Understanding Logical Expressions with Negations:
Its Complicated

Aviad Baron
aviad.baron@mail huji.ac.il
The Hebrew University
Jerusalem, Israel

Ron Yosef
Ron.Yosef@mail huji.ac.il
The Hebrew University
Jerusalem, Israel

ABSTRACT

The flow of control in computer programs is shaped by conditional
branches. The Boolean expressions which determine the outcome
of a branch may have an effect on the readability of the code. In
particular, negations can make such expressions harder to under-
stand. We conduct an experiment with 205 professional developers
who needed to understand different logical expressions. The results
show that the time needed to understand different expressions of
similar size can vary significantly. In general, expressions with
more negations take more time, and double negations are especially
troublesome. However, there are multiple other factors that also
have an effect. For example, literals which are TRUE take less time
to process than literals that are FALSE. Regularity (where either all
variables have negations or all do not, or where either all literals are
TRUE or all are FALSE) also helps. But there are many confounding
interactions between the factors, leading to complex outcomes. For
example, when comparing De Morgan’s logically-equivalent pairs
of expressions, we found that understanding a negated OR took
slightly more time than the AND of two negations, but there was
no difference between a negated AND and the OR of two negations.
The factors we identified as influencing the understanding of ex-
pressions may contribute to advancing our knowledge of cognitive
processes involved in understanding logical expressions, but much
additional work is still needed. At the same time, the comparisons
of equivalent forms provide some practical advice on how to write
more understandable expressions.

CCS CONCEPTS

» General and reference — Design; Experimentation; Theory
of computation — Programming logic.

KEYWORDS

Code comprehension, Logical expression, Negation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EASE 2024, June 18-21, 2024, Salerno, Italy

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1701-7/24/06.

https://doi.org/10.1145/3661167.3661180

Ilai Granot
Ilai.Granot@mail.huji.ac.il
The Hebrew University
Jerusalem, Israel

Dror G. Feitelson
feit@cs.huji.ac.il
The Hebrew University
Jerusalem, Israel

ACM Reference Format:

Aviad Baron, Ilai Granot, Ron Yosef, and Dror G. Feitelson. 2024. Under-
standing Logical Expressions with Negations: Its Complicated . In 28th
International Conference on Evaluation and Assessment in Software Engineer-
ing (EASE 2024), June 18-21, 2024, Salerno, Italy. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3661167.3661180

1 INTRODUCTION

Program comprehension involves the ability to understand code
written by others. It significantly impacts maintenance time as
developers construct mental models of the code’s structure and
functionality [3, 18]. A major barrier to achieving comprehension is
the complexity of the code, which plays a pivotal role in determin-
ing the ease or difficulty of understanding and maintaining the code.
Code complexity in turn is affected by multiple factors, including
code length (longer code is more challenging to comprehend), syn-
tactical elements (loops are harder than linear processing), data flow
patterns (using indirection makes it hard to analyze), the choice of
variable names (to convey clear meanings), and even code layout
(e.g. indentation). All of these factors can significantly impact the
comprehension of code, either making it more challenging or easier
[2, 4, 10, 15].

A fundamental element in any computer program is branching
based on logical conditions. The ability to understand and interpret
logical expressions is crucial for software development due to their
prevalence in code. Logical expressions in general and negation
in particular have long captivated the minds of scholars across
various disciplines, including logicians, philosophers, linguists, and
psychologists. Sentence processing in natural language has been
investigated with or without negation, with double negations, and
with different logical relations, including by using fMRI to map
logic processing to brain areas [1, 6, 8, 9, 12, 13, 16, 19, 20]. Such
studies shed valuable light on how the human mind processes and
comprehends complex logical structures. This is a wide topic: the
study of negation was recently surveyed in the Oxford Handbook
of Negation, which comprises 43 chapters and 756 pages [5].

But prior research on understanding logical expressions and
negation in natural language does not necessarily carry over to
code comprehension. For one thing, programs use unambiguous
mathematical notation which is different from the facilities of natu-
ral language; thus discussions on issues like the scope of negations
are irrelevant. The formal syntax and semantics also allow more

https://orcid.org/0000-0002-2733-7709
https://doi.org/10.1145/3661167.3661180
https://doi.org/10.1145/3661167.3661180

EASE 2024, June 18-21, 2024, Salerno, Italy

complex expressions to be used: in code one can find long formulas
involving multiple variables and logical operators, but there are
no such constructs in natural language. In addition, programmers
are typically well-versed in logic and mathematics, and are there-
fore not representative of humans in general. But investigating the
comprehension of code-related logical expressions may shed light
on how the human brain processes negation and complex logical
constructs in a unique context.

Surprisingly, research on the comprehension of logical expres-
sions, both in general and specifically pertaining to negation, is
nearly absent in the literature on software engineering and code
comprehension. There have been recommendations to avoid nega-
tions; for example, rule G29 in Bob Martin’s Clean Code is “Avoid
negative conditionals” [14]. But this was not backed by empirical,
quantified research. Such research is needed to validate the recom-
mendations, and to address questions about writing more readable
code. Also, the issue is more intricate then just avoiding negations.
It is important to understand the cognitive mechanisms and cogni-
tive load on developers when comprehending code segments with
various logical expressions.

36 years ago, Iselin performed an experiment on understanding
loops with a condition that either did or did not include a negation,
but this was in an operator (equal vs. not equal, in Cobol) and not
a logical negation [11]. The only paper we found that studied the
understanding of logical conditions with negations is Ajami et al.,
who compared 3 forms using negation with a similar condition with
no negations [2]. The result was that the only highly significant
difference in the time to understand the code occurred between
2 negative forms — which were a De Morgan pair — and the 3rd
negative form, but no explanation was found for this difference. The
conclusion of the study was that “some but not all uses of negation
are harder: negations are different from each other”.

The long-term goal of our work is to uncover the cognitive
processes of processing and reasoning involved in comprehending
logical expressions and negations among professional programmers.
As a beginning we start by looking for logical and structural factors
that might impact their efficacy in this domain. In this we follow
the work of Ajami et al., who investigated various factors of code
complexity beyond negations [2]. Specifically, in our work we tried
to dissect logical expressions into basic components, and investigate
the influence of various combinations on code comprehension, with
a specific focus on negations.

Our methodology is based on a controlled experiment, in which
participants were asked to find the output of different code snippets
that were crafted specifically for the experiment. The participants
were 205 professional developers from around the world. The code
snippets contained various logical expressions, and we assessed
their understanding and ability to correctly interpret the code.

The experiment consisted of two main parts. In the first part,
we examined how the number of negations in a logical expression
affects the difficulty of understanding the expression. We also con-
sidered the interaction between this phenomenon and the type of
logical operators (AND or OR) and the expression’s truth value. Our
findings demonstrate that the number of negations in the code snip-
pet indeed has an impact on code comprehension. However, there is
also an influence of the structural arrangement of the code and the

Aviad Baron, Ilai Granot, Ron Yosef, and Dror G. Feitelson

recurring patterns within it, and intriguing complex interactions
between them.

The second part of the experiment aimed to examine equiva-
lent logical expressions and compare their levels of comprehension
difficulty. The expressions we examined included, among others,
equivalent ways of stating a logical expression using De Morgan’s
laws, using double negations, and more. The results also revealed
complex interactions among various factors that influence the pro-
cessing difficulty in this context.

Our contributions in this paper are:

e The first in depth investigation of comprehending logical
expressions in program code, and specifically the effect of
negations. This extends existing research on negation in
natural language to a completely new context.

o The identification of structural and logical factors, and their
effects on understanding logical expressions in code. These
factors include
— The number of negations in an expression;

— The truth value of each literal®;

— The regularity of the expression in terms of syntax (all
variables have negations or none do) or logic (all literals
are TRUE or all are FALSE).

e Showing the existence of multiple complex interactions be-
tween these factors. This implies that it may be hard to
describe the full cognitive processes underlying the under-
standing of logical expressions with negations.

2 RESEARCH QUESTIONS

Our work concerns the comprehension of different kinds of logical
expressions, and specifically, comparing equivalent logical expres-
sions, logical expressions with negations, expressions with differ-
ent logical operators, and expressions with different truth values.
Within this context, our concrete research questions are:

(RQ1) Is there a relationship between the number of logical nega-
tions in an expression and the difficulty of the processing?

(RQ2) Is there any difference in comprehension between an expres-
sion that combines literals with the logical operator AND
and an expression that combines literals with the logical
operator OR?

(RQ3) Isthere any difference in comprehending a logical expression
with a truth value of TRUE compared to comprehending a
logical expression with a truth value of FALSE?

(RQ4) Are there other factors which influence the processing of
logical expressions in code?

(RQ5) Is there any difference in understanding between two logi-
cally equivalent expressions? Specifically, is there a differ-
ence in understanding De Morgan’s equivalent pairs — for
example, the negation of a conjunction of variables compared
to the disjunction of the negated variables?

In all these questions, comprehension is defined as finding what a
code snippet prints, and the metrics for difficulty are the time this
took and the fraction of wrong answers. We leave the question of

!To clarify our terminology: a “variable” is defined to be a Boolean variable, namely
an atom that can be TRUE or FALSE. A “literal” is defined to be a variable or a negated
variable.

Understanding Logical Expressions with Negations: Its Complicated

how all this depends on different definitions and metrics for future
work.

3 EXPERIMENTAL DESIGN AND EXECUTION

The experiment included two sections. In both, participants were
presented with multiple code snippets for comprehension. Each
snippet commenced with the declaration and initialization of sev-
eral Boolean variables. Subsequently, these variables were employed
in an expression within an if statement, leading to the printing of
one of two distinct strings. The objective was to ascertain which
string would be printed. The code snippets were written in Python,
which is one of the most popular programming languages today. It
also has the advantage that logical expressions are very transparent
and readable, for example using not for negations rather than ! as
in C.

3.1 Code Snippet Considerations

We took several methodological considerations into account in
designing the experimental materials and the execution of the ex-
periment, with the goal of reducing threats to validity [7].

A basic decision was to avoid situations where the evaluation
could be influenced by intuition. For example, we initially thought
of using code that has an everyday appeal, such as the following:

is_summer = True

» eating_ice_cream = False

if is_summer and eating_ice_cream:
print ("happy")

else:
print("sad")

But we decided not to use such codes, because they have the draw-
back that participants might be influenced by the semantics of the
described situation. For example, most people would probably asso-
ciate the condition is_summer and eating_ice_cream with the output
string "happy". Given this condition they might then conclude that
this is the correct answer irrespective of the actual logic of the code.
And if we wanted to use a negation and had written is_summer and
not eating_ice_cream this might create a cognitive dissonance with
the following instruction print ("happy") thereby making the code
more difficult. To avoid this we used code that talks about colors,
geometric shapes etc. — namely variables that are independent of
each other, and do not have any marked intuitive associations like
ice cream with summer. This applies both to the variables and to
the outputs of the code snippets.

Another possible problem with the above example is that the
lengths of the outputs are different. This may cause a bias in the
results, because what the participants are asked to do is to write
the expected output. To avoid this we used single-letter outputs, A
and B.

A third methodological consideration was to require that partici-
pants had to read the entire condition in order to infer its truth value.
Our first research question RQ1 concerns the effect of the number
of negations in an expression. We therefore need to avoid the dan-
ger of “short circuits”. For example, if the first literal out of three
literals connected by ORs is TRUE, you immediately know that the
whole expression is TRUE, regardless of the values of the other two
literals — and regardless of whether or not they are negated. If this

EASE 2024, June 18-21, 2024, Salerno, Italy

happens, we won’t know whether a shorter response time was due
to the expression having fewer negations, or to the expression not
being read to the end. In other words, the option of short-circuiting
is a major confounding variable. We therefore selected the truth
values of the literals such that all three must be considered to reach
a conclusion. This approach ensured that the comparison was in-
deed between complete conditions with three literals, without the
confounding effect of conditions that could be shortened.

We note that this last design choice may create a different threat.
Having to read the whole expression implies that the last literal is
actually the one that determines the result. If participants notice
that the evaluation always hinges on the last literal, they may
be tempted to skip directly to this literal and ignore the previous
ones. We believe that the danger that this happens is low, for two
reasons. First, it is hard to notice such structure in a relatively
short experiment where we gave each participant only part of the
complete set of code snippets. Second, even if participants suspect
this feature of the design, they would probably still check that it
indeed always holds. Furthermore, even in the event that some
participants decide to skip the initial literals, the randomization
of question order implies that there will be no systematic effect.
Therefore we believe this design is worth the price to ensure that
short circuits are not taken and all negations are read.

3.2 Experiment Execution

The experiment was conducted using the Qualtrics surveys plat-
form. In executing the experiment we randomized the order of the
code snippets presented to the participants, to mitigate the effects
of fatigue, cognitive bias, and other confounding factors. By em-
ploying randomization, we ensured that on average participants
independently and individually saw different code snippets before
or after other snippets, without systematic biases.

The experiment started with an introductory page explaining
what the experiment is about. This included details about the num-
ber of trials, the approximate time the experiment is expected to
take, and a general overview of the experiment’s purpose: “Our goal
is to understand the cognitive mechanisms of reading different logic
patterns in code”. Informed consent to participate was explicitly
reflected by moving to the next page.

The experiment itself consisted of two parts with a total of 15
code segments. The first part included 16 code segments, constitut-
ing a full factorial design to compare the effect of different levels of
different factors (the number of negations, using AND as opposed to
OR, etc., as detailed below). Each participant received 8 of these 16
segments, chosen randomly, and in random order. The randomized
choice implies that the comparisons are between subjects. Part two
included another 7 code segments, designed to compare pairs of
equivalent expressions (3 pairs and one control, detailed below). In
this case each participant received all 7 in random order. Because
each participant saw all the codes the comparison in this part is
within subjects. The response time for each question is measured
automatically by Qualtrics. This is the time from when the page
with the code snippet is presented until the participant clicks on
the “next” button after entering the answer.

The participants were recruited through various channels, in-
cluding WhatsApp groups of programmers, online forums on reddit

EASE 2024, June 18-21, 2024, Salerno, Italy

(which proved most effective), and direct recruitment efforts. A total
of 205 participants took part in the experiment. No identifying infor-
mation was collected, but we did ask basic demographic questions.
163 of the participants reported their gender: 160 of them were
men and 3 were women. This is a rather extreme ratio, but quite
similar to that observed in the Stack Overflow developer survey?.
It is therefore actually representative of the developer community.
168 participants reported their academic background. Among them,
35 had no formal academic background, 92 had a BSc degree, 35
had an MSc degree, and 6 had a PhD. Out of the 162 participants
who reported their years of experience, 19 had 0-2 years of expe-
rience, 74 had 3-10 years of experience, and 69 had over 10 years
of experience. These numbers indicate that the participants are
mostly rather experienced developers. Those with little experience
are few and are not expected to have an appreciable effect on the
results. We did not collect data about the participants’ domain of
work or programming languages, as we are dealing with very ba-
sic constructs which are present in similar form in all imperative
programming languages.

4 THE EFFECT OF NEGATIONS AND
CONTEXT

The first part of the experiment was designed to answer Research
Questions RQ1 through RQ3. To achieve this goal, participants were
presented with various code snippets, which included different
combinations of levels of three factors:

e Having different numbers of negations in the logical expres-
sions. This included the base case of no negations, which
serves for comparison. In other words, we collect data both
about having negations and about the number of negations.

e Having different logical operators — either AND or OR.

e Cases where the entire logical condition evaluates to TRUE
versus cases where it evaluates to FALSE. This was achieved
by correctly setting the truth values of the variables in the
conditions.

By comparing participants’ responses and performance across these
diverse code snippets, we were able to assess the impact of the
different factors on cognitive load and investigate the relationship
between them and code comprehension difficulty. We also studied
the results to see if we could identify any additional factors that
may have an effect, to answer Research Question RQ4.

4.1 Experimental Materials

Each code snippet in this part of the experiment contained a logical
expression with exactly three variables, so that the length of the
expression would not be a factor. The variables were initialized
before the logical expression, in the same order that they appeared
in the expression. Each variable could potentially have a logical
negation or not. As each expression contained three literals, the
number of negations in the condition ranged from 0 to 3. This
allows us to see whether more negations in the expression lead to
higher cognitive load and reduce performance.

We decided that all the negations will be placed consecutively
on the last variables: if there was one negation is was on the last

Zhttps://survey.stackoverflow.co/2022#developer-profile-demographics

Aviad Baron, Ilai Granot, Ron Yosef, and Dror G. Feitelson

variable, and if two they were on the last two variables. This was
done to eliminate a potential confounding factor — the effect of
mixing variables with and without negations.

The logical connectives between the literals could be either both
AND or both OR. In other words, we deliberately maintained dis-
tinct contexts for the logical operators, and do not investigate the
effect of mixing them. Additionally, a potentially important factor
we examined was whether the entire logical condition evaluated to
TRUE or FALSE.

Putting all of this together leads to 16 combinations: 4 options
for the number of negations (0 to 3), multiplied by two options
of the logical operator used, multiplied by two options for the
final result. For example, the following code snippet represents the
combination of 1 negation, the logical operator OR, and a FALSE
expression value:

is_green = False
is_card = False
is_circle = True

if is_green or is_card or
print ("A")
else:

print("B")

not(is_circle):

As another example, in the following code segment there are 3
negations, the logical operator is AND, and the truth value is TRUE:

is_blue = False
is_wet = False
is_card = False

if not(is_blue) and not(is_wet) and not(is_card):
print ("A")

else:
print("B")

4.2 Results

For each code snippet we have two results: the fraction of partic-
ipants who understood it correctly, and the time it took them to
do so. In the figures we show the CDF (cumulative distribution
function) of the time. The time is on the horizontal axis, and the
graph shows the probability to solve the problem in up to a certain
time. Thus a line that is more to the right reflects the need for more
time to give a correct answer. The scale is truncated at 40 seconds,
because most of the code snippets are very simple and take only
10-20 seconds to interpret. This excludes the few outliers that may
be present.

The graphs include the correctness results by giving wrong an-
swers an infinite time. As a result the CDFs do not reach a maximal
value of 1, but rather the fraction of correct answers. But because
the code snippets are rather easy, the participants nearly always
answered correctly, so this was usually 1 or very close to 1. The
number of wrong answers was too small to allow for meaningful
analysis. In the sequel we therefore focus on differences in the time
needed to answer, and not on correctness.

Figures 1 and 2 show all the results, for expressions with the
AND operator and the OR operator respectively. These are rather
dense, but still some interesting effects can be seen. For example,
in Figure 1 we can see that expression using AND that has no

Understanding Logical Expressions with Negations: Its Complicated

AND

\

o
3
o

— True with 3 negations
== True with 2 negations
== True with 1 negation
True with 0 negations
== False with 3 negations

Cumulative fraction of results
o
(o))
o

— False with 2 negations
== False with 1 negation

False with 0 negations
0 10 20 30 40
Time in second
Figure 1: CDFs of the time to correct answers for logical
expressions with 3 literals connected by AND operators.

OR
1.00- L
e i o
S e
% o [4= 7 - =
2ors- 1T
0. ;) 7 £,
5 Lr,
5 "107
B y f/ = True with 3 negations
G050 A
&= r a 14 = True with 2 negations
2 ’I,, 4 — True with 1 negation
g "lj 4 True with 0 negations
g0.25- 1 1 = False with 3 negations
3 ty — False with 2 negations
b/ — False with 1 negation
0.00- | & A ‘ | I False with 0 nega‘tions
0 10 20 30 40

Time in second

Figure 2: CDFs of the time to correct answers for logical
expressions with 3 literals connected by OR operators.

negations and evaluated to TRUE was the fastest to interpret, but
the same expression that evaluated to FALSE was no faster than
an expression with a negation. But in Figure 2 we see that such
an effect does not exist for expressions with OR. On the contrary,
there is a bigger difference when the expressions evaluate to FALSE
compared with when they evaluate to TRUE.

Such observations imply that there are various complex interac-
tions between the factors. To uncover them we start by looking at
the effect of each factor separately. We then move to discussing the
interactions in Section 4.3.2.

4.2.1 Effect of Number of Negations. We start with the factor of the
number of negations, which is the subject of Research Question RQ1.
Figure 3 shows the results for the processing time as a function of
the number of negations in the logical expression, for all operators
and truth values (that is, each line in this graph contains data from
4 lines in Figures 1 and 2). The results demonstrate that having
more negations increases the response time. When comparing a
logical expression without any negations to a logical expression
with a single negation, and when comparing a logical expression
with a single negation to a logical expression with two negations,
the addition of the negation increases the time. However, this is
not the case when comparing an expression with two negations to
an expression with three negations. This effect is the result of an
interaction that will be discussed later.

EASE 2024, June 18-21, 2024, Salerno, Italy

NEGATION

o
S

o
~
a

— 3 negations

== 2 negations

Cumulative fraction of results
o
(%))
o

== 1 negation
— 0 negations

0 10 20 30 40
Time in second
Figure 3: CDFs of the time to correct answers for logical
expressions with different numbers of negated variables.

AND OR

1.00-

0.75-

0.50-

0.25-

Cumulative fraction of results

0.00-
0 10 20 30 40
Time in second
Figure 4: CDFs of the time to correct answers for logical
expressions with different operators.

More formally, the independent variable has four levels, repre-
senting the number of negations. The dependent variable is the
time of responses. The comparison is between subjects. We would
like to check whether the average time needed to process the differ-
ent versions (in pairs) is equal. For this we will use a t-test, where
the null hypothesis is that the times are equal, and the alternative
hypothesis is that the expected values are different. The results
of these tests is that there is a statistically significant difference
between no negations and 1 negation (p-value = 3.173e-13), and
also between 1 negation and 2 negations (p-value = 0.0001126). So
in these two cases the null hypothesis is rejected. However, the
difference between 2 negations and 3 negations is not statistically
significant (p-value = 0.07602). Thus the null hypothesis was not
rejected in this case.

4.2.2 Effect of AND vs. OR and TRUE vs. FALSE. The additional
factors we considered, in order to examine Research Questions
RQ2 and RQ3, are the logical operator and the value of the logical
condition.

In order to examine RQ2 we draw Figure 4 which shows the
results of processing times for conditions that use the AND operator
and conditions that use the OR operator. These are combined results
for expressions with all the different numbers of negations (0 to
3) and different truth values. As can be seen in the graph a small
difference is observed: conditions using AND take slightly less

EASE 2024, June 18-21, 2024, Salerno, Italy

TRUE FALSE
1.00-

0.75-

Cumulative fraction of results
o
(4]
o

== TRUE
0.00- == FALSE

0 10 20 30 40
Time in second

Figure 5: CDFs of the time to correct answers for logical
expressions with different truth values.

AND OR TRUE FALSE

-
o
t=3

o
~
(4]

o
[N
o

= ORTRUE

— ORFALSE

= AND TRUE

— AND FALSE

0 10 20 30 40
Time in second

Cumulative fraction of results
o
(4]
o

o
o
=]

Figure 6: CDFs of the time to correct answers for logical
expressions with different operators and truth values.

time. Applying the t-test as previously showed that the difference
is statistically significant, with p-value = 0.001048. But it seems
that the effect of the operator factor is not very meaningful, as the
actual difference in times is slim.

Figure 5 shows the results of processing times for conditions that
evaluate to TRUE and conditions that evaluate to FALSE, combining
the results for expressions with different numbers of negations and

different operators. It is evident that they are practically the same.

Therefore the condition’s truth value is not an important factor in
and of itself. This observation is also supported by the statistical
test, which had a p-value = 0.7401.

However, the actual picture is more complicated. Figure 6 shows

the results for the four combinations of operator and truth value.

What we can see is that when the condition is FALSE (red lines),
there is no difference between conditions using AND and conditions
using OR (p-value = 0.3293). The difference we saw above in Figure
4 is wholly due to conditions that evaluate to TRUE (p-value =
0.0003977).

In other words, the effect we saw was not an effect of the operator
factor, but an effect of the interaction between the operator and the
truth value.

In summary, of the three independent variables we started with
— the number of negations, the operator, and the truth value — only
the number of negations seems to have an effect on the processing

Aviad Baron, Ilai Granot, Ron Yosef, and Dror G. Feitelson

Regularity

o
S

o
9
ol

o
N
a

Cumulative fraction of results
o
(<))
o

Regular

o
o
=1

— Non-regular

0 10 20 30 40
Time in second

Figure 7: CDFs of the time to correct answers for regular

logical expressions vs. irregular logical expressions.

time by itself. The factors of operator and truth value do not. How-
ever, an interaction between these two factors does have an effect.
In the following section, we propose additional factors that may be
the real causes of this interaction.

4.3 Identification of Additional Factors

In designing the experiment we made two methodological decisions
which may have had repercussions we did not anticipate in advance.
These decisions were the following:

o We wanted the participants to always read the whole condi-
tion, without the option of short circuiting. For a condition
based on ANDs this implies that all the initial literals be
TRUE. For a condition based on ORs this implies that all the
initial literals be FALSE. In both cases, the last literal then
determines the truth value of the whole condition.

e We decided to group all the negations together, and do this
consistently in all the different conditions. Specifically we de-
cided to always put them at the end of the condition (but we
could also have decided to put them in the beginning). In this
way the distribution of negations will not be an additional
confounding factor.

Our analysis indicates that these decisions inadvertently created
additional factors that influence the results, thereby answering
Research Question RQ4.

4.3.1 The Factors. We start by describing the additional potential
factors we found. One additional factor we propose came about as a
result of the above design decisions is syntactic regularity. Syntactic
regularity refers to the literals in the condition having the same
structure: either none of them are negated variable or all of them
are negated variables. The alternative (irregularity) is to have a mix,
where only part of the variables are negated. Our interpretation is
that this factor explains the anomaly seen above in Figure 3, where
conditions with 3 negations were shown to take similar or less time
that conditions with 2. Specifically, conditions with 3 negations are
regular, and we believe this compensates for the difficulty caused
by the additional negation.

To verify this, we drew a graph that compares all the regular
conditions with all the irregular ones. The regular conditions are
those with 0 or 3 negations, and the irregular ones are those with

Understanding Logical Expressions with Negations: Its Complicated

OR - 0 and 1 negations

1.00- S —
o —
T
- !
%’ -’ -
$0.75- LI
5 ‘4
5 "
£ s
S 0.50 A
e plr
k=1 ,
© !
20.25- Vs — True with 1 negation
3 7 True with 0 negations
== False with 1 negation
i “” False with 0 negations
0.00 9
0 10 20 30 40

Figure 8: CDFs of the time to correct answers for expressions
based on OR with 0 or 1 negations.

1 or 2 negations; in either case, the average is 1.5 negations. As
we can see in Figure 7, the regular ones indeed take less time to
understand. Formally the independent variable is categorical with
two levels, whether the expression is regular or not. The dependent
variable is the time of responses. The null hypothesis in the t-test
is that the times are equal, and the alternative hypothesis is that
the expected values are different. The results are that there is a
statistically significant difference, with p-value = 6.205e-07. Thus
the null hypothesis was rejected.

The regularity defined above is syntactic: it concerns the struc-
ture of the condition. Another form of regularity is logical regularity.
This refers to whether or not the literals have the same truth value,
namely whether they are all TRUE or all FALSE.

The evidence supporting this factor comes from Figure 6. In that
figure we saw that conditions using AND which evaluate to TRUE
took less time to understand than similar conditions that evaluate
to FALSE. Our interpretation is that those that evaluate to TRUE
are necessarily composed of 3 TRUE literals in a row, whereas in
those that evaluate to FALSE the last literal is different.

Note that this effect is not observed in conditions based on OR:
in this case conditions that evaluate to TRUE and conditions that
evaluate to FALSE take about the same time. To explain this we
introduce a third possible factor, which is the truth value of the
individual literals: whether each one of them is TRUE or FALSE.
When conditions use AND, the two last factors work together:
conditions that are logically regular also have more TRUE literals.
But for conditions based on OR the two factors counteract each
other: those that are regular have fewer TRUE literals. We suggest
that this is why we do not observe a difference in the distributions
of the total time to understand these conditions. As further support
for this third factor, note that in the figure the expression with AND
that evaluate to TRUE took slightly less time than those with OR
that evaluate to FALSE, despite both having the same level of logical
regularity. We explain this by the fact that for AND all the literals
evaluate to TRUE, while for OR they all evaluate to FALSE.

4.3.2 Interactions. The above factors do not tell the whole picture.
In addition there are interactions between them. We illustrate this
by comparing just the conditions with no negations and a single
negation. These are shown in Figures 8 and 9. The factors and their
levels are summarized in Table 1.

EASE 2024, June 18-21, 2024, Salerno, Italy

AND - 0 and 1 negations

1.00-

0.75-

0.50-

0.25-

— True with 1 negation

Cumulative fraction of results

True with 0 negations
— False with 1 negation

0.00-

False with 0 negations
0 10 20 30 40
Time in second

Figure 9: CDFs of the time to correct answers for expressions
based on AND with 0 or 1 negations.

regularity
op neg truth syn log T-lit result
OR 0 TRUE 1 } 1o gap
0 FALSE V v 0
AND 0 TRUE v V/ 3
0 FALSE 2 f e
OR 1 TRUE 1
1 FALSE VAR f e
AND 1 TRUE v 3 } no gap
1 FALSE 2

Table 1: Summary of interacting factors. (T-lit = number of
literals that are TRUE)

Let us first summarize the main results. When conditions use
the OR operator, and there are no negations, we find that there is
no difference between TRUE and FALSE conditions. But when the
conditions contain one negation there is a significant difference in
favor of the TRUE condition. With the AND operator this result
is reversed: the difference between TRUE and FALSEoccurs for
conditions with no negations, but not in conditions with a negation.

We explain these differences as follows. In OR with no negations
the TRUE version has one more TRUE literal, while the FALSE
version has logical regularity. These effects cancel out and the
results converge with no gap. In AND with no negations the TRUE
version has both one more TRUE literal and logical regularity. This
double advantage over the FALSE version causes a gap to appear.

When conditions have a negation the trend is changed for both
OR and AND. Recall that we placed the negation on the last variable.
As a result in the combinations of TRUE OR and FALSE AND the
last literal is changed in two ways at once: it gets a negation, and
it also changes its truth value. We believe that his simultaneous
change of the syntax and the semantics in the same literal aids
comprehension. As a result a gap is formed for OR and the gap is
closed for AND. With 2 or 3 negations the picture changes again,
and is more similar to the situation with no negations.

This demonstrated the complexity of the situation: syntactic
regularity usually aids comprehension, but breaking it in tandem
with a break in logical regularity can be beneficial too.

o

EASE 2024, June 18-21, 2024, Salerno, Italy

The above analysis attempted a first mapping of the possibly
relevant factors and their effects. However a full picture will only be
possible after conducting multiple additional experiments, which
will be specifically designed to study the ideas we raised here. For
example, our definition of regularity is dichotomous: we require
either all or none of the literals to have negations. It is interesting
to also check what happens in between, with different fractions of
literals with negations.

5 COMPARING EQUIVALENT FORMS

In the second part of the experiment, our objective was to com-
pare equivalent logical expressions to examine which version is
more readable and comprehensible, in order to answer Research
Question RQ5. For example, this included comparing equivalent
expressions related by De Morgan’s laws. We aimed to determine
which form of the logical expressions is more easily understood by
the participants.

5.1 Experimental Materials

The code snippets used in this part again include Boolean variables
initialized to their respective Boolean values, and then a logical con-
dition that uses them. For example, the following code represents
the logical condition = (p A g):

is_pink = True
is_circle = False
if not(is_pink and is_circle):
print ("A")
else:
print ("B")

The participants are then asked to respond with what will be printed,
based on the given code and variable assignments.

The snippets were designed to capture various pairs of equivalent
formulations. For example, the above snippet has an alternative
version using a logical expression equivalent to the previous one
according to De Morgan’s laws, namely —p V —q:

is_pink = True
is_circle = False
if not(is_pink) or not(is_circle):
print("A")
else :
print("B")

Furthermore, we examined the option of using an implicit nega-
tion, meaning the condition was not satisfied, and thus the code
executed the “else” statement rather than the “then” statement. This
is equivalent to using an explicit negation and switching the “then”
and the “else”. For example, the following expresses exactly the
same logic as the first snippet shown above, without using any
negation:

is_pink = True
is_circle = False
if is_pink and is_circle:
print ("B")
else:
print ("A")

Aviad Baron, Ilai Granot, Ron Yosef, and Dror G. Feitelson

Logic Patterns

N
o
o

o
~
o

pandq
not(p and q)
== not p or notq

o
N}
a

== not p and not q
== not(p or q)
not(not p) or not(not q)
— not(not p and not q)
0 10 20 30 40
Time in second

Cumulative fraction of results
o
(4]
o

o
o
S

Figure 10: CDFs of the time for comprehending the seven
snippets. All had the value TRUE except p A g, which was
FALSE and represents an implicit negation.

(However, in order not to give this away, in the experiment we did
not switch the printing of A and B.)
All told we used seven code snippets which implement the fol-
lowing logical conditions:
e De Morgan’s first pair: =(p A gq) and the logically equivalent
—p Vg
e De Morgan’s second pair: =(p V q) and the logically equiva-
lent —=p A —~q
e The “implicit negation” when the condition is simply p A g
but it receives a false value.
o Expressions with double negations, represented by the condi-
tion ~(—pA-q) and its corresponding expression = —pV-—gq.
In the analysis of the results we compared various pairs of expres-
sions to see the effect of their different structures.
The methodological considerations noted in the previous part of
the experiment were also used in this part. In this part, all partici-
pants saw all seven conditions in a randomized order.

5.2 Results

Figure 10 shows the time distributions measured for the seven
snippets, with wrong answers represented as co as before. Obviously
there are significant differences between them.

In the results, we observe that explicit negations increase cogni-
tive load (as reflected by the time needed to produce an answer).
The fastest condition to understand was the one with the “implicit
negation”, namely p A g that evaluated to FALSE. This was signifi-
cantly faster than the logically equivalent =(p A g) that evaluated
to TRUE, but had a negation (t-test p-value = 7.803e-07).

In general, all four expressions: =(p A q), =p V =g, =(p V q), and
—p A—q are quite similar in terms of their processing difficulty, with
a slightly higher difficulty for the condition —=(p V g). Performing
the t-test on De Morgan pairs, we find that there are no statistically
significant differences. For the pair —(p A ¢) and —p V =g, which
look like exactly the same time distribution, the result was p-value
= 0.5916. But also for the pair —=(p V q) and —p A —q, where the
graphs show some difference, the result was not significant, with
p-value = 0.0715. Note that this is a within-subject analysis.

The implication is that more negations is not always worse —
it also depends on what exactly is negated: is it a variable or a

Understanding Logical Expressions with Negations: Its Complicated

more complex expression. In particular, it seems that the equivalent
forms of De Morgan’s laws are similar, because while one has two
negations and the other only one, that one negation is applied to a
compound expression, and the effects cancel.

A similar effect is seen in the conditions that include double
negations. First, we note that both these conditions were the hardest
to understand. They took the longest time to understand, and were
also the only code snippets in our experiments where the number
of mistakes was not negligible. Note that the condition —=—p V =g,
which has 4 negations, took less time than the equivalent expression
=(=p A —q) that has only 3 (p-value = 0.002088). We believe this is
because of the confluence of three effects: the second condition has
a negation that applies to a complex expression; the first expression
has structural regularity, with ——x appearing twice; and it is easy
to see that the double negations in the construct ——x cancel out.

To summarize, we find that in some cases there may be significant
difference in processing of conditions that are actually logically
equivalent, but in other cases there is no large difference. In other
words, logical equivalence does not inherently guarantee that the
logical conditions will have the same processing difficulty. What
holds more significance is the logical and structural composition of
each logical condition.

6 THREATS TO VALIDITY

Construct validity. We wanted to measure the difficulty in un-
derstanding logical expressions. However, there are many different
levels of understanding [7]. We measured the ability to follow and
understand what the expression prints, which reflects an under-
standing of the programming language and an ability to trace the
execution of the code. It does not necessarily reflect a higher level
of understanding. However, when using short code snippets in an
attempt to isolate specific factors, as we do here, there is no real
options to create “meaningful” code that justifies such higher levels.
We therefore contend that this choice is appropriate.

Concerning the difficulty in understanding, this was operational-
ized by the time needed to produce a correct answer and by the
fraction of wrong answers. Measuring both the time and correct-
ness of responses is a common practice [17]. However, while they
are a common proxy for difficulty of understanding they are not
the same as difficulty of understanding. But in our analysis the mea-
sured times are not important in absolute terms, but only relative
to the times measured for other expressions. The results therefore
can indeed give a perspective on the relative hardness of different
expressions.

Internal validity. Our interpretations of the results are at times
somewhat speculative, as additional potential factors were iden-
tified during the analysis that were not anticipated in advance.
Additional experiments need to be designed and executed to fur-
ther validate these factors and their effects.

We designed the experiment such that the participants need
to read the full expressions, and therefore the last literal is the
decisive one. It is possible that participants may have discerned the
significance of the last literal in the code, and skipped other parts
of the expression. However, given the brevity of the experiment,
we believe this risk is minimal, especially since we shortened the
experiment and gave each participant only 8 of the 16 snippets in

EASE 2024, June 18-21, 2024, Salerno, Italy

the first part of the experiment. It is also unlikely that participants
in an experiment would be so sure of themselves that only the
last literal matters that they will skip the initial ones. In addition,
because we randomized the presentation of the code snippets, any
effect (if it exists) would be spread evenly across all the codes and
there will be no systematic effect. We therefore believe this threat
is not significant.

External validity. Research findings are always limited to the
circumstances under which they were derived. There are a lot of
possible structures of logical expressions. Our research examined
only a limited number of basic formulas. It is important to acknowl-
edge that the results for the expression we employed may not
necessarily generalize to other scenarios or expressions. There is
no alternative to performing additional experiments to get a fuller
picture.

One specific example concerns the use of logic short-circuiting.
We designed the logical expressions such that short-circuiting is not
possible. This was required in order to ensure that we are comparing
the reading of expression of the same length. At the same time, we
acknowledge that the practice of short-circuiting logical expressions
does exist. We are planning to conduct experiments about the use
and effects of short-circuiting in the future.

7 CONCLUSION

Understanding logical conditions in code is complicated. We believe
this research has demonstrated this complexity. It suggests that
many factors are involved in this activity.

We showed that the time needed to understand logical expres-
sions is affected by numerous factors and interactions among them,
influencing the processing difficulty. We sought to characterize and
identify some of these factors, which can be broadly categorized
into two main dimensions: syntactic factors and logical factors. For
example, the negation operator is part of the syntactic dimension,
while a literal’s truth value is in the logical dimension. And both
of these factors can impose processing difficulties. Additionally,
both syntactic and logical regularities are also factors influencing
processing difficulty. Furthermore, we discovered that the factors
are not independent, and there are interactions between the syntac-
tic and logical factors. For example, when syntactic regularity and
logical regularity brake down simultaneously in the same literal,
the correlation between the syntactic and logical perspective eases
the processing, despite the absence of both regularities.

The factors we identified in this study can aid in understanding
what influences the comprehension of logical conditions in code,
both in a general sense and, more specifically, how they impact
the writing and comprehension processes of developers. Beyond
that, we believe that this research may contribute to a broader
understanding of the cognitive processes associated with the com-
prehension of complex logical statements. There has been a lot of
previous work on understanding negations and logic expressed in
natural language. Our results are different in that the expressions
are not expressed in natural language, but in a formal notation of
programming. This may eliminate some of the ambiguity present
in natural language, and enable a sharper focus on the core effects
of the logical constructs. In addition, code may expose new factors

EASE 2024, June 18-21, 2024, Salerno, Italy

that are not commonly observed in natural language settings, like
syntactic and lexical regularities and the interplay between them.

We started our investigation with 3 factors in mind: the number
of negations in an expression, the logical operators used (AND or
OR), and the truth value of the entire expression. But the results
suggested that there are many more factors. It is reasonable to think
that even more are waiting to be discovered. This research should
therefore be expanded in the future to include the exploration of
additional factors.

Concrete issues that beg further study include investigating sit-
uations involving expressions with different combinations of AND
and OR, the possible effect of programming experience on under-
standing different types of expressions, and expressions based on
computing conditions (e.g. x <= 3) rather than on given variables
that are either TRUE or FALSE — and also whether there is a dif-
ference between x < = 3 and not(x > 3). Another whole line of
research is the effect of short circuits. Developers undoubtedly ex-
ploit the possibility of short-circuiting in their work. It is therefore
interesting to identify which patterns of logical expressions are
more amenable to short circuits. In addition, it is also interesting to
look into what developers do in practice, for example when they
refactor logical expressions.

Another interesting issue is negations that appear in names
rather than as logical operators. For example, consider the Boolean
not_done when used in a loop header while (not_done) {..} . This can
be compared with using a Boolean done with a negation operator
as in the expression while (!done) {.} or alternatively a positive
Boolean more_work and the expression while (more_work) {...} . We
are working on such an experiment.

While we have only started studying these issues, we can already
identify several possible practical implications for developers:

e We demonstrated that multiple negations have a detrimental
effect on understanding. So negations should be avoided if
possible. Examples: if you have a double negation, cancel
them out. If an expression in an “if” can be flipped by remov-
ing a negation and switching the “then” and the “else”, do
so.

e Regularity also helps. So if an expression has repeated ele-
ments, try to emphasize its regularity.

Beyond these immediate implications, we hope that our findings
will prompt additional research, which will eventually lead to a
more comprehensive understanding of negations. By collecting
many such results, we will be able to formulate more guidelines for
developers that will help in steering towards more easily understood
expressions.

EXPERIMENTAL MATERIALS

The experimental materials are available from Zenodo using the
DOI 10.5281/zenodo.11064987.

ACKNOWLEDGMENTS

This research was supported by the ISRAEL SCIENCE FOUNDA-
TION (grant no. 832/18).

Aviad Baron, Ilai Granot, Ron Yosef, and Dror G. Feitelson

REFERENCES

[1] Galit Agmon, Yonatan Loewenstein, and Yosef Grodzinsky. 2022. Negative Sen-
tences Exhibit a Sustained Effect in Delayed Verification Tasks. J. Exp. Psy.:
Learning, Memory, & Cognition 48, 1 (Jan 2022), 122-141. https://doi.org/10.1037/
x1lm0001059
Shulamyt Ajami, Yonatan Woodbridge, and Dror G. Feitelson. 2019. Syntax,
Predicates, Idioms — What Really Affects Code Complexity? Empirical Software
engineering 24, 1 (Feb 2019), 287-328. https://doi.org/10.1007/s10664-018-9628-3
[3] Ruven E. Brooks. 1983. Towards a Theory of the Comprehension of Computer
Programs. Int. J. Man Mach. Stud. 18, 6 (1983), 543-554. https://doi.org/10.1016/
50020-7373(83)80031-5
Bill Curtis, Jay Sappidi, and Jitendra Subramanyam. 2011. An evaluation of the
internal quality of business applications: does size matter?. In Proceedings of
the 33rd International Conference on Software Engineering,, Richard N. Taylor,
Harald C. Gall, and Nenad Medvidovic (Eds.). ACM, 711-715. https://doi.org/10.
1145/1985793.1985893
Viviane Déprez and M. Teresa Espinal (Eds.). 2020. The Oxford Handbook of
Negation. Oxford University Press.
[6] IDeschamps, G Agmon, Y Loewenstein, and Y Grodzinsky. 2015. The processing
of polar quantifers, and numerosity perception cognition. Int. J. Man Mach. Stud.
143 (2015), 115-128. https://doi.org/10.1016/j.cogni
[7] Dror G. Feitelson. 2022. Considerations and Pitfalls for Reducing Threats to the
Validity of Controlled Experiments on Code Comprehension. Empirical Software
engineering 27, 6, Article 123 (Nov 2022). https://doi.org/10.1007/s10664-022-
10160-3
[8] Yosef Grodzinsky et al. 2020. Logical negation mapped onto the brain. Brain
Structure and Function 35 (2020), 19-31. ttps://link.springer.com/article/10.1007/
s00429-019-01975-w
[9] Yosef Grodzinsky et al. 2021. A linguistic complexity pattern that defies aging:
The processing of multiple negations. Journal of Neurolinguistics 58 (2021),
543-554. https://www.sciencedirect.com/science/article/pii/S0911604420301421
Sallie M. Henry and Dennis G. Kafura. 1981. Software Structure Metrics Based on
Information Flow. IEEE Transactions on Software Engineering 7, 5 (1981), 510-518.
https://doi.org/10.1109/TSE.1981.231113
Errol R. Iselin. 1988. Conditional Statements, Looping Constructs, and Program
Comprehension: An Experimental Study. Intl. J. Man-Machine Studies 28, 1 (Jan
1988), 45-66. https://doi.org/10.1016/S0020-7373(88)80052-X
Marcel Adam Just and Patricia Ann Carpenter. 1971. Comprehension of negation
with quantification. Journal of Verbal Learning and Verbal Behavior 10 (1971), 244~
253. https://www.sciencedirect.com/science/article/abs/pii/S0022537171800518
[13] Sangeet Khemlani, Isabel Orenes, and P.N. Johnson-Laird. 2014. The negations of
conjunctions, conditionals, and disjunctions. Acta Psychologica 151 (2014), 1-7.
https://www.sciencedirect.com/science/article/abs/pii/S0001691814001206
Robert C. Martin. 2009. Clean Code: A Handbook of Agile Software Craftmanship.
Prentice Hall.
Glenford J. Myers. 1977. An extension to the cyclomatic measure of program
complexity. ACM SIGPLAN Notices 12, 10 (1977), 61-64. https://doi.org/10.1145/
954627.954633
Isabel Orenes, Linda Moxey, Christoph Scheepers, and Carlos Santamaria. 2016.
Negation in context: Evidence from the visual world paradigm. Quarterly Journal
of Experimental Psychology 69 (2016). https://doi.org/10.1080/17470218.2015.
1063675
Vaclav Rajlich and George S. Cowan. 1997. Towards Standard for Experiments in
Program Comprehension. In 5th International Workshop on Program Comprehen-
sion. 160-161. https://doi.org/10.1109/WPC.1997.601284
Margaret-Anne D. Storey. 2005. Theories, Methods and Tools in Program
Comprehension: Past, Present and Future. In Proc. 13th International Work-
shop on Program Comprehension. IEEE Computer Society, 181-191. https:
//doi.org/10.1109/WPC.2005.38
[19] Ye Tian and Richard Breheny. 2015. Dynamic Pragmatic View of Negation
Processing. Negation and Polarity: Experimental Perspectives 1 (2015), 21-43.
https://link.springer.com/chapter/10.1007/978-3-319-17464-8_2
[20] P.C.Wason. 1959. The Processing of Positive and Negative Information. Quarterly
Journal of Experimental Psychology 11 (1959), 92-107. https://doi.org/10.1080/
17470215908416296

—_
£,

[4

[5

[10

[11

[12

=
&

[15

[16

[17

(18

https://doi.org/10.1037/xlm0001059
https://doi.org/10.1037/xlm0001059
https://doi.org/10.1007/s10664-018-9628-3
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1145/1985793.1985893
https://doi.org/10.1145/1985793.1985893
https://doi.org/10.1016/j.cogni
https://doi.org/10.1007/s10664-022-10160-3
https://doi.org/10.1007/s10664-022-10160-3
ttps://link.springer.com/article/10.1007/s00429-019-01975-w
ttps://link.springer.com/article/10.1007/s00429-019-01975-w
https://www.sciencedirect.com/science/article/pii/S0911604420301421
https://doi.org/10.1109/TSE.1981.231113
https://doi.org/10.1016/S0020-7373(88)80052-X
https://www.sciencedirect.com/science/article/abs/pii/S0022537171800518
https://www.sciencedirect.com/science/article/abs/pii/S0001691814001206
https://doi.org/10.1145/954627.954633
https://doi.org/10.1145/954627.954633
https://doi.org/10.1080/17470218.2015.1063675
https://doi.org/10.1080/17470218.2015.1063675
https://doi.org/10.1109/WPC.1997.601284
https://doi.org/10.1109/WPC.2005.38
https://doi.org/10.1109/WPC.2005.38
https://link.springer.com/chapter/10.1007/978-3-319-17464-8_2
https://doi.org/10.1080/17470215908416296
https://doi.org/10.1080/17470215908416296

	Abstract
	1 Introduction
	2 Research Questions
	3 Experimental Design and Execution
	3.1 Code Snippet Considerations
	3.2 Experiment Execution

	4 The Effect of Negations and Context
	4.1 Experimental Materials
	4.2 Results
	4.3 Identification of Additional Factors

	5 Comparing Equivalent Forms
	5.1 Experimental Materials
	5.2 Results

	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

