say a ≤ 0.2) result in greater turn-around times for all strategies, we expected this to
happen more intensely. Similarly, very small values of a (say a ≤ 0.1) reduce the relative
performance of SA, but again to a lesser degree than we expected. Our results seem to
corroborate other studies that have found inaccurate user’s estimates not to significantly
hurt performance [Feitelson 1998a] [Zotkin 1999].
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Figure 8 – Results by a (accuracy of the requests)

Figure 9 shows results by varying the size of the range of choices. As before, the
results were grouped into deciles. However, 29.2% of the experiments had range size
equals 7 (this happened so often because many jobs have small nu or nlimit). For that rea-
son, the first data point in the graph averages the first three deciles of experiments, and
the graphs contain seven data point instead of ten.

As expected, the maximum improvement grows with the size of the range. The
greater the size of the range, the more leverage SA has in finding a good request to sub-
mit. In particular, large ranges (say above 100) seem to provide a substantial boost in the
relative performance of both SA and best choice.
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Figure 9 – Results by the size of the range of choices

4.4. Simulations Using Real Speedups
Simulations are an important research tool. They allow us to explore issues that

are not tractable analytically or experimentally. However, they can produce invalid re-
sults due to a number of reasons, from poor modeling of reality to undetected bugs in the
simulator. Consequently, it is important to double-check the results obtained via simula-
tions.

A crucial part of our simulation model is the job speedup function. In this Section,
we show the results of experiments designed to investigate whether using the Downey’s
model of parallel speed-up skewed our results. For these experiments, we used NAS
benchmarks (which have known speed-up behavior) as the jobs to be scheduled by SA.
NAS benchmarks have known execution times for a variety of supercomputers and parti-
tion sizes. Such data is publically available at KWWS���ZZZ�QDV�QDVD�JRY�6RIWZDUH�13%�.
Moreover, since they are used to evaluate performance, they are representative of real
jobs. Finally, some of the NAS benchmarks are constrained with respect to the number of
processors they can use. For some, the number of processors must be a perfect square.
For others, it must be a power-of-two. This represents another real-world constraint for
SA.

In the experiments, we replaced one job in the workload by a NAS benchmark
(which has known speed-up). We then compared the performance of this NAS bench-
mark (i) when SA decides which request to submit, versus (ii ) when we request the same
number of processors for the NAS benchmark as the job we replace. We use five NAS
benchmarks: MG, LU, SP, BT, and EP. MG and LU require a power-of-two partition size
and thus are the most constrained jobs. KWWS���ZZZ�QDV�QDVD�JRY�6RIWZDUH�13%��contains
execution time information of MG and LU over 8, 16, 32, 64, 128, and 256 processors for
the SP2. Consequently, for MG and LU, SA had 4 to 6 choices depending on the number
of processors of the supercomputer being used (see Table 1). SP and BT require perfect-
square partition size. The execution time data contains information for 9, 16, 25, 36, 64,
121, and 256 processors; providing 5 to 7 choices available to SA. There are no restric-
tions for EP. It can run over any number of processors and thus there are as many choices
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as processors in the supercomputer. We performed 10000 simulations in total: 2000 per
NAS benchmark.

Table 3 shows the overall results of using NAS benchmarks as the job SA sched-
ules. The results are consistent with those found when Downey’s model is used to gener-
ate speed-up information (see Table 2). As before, SA gets relatively close to results ob-
tained by the best choice. Furthermore, SA improves the turn-around time of the NAS
benchmarks by a factor of 4.19 compared to the user’s choice, a result even better than
the one achieved using Downey’s model. We attribute this better performance to the fact
that EP provides SA with many more choices than what we have been considering (up to
7 choices), creating the opportunity for an even greater improvement in performance.

User’s choice SA choice Best Choice
Geometric Mean of the
Turn-Around Time (secs)

1164.70 278.04 253.05

Relative Performance ----- 4.19 4.60

Table 3 – Overall NAS results

Indeed, consider Figure 10, which groups the results by the restriction posed by
the number of processors a NAS benchmark can use. Note that the maximum improve-
ment is greater for EP than for the other NAS benchmarks. The presence of EP also ex-
plains the greater maximum improvement of NAS benchmarks (whose best choice’s
relative performance equals 4.60) compared to jobs with Downey’s speed-up (whose best
choice’s relative performance equals 2.98). The large number of choices offered by EP
makes adaptively selecting the request more attractive. Note also that SA is still able re-
main close to the maximum improvement for EP, which suggests that increasing the
number choices doesn’t make it harder for SA to find a very good request.
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Figure 10 – NAS results by kind of benchmark

Figure 11 contains the NAS results by N, the relative load of the system. As with
the simulations based on Downey’s speedup (see Figure 3), the execution time increases
with N. Again, this is because the more jobs there are in the system, the longer an arriving
job will probably have to wait in the queue. The relative performance, on the other hand,
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tends to decrease as N increases, showing however a modest increase for N ≥ 0.2. Since
the relative performance for jobs with Downey’s speed stabil izes around the same value,
we don’t believe this represents a distinct phenomenon.
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Figure 11 – NAS results by N (number of jobs in the system)

Figure 12 presents the results by the accuracy of the user’s estimates a. Note the
similarity to Figure 8, which displays the results based on Downey’s model by accuracy.
Again SA presents a high tolerance to variance in accuracy a. Only small values of a
seem to affect the performance of SA.
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Figure 12 – NAS results by a (accuracy of the requests)

We therefore believe that the NAS results validate the use of Downey’s model in
our simulations.
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5. Future Work
As with any research, this answers some questions but raises others. To follow up

this work, there are four research topics we intend to pursue. First, we would like to de-
velop SA into a tool for production jobs. For some sites, the supercomputer scheduler al-
lows for arriving jobs to affect existing ones, increasing the uncertainty SA has to cope
with. It would be important to evaluate the impact of this added uncertainty on SA.

Second, we intend to investigate the effect multiple instances of SA have on each
other, a question that has been called the Bushel of AppLeS [Berman 1997]. We expect
the improvements to the performance of an individual job to be smaller when many jobs
have their requests crafted by SA, because the system as whole becomes more eff icient,
making it harder for SA to find very good “slots” in the supercomputer schedule. We
want to investigate whether this is really the case and, if so, to what extent. Also, it might
be that different mixtures of jobs produce different Bushel of AppLeS effects. This also
needs to be understood.

Third, we plan to extend SA to target multiple supercomputers, instead of only
one. In principle, SA could be used to submit the same job to all available
supercomputers. While this guarantees a turn-around time that is at least no worse than
selecting one supercomputer, it increases the load on all supercomputers, and thus might
produce a bad Bushel of AppLeS effect. If this indeed happens, it is natural to ask what
policies can supercomputer schedulers implement to discourage such a submit-to-all
strategy. For example, charge for submission as well as execution might be a promising
approach.

Fourth, we aim to enable SA to better deal with priorities. Real-li fe
supercomputer schedulers enable users to specify a priority to the jobs they submit. SA
could deal with priorities at the cost of spending more time scheduling. However, it is
very plausible that some users don’t want to optimize for turn-around time at any cost.
How we enable the user to express an optimization goal that includes cost and how SA
pursues such a goal are also intriguing research questions.

6. Related Work
There has been great interest in supercomputer scheduling in recent years. Some

of the research in this area allow for the scheduler to choose the number of processors
allocated to a job [Downey 1997b] or even to change this number during the execution of
the job [Chiang 1996] [Nguyen 1996]. Such schedulers therefore try to improve the per-
formance of the system in the same way SA aims to improve the performance of the job.
The main distinction is exactly that these efforts take the system-wide viewpoint. Alter-
natively, we approach the problem by scheduling one job at a time and use a user-centric
performance metric.

The very fact the SA works at the application level, makes it potentially useful for
Grid Computing [Foster 1999a]. Computational Grids consist of resources that are geo-
graphically scattered and/or under control of multiple entities, but can be combined as
execution platform for some application. In this scenario, one needs an application
scheduler to select the resources of interest, determine what piece of work is to be as-
signed to each to them, and then craft requests to have each piece of work carried out.
This applicability of SA to Grid Computing is no accident. In fact, it was instrumental in
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deciding for the application-level approach (in opposition to the system-level one). As
mentioned in the previous Section, we plan to extend SA to deal with multiple
supercomputers, potentially by selecting which machine to submit the job to.

The current research in Grid scheduling that involves supercomputers seems to
target jobs that spread across multiple machines. Advance reservations are the basic
service to support application scheduling for such jobs [Chapin 1999] [Foster 1999b].
They have been shown to provide better system-wide utilization compared to dedicating
supercomputer time for the jobs that spread across multiple supercomputers [Snell 1999].
Interestingly enough, the availabil ity list is touted in this context as providing the infor-
mation that enables one to decide on which reservation to request [Chapin 1999] [Foster
1999b] [Nitzberg 1999]. Our research complements this work in that it explores the
availabil ity list to improve the performance of jobs that use a single supercomputer, a far
more common case.

An alternative approach was adopted by the GTOMO, a Grid application that si-
multaneously uses supercomputer nodes and workstations [Smallen 2000]. GTOMO re-
lies on a simpli fied version of the availabil ity list to craft a request that can start running
immediately. GTOMO can use this strategy because it schedules an embarrassingly par-
allel application, which can always start running immediately on the workstations. The
supercomputer processors that happen to be available simply add more resources to the
poll of workstations, boosting therefore the performance of the application.

7. Conclusions
This paper demonstrates that adaptively selecting the partition size of a

supercomputer request can substantially improve the job’s turn-around time. Here we in-
troduce SA, an AppLeS application scheduler, and evaluate how it performs with four
different real-world workloads. SA schedules moldable jobs, i.e. jobs that have flexibil ity
regarding the size of the partition on which they execute. It decides which partition size
should be requested considering the current state of the system, and consistently im-
proves the turn-around time compared to the user’s choice.

We simulate SA with four different workloads to evaluate how it performs under
a variety of scenarios. We found SA to consistently improve the turn-around time of the
job it schedules, but by different degrees depending on the scenario. In summary, the per-
formance improvement attained by SA improves with the increase in the amount of par-
allelism in the job, the number of choices SA has available to choose from, and the range
over which such choices are spread. On the other hand, SA’s performance decreases with
the system’s load. The size of the job doesn’t appear to have a linear correlation to the
performance of SA: SA does better for medium sized jobs than for small or large jobs.
Finally, the slope of the job’s speed-up and the accuracy of the user’s estimates seem to
have surprisingly little effect on SA.

We also investigate how close SA gets to the turn-around time obtained by the
best choice offered to it. Always finding the best choice is impossible in practice due to
the lack of perfect information about the jobs’ execution times. Nevertheless, we found
SA’s performance to be close to (above 90% of) the performance achieved by the best
choice.
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